ENEEG620. Midterm examination, 11/16/2023. Instructor: A. Barg

e Please submit your work to ELMS Assignments as a single PDF file by Nov.16, 6:00pm EDT.

e Each problem is 10 points. Max score=50 points

e Your answers should be justified. Giving just the answer may result in no credit for the problem.
e Please pay attention to the writing. You may lose points if your paper is difficult to read.

Problem 1. Let X,,,n > 1 be a sequence of i.i.d. RVs with FX < oo, such that their sum S, = X; +--- +
X,,n > 1 satisfies %Sn 23 ¢, where C' is a constant. In this problem our goal is to show that C = EX.
(a) First prove that

Xn Sn n — 1 Snfl a.s.
Bt (e
n n n /n—1

Conclude that P(]X,,| > n i.0.) = 0. Please give a rigorous argument.

(b) Then prove that for any fixed i > 1

i P(|X;] > n) < oc.

(¢) Prove that, if Z > 0 is a random variable that takes nonnegative but not necessarily only integer
values, then

(oo} oo
Y P(Z>n)<EZ<1+» P(Z=>n).
n=1 n=1

Conclude therefore that E|X| < oo and deduce the needed claim about C' = EX, with justification.

Solution:
(a) Taking the limit,

lim (&—(”_I)S"‘l)“ C—1.C=0.

n—oo n n n—l

Thus we obtain that X;l" 2% 0, which implies that |)i nl 23, Thus, for some N and all n > N, % <1a.s.

In other words,
P(U NS <)

N>1n>N
Taking the complementary event, 1 — P(limsup, {|X,|/n > 1}) = 1, or P(limsup, {(|X,|/n > 1}) =0, ie.,
P(]X,| > nio.) =0, as required.
(b) The Borel-Cantelli lemma says that, for independent events A,,, if >~ P(A,) = oo, then P(4,, i.0.) =
1. This is the same as the claim that P(A, i.0.) < 1 implies that ) P(A,) < oo. Now take the events
E, = {|X,| > n}, and note that they are independent. We conclude that

P(limsup{|X,| >n}=0) <1 = Y P(X,|>n)<oo
" n>1

Since X, are i.i.d., we can replace X, by a generic X on the previous line, or by any fixed Xj.
(¢) Put A, ={n —1< Z < n} and note that

i(n— Dla, <Z< in]lAn
n=1 n=1

Taking expectations, we obtain on the left Y ° (n — 1)P(A,) = Y .-, P(Z > n), and on the right
Yoo nla, =1+> ", P(Z>n).This proves the inequalities

Z (Z >n) <EZ<1+ZPZ>n)

n=1



Now Part (b) implies that E|X| < oo, so the sequence (X,,) satisfies the assumptions of the SLLN. In
other words, %Sn 2% EX, and since the limit is unique, C = EX.

Problem 2.

There are n white balls and n black balls in a box. We repeatedly draw a random ball out of the box,
without replacement. If the ball is white, we gain one unit of money, if it is black, our current capital does
not change. Let X; be the amount of money we have after the ith draw.

(a) Show that the sequence Y; = 22);_7 ,1 < i < 2n—1 forms a martingale with respect to the filtration
F given by F; = o(X1,...,X;),i > 1.

(b) Find the expectation EY; for all i.

(¢) Show that the sequence Z; = QTQL’j;fll/iz — 5——,i=1,2,...,2n — 2 forms a martingale with respect

Solution:
(a) Clearly the sequence Y; is integrable and adapted to the filtration (F;).
Suppose that X; = k, so there are n — k white balls and n — ¢ + k black balls left in the box. We find
k+1)(n—k)+k(n—i+k)

B(Xopa X, = k) = . o .

Note that this expectation does not depend on the values of X; 1, X;_o,... since the process (X;); has
Markov property. Then assume that X; = k and find (after simplifications)

2E(Xip|Xi=k)—i—1 2k—i

BEYina|Xi = k) = 2 —i—1 T oan—i

Thus,

2X; —1
E(Yi41|F;) = 27;_@. =Y.

