
CQC class, Final Exam. Date due May 15, 2022, 11:59pm EDT.

Instructors: Victor Albert and Alexander Barg

Please submit your work as a single PDF file to ELMS (under the ”Assignments” tab)

• Papers submitted as multiple separate files (pictures of individual pages) are difficult for grading and will
not be accepted.
• Justification of solutions is required.
• Please note the clickable links in the assignment.

Problem 1 (The Sugiyama decoding algorithm) (20pt)

In this problem you will learn one more decoding algorithm for BCH codes. Please click on the link and
read the description.

Consider a [n = 127, k = 99] binary BCH code C of length n = 127 with zeros αi, i = 1, 3, 5, 7, where
α satisfies α7 = α+ 1.

(a) What is the maximum number of errors that the code C can correct (justify your answer)?

(b) What is the generator polynomial of C (in the simplest possible form)? It’s fine to do the actual
calculation by computer (GAP, Sagemath), but please explain how you obtained it.

(c) You are given a vector received from the channel, represented in polynomial form as follows:

x126 + x120 + x119 + x117 + x115 + x114 + x112 + x111 + x110 + x109 + x107 + x106 + x105 + x103 +
x100 + x98 + x96 + x95 + x94 + x92 + x90 + x82 + x74

Please program the Sugiyama algorithm and find the corrected codeword. Please submit your work as in
HW1 (giving just the codeword will not earn you credit).

Problem 2 (GV bound for CSS codes, another proof) (25pt)

(a) Let R ∈ (0, 1) and for each i ∈ N, let Fi be a set of [ni, ki] linear binary codes (Ci,j , j = 1, 2, . . . )
such that

• ki/ni > R;
• the quantity Ni := |{j : x ∈ Ci,j}| does not depend on the choice of the nonzero vector x ∈
{0, 1}ni .

Prove that as long as
∑d−1

l=0

(
ni
l

)
< 2ni−1

2ki−1
, the set Fi contains a code with distance ≥ d.

(b) Suppose that ni → ∞ as i → ∞ and conclude that asymptotically the sequence (Fi, i = 1, 2, . . . )
contains codes such that R ≥ 1− h2(d/n), i.e., it asymptotically meets the GV bound.

(c) Call an [n, k] linear code C self-orthogonal if 1n ∈ C and C ⊂ C⊥. Show that the number of codes
C⊥ that contain a given nonzero, even-weight vector x ∈ {0, 1}n does not depend on x. Using the approach
of parts (a)-(b), conclude that there exists a sequence of codes C⊥ that asymptotically attain the GV bound,
i.e., satisfy (n− k)/n ≥ 1− h(d/n).

(d) An [[n, k]] quantum CSS code Q can be defined by a pair of binary linear codes C0, C1 such that
C0 ⊂ C⊥

1 . The dimension of the code Q is dim(C⊥
1 /C0) = n − dim(C1) − dim(C0). Assume that C0 = C1

and show using part (c) that there exists a sequence of CSS codes Qi that attains the bound R ≥ 1− 2h2(δ)
on the rate vs. relative distance.

Problem 3: Fock-state codes (15pt)

htts://www.ece.umd.edu/~abarg/CQC
http://ece.umd.edu/~abarg/CQC/ESA.pdf
https://www.gap-system.org/
https://www.sagemath.org


For this problem, we study the error-correcting capabilities of various Fock-state codes, bosonic codes
encoding a qubit in one or more oscillators. Each mode’s Hilbert space is spanned by the Fock states
{|n⟩}∞n=0. The noise model we consider is amplitude damping, whose errors are expressed as powers of
products of the lowering operator a (acting as a|n⟩ =

√
n|n− 1⟩ for n > 0 and a|0⟩ = 0⃗) and its Hermitian

conjugate the raising operator a†.

a). Consider the following single-mode encoding:

|0⟩ = |0⟩+
√
3⟩|4⟩

2

|1⟩ =
√
3|2⟩+ |6⟩

2
.

Show that this is a QECC correcting the error set E = {I, a, n̂ = a†a}.

b). Now consider the following two-mode encoding:

|0⟩ = |40⟩+ |04⟩√
2

|1⟩ = |22⟩

Show that this is a QECC correcting the error set E = {I, a1, a2} for two modes.

c). The two-mode code can in fact do much more with respect to dephasing errors n̂p1n̂
q
2. How is the

two-mode code able to correct all powers of n̂1 + n̂2 while the single-mode code can only correct a single
power of n̂?

Problem 4: Transversal gates. (20pt) Transversal gates for multi-qubit codes are gates that can be
expressed as a tensor product of operators acting on single qubits. They are particularly beneficial because
faults during a transversal gate cannot spread too far among the physical qubits.

a). Consider acting with a Hadamard gate on each qubit, i.e., with the 7-qubit gate

H⊗n =
1√
2n

(
1 1
1 −1

)⊗n

=
1√
2n

∑
x,y∈Fn

2

(−1)x·y |x⟩⟨y| .

The Hadamard gate switches bit-flip errors to phase-flip errors, meaning that the two errors can in principle
be treated on the same footing. Let

Ea,b =

n⊗
i=1

XbiZai = Xb1Za1 ⊗Xb2Za2 ⊗ · · ·

be a Pauli error string defined by strings a, b ∈ Fn
2 . Let |ψ⟩ be an equal superposition of codewords c ∈ Fn

2

of a binary linear code C,

|ψ⟩ = 1√
|C|

∑
c∈C

|c⟩ .

Defining an error state

Ea,b|ψ⟩ =
1√
|C|

∑
c∈C

(−1)a·c |c+ b⟩ ,

show that the Hadamarded error state is

H⊗nEa,b|ψ⟩ =
(−1)a·b√

|C⊥|

∑
c∈C⊥

(−1)b·c |c+ a⟩ ,

where C⊥ is the dual code of C.



b). Consider the [[7, 1, 3]] Steane code, with the six stabilizer generators

ZZZZIII,XXXXIII,

ZZIIZZI,XXIIXXI,

ZIZIZIZ,XIXIXIX.

Is H⊗n a logical gate of the Steane code? Is it a logical gate for any CSS code; why or why not?

c). Consider the CNOT gate CNOT, a two-qubit gate acting as

CNOT (X ⊗ I) CNOT = X ⊗X

CNOT (I ⊗X) CNOT = I ⊗X

CNOT (Z ⊗ I) CNOT = Z ⊗ I

CNOT (I ⊗ Z) CNOT = Z ⊗ Z .

Is this transversal gate a logical gate between two logical blocks of the Steane code? Is it a logical gate for
any CSS code; why or why not?


