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Problem 1

(a): QEC conditions are that PaP , Pa†P , and Pa†aP are all proportional to P , where P is the projection on the
codespace. First, observe that

Pa†P = (PaP )
†
, (1)

so if the latter is satisfied, so is the former. Observe that the error words

a∣0⟩ =
1
√
2
(a∣0⟩ + a∣4⟩) =

1
√
2

√
4∣3⟩ =

√
2∣3⟩ (2)

a∣1⟩ =
√
2∣1⟩ (3)

are supported on odd Fock states 1,3 while codewords are supported on even Fock states 0,2,4. Notice that
PaP consists of overlaps between codewords and error words,

PaP = ∑
µ,ν∈Z2

∣µ⟩⟨µ∣a∣ν⟩⟨ν∣ , (4)

implying that PaP must be zero because the two respective sets are supported on different Fock states.
The remaining condition Pa†aP is easily determined. Notice first that a†a does not cause transitions between
Fock states, so ⟨1∣a†a∣0⟩ = 0. We are left with

⟨0∣a†a∣0⟩ = 2 (5)

⟨1∣a†a∣1⟩ = 0 +
4

2
= 2 (6)

which proves what we wanted.

(b): The error set is now {B0,B1,B2,B3}. Similar logic applies for PB†
iBjP with i ≠ j. Notice that Bi>0 ∝ ai, the

loss operator on the ith mode, while B0 does change the Fock states supporting a state. This is all we need to
know to determine the Fock state support of error words Bi∣µ⟩. For logical zero, µ = 0,

B0∣0⟩ ∝ ∣111⟩ (7)

B1∣0⟩ ∝ ∣011⟩ (8)

B2∣0⟩ ∝ ∣101⟩ (9)

B3∣0⟩ ∝ ∣110⟩ (10)

and for logical one, µ = 1,

B0∣1⟩ ∈ span{∣300⟩, ∣030⟩, ∣003⟩} (11)

B1∣1⟩ ∝ ∣200⟩ (12)

B2∣1⟩ ∝ ∣020⟩ (13)

B3∣1⟩ ∝ ∣002⟩ (14)

All eight of these words are supported on different Fock states, so PB†
iBjP = 0 for all i ≠ j.

We are left with calculating the i = j case, which again only needs diagonal overlaps ⟨µ∣B†
iBi∣µ⟩ since B†

iBi is
function of photon number operators a†

iai only, and such operators do not raise or lower Fock states. The i = 0
case is

⟨0∣B†
0B0∣0⟩ = (1 − γ)

3 (15)

⟨1∣B†
0B0∣1⟩ = (1 − γ)

3
. (16)
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Notice that the codewords are permutation invariant, so ⟨µ∣B†
iBi∣µ⟩ for i ≠ 0 are all equal. Thus we only need

to calculate

⟨0∣B†
1B1∣0⟩ = γ (1 − γ)

2 (17)

⟨1∣B†
1B1∣1⟩ = γ (1 − γ)

2
. (18)

(c): Codewords for a code with total photon number 1 would be in the single-excitation manifold, i.e.,

span{∣100⋯⟩, ∣010⋯⟩,⋯, ∣⋯001⟩} . (19)

For each basis vector in the list above, there exists an error Bi that maps it to the vacuum state ∣00⋯0⟩.
Therefore, there exists an i, j > 0 such that two error words overlap, i.e.,

⟨1∣B†
iBj ∣0⟩ ≠ 0 . (20)

In other words, there are no two-dimensional error spaces for this combination of code and error set.

Problem 2

(a): These are distinct, so we need to determine whether these generate an abelian group that does not contain −I.
Any two of them have different non-identity Paulis only at two locations, meaning that they commute.
To check if these generate −I, we iterate over all powers of their products. These are the single generators,
products of any two of them, the product of all three of them, and their squares.

• The single generators are distinct from −I and square to I.
• Products of two generators are not equal to −I, but can square to −I whenever there are an odd number

of locations where the two generators have different non-identity Paulis. (For example, for single-qubit
generators X,Z, the square of the product (XZ)

2
= XZXZ = −I.) However, we have already established

that the generators in question have different non-identity Paulis only at an even number of locations, so
squares of their products will all be +I.

• The triple product is

(XXZY I) (ZY IIX) (XIXZZ) = (XZX) (XY I) (ZIX) (Y IZ) (IXZ) (21)
= (−Z) (iZ) (iY ) (iX) (−iY ) (22)
= ZZY XY (23)

which doesn’t equal −I and squares to +I.