(b) By the martingale property, EY; = EY; = %, and since EX; = %, EY; =0 for all 1.

(c) As in part (a), the sequence (Z;); is integrable. We have

E(Xi2+1|Xi = k) = (k + 1)2P(Xi+1 =k+ 1|Xi = k) + k2P(X¢+1 = k|X¢ = k)
(k+1)2(n—k) k2(n—i+k‘)
- + -
2n —1 2n —1

Then

2 E[(2Xip1 —i— D X; = k] _ 4E[X7|X; = k] — 40 + ) E[Xip|X; = k] + (i + 1)
E[}/;+1‘Xi =k|= ; = -
(2n—i—1)2 (2n—i—1)2

We have earlier computed both expectations in the numerator, so it remains to substitute and simplify, and
we obtain
(i—2k)?+i—2n

E[Zi+1|Xi = k] = (Z — 2n)(2 —2n 4+ 1)

At the same time, if X; =k, then

(2n*i)(§f;§>2 1 }_ (i — 2k)2 +i—2n
 (

2n—i—1  2n—i—1 i—2n)(i—2n+1)

2|

Thus for every value of X; the expressions coincide, and therefore, E[Z;11|X;] = Z; a.s.

Problem 3.
Consider a Markov chain with the state space S = {1,2,...} and transition probabilities given by p13 = 1



and

¢ ifj=1landi>2
(1) pij=31—i ifj=i+1landi>?2
0 otherwise,

where a > 0 is some number.
(a1) Take a = 1 and find the probability fi1(n) of returning to state 1 in n steps, n > 1. Is state
1 recurrent? If yes, compute the expected time of return. If state 1 is recurrent, is it positive or null
recurrent?
(a2) Does this chain have a limiting distribution? In particular, in the long run, what is the proportion
of time that the chain will spend in state 17

(b) Keeping a = 1, flip the first two cases in the definition of p;; in Eq. (1) (i.e., take p;; = 1 — (1/i) for
j=1 and > 2and p;; =1/ifor j =i+ 1andi > 2). Answer the same questions as in parts (a1) and
(az2) of this problem.

(c) Take a = 2 in the definition (1) of the chain and answer the same questions as in parts (a;) and (a2)
of this problem.

Solution: For all the three cases, we have f11(1) = 0, so below n > 2.

(a)
=11 (- (- ) =

and the probability of ever returning to 1 is

fu=> fun=>Y 7n(n1_ 0= L.

n n>2

Thus, state 1 is recurrent. The expected recurrence time m; = >, nfi1(n) = Y., -5 = 0o, so the state

n—1
(and the chain) is null recurrent.
By the main ergodic theorem for Markov chains, the limiting distribution does not exist. The proportion
of time spent is state 1 in the long run is 0.

(b) A similar calculation now gives fi1(n) =1-4 .- ;. 2=1 = ﬁ% and ) fi1(n) = 1. Moreover
Yonsenfui(n) =325, ﬁ = e. In this case state 1 is positive recurrent, and m = 1.

(© fum) =1-(1-5)1-%) . (I-gp)e=1G-3)G 30D 0335 2 = ze0
Then Zn22 fii(ln) = %anz ﬁ = % < 1, so state 1 is transient. There is no limiting distribution of
the chain.

Problem 4.

(a) Given the generating function g(z) of a random variable Y supported on Ny, the expectation EY =
g'(1). Express the variance Var (Y) using g(z) (and its derivatives).

(b) Let Z be the offspring random variable (the random number of children) in a branching process, and
let G(z) be the generating function of the distribution of Z. Suppose that the initial size of the population
is Xo = 1 and find the variance Var(X,,) of the population size X,, in the nth generation. Assume that
EZ = p,Var(Z) = 0%, where Z is the RV representing the offspring distribution, and express your answer
using only u, 02, and n.

Solution:
(a) BY =g¢'(1) and ¢"(1) = EY? — EY, so Var(Y) = ¢"(1) + ¢'(1) — ¢'(1)%.



