
Part III. Random coding; Coding theorems

ENEE626, CMSC858B, AMSC698B 

Error Correcting Codes
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ENEE626 Lecture 21: Bounds on codes

Plan:
1. Volume bounds: GV bound, Hamming bound
2. Bassalygo-Elias bound
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Let St(y)=Sn,t(y),{x∈ {0,1}n: d(x,y)≤ t}, St=|St|

Theorem 21.1 (Gilbert bound): Let M, d be such that 
M Sd-1< 2n.                            

Then there exists an (n,M+1,d) binary code.

Proof: Greedy algorithm. Take any point x1∈ {0,1}n.
Suppose that Ci=(x1,…,xi), i≤M. By assumption,  there exists a point

xi+1 ∉ ∪j=1
i St(xj)                                    N

Theorem 21.2 (Varshamov bound): Let n,k,d be such that
Sn-1,d-2<2n-k

Then there exists a linear [n,k,≥d] binary code C.

Proof: Construct a parity-check matrix of C recursively. In the ith step, i≤ n-1
assume that we have an (n-k) x (i-1) matrix 

no d-1 or fewer columns of which are linearly dependent     (A)
We can add one more column so that the new matrix satisfies (A) if there is a 
column that is not spanned by any d-2 or fewer of the existing (i-1) columns. 
This is possible as long as Si-1,d-2<2n-k holds true                N

A somewhat stronger statement is given in 
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Let A(n,d)=max |C| : C is a binary code of length n and distance d

By the Gilbert bound, A(n,d)≥ 2n/Sd-1

Hamming bound:
A(n,d)≤ 2n/S[(d-1)/2]

Plotkin bound: A(n,d) ≤ 2d/(2d-n), d>n/2 (proved in Lect. 6)

Theorem 21.3 (Bassalygo-Elias bound):

for d>2w(1-w/n)

Proof: Let A(n,d,w)=max C∈ {0,1}n, d(C)=d, ∀x∈ C w(x)=w

Lemma 21.4 (Johnson bound): A(n,d,w)≤ dn/(dn-2wn+2w2)
Proof: Let C be a constant-weight code of size M.
Let λi = # 0’s in the ith column of the n x M matrix of its codewords.

∑ι=1
n λi=M(n-w); ∑ λi

2≥ (1/n)(∑ι=1
n λi)2 ≥ M2(n-w)2/n

Let S, ∑c1,c2∈ C d(c1,c2). We have
M(M-1)d≤S=2∑λi(M-λi) ≤ 2M2(n-w)-2M2(n-w)2/n; solve for M. N 4



Lemma 21.5: Let C,Y⊂ F2
n. Then

|Y||C|=∑x∈F2
n |(x+C) ∩Y|.

Indeed, 
∑x∑c∈ C∑y∈ Y 1(x+c=y)=∑c∑y1 = |C||Y|, proving the claim.

Now let Y=Sw(0), then (x+C)∩Y is a code of constant weight w
| (x+C)∩Y | ≤ A(n,d,w)

Next replace the l.-h.side by the above lemma:

To complete the proof of the B.-E. bound, use the Johnson bound in this
inequality.                                    N
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ENEE626 Lecture 22: Bounds on codes

Plan:
Asymptotics of binomial coefficients
Asymptotic bounds on codes
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Let h(λ)=-λ log2λ-(1-λ) log2(1-λ)   0≤λ≤ 1

2-n h(λ)=λnλ(1-λ)n(1-λ)

Note that 

Asymptotics of binomial coefficients

is maximum for i=λ n. Then 

We would like to compute the asymptotic volume of the sphere 
Sn,l={x in F2

n : wt(x) ≤ 0} as n→∞, l=λ n, λ<1/2.

so
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Theorem 22.1:

Properties of the binary entropy function h(x)

● h(x) defined for x∈[0,1]
● h(0)=0, h(0.11)≈ ½, h(0.215)≈ ¾, h(½)=1
● h(x)=h(1-x)
● h(x) ∼ -x log x   (x→ 0)
● h(½-x) = 1-(2/ln 2)x2 +O(x4)  (x→ 0)

