
ENEE620. Midterm examination, 11/16/2023. Instructor: A. Barg
• Please submit your work to ELMS Assignments as a single PDF file by Nov.16, 6:00pm EDT.
• Each problem is 10 points. Max score=50 points
• Your answers should be justified. Giving just the answer may result in no credit for the problem.
• Please pay attention to the writing. You may lose points if your paper is difficult to read.

Problem 1. Let Xn, n ≥ 1 be a sequence of i.i.d. RVs with EX < ∞, such that their sum Sn = X1 + · · ·+
Xn, n ≥ 1 satisfies 1

nSn
a.s.→ C, where C is a constant. In this problem our goal is to show that C = EX.

(a) First prove that
Xn

n
=

Sn

n
−
(n− 1

n

) Sn−1

n− 1

a.s.→ 0

Conclude that P (|Xn| ≥ n i.o.) = 0. Please give a rigorous argument.
(b) Then prove that for any fixed i ≥ 1

∞∑
n=1

P (|Xi| ≥ n) < ∞.

(c) Prove that, if Z ≥ 0 is a random variable that takes nonnegative but not necessarily only integer
values, then

∞∑
n=1

P (Z ≥ n) ≤ EZ ≤ 1 +

∞∑
n=1

P (Z ≥ n).

Conclude therefore that E|X| < ∞ and deduce the needed claim about C = EX, with justification.

Solution:
(a) Taking the limit,

lim
n→∞

(Sn

n
−
(n− 1

n

) Sn−1

n− 1

)
a.s.→ C − 1 · C = 0.

Thus we obtain that Xn

n

a.s.→ 0, which implies that |Xn|
n

a.s.→ 0. Thus, for some N and all n ≥ N, |Xn|
n < 1 a.s.

In other words,

P
( ⋃

N≥1

⋂
n≥N

{ |Xn|
n

< 1
})

= 1.

Taking the complementary event, 1− P (lim supn{|Xn|/n > 1}) = 1, or P (lim supn{(|Xn|/n > 1}) = 0, i.e.,
P (|Xn| ≥ n i.o.) = 0, as required.

(b) The Borel-Cantelli lemma says that, for independent events An, if
∑

n P (An) = ∞, then P (An i.o.) =
1. This is the same as the claim that P (An i.o.) < 1 implies that

∑
n P (An) < ∞. Now take the events

En = {|Xn| > n}, and note that they are independent. We conclude that

P (lim sup
n

{|Xn| > n} = 0) < 1 ⇒
∑
n≥1

P (|Xn| > n) < ∞.

Since Xn are i.i.d., we can replace Xn by a generic X on the previous line, or by any fixed Xi.

(c) Put An = {n− 1 ≤ Z < n} and note that
∞∑

n=1

(n− 1)1An
≤ Z <

∞∑
n=1

n1An

Taking expectations, we obtain on the left
∑∞

n=1(n − 1)P (An) =
∑∞

n=1 P (Z ≥ n), and on the right∑∞
n=1 n1An = 1 +

∑∞
n=1 P (Z ≥ n).This proves the inequalities

∞∑
n=1

P (Z ≥ n) ≤ EZ ≤ 1 +

∞∑
n=1

P (Z ≥ n).



Now Part (b) implies that E|X| < ∞, so the sequence (Xn) satisfies the assumptions of the SLLN. In
other words, 1

nSn
a.s.→ EX, and since the limit is unique, C = EX.

Problem 2.
There are n white balls and n black balls in a box. We repeatedly draw a random ball out of the box,
without replacement. If the ball is white, we gain one unit of money, if it is black, our current capital does
not change. Let Xi be the amount of money we have after the ith draw.

(a) Show that the sequence Yi =
2Xi−i
2n−i , 1 ≤ i ≤ 2n − 1 forms a martingale with respect to the filtration

F given by Fi = σ(X1, . . . , Xi), i ≥ 1.

(b) Find the expectation EYi for all i.
(c) Show that the sequence Zi =

2n−i
2n−i−1Y

2
i − 1

2n−i−1 , i = 1, 2, . . . , 2n− 2 forms a martingale with respect
to (Fi)i.

Solution:
(a) Clearly the sequence Yi is integrable and adapted to the filtration (Fi).

Suppose that Xi = k, so there are n− k white balls and n− i+ k black balls left in the box. We find

E(Xi+1|Xi = k) =
(k + 1)(n− k) + k(n− i+ k)

2n− i
.

Note that this expectation does not depend on the values of Xi−1, Xi−2, . . . since the process (Xi)i has
Markov property. Then assume that Xi = k and find (after simplifications)

E(Yi+1|Xi = k) =
2E(Xi+1|Xi = k)− i− 1

2n− i− 1
=

2k − i

2n− i
.

Thus,

E(Yi+1|Fi) =
2Xi − i

2n− i
= Yi.

