
Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem.

A. Barg

The concept of a communication channel in information theory is an abstraction for transmitting
digital (and analog) information from the sender to the recipient over a noisy medium. Examples
of physical channels are wireless links, cable communications (optical, coaxial, etc.), writing onto
digital media (flash, magnetic), and many more.

Let X ,Y be finite sets. A mapping W : X → Y is called stochastic if the image of x ∈ X is a
random variable taking values in Y. Denote P (x 7→ y) by W (y|x), the probability of y conditional
on the given input x.

Definition: A discrete memoryless channel (DMC) is a stochastic mapping W : X → Y. We use
the letter W to refer both to the channel itself and to the probability distribution W (y|x). The sets
X and Y are called the input alphabet and the output alphabet of W , respectively. The channel is
represented by a stochastic matrix whose rows are labelled by the elements of X (input letters) and
columns by the elements of Y (output letters). By definition

∑
y∈Y W (y|x) = 1 for any x ∈ X .

Examples. 1. Z-channel (called so because its diagram resembles the letter Z).

W =

(
1− ε ε
0 1

)
2. Binary symmetric channel (BSC(p) ) W : {0, 1} → {0, 1}

W =

(
1− p p
p 1− p

)
3. Binary erasure channel (BEC((p)) W : {0, 1} → {0, 1, ?}

W =

(
1− p p 0
0 p 1− p

)
There are more examples in the textbook.

Definition: Let M be a finite set of cardinality M and let f : M → Xn be a mapping. A
code C of length n over the alphabet X is the image of f in Xn. We say that a message m ∈ M is
encoded into a codeword xm ∈ C if f(m) = xm. The set of codewords {x1, . . . , xM} is called a
channel code1. The number R = 1

n logM is called the rate of the code C. Below we denote general
n-vectors by xn, yn and keep the above notation for the codewords.

The codewords are “transmitted over the channel”. This means the following. The mapping W
is extended from X to Xn using the memoryless property of W :

Wn(yn|xn) =
n∏

i=1

W (yni |xn
i ),where xn = (xn

1 , . . . , x
n
n), y

n = (yn1 , . . . , y
n
n).

The result of transmitting the codeword xm over the channel W is a vector yn ∈ Yn with probability
Wn(yn|xm).

Messages are encoded and transmitted as codewords to provide the recipient with the functional-
ity of correcting errors that may occur in the channel. Error correction is performed by a decoder,
i.e., a mapping g : Yn → M. The decoder is a deterministic mapping constructed so as to minimize
the probability of incorrect recovery of transmitted messages.

1Sometimes the term code is used to refer to f and then the set of codewords C is called the codebook.
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Optimal decoders. We briefly discuss optimal decoding rules. Let Pr(m) be a probability distribu-
tion on M. Let yn be the “received vector”, i.e., the output of the channel. The posterior probability
that the transmitted message was m equals

(1) P (m|yn) = Pr(m)Wn(yn|xm)

P (yn)
,

where P (yn) =
∑M

m=1 Pr(m)Wn(yn|xm). Assume that g(yn) = m, then the error probability is
pe = 1− P (m|yn). To minimize pe decode y to m such that

(2) P (m|yn) ≥ P (m′|yn) for all m′ ̸= m

(ties are broken arbitrarily). This rule is called the maximum aposteriori probability (MAP) decoder.
If Pr(m) = 1/M is uniform, then the MAP decoder is equivalent to the maximum likelihood (ML)
decoder gML given by g(yn) = m if

Wn(yn|xm) ≥ Wn(yn|xm′) for all m′ ̸= m.

To see this, use the Bayes formula (1) in (2). If Pr(m) = 1/M is not uniform, then the ML decoder
is generally suboptimal.

ML and MAP decoders are computationally very hard because of the large search involved in
finding g(y).

Preview of the Shannon capacity theorem. The following discussion is informal. It uses the
simple case of the BSC to explain the nature of channel capacity in geometric terms. Consider
transmission over W=BSC(p), p < 1/2. Let dH(xn, yn) = |{i : xi ̸= yi}| be the Hamming distance
between the (binary n-dimensional) vectors xn and yn.

Let xn be the transmitted vector and yn the received vector. The typical value of the distance
dH(xn, yn) ≈ np. In other words, Pr{|dH(xn, yn) − np| ≥ nα} is small, where α > 0 is a
small number. Therefore define the decoder value g(yn) as follows: if there is a unique codevector
xm ∈ C such that |dH(xm, yn) − np| ≤ nα, then g(yn) = xm, otherwise put g(y) = x1 (or any
other arbitrary codevector). Below we call vectors yn whose distance from xm is about np typical
for xm.

The number of typical vectors yn ∈ {0, 1}n for a given xn is

(3) |{yn ∈ {0, 1}n : |dH(xn, yn)− np| ≤ nλ}| =
∑

i:|i−np|≤nλ

(
n

i

)
.