0 11/2

1/2

≈ 0.11

1

8



There are about as many vectors of weight w=n/2 as all vectors

Example: n=1000

The number of vectors of weight  w=500 is 10299.4 vs. the total 21000=10301

#x of weight  499 ≤ w ≤ 501:  10300

#x of weight    495 ≤ w ≤ 505:  10300.4

Remark: in general, #{x∈ F2
n, |wt(x)-(1/2)n|≤t}/2n ∼ 2Φ(t/ n/4 )-1, 

where Φ is cdf N(0,1)
for instance, t=5: 2Φ(5/√250)-1=2Φ(0.316)-1≈0.25, very close to 10-0.6
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Let R(δ) = lim supn →∞ n-1 log A(n,δ n)                    R=(1/n) log |C|   code rate
δ=d(C)/n     relative distance

where A(n,d)=maxC∈ F2
n, C is a d-code |C|

Gilbert-Varshamov bound :   M Sn,d-1≥ 2n    (or Sn-1,d-2 ≥ 2n-κ)

Rn + log Sn,d-1 ≥ n
R+h(δ) ≥ 1           (0 ≤ R ≤1, 0 ≤ δ ≤ ½)

R(δ) ≥ 1- h(δ)   (0≤ δ≤ ½)
valid even for the lim inf definition of R(δ)

Hamming bound: R(δ)≤1-h(δ/2)  (0 ≤ δ ≤ 1)

Asymptotic version of the Plotkin bound (see next page)

R(δ) ≤1-2δ

Asymptotic bounds on codes
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Plotkin bound implies that R(δ)=0 for δ ≥ ½. 

Lemma 22.2: A(n,d) ≤ 2t A(n-t,d),   t ≤n-d

Corollary: R(δ) ≤ τ + (1-τ)R(δ/(1-τ))
Proof: Let C be a d-code of size M such that M=A(n,d). Consider the Mxn matrix of 
codewords. The last coordinate contains at least M/2 1’s or 0’s, say 1’s. Take only those 
vectors, puncture them on the nth coordinate. This gives a (n-1,≥ M/2,≥ d) code. We can 
repeat this t=τn times as long as t ≤ n-d, obtain a (n-t,≥ M/2t,≥ d) code C’. We have

A(n,d)/2t ≤ |C’| ≤ A(n-t,d) N

Proof of Corollary:  (1/n) log (M/2t) = R(δ)-τ ≤ (1/n) log A(n-t,d) = (1-τ)R(δ/(1-τ)) 

The Plotkin bound: for any (n’,M’,d’) code, 
M’ ≤ 2d’/(2d’-n’).

Let C be a d-code such that |C|=A(n,d). Perform the procedure described in the 
proof t=n-2d+1 times:

A(n,d) ≤ 2t A(n-t,d) ≤ 2t 2d/(2d-(n-t)) = 2t.2d

R(δ) ≤ limn→∞ (1/n)[t + log (2d)] = 1-2δ
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Asymptotic Bassalygo-Elias bound:

Smallest when the binomial is max, i.e., when w is largest possible
such that dn-2wn+2w2 > 0. For large n this value of w approaches
the root of the quadratic (does not matter which root since h(½-x)=h(½+x))

Theorem 22.3 (McEliece, Rodemich, Rumsey, Welch 1977)

)]211([1 2
1 δ−−−= hR

))1(( 2
1 δδ −−= hR

Exercise: Prove that the BE bound is always better that the Hamming
bound.
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BE bound 

LP bound

Asymptotic bounds on codes

)]211([1 2
1 δ−−−= hR

))1(( 2
1 δδ −−= hR

Plotkin bound R=1-2δ

GV bound R=1-h(δ)

1

1/2δ

R
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ENEE626 Lectures 23-24: Ensembles of random codes

Plan:
Why random codes: Shannon’s theorem for the BSC
Average and typical properties of random linear codes
Shannon’s theorem for the erasure channel
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The best known parameters of codes in terms of minimum distance and 
transmission reliability are attained by random choice. We will study from this 
point of view the two simplest ensembles of codes: random codes and 
random linear codes.

