
ENEE620. Midterm examination, 10/12/2023. Instructor: A. Barg
• Please submit your work to ELMS Assignments as a single PDF file by Oct.12, 6:00pm EDT.
• Each problem is 10 points. Max score=50 points
• Your answers should be justified. Giving just the answer may result in no credit for the problem.
• Please pay attention to the writing. You may lose points if your paper is difficult to read.

Problem 1.
(a) We say that a sequence of events (An)n converges if

lim sup
n→∞

An = lim inf
n→∞

An,

and we denote the event defined by this equation as limnAn.

Suppose that a sequence of events (An)n converges. LetAm := ∩n≥mAn,Bm := ∪n≥mAn. Use monotonicity of
the sequences Am and Bm to show that

lim
n→∞

P (An) = P ( lim
n→∞

An).

(b) Let (An) be a sequence of events, and let E,F ∈ F be two events such E ⊆ An ⊆ F for all n ≥ 1. We are
given that P (E) = P (F ). Using these assumptions, show that

P (E) = P (lim inf
n→∞

An) = P (lim sup
n→∞

An) = P (F ).

SOLUTION:
(a) Taking the hint, observe thatAm ⊂ Am+1 andBm ⊃ Bm+1. Then by continuity of probability, limm→∞ P (Am) =

P (∪m≥1Am) = P (lim infnAn) and likewise, limm P (Bm) = P (lim supnAn). By the convergence assumption we
have P (lim infnAn) = P (lim supnAn), so

lim
n
P (An) = lim

n
P (Bn).

Since P (An) ≤ P (An) ≤ P (Bn), taking the limit of n→∞ and using the previous line, we obtain that

lim
n
P (An) = lim

n
P (An) = lim

n
P (Bn) = P (lim

n
An).

(b) Since E ⊆ An, also E ⊆ ∪n≥mAn for all m ≥ 1, and then E ⊆ lim infnAn. Similarly, lim supnAn ⊂ F,

and then

P (E) ≤ P (lim inf
n

An) ≤ P (lim sup
n

An) ≤ P (F ).

Together with the condition P (E) = P (F ), this completes the proof.

Problem 2.

(a) Given an RV X on a probability space (Ω,F , P ), we say that the sigma-algebra A is generated by X if it is the
smallest sigma-algebra that contains all events of the form X−1(B) ∈ F for all Borel sets B ∈ B(R). Note that
generally A is not the same as (is smaller than) F .

We consider the standard probability space (Ω = [0, 1],F = B([0, 1]), dx).

(1) Give a complete description of the sigma-algebra generated by the RV X1 = ω/4.

(2) Give a complete description of the sigma-algebra generated by the RV X2 = 2/3.

(3) Give a complete description of the sigma-algebra generated by the RV

X3 =


1
3 , ω ∈ [0, 1/3),

1/2, ω ∈ [1/3, 2/3),

1 ω ∈ [2/3, 1].



(b) Give the expressions for the distribution functions FX1
(x), FX2

(x), FX3
(x) of the random variables defined in

Part (a). Make sure to give answers for all x,−∞ < x <∞.

SOLUTION:
(a) (1) Given an interval [a, b], 0 ≤ a ≤ b ≤ 1/4, take B = [a, b], then X−11 (B) = [4a, 4b] ∈ F . The smallest
sigma-algebra on Ω generated by all closed intervals is B([0, 1]), and thus A = F .

(2) Using the definition, either (2/3) ∈ B, and then X−12 (B) = [0, 1], or (2/3) 6∈ B and then X−1(B) = ∅. Thus
A = {Ω, ∅}.

(3) For any x > 1, X−13 (−∞, x] = Ω, and for any x < 1/3, X−13 (−∞, x] = ∅. For x ∈ [0, 1/3), X−13 (−∞, x] =

[0, 1/3), so [0, 1/3) ∈ A, and similarly [1/3, 2/3) ∈ A and [2/3, 1] ∈ A. Taking their unions and complements, we
obtain the answer, given below.

Answer: A = {Ω, ∅, [0, 1/3), [1/3, 1], [1/3, 2/3), [1/3, 2/3)c, [2/3, 1], [0, 2/3)}.
(b) FX1

(x) = 0, x ≤ 0;FX1
(x) = 4x, 0 ≤ x ≤ 1/4;FX1

(x) = 1, x ≥ 1/4;
FX2

(x) = 0, x < 2/3;FX2
(x) = 1, x ≥ 2/3 (this CDF corresponds to the δ2/3 measure);

FX3(x) = 0, x < 1/3;FX3(x) = 1/3, 1/3 ≤ x < 1/2;FX3(x) = 2/3, 1/2 ≤ x < 1;FX3(x) = 1, x ≥ 1.

Problem 3.
For parts (a)-(c), assume that F (x) is a continuous distribution function.

(a) Show that
∫∞
−∞ F (x)dF (x) = 1

2 (a change of variable should work),
(b) Similarly, show that

∫∞
−∞ F k(x)dFn(x) = n

n+k . Here F k(x) = (F (x))k is the kth power of F (x), same for
Fn.

(c) Now let X be an RV for which F (x) is the CDF. What is the distribution of the random variable F (X)?
(d) Let X and Y be independent RVs on (Ω,F , P ) with CDFs FX(x) and FY (x) such that P (Y = 0) = 0. What

is the CDF of the RV Z = X/Y .
Notes for Part (d): (i) Both FX and FY may not have densities, so do no assume that they have them. (ii) Recall

that for an RV U we have P (a ≤ U ≤ b) =
∫ b

a
dFU (x).

