
ENEE620. Midterm examination 2, 11/14/2024. Instructor: A. Barg
• Please submit your work to ELMS Assignments as a single PDF file. You must submit your paper within 3 hours
from accessing the exam paper online.
• The exam has 5 problems. Each problem is 10 points. Max score=50 points
• Your answers should be justified. Giving just the answer may result in no credit for the problem.
• Please pay attention to the writing. You may lose points if your paper is difficult to read.

Problem 1. (RANDOM WALK WITH REFLECTING SCREEN) Consider a symmetric random walk on N0 = {0, 1, 2, . . . }
that moves i → i− 1 (left) or i → i+ 1 (right) with equal probabilities, except for i = 0, where p01 = 1.

(a) What is the generating function of the return distribution to the origin? In other words, let

f0(n) = P (Xn = 0|Xn−1 ̸= 0, . . . , X1 ̸= 0, X0 = 0), n ≥ 1.

Your task is to find a closed-form expression (thus, no sums in the answer) for F0(z) =
∑

n≥1 f0(n)z
n (Hint: Lecture

notes should help).
(b) Using F0(z) that you found in part (a), argue whether the process is recurrent or transient.
(c) Using F0(z) that you found in part (a), argue whether the process is null recurrent or not.
(d) Let P denote the (semi-infinite) transition matrix of the process. Is there a stationary vector π, i.e., an eigenvec-

tor satisfying πP = π? If yes, express all πi, i ≥ 1 via π0.
(e) Does this process (Markov chain) have a limiting distribution? Justify your answer.

SOLUTION: (a) In Lecture 18 we found the generating function for the probability of hitting 1 in a symmetric
random walk. This generating function is inherited by the current process (the reflective random walk) because from
0 we move to 1 with probability 1, and then it becomes the question of hitting 1 (acutally, -1, but the picture is
symmetric). Lifting the generating function from Lecture 18, we have

G0(z) =
1− (1− z2)1/2

z
=

∞∑
i=1

g(i)zi,

where g(i) is the probability of hitting 0 in i steps starting at 1. Our generating function equals (noting that f(0) = 0

F0(z) =

∞∑
i=1

f0(n)z
n =

∞∑
i=1

g(i− 1)zi = z

∞∑
i=0

f(i)zi

= 1−
√
1− z2.

(b) The probability of ever returning to 0 equals F0(1) = 1, so the origin, and thus the entire process, is recurrent.
(c) At the same time, the expected return time to 0 is F ′

0(1) =
z

1−z2

∣∣∣
z=1

= ∞, and thus the process is null recurrent.
(d) Writing out the equations for πn from π = πP , we find πn = 2π0 for all n ≥ 1, and thus any vector of the form

π = (a, 2a, 2a, . . . ), where a can be any real number including 0, is an eigenvector of P .
(e) For one thing, the vector π cannot be normalized to a pmf irrespective of a, so there is no limiting distribution.

Independently, the process is null recurrent, and so the limiting distribution does not exist.

Problem 2.
Let (Xn)n be a sequence of independent Gaussian random variables with X ∼ N (0, 1) and let Sn = X1 + · · · +

Xn, n ≥ 1. Prove that the sequence Yn = 1√
n+1

exp
{

S2
n

2(n+1)

}
, n ≥ 1 is a martingale with respect to the filtration

(Fn = σ(X1, . . . , Xn))n≥1.

SOLUTION:



(a) We have

E|Yn| = EYn =
1√
n+ 1

E
[
exp

(
∑

Xi)
2

2(n+ 1)

]
=

1√
n+ 1

E
[
exp

∑
i X

2
i + 2

∑
i<j XiXj

2(n+ 1)

]
=

1√
n+ 1

E

n∏
i=1

e
X2

i

(2(n+1))1/n =
1√
n+ 1

n∏
i=1

Ee
X2

i

(2(n+1))1/n

Each of the expectations under the product is finite, and so is the product:

Ee
X2

2a =
1√
2π

∫ ∞

−∞
e

x2

2a− x2

2 dx =
1√
2π

∫ ∞

−∞
e−

x2

2/(1−a) dx =
1√
1− a

.