Definition 23.1: A random (n,M) code is obtained by choosing randomly with 
uniform distribution and independently M codewords out of the 2n vectors
A random linear code of length n is obtained by choosing the entries of the 
parity-check matrix independently with (½ , ½) probability.

We will show that

● the capacity of the BSC(p) equals 1-h(p) and can be achieved by random  
codes;
● random linear codes achieve capacity of the BSC
● random linear codes achieve capacity of the erasure channel
● typical random linear codes achieve the GV asymptotic bound on the 
minimum distance
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Notation:
h(x)=-x log x – (1-x) log (1-x)  binary entropy

volume of the ball of radius t

Sn,nδ≅2nh(δ)

Markov inequality: Let X be a nonnegative r.v., then for a>0,

Pr[X≥a] ≤ EX/a

Proof: 

Chebyshev inequality:

∑
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Take Y=(X-EX)2. By Markov,
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Shannon’s Theorem 23.1: Given ε>0 and R≤1-h(p)-γ, γ>0, there is n0 such 
that for any n≥ n0 there exists a code C⊂ F2

n whose error probability of 
decoding on a BSC(p) satisfies Pe ≤ ε.

Proof: Let M=2Rn,C={c1,…cM} be a random code of length n. Transmit c1 over 
the channel. Suppose that y is the received vector. Let r=n(p+α)

Decode as follows:
If the sphere Br(y) contains exactly one codeword c, output it
In all other cases declare an error

Let Xi=1(ci∈ Br(y)) be an r.v.
Pe ≤ Pr{X1=0} + Pr{∑i=2

M Xi≥1}

Pr{X1=0}= Pr{ wt(y-c1)>np+nα }
≤ Pr{|wt(y-c1)-np|≥ nα}
≤ np(1-p)/(nα)2 =p(1-p)n-ε→ 0         by taking α= n-(1-ε)/2

Pr{Xi=1}=2-n Sn,r where Sn,r=|Br(y)|≅2nh(r/n)

=exp(-n(1-h(r/n))}

Pr{∑i=2
M Xi≥1} ≤ M Pr{Xi=1}=exp(Rn-n+nh(p+α))

≤ exp(n(α’-γ))            where we write h(p+α)=h(p)+α’
Since α’→ 0, it is possible to choose n so that α’<γ N
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For a random code C, let ξi=1(xi ∈ C), i=1,…, 
Pr{ξi=1}=Eξi=2k-n

Eξi
2=Eξi; Var(ξi)=Eξi-(Eξi)2=2k-n(1-2k-n)<Eξi

Let Aw=|{c∈ C: wt(c)=w}| be the random # of codewords of weight w=ωn

Random linear codes

Consider the ensemble of codes defined by random parity-check (n-k)xn 
matrices H.     

As above, let δ satisfy R=1-h(δ)-ε, then
Pr[Aδn > 0]≤ EAδ n. 2-ε n→ 0

so the distance d(C)> nδ with prob. ≈ 1.
For δ chosen from R=1-h(δ)+ε, Pr[Aδn>0]→ 1. Together this proves

Theorem 20.5: For all linear codes of rate R except for an exponentially small 
fraction of them, the relative distance approaches δGV(R) 18



Let R be fixed

R-1+h(ω)

δGV(R)

δGV(2R) ω=w/n
(1/n) log Aw

Bold curve: distance distribution of typical linear codes
Solid curve: distance distribution of typical unrestricted code
Dashed curve: average distance distribution of codes, linear or not

See also notes for Lect. 25 of the 2005 course, online;
A. Barg and G.D.Forney, Random Codes…, IEEE-IT 48, no. 9, 2002 19



Second part:
Random linear codes achieve capacity of the BSC
Same for the erasure channel

20



Proof: Let C be an [n,Rn] code whose weight distribution is given by

Theorem 23.6: Linear codes achieve capacity of the BSC.