SOLUTION:
(a) Let y = F (x), then y ∈ [0, 1], and

∫ 1

0
ydy = 1

2 .

(b) As above,
∫ 1

0
ykd(yn) =

∫ 1

0
yknyn−1dy = n

∫ 1

0
yn+k−1dy = n

n+k .

(c) Let Z = F (X), then P (Z ≤ z) = P (F (X) ≤ z) = P (X ≤ F−1(z)) = F (F−1(z)) = z. This implies that
Z ∼ Unif[0, 1]. Note that F does not have to be strictly monotone increasing. If F (x) = c on some interval of the real
line, then we can take an arbitrary x such that F (x) = c as the value of F−1(c), e.g., x = inf {x′ : F (x′) ≥ c}, and
the proof still goes through.

(d) We have X/Y ≤ z, translating into X ≤ zY if Y > 0 and X ≥ zY if Y < 0, and so

P (Z ≤ z) = P (X/Y ≤ z) = P (X ≤ zY, Y > 0) + P (X ≥ zY, Y < 0)

=

∫ ∞
0

FX(zy)dFY (y) +

∫ 0

−∞
(1− FX(zy))dFY (x).

Problem 4.
LetXi, 1 ≤ i ≤ n be independent RVs distributed uniformly on [0, 1], and letUn = min1≤i≤nXi, Vn = max1≤i≤nXi.

(a) Find the distribution of Un. Does the sequence (Un)n converge as n → ∞? If yes, what is the limit, and what
is the type of convergence?

(b) Find the CDF of Vn. Show that as n → ∞, the sequence n(1 − Vn) converges in law to the exponential
distribution Exp(1).

SOLUTION:



(a) z P (Un ≤ ε) = 1− P (Un > ε) = 1− (1− ε)n, and thus lim
n→∞

P (Un ≤ ε) = 1 for any ε > 0. In other words,

Un
p→ 0.

Moreover, P (Un ≥ ε) = (1 − ε)n, and
∑

n≥1(1 − ε)n < ∞, so P (Un ≥ ε i.o.) = 0; thus with probability one,

limn→∞ Un = 0. This means that Un
a.s.→ 0.

Also, P (U2
n ≥ ε) = P (Un >

√
ε) = (1−

√
ε)n for 0 ≤ ε ≤ 1, so

EU2
n =

∫ ∞
0

P (U2
n > z)dz =

∫ 1

0

(1−
√
z)ndz =

2

(n+ 1)(n+ 2)
→ 0

as n→∞, so Un → 0 m.s. (and also in Lp).
(b) Since Vn ≤ z if and only if all Xi ≤ z, we have P (Vn ≤ z) = (FX(z))n = zn. Now, as n→∞,

P (n(1− Vn) ≤ z) = P (Vn ≥ (1− z

n
)) = 1−

(
1− z

n

)n
→ 1− e−z.

This is the CDF of the exponential law with λ = 1, so n(1− Vn)
d→ Exp(1).

Problem 5.

For an RV Y we denote σ(R) :=
√

Var(Y ).

(a) Assuming that the expectations and variances exist, show that

1 ≤ EX · E
( 1

X

)
≤ 1 + σ(X)σ(1/X).

When does equality EX · E( 1
X ) = 1 hold?

Note: For the left-hand side, use convexity and Jensen’s inequality; for the right-hand side try Cauchy-
Schwarz.

(b) X is a nonnegative, integer-valued RV, i.e., X(ω) ∈ {0, 1, 2, . . . }. Show that P (X > 0) ≥ (EX)2

EX2 . For this,
notice that EX = E(1{X 6=0}X) and use Cauchy-Schwarz.

SOLUTION:
(a) We will assume that EX 6= 0. For a complete proof, we must assume that X > 0 a.s. or X < 0 a.s. In the first

case, also EX > 0, and we need to show that 1
EX ≤ E 1

X . Observe that ( 1
y )′′ = 2

y3 > 0 for y > 0, so the function
g(y) = 1

y is strictly ∪-convex. Our RV is integrable by the problem statement, so Jensen’s inequality applies. It says
that g(E(X)) ≤ Eg(X); in our case exactly that

1

EX
≤ E 1

X
.

Now X < 0 and EX < 0, then we need to show that 1
EX ≥

1
X , because this again implies that EX 1

EX ≥ 1. This
works because the function y 7→ 1

y is strictly concave for y < 0, so using Jensen’s, we have g(E(X)) ≥ Eg(X). This
finishes the proof.

If X > 0 a.s. or X < 0 a.s., then EX · EX−1 = 1 holds if and only X is a constant (then σ(X) = σ(1/X) = 0).
If X is allowed to take both positive and negative values, then this conclusion is wrong: for instance, take X with
P (X = −1) = 1/9, P (X = 1

2 ) = P (X = 2) = 4/9.

Next, by Cauchy-Schwarz, E((X − EX)(Y − EY ))2 ≤ E(X − EX)2E(Y − EY )2, which shows that

E((X − EX)(Y − EY ))

σ(X)σ(Y )
≥ −1.

Thus,
−σ(X)σ(Y ) ≤ E((X − EX)(Y − EY )) = E(XY )− EXEY.

Take Y = 1/X, then E(XY ) = 1, and

EX · E 1

X
≤ 1 + σ(X)σ(1/X).

(b) Taking the hint, (EX)2 = E(1X 6=0X)2 ≤ E(12
X 6=0)EX2 = P (X 6= 0)EX2.