Lemma 1. Let 1 ≤ λ ≤ 1/2, then

(4)
1

n+ 1
2nh(λ) ≤

λn∑
i=0

(
n

i

)
≤ 2nh(λ).

Proof :

1 = (λ+(1−λ))n ≥
λn∑
i=0

(
n

i

)
λi(1−λ)n−i ≥

λn∑
i=0

(
n

i

)
(1−λ)n

( λ

1− λ

)λn

= 2−nh(λ)
λn∑
i=0

(
n

i

)
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We would like the sets Tα(xm) ≜ {yn ∈ Yn : |dH(xm, yn)−np| ≤ nα} for different xm to be
disjoint. Note that

|Tα(·)| =
n(p+α)∑

i=n(p−α)

(
n

i

)
.

Suppose first that

(5) M |Tα(·)|
(4)
≥ 1

n+ 1
M2nh(p−α) > 2n,

then a point yn in the output space is typical on average for an exponentially large number of
codevectors, namely for A = 2n(R+h2(p−α)−o(1))/2n = 2n(R+h2(p−α)−1−o(1)) = 2nε codevectors,
where we denoted ε = R + h2(p) − α′′ − 1. This means that a significant proportion of points
yn is typical for exponentially many codewords. In this case decoding with low error probability is
impossible (for instance, the maximum error probability is close to 1). We observe that (5) implies
the following inequality:

R > 1− h(p) + α′′

where α′′ is small if so is α. Thus if this inequality is true, the error probability is large.
At the same time, if the cumulative volume of the typical sets around the codewords satisfies

M |Tα(·)| = 2nR|Tα(·)|
(4)
≤ 2n(R+h2(p+α)),

i.e., is less than 2n (the total size of the output space), then there can exist codes in which decoding
is correct with large probability. We will show by random choice that such codes indeed exist.

We notice that there is a dividing point R = 1−h2(p) between the low and high error probability
of decoding. This value of the rate is called the capacity of the channel W. We can also “flip” the
question by asking

Threshold noise level: We are given a code C of rate R. Assuming that C is chosen optimally
for transmission over a BSC(p), what is the largest p for which the code can guarantee reliable
transmission?

The above argument shows that the maximum p is pth = h−1
2 (1− R) (Plot the function h−1

2 (z)
to visualize the dependence on the rate).
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Lecture 15 (03/29/18). Channel capacity

The following is a formalization of the discussion in the previous section. Consider BSC(p),
i.e., a stochastic mapping W : X → Y,X = Y = {0, 1} such that

W (y|x) = (1− p)1{x=y} + p1{x ̸=y}.

Let
Tα(x

n) = {yn : |dH(xn, yn)− np| ≤ nα}, α > 0.

Let C = {xn
1 , . . . , x

n
M} be a code (below we omit the superscript n from the notation for the

codewords). Let

D(xm) ≜ {yn ∈ {0, 1}n : ∀m′ Wn(yn|xm) ≥ Wn(yn|xm′)}

be the decision region for the codeword xm. Denote by

λm =
∑

yn∈D(xm)c

Wn(yn|xm)

the error probability of decoding conditional on transmitting the mth codeword and let

λmax(C) = max
m

λm

be the maximum error probability of the code C.

Theorem 2. (Shannon’s capacity theorem for the BSC, lower bound) Given ε > 0, γ > 0, p < 1/2
and R ≤ 1 − h(p) − γ, there exists n0 = n0(ε, γ) such that for any n ≥ n0 there exists a code
C ⊂ {0, 1}n of cardinality 2Rn, whose maximum error probability of decoding on a BSC(p) satisfies
λmax ≤ ε.

Proof : Let M = 2R
′n, where R′ = R + 1

n . Choose C = {x1, . . . , xM} ∈ {0, 1}Mn by randomly
assigning codewords to the messages with uniform probability Pr(f(m) = xm) = 2−n indepen-
dently of each other (below we use the notation xm for codewords, omitting the superscript xn

m).
Suppose that yn is the received vector. Let us use the following decoder g : Yn → M : if there is
a unique codeword xm ∈ C such that yn ∈ Tα(xm), assign g(yn) = m. In all other situations put
g(yn) = 1. (This mapping is called the typical pairs decoder).

Let Zm = 1{(yn∈Tα(xm))},m = 1, . . . ,M be the indicator random variable of the event {yn is
typical for xm}. Suppose that the transmitted vector is x1. The probability of error λ1 satisfies

λ1 ≤ Pr{Z1 = 0}+ Pr{
M∑

m=2

Zm ≥ 1}.

We have2

Pr{Z1 = 0} = Pr{yn ̸∈ Tα(x1)} = Pr{|dH(x1, y
n)− np| > nα}

Chebyshev inequality
≤ np(1− p)

(nα)2
= p(1− p)n−δ

2The Chebyshev inequality states that for any random variable X with finite expectation and variance Var(X) we have

Pr{|X − EX| ≥ a} ≤
VarX
a2

.
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by taking α = n−(1−δ)/2, δ > 0. By taking n sufficiently large, we can guarantee that Pr{Z1 =
0} ≤ β, where β > 0 is arbitrarily small. Next for m ≥ 2

Pr{Zm = 1} =
|Tα(·)|
2n

(4)
≤ 2−n(1−h(p+α)).