Suppose that 0 was transmitted and y is the received vector.
Decode as follows: Find 

c=argminx∈C dist(x,y).                       (1)
If                         dist(c,y) ∈ [n(p-α),n(p+α)]                  (2)
output c, otherwise declare an error
Error event = {0 does not satisfy (2)} ∪ {0 sat. (2) Å ∃ c≠0 sat. (1),(2) }

P1=Pr{first of the above} = Pr{|wt(y)-np|≥nα} → 0 as before

Let E={∃ c≠ 0 that satisfies (1),(2)}, Ew(c)={(1),(2) holds for c∈C\0,wt(c)=w}

P2=Pr{E, wt(y)≈pn} ≤ Pr{E|wt(y)≈pn} = ∑w=d
n Pr{∪wt(c)=wEw(c)|wt(y)≈pn}
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If R<1-h(p), then P2→ 0                                                                                  N

In bounding the products of 
binomial coefficients we rely 
on the law of large numbers
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Definition 23.2: Let Ci[ni,R ni], i=1,2,… be a sequence of codes. We say 
that p* is a threshold of the codes on a BSC channel (say) under some 
decoding D

p*=sup {p | Pe(Ci) < ε starting with some i, under D}
The threshold of the best possible codes under typical-pairs decoding (or 
ML decoding) on a BSC was earlier called capacity.

Use the framed equation in the previous proof to extract the following.

Lemma 23.7: Let a(ω) = (1/n) log Aω n, where (Aw) is the (asymptotic) weight 
distribution of some code family. The threshold of these codes on a BSC 
satisfies p*≥ p, where 

10,
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2/)1()()( <<
−
−−−−< ⎟
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⎛ ω
ω
ωωωω phpha

Proof: By applying (1/n)log to the framed equation, P2→ 0 if p satisfies 
the condition of the lemma.

Remark: In the proof of the theorem we took codes with weight profile 
a(ω)=h(ω)-1+R, recovering a lower bound p*≥h-1(1-R) on their threshold.
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Remarks.
1. We could have tried the Bhattacharyya bound for ML decoding error prob.:

w
n

dw
we ppAP ))1(4(∑

=

−≤

It turns out that this is insufficient to prove that the codes achieve 
capacity

2. It is possible to prove that the error probability of max-likelihood decoding
of the code used to prove the theorem decreases exponentially as a    
function of code’s length n for all values of the code rate 0≤ R<1-h(p)
The term error exponent is used to refer to (1/n)log 1/Pe.

[1] A. Barg and G.D.Forney, Random Codes…, IEEE-IT 48, no. 9, 2002
[2] Notes for Lecture 5, class ENEE739C (2003), online.
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Erasure channel

Theorem 23.8: The capacity of the erasure channel equals 1-p, attained 
by linear codes (For any R=1-p-ε there exists a sequence of  linear codes
of length n→∞ for which the error prob. of decoding Pe → 0).

Converse: If R=1-p+ε, then with probability bounded away from 0, pn>n-k 
coordinates are erased. The remaining <k coordinates match more than one 
codeword, so it is not possible to choose the right decision with high probability.

0 0

1 1

? (erasure)

1-p

1-p

p

p
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Proof of Direct part: Decoding: Let X⊂[1,…,n] be the set of erased positions in y.

If |X| ∉ [n(p-α),n(p+α)], discard y
Otherwise, if there is unique c∈ C such that yi=ci, i∉ X, decode to c
If nonunique, discard y.

W.l.o.g., transmit 0, receive y which has 0’s or erased coordinates (no errors)
Let E, Ei(c) be the error event, resp. the error event such that y is decoded to c, 
wt(c)=i .We will only analyze the case of typical y, i.e., |X|≈np.

Thus, Pr{E | |X|=np}→ 0 if (k/n-1+p)<0, which proves the direct part             N
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