(b) Let p = EZ = G'(1) and let m,, = EX,. Let G,(z) = G(G(...G(2))...) (n times) be the
generating function of the distribution of X,,. We compute m, = Gn(2)|.21 = (Gn-1(G(2))) |21 =

N _1(G(2)G(2)] 221 = Mp_1G' (1) = pmy—q1 = -+ - = p™. We already know this from HW3.

Differentiating G,,(z) twice, we obtain:

Gi(2) = (G, 1 (G(2)G'(2)) = G 1 (G(2)G'(2)* + G, 1 (G(2))G" (2),

n—1 n—1
and
G (1) =G, 1 ()(G))* + G, ()G (D).
If u =1, we obtain
Var(X,) = o+ G("fl)(l)" =...=no2.
if 4 # 1, then rewriting the above using part (a), we find Var(X,,) = p?Var(X,,_1) + pu"~'o?. Iterating this,
we find 1
Var(X,) = o2(un 4t oo 2Dy = TR T p (“1 -b

Problem 5.

Let (X,)n>1 be a sequence of i.i.d. random variables with P(X} = 1) =p=1— P(X; = —1) for all k.
Parts (a)-(c) below define sequences of RVs (Y,,), (Z,), (W,,) obtained from the sequence (X,,). For each of
these three sequences, answer the question whether it forms a (first-order homogeneous) Markov chain.

(a) Yy, = XpnXpq1,m > 1,
(C) Wn = }ZZ:I Xk|,’fl > 1.

Solution:
(a) (Yn)n does not form a Markov chain. Indeed,

P(Y;=1,Y,=1) P ——— 4+ (1—p)?
P(Y2 =1) P{++.—-}) p*+(1-p)
P o 3 1— 4
P{++,—-}) p’+(1-p)
giving different values unless p = 1/2,0, 1.
(b) (Z,) does not form a Markov chain. Indeed,
p(1 - p)®
P(Z3|Zy=0,Z1=1)=————=0p
al2e =0, =1 = o=y
p(1 —p)®
P(Z3=0|Z=0,21=-1)=—/—FF5=1—
(Zs |Z> » 41 ) p(1—p)2 b,

giving different values unless p = 1/2,0, 1.

(¢) (W,) forms a Markov chain with the state space S = Ny. Since Py; = 1, it suffices to analyze the
process starting at 0 and until the next revisit of 0 because then the evolution is repeated exactly as before.
So let us say that Wy = 0, right before the start of the process. Note that between the two visits to 0, the
sum T, := ) -, X,, does not change the sign, staying either in the positive or in the negative all the time.
If is is in the p_ositive7 then the sum T,, increases with probability p and decreases with probability ¢, and
W, does exactly the same. If it is in the negative, then T,, increases with probability ¢ and decreases with
probability p, and W,, does the opposite. Moreover, P(X; = 1) = p and P(X; = —1) = ¢, and the sign of
> n>1 Xn stays fixed after that, determining the evolution of the process. Either way, these probabilities do
not, _depend on the history given the current value of W,,.

The above argument suffices for an intuitive explanation. To give a proof, let us compute the transition

probabilities of the Markov chain. If the process is in state x after n steps, then either ”;”” values Xy, are +1




and 5% values X} are —1 (the first case, >, _; X > 0) or the opposite (the second case, Y_;_; Xj < 0).

Writing the probability for the first case,

ntz n—=z

n
p2q 2 p

M+ :: P( X/ = x|X = x 9t 7X1 = xl) = n €T n—x n—x n x = )
" 162::1 " " " p%qT —|—qu ;r p””+q$

X

we observe that it does not depend on the earlier history given the value at time n, and also does not depend
on n. A similar expression arises for the second case, namely, M, = #”qz, and the final answer is their
(weighted) sum:

pﬂ?nJrl +qazn+1
P(Woy1 = @n + Wy = 2., Wi =y) = pMF 4 g =279 "

plvn _|_ qlvn
Thus, the sequence (W,,) forms a Markov chains, and its transition probabilities have the form
pl4¢° oo
p'i+qij ) ifj=di+1
_ + oo ;
P = 1—’;i+gi ifj=i—1

0 o/w.