Use the union bound:

Pr{
M∑

m=2

Zm ≥ 1} ≤ M Pr{Zm = 1} ≤ 2−n(1−R′−h(p+α)) ≤ 2n(α
′−γ+ 1

n ),

where we write h(p+α) = h(p)+α′, and α′ is small if α is small (note that α′ > 0 since p < 1/2).
By taking a sufficiently large n we can ensure that α′ < γ − 1

n , and so Pr{
∑M

m=2 Zm ≥ 1} ≤ β.
Now let use compute the average probability of error over all codeword assignments f :

Pe = EFλ(C) =
1

M

∑
C

Pr(C)
M∑

m=1

λm(C)

=
1

M

M∑
m=1

∑
C

Pr(C)λm(C) =
∑
C

Pr(C)λ1(C) ≤ 2β(6)

where Pr(C) =
∏M

m=1 Pr{f(m) = xm}. Here F is the random mapping. Since we go over all the
mappings, the sum

∑
C Pr(C)λm(C) does not depend on m.

By (6) there exists a code C∗ for which the error probability averaged over M codewords satisfies
λ(C) ≤ 2β. By the Markov inequality, |{m ∈ M : λm(C∗) ≥ 2λ(C∗}| ≤ M/2. Thus, there exist
at least M/2 messages3 whose codewords in C∗ are decoded with error probability λm(C∗) ≤ 4β.

Denote this set of codewords by C̃∗ and take β = ε/4. Thus there is a code C̃∗ of cardinality
M
2 = 2n(R

′− 1
n ), i.e., of rate R with λmax(C̃∗) ≤ ε.

Observe that the probability λmax falls as n−ε. By using the optimal (i.e., MAP) decoder together
rather than the typical pairs decoder it is possible to show that there exist much better codes for the
BSC.

Theorem 3. For any rate R, 0 ≤ R < 1− h2(p) there exists a sequence of codes Ci, i = 1, 2 . . . of
growing length n such that

log |Ci|
n

→ R

and

(7) λmax(Ci) ≤ 2−n{D(δ(R)∥p))(1−o(1)}

where D(x∥y) = x log x
y + (1− x) log 1−x

1−y , δ(R) ≜ h−1
2 (1−R), and o(1) → 0 as n → ∞.

We will omit the proof.
Note that the decline rate of the maximum error probability is a much faster (exponential) function

of the code length n than in the above argument. We took a loss by using a suboptimal decoder (and
a simpler proof).

Finite-length scaling. The efficiency of our transmission design can be measured by the number
of messages that can be transmitted reliably. Suppose that the code rate is R = 1−h2(p)−γ, where
γ > 0 is small and p is the transmission probability of the BSC. Suppose moreover that we require

3This idea is called expurgation.
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that λmax = ε. We already understand that we will have to choose a sufficiently long code. What is
the smallest n that can guarantee this?

As R → 1− h(p), we have δ(R) → p. We have D(δ(1− h(p))∥p) = D(p∥p) = 0,

D′
δ(δ∥p) = log

(1− δ)p

δ(1− p)

∣∣∣
δ=p

= 0, D′′
δ (δ∥p) =

1

ln 2

1

δ(1− δ)
.

If R = 1− h2(p)− γ then δ = p+ γ′ where γ′ is some small number. Expanding D into a power
series in the neighborhood of δ = p we obtain

D(δ∥p) = 1

2
D′′

δ (δ∥p)(δ − p)2 + o((δ − p)2) = O((δ − p)2).

0.1 0.2 0.3 0.4 0.5
R=1-h2H∆L

0.02

0.04

0.06

0.08

0.10

DH∆ÈÈpL
p=0.5

From (7) we obtain

(8) n ≥ log(1/ε)

(δ − p)2

(constants omitted). Let us rephrase this by finding how γ (gap to capacity) depends on the code
length n.

To answer this, rewrite (8) as follows:

δ − p ≥ (log(1/ε))
1/2 1√

n

Now substitute δ = h−1(1−R) to find that R ≤ 1− h(p−O(n−1/2)), or

R ≤ 1− h(p)−O
( 1√

n

)
.

To conclude:

Proposition 4. The gap-to-capacity for optimal codes scales as n−1/2.

The outcome of this calculation is called finite-length scaling of the code sequence on the BSC.
The same order of scaling is true for optimal codes used on any binary-input discrete memoryless
channel (DMC).

We return to the textbook, and state the Shannon capacity theorem for a DMC (pp.192–195, 200).
Then we consider examples (pp. 187–191), and then (next class) prove the capacity theorem.