(b) By the martingale property, EYi = EY1 = 2E(X1)−1
2n−1 , and since EX1 = 1

2 , EYi = 0 for all i.
(c) As in part (a), the sequence (Zi)i is integrable. We have

E(X2
i+1|Xi = k) = (k + 1)2P (Xi+1 = k + 1|Xi = k) + k2P (Xi+1 = k|Xi = k)

=
(k + 1)2(n− k)

2n− i
+

k2(n− i+ k)

2n− i

Then

E[Y 2
i+1|Xi = k] =

E[(2Xi+1 − i− 1)2|Xi = k]

(2n− i− 1)2
=

4E[X2
i+1|Xi = k]− 4(i+ 1)E[Xi+1|Xi = k] + (i+ 1)2

(2n− i− 1)2

We have earlier computed both expectations in the numerator, so it remains to substitute and simplify, and
we obtain

E[Zi+1|Xi = k] =
(i− 2k)2 + i− 2n

(i− 2n)(i− 2n+ 1)

At the same time, if Xi = k, then

Zi =
[ (2n− i)

(
2k−i
2n−i

)2

2n− i− 1
− 1

2n− i− 1

]
=

(i− 2k)2 + i− 2n

(i− 2n)(i− 2n+ 1)
.

Thus for every value of Xi the expressions coincide, and therefore, E[Zi+1|Xi] = Zi a.s.

Problem 3.
Consider a Markov chain with the state space S = {1, 2, . . . } and transition probabilities given by p12 = 1



and

(1) pij =


i−a if j = 1 and i ≥ 2

1− i−a if j = i+ 1 and i ≥ 2

0 otherwise,

where a > 0 is some number.
(a1) Take a = 1 and find the probability f11(n) of returning to state 1 in n steps, n ≥ 1. Is state

1 recurrent? If yes, compute the expected time of return. If state 1 is recurrent, is it positive or null
recurrent?

(a2) Does this chain have a limiting distribution? In particular, in the long run, what is the proportion
of time that the chain will spend in state 1?

(b) Keeping a = 1, flip the first two cases in the definition of pij in Eq. (1) (i.e., take pij = 1− (1/i) for
j = 1 and i ≥ 2 and pij = 1/i for j = i + 1 and i ≥ 2). Answer the same questions as in parts (a1) and
(a2) of this problem.

(c) Take a = 2 in the definition (1) of the chain and answer the same questions as in parts (a1) and (a2)

of this problem.

Solution: For all the three cases, we have f11(1) = 0, so below n ≥ 2.

(a)

f11(n) = 1
(
1− 1

2

)(
1− 1

3

)
. . .

(
1− 1

n− 1

) 1

n
=

1

n(n− 1)
,

and the probability of ever returning to 1 is

f11 =
∑
n

f11n =
∑
n≥2

1

n(n− 1)
= 1.

Thus, state 1 is recurrent. The expected recurrence time m1 =
∑

n nf11(n) =
∑

n
1

n−1 = ∞, so the state
(and the chain) is null recurrent.

By the main ergodic theorem for Markov chains, the limiting distribution does not exist. The proportion
of time spent is state 1 in the long run is 0.

(b) A similar calculation now gives f11(n) = 1 · 1
2 · · ·

1
n−1 ·

n−1
n = 1

(n−1)!
n−1
n and

∑
n f11(n) = 1. Moreover∑

n≥2 nf11(n) =
∑

n≥2
1

(n−2)! = e. In this case state 1 is positive recurrent, and π1 = 1
e .

(c) f11(n) = 1 ·
(
1− 1

22

)(
1− 1

32

)
. . .

(
1− 1

(n−1)2

)
1
n2 = 1 ·

(
1
2 ·

3
2

)(
2
3 ·

4
3

)(
3
4 ·

5
4

)
· · ·

(
n−2
n−1 ·

n
n−1

)
· 1
n2 = 1

2n(n−1) .

Then
∑

n≥2 f11(n) = 1
2

∑
n≥2

1
n(n−1) = 1

2 < 1, so state 1 is transient. There is no limiting distribution of
the chain.

Problem 4.

(a) Given the generating function g(z) of a random variable Y supported on N0, the expectation EY =

g′(1). Express the variance Var(Y ) using g(z) (and its derivatives).
(b) Let Z be the offspring random variable (the random number of children) in a branching process, and

let G(z) be the generating function of the distribution of Z. Suppose that the initial size of the population
is X0 = 1 and find the variance Var(Xn) of the population size Xn in the nth generation. Assume that
EZ = µ,Var(Z) = σ2, where Z is the RV representing the offspring distribution, and express your answer
using only µ, σ2, and n.

Solution:
(a) EY = g′(1) and g′′(1) = EY 2 − EY, so Var(Y ) = g′′(1) + g′(1)− g′(1)2.



