
CMSC818K/ENEE729A. Home assignment 2. Instructor: A. Barg

Date due Oct. 22, 2020, 8:00pm.

Please submit your work as a single PDF file to ELMS/Canvas under the Assignments tab
• Papers submitted as multiple pictures of individual pages are difficult for grading and will not be accepted.
• Justification of solutions is required.
• Each problem is worth 10 points. A subset of problems will be graded.

Problem 1. (In this problem you will learn a new method of proving results that rely on random choice
from finite sets)

Below we use the notation Vw for the volume of the ball in the q-ary Hamming space Qn, Vw =∑w
i=0

(
n
i

)
(q − 1)i.

We a constructing a random code of size M . Let d be the target value of the code’s distance. Our goal
is to estimate M from below as a function of d. The GV bound suggests that there may exist codes of size
M > qn/Vd−1 (we have proved this for linear codes over fields). Let us show that even if Q is not a field,
and so our codes are not linear, it is still possible to prove the GV bound by random choice (up to a constant
multiplier).

Call a point in the code good if its distance to any other code point is ≥ d. Call an ordered set of M points
in Qn good if all of its points are good.

(a) Estimate from above the number of bad choices for the ith code point if all the other M − 1 points are
fixed.

(b) Estimate from above the number of choices for the remaining M − 1 points, and derive an upper
bound on the number of codes of size M in which the ith point is bad.

(c) Estimate from above the number of bad codes of size M . If this bound is less than the total number of
codes of size M , i.e., qnM , there exists a good code. This gives a bound on M in terms of d, but the result
is a far cry from GV (you should get for M the inequality M(M − 1)Vd−1 < qn, bad.)

(d) Show that the average number of bad points in the code is ≤ M(M − 1)Vd−1/q
n and argue that there

is a code, denote it A, with at most than many bad points. Choose M such that the average number of bad
points ≤ M/2, and discard them from the code A. The remaining code is good, and its size M > qn/4Vd−1.
This is where we wanted to be.

Problem 2. (Exercises for finite fields; please justify all answers)

(a) How many zeros does the polynomial x4+x3+1 have in F16? The same question about x4+x2+x.
Please justify your answers without substituting all the elements of F16 into the polynomials.

(b) In the lectures we constructed F16 using the powers α0, α1 . . . , α14 of a root α of the polynomial
x4 + x+ 1. Now construct the finite field F16 by adding to F2 a root ξ of the polynomial x4 + x3 + 1, and
express every nonzero element αj , 0 ≤ j ≤ 14 as a power of ξ.

(c) Consider the polynomial f(x) = x4+x3+x2+x+1. Is f(x) irreducible over F2? Is f(x) primitive
over F2? Add to F2 the roots of f(x) and prove that in this way we obtain the field F16.

Let ξ ∈ F16 be a root of f(x), i.e., f(ξ) = 0. Show that 1 + ξ is a primitive element in F16 (the easiest is
to express 1 + ξ as some power of α from part (b)).

(d) Prove that Fpl is a subfield of Fpm if and only if l divides m. Thus, F4 is a subfield of F16 and F8 is
not, but both F4 and F8 are subfields in F64. Take a primitive polynomial of degree 6 over F2 (google for the
tables, or construct yourself) and let α be its root. Identify the elements of F4 and F8 in terms of the powers
of α. In particular, you will obtain that F4 = {0, 1, αi, αj} for some i, j. Show that αi + αj ∈ F4.



Problem 3. (Computers OK, but justification required. In each of (a),(b),(c) explain why your result is
correct.)

(a) Is 2 is a primitive element of the field F := F13?

(b) Write out a parity-check matrix of the [n = 12, k = 8] RS code C over F (explain how you obtained
it).

(c) Suppose that a codeword c ∈ C was transmitted over the channel, and the received vector is

y = (2, 0, 10, 3, 10, 2, 4, 12, 0, 8, 9, 6).

Is y a codeword of the code C? Perform the steps of the Berlekamp-Welch algorithm to recover the trans-
mitted vector c. Once you have found c, explain why this is a correct answer.

You will use some software, I advise GAP (www.gap-system.org). It knows quite a bit about finite fields
and codes. Here is a little example:

gap> LoadPackage("guava", "2.1");
gap> x:=Indeterminate(GF(13),"x");;
gap> C:=ReedSolomonCode(12,5);
a cyclic [12,8,5]3..4 Reed-Solomon code over GF(13)
gap> GeneratorMat(C);

(answer not shown)

At this point GAP knows that C is a Reed-Solomon code and can compute a lot about it.

Problem 4. (Cyclic RS codes)

(a) Let F = Fq be a finite field with primitive element α. Let Ω = (αi, i = 0, 1, . . . , q − 2) be the set
of nonzero elements of F. Define an [n = q − 1, k] RS code C as a set of evaluations of the polynomials
f(x) ∈ F [x] of degree ≤ k−1. Prove directly that the code is cyclic, i.e., that if c = (c0, c1, . . . , cn−1) ∈ C
is a codeword, then any cyclic shift of c, e.g., (cn−1, c0, c1, . . . , cn−2) is also a codeword in C.

(b) (using the notation from part (a)). We will think of the codewords of an [n = q − 1, k] code as
polynomials of the form

c(x) =
n−1∑
i=0

cix
i, where ci ∈ F .

Consider the polynomial g(x) = (x− α)(x− α2) · · · (x− αd−1). Let us form a code

D = {a(x)g(x)mod (xn − 1), 0 ≤ deg(a(x)) ≤ k − 1},
where a(x) runs over all the polynomials over F with degrees from 0 to k− 1. What are the dimension and
distance of the code D? (If this looks difficult, read Roth’s book [R] Sec. 8.1).

(c) Show that all the coefficients of the polynomial g(x) are nonzero (do not attempt to multiply out!).

(d) Now let F = F16 and let d = 13. What are the parameters [n, k] of the code D constructed as in part
(b)? Write out a generator matrix of the code.