Now let us compute E(Yn+1|Fn). We have

Yn+1 =
1√
n+ 2

exp
(S2

n + 2Xn+1Sn +X2
n+1

2(n+ 2)

)
and

E(Yn+1|Fn) =
1√
n+ 2

E
[
exp

(S2
n + 2Xn+1Sn +X2

n+1

2(n+ 2)
|Fn

)]
=

1√
n+ 2

exp
( S2

n

2(n+ 2)

)
E
[
exp

2Xn+1Sn +X2
n+1

2(n+ 2)

)
|Fn

]
=

1√
n+ 2

e
S2
n

2(n+2)
1√
2π

∫ ∞

−∞
exp

(2xSn + x2

2(n+ 2)
− x2

2

)
dx

=
1√
n+ 2

e
S2
n

2(n+2)
1√
2π

∫ ∞

−∞
exp

(2xSn − (n+ 1)2

2(n+ 2)

)
dx

=
1√
n+ 2

e
S2
n

2(n+2)
1√
2π

∫ ∞

−∞
exp

( n+ 1

2(n+ 2)

(
− x2 +

2Sn

n+ 1)
x− S2

n

(n+ 1)2
+

S2
n

(n+ 1)2

)
dx

=
1√
n+ 2

e
S2
n

2(n+2)
+

S2
n

2(n+1)(n+2)
1√
2π

∫ ∞

−∞
exp

[
−

(x− S2
n

n+1 )
2

2n+2
n+1

]
dx

=
1√
n+ 2

e
S2
n

2(n+1)

√
n+ 2

n+ 1

1√
2π n+2

n+1

∫ ∞

−∞
exp

[
−

(x− S2
n

n+1 )
2

2n+2
n+1

]
dx

=
1√
n+ 1

e
S2
n

2(n+1) = Yn,

as required.

Problem 3. Consider a sequence (Xn)n of RVs on (Ω,F , P ) defined as

Xn(ω) =

{
n if ω ∈ An

0 if ω ∈ Ac
n,

where (An)n is a sequence of events with P (An) =
1
n for each n.

(a) Determine whether Xn
a.s.→ 0.

(b) Determine whether Xn
p→ 0.

(c) Determine whether Xn → 0 in L1, i.e., whether E|Xn| → 0 as n → ∞.
(d) Find the distribution function FXn

(x) for all n. Does the sequence (Xn)n converge to 0 in distribution?
(e) Is the sequence (Xn)n uniformly integrable?

SOLUTION: (a) If the events An are mutually independent, then P (Ani.o.) = 1, and the sequence Xn does not
converge to 0 a.s.

(b) P (Xn ≤ 0) = 1
n → 0 so Xn

p→ 0.



(c) Since EXn = 1, it does not converge to 0 with n → ∞.
(d) We have

FXn
(x) =


0 if x < 0
n−1
n if 0 ≤ x < n

1 if x ≥ n.

The target limiting distribution is a step at 0 (known as the Heaviside step H(x) := 1{x≥0}), and FXn(x) → H(x)

for all x ̸= 0, i.e., at all the continuity points of H(x). In conclusion, Xn
d→ 0.

(e) Checking the definition, we need that limM→∞ supn E(Xn1|Xn|≥M ) = 0. However, for any M , supn E(Xn1|Xn|≥M ) =

1, so the expression supn E(Xn1|Xn|≥M ) as a function of M does not approach 0 for increasing M . As a result, the
sequence (Xn)n is not uniformly integrable.

Problem 4. Suppose that (Xn){n≥0} is an irreducible and aperiodic Markov chain with a finite state space S =

{1, 2, . . . , N}, transition matrix P , and stationary distribution π = (π1, . . . , πN ). Suppose also that (Xn) is reversible.
(a) Show that for any function f : S → R

E(f(Xn)f(Xn+1))
n→∞−→

∑
i∈S

πiPiif(i)
2 + 2

∑
i<j

πiPijf(i)f(j).

(b) Suppose in addition that Pr(X0 = j) = πj , j ∈ S (the chain starts at stationarity). Show that the covariance

Cov(f(X0), f(Xn)) =
∑
i,j

πiP
(n)
ij f(i)f(j)− (Eπ(f))

2,

where Eπ(f) :=
∑

i∈S πif(i).