(b) Let µ = EZ = G′(1) and let mn = EXn. Let Gn(z) = G(G(. . . G(z)) . . . ) (n times) be the
generating function of the distribution of Xn. We compute mn = Gn(z)

′|z=1 = (Gn−1(G(z)))′|z=1 =

G′
n−1(G(z))G′(z)|z=1 = mn−1G

′(1) = µmn−1 = · · · = µn. We already know this from HW3.
Differentiating Gn(z) twice, we obtain:

G′′
n(z) = (G′

n−1(G(z))G′(z))′ = G′′
n−1(G(z))G′(z)2 +G′

n−1(G(z))G′′(z),

and
G′′

n(1) = G′′
n−1(1)(G(1)′)2 +G′

n−1(1)G
′′(1).

If µ = 1, we obtain
Var(Xn) = σ2 +G(n−1)(1)′′ = · · · = nσ2.

if µ ̸= 1, then rewriting the above using part (a), we find Var(Xn) = µ2Var(Xn−1) +µn−1σ2. Iterating this,
we find

Var(Xn) = σ2(µn−1 + µn + · · ·+ µ2(n−1)) =
σ2µn−1(µn − 1)

µ− 1
.

Problem 5.

Let (Xn)n≥1 be a sequence of i.i.d. random variables with P (Xk = 1) = p = 1 − P (Xk = −1) for all k.
Parts (a)-(c) below define sequences of RVs (Yn), (Zn), (Wn) obtained from the sequence (Xn). For each of
these three sequences, answer the question whether it forms a (first-order homogeneous) Markov chain.

(a) Yn = XnXn+1, n ≥ 1;

(b) Zn = 1
2 (Xn+1 −Xn), n ≥ 1;

(c) Wn =
∣∣∑n

k=1 Xk

∣∣, n ≥ 1.

Solution:
(a) (Yn)n does not form a Markov chain. Indeed,

P (Y3 = 1|Y2 = 1) =
P (Y3 = 1, Y2 = 1)

P (Y2 = 1)
=

P ({+++,−−−})
P ({++,−−})

=
p3 + (1− p)3

p2 + (1− p)2
.

P (Y3 = 1|Y2 = 1, Y1 = 1) =
P{++++,−−−−}

P ({++,−−})
=

p3 + (1− p)4

p3 + (1− p)3
,

giving different values unless p = 1/2, 0, 1.

(b) (Zn) does not form a Markov chain. Indeed,

P (Z3|Z2 = 0, Z1 = 1) =
p(1− p)3

p2(1− p)
= p

P (Z3 = 0|Z2 = 0, Z1 = −1) =
p(1− p)3

p(1− p)2
= 1− p,

giving different values unless p = 1/2, 0, 1.

(c) (Wn) forms a Markov chain with the state space S = N0. Since P01 = 1, it suffices to analyze the
process starting at 0 and until the next revisit of 0 because then the evolution is repeated exactly as before.
So let us say that W0 = 0, right before the start of the process. Note that between the two visits to 0, the
sum Tn :=

∑
n≥1 Xn does not change the sign, staying either in the positive or in the negative all the time.

If is is in the positive, then the sum Tn increases with probability p and decreases with probability q, and
Wn does exactly the same. If it is in the negative, then Tn increases with probability q and decreases with
probability p, and Wn does the opposite. Moreover, P (X1 = 1) = p and P (X1 = −1) = q, and the sign of∑

n≥1 Xn stays fixed after that, determining the evolution of the process. Either way, these probabilities do
not depend on the history given the current value of Wn.

The above argument suffices for an intuitive explanation. To give a proof, let us compute the transition
probabilities of the Markov chain. If the process is in state x after n steps, then either n+x

2 values Xk are +1



and n−x
2 values Xk are −1 (the first case,

∑n
k=1 Xk > 0) or the opposite (the second case,

∑n
k=1 Xk < 0).

Writing the probability for the first case,

M+
n := P (

n∑
k=1

Xn = x|Xn = xn, . . . , X1 = x1) =
p

n+x
2 q

n−x
2

p
n+x

2 q
n−x

2 + p
n−x

2 q
n+x

2

=
px

px + qx
,

we observe that it does not depend on the earlier history given the value at time n, and also does not depend
on n. A similar expression arises for the second case, namely, M−

n = qx

px+qx , and the final answer is their
(weighted) sum:

P (Wn+1 = xn + 1|Wn = xn, . . . ,W1 = x1) = pM+ + qM− =
pxn+1 + qxn+1

pxn + qxn
.

Thus, the sequence (Wn) forms a Markov chains, and its transition probabilities have the form

Pij =


pj+qj

pi+qi if j = i+ 1

1− pj+qj

pi+qi if j = i− 1

0 o/w.