Therefore, this is a set of stabilizer generators. These define a [[5,2,2]] code because of the following:

• To determine number of logical qubits, subtract number of generators from n, k = n − r = 5 − 3 = 2.
• To determine distance, we check which Pauli strings commute with all stabilizers but are not in the stabilizer

group. Single-qubit Paulis anticommute with at least one stabilizer generator. The two-qubit Pauli string
XXIII commutes with all of them and is not in the stabilizer group, so d = 2.

(b): Not a valid stabilizer group since X⊗6Y ⊗6Z⊗6 = (XY Z)
⊗6
= i6I = −I.

(c): First half of first row, 001101, shares a 1 at only one location with the second half of the second row, 011010.
This means the corresponding stabilizers do not commute, so these do not generate a stabilizer group.

(d): Vectors v and ωv in the classical GF (4) code are considered linearly dependent, but they convert to independent
Paulis (see Gottesman’s book, pg. 79-80), so the generators corresponding to this are IXXZY and IZZY X.
These are clearly distinct, so we need to determine whether these generate an abelian group that does not
contain −I.
They have different non-identity Paulis at four locations, meaning that they commute.
They square to +I, and their product

(IXXZY ) (IZZY X) = I (iY ) (iY ) (−iX) (−iZ) = IY Y XZ (24)

is neither −I nor squares to it. These generate a valid stabilizer group.
There is no protection on the first qubit since both generators are identity there. This is a [[5,3,1]] code.
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Problem 3

A stabilizer code is degenerate if there is a non-identity stabilizer group element whose weight is less than the
distance (Def. 3.9 in Gottesman’s book). The generators of an asymptotically good LDPC code family have weights
that are independent of n. Given some generator of weight c, there exists a code family member [[n, k, d]] with
sufficiently large distance such that errors of weight ≤ c are correctable. Therefore, this code and all larger codes in
this family are degenerate.

Problem 4

(a): Plugging [[5,1,3]] into the bound yields

t

∑
s=0
(
n

s
)(p2 − 1)s =

1

∑
s=0
(
5

s
)(p2 − 1)s = 1 + 5(p2 − 1) ≤ p4 (25)

To determine the p at which this is an equality, we can solve a quadratic equation for p2. The positive solutions
are p = 1 and p = 2, with the latter qubit case being the only one applicable to quantum codes.

(b): We apply the strategy from 4(a), yielding the inequality

36p4 − 63p2 + 28 ≤ p8 . (26)

Let’s bring everything to one side and plot the resulting polynomial on that side:

Notice that there are crossings through the horizontal axis at integer values of x, so the inequality is not saturated
for any relevant p. The polynomial blows up to ∞ as x→∞, so this is an inequality for all p > 2. It dips below
the horizontal axis at p = 2, meaning that the inequality is violated there.

(c): Plugging in the parameters as before yields the inequality

1 + 8n ≤ 3n−k . (27)

This is an equality for n = 10 and k = 6 code, which can be obtained by brute force:

Problem 5

(a): This is a [[4,2,2]]3 code since every weight-one Pauli doesn’t commute with at least one generator, but the Pauli
string X†XII commutes with both generators and is not in the stabilizer group.
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(b): Consider the set

X1 =X
†XII (28)

X2 = IIX
†X (29)

Z1 = ZZ†II (30)

Z2 = IIZZ† . (31)

These satisfy the Pauli group relations, namely

ZiXj = ω
δijXjZi . (32)

The distinct support ensures this is true for i ≠ j. For the diagonal i = j = 1 case,

Z1X1 = (ZX†) (Z†X) II = (ω⋆X†Z) (ω⋆XZ†) II = ω−2X1Z1 = ωX1Z1 , (33)

and similarly for i = 2.

(c): We can try to construct the ∣00⟩ state by applying the codespace projector onto the ∣0000⟩ state,

Π∣0000⟩ =
1

9
[I +XXZZ +ZZXX +X2X2Z2Z2

+Z2Z2X2X2
+ (XZ) (XZ) (ZX) (ZX) + ⋯] ∣0000⟩ (34)

∝ ∣0000⟩ + ∣1100⟩ + ∣0011⟩ + ∣2200⟩ + ∣0022⟩ + ω2
∣1111⟩ + ω∣1122⟩ + ω∣2211⟩ + ω2

∣2222⟩ . (35)

This is in the codespace, so it is a +1 eigenstate of all stabilizers. Let’s check if this is indeed a +1 eigenstate
of Zi∈{1,2}. This is the case since each basis element in the expansion consists of identical values in the 1st and
2nd qutrits as well as in the 3rd and 4th, and since for such pairs, ZZ†∣nn⟩ = ωω⋆∣nn⟩ = ∣nn⟩. Therefore, the
normalized version of the above vector is ∣00⟩.
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