(c) With the assumptions as in part (b), show the correlation decline, namely that

lim
n→∞

Cov(f(X0), f(Xn)) = 0.

SOLUTION: (a) We have

E(f(Xn)f(Xn+1)) =
∑
i,j

Pr(Xn = i,Xn+1 = j)f(i)f(j) =
∑
i,j

P (Xn = i)Pijf(i)f(j)

=

N∑
i=1

P (Xn = i)Piif(i)
2 +

∑
i ̸=j

P (Xn = i)Pijf(i)f(j).

Taking the limit for n → ∞ on the right, we have P (Xn = j) → πj by the main ergodic theorem for MCs, and∑
i̸=j

P (Xn = i)Pijf(i)f(j) →
∑
i ̸=j

πiPijf(i)f(j) = 2
∑
i<j

πiPijf(i)f(j),

where in the second equality we used reversibility, πiPij = πjPji. Substituting, we obtain the desired formula.
(b) First,

Cov(f(X0), f(Xn)) = E(f(X0)f(Xn))− E(f(X0))E(f(Xn)).

As above,

E(f(X0)f(Xn)) =
∑
i,j

πiP
(n)
ij f(i)f(j)

Plainly, E(f(X0)) = E(f(Xn)) =
∑

i∈S πif(i) = Eπ(f).
(c) In the limit, P (n)

ij → πj for all i, and so∑
i,j

πiP
n
ijf(i)f(j) →

∑
i

πif(i)
∑
j

πjf(j) = (Eπ(f))
2,



showing that the formula in part (b) approaches 0 as n increases.

Problem 5. We are given a discrete RV X ≥ 0 and a Borel function g : R+ → R+. Suppose that EX < ∞.

(a) Does E(g(X)) exist, and if yes, how do you compute it? Justify your answers.

(b) Let g(x) = 1
1+x . Find E(g(X)) (in closed form, no finite or infinite sums) if

(1) X ∼ Bin(n, p) is a binomial RV, where n ≥ 1 and 0 < p < 1;
(2) X ∼ Geo(p) is geometric, with 0 < p < 1;
(3) X ∼ Poi(λ) is Poisson, with λ > 0.

SOLUTION: (a) By the change of measure argument (Lec.7)∫
Ω

f(X(ω))dP (ω) =

∫ ∞

−∞
g(x)dFX(x).

In the context of this question, E(g(x)) =
∑

x g(x)P (X = x), where the sum extends to the range of X . This sum
may be finite or infinite depending on the pmf of X . In all the examples below, it is finite.

(b) (1) We have X ∼ Bin(n, p) and

E
( 1

1 +X

)
=

n∑
i=0

1

i+ 1

(
n

i

)
pi(1− p)n−i =

1

n+ 1

n∑
i=0

n+ 1

i+ 1

(
n

i

)
pi(1− p)n−i

=
1

p(n+ 1)

n∑
i=0

(
n+ 1

i+ 1

)
pi+1(1− p)(n+1)−(i+1)

=
1

p(n+ 1)

n+1∑
i=1

(
n+ 1

i

)
pi(1− p)n+1−i

=
1

p(n+ 1)
((n+ 1)p− (1− p)n+1) =

1− (1− p)n+1

p(n+ 1)
.

(2) We use the definition of geometric RV as the wait time till the first H in a sequence of (p, 1− p) coin tosses, not
including the H itself. Thus,

P (X = n) = p(1− p)n, n ≥ 0.

For the expectation we obtain

E
( 1

1 +X

)
= p

∞∑
n=0

(1− p)n

n+ 1
=

p

1− p

∞∑
n=1

(1− p)n

p
=

p

1− p
ln

1

p

since ln(1− x) = −
∑∞

n=1
xn

n , so the sum equals − ln(1− (1− p)) = ln 1
p .

We could also use the definition that includes the toss H in the value, and then P (X = n) = p(1− p)n−1, n ≥ 1,

resulting in a similar calculation.
(3)

E
( 1

1 +X

)
=

∞∑
i=0

1

1 + i

λi

i!
e−λ =

e−λ

λ

∞∑
i=0

λi+1

(i+ 1)!

=
e−λ

λ
(eλ − 1) =

1− e−λ

λ
.


