
ENEE620. Final exam, 12/16/2024. Instructor: A. Barg
• Please submit your work to ELMS Assignments as a single PDF file. You must submit your paper within 3 hours
from accessing the exam paper online.
• Each problem is 10 points. Max score=50 points
• Your answers should be justified. Giving just the answer may result in no credit for the problem.
• Please pay attention to the writing. You may lose points if your paper is difficult to read.

Problem 1. Consider a Markov chain (Xn)n on a countable state space S. Let s ∈ S and

tkx(y) = inf{n > tk−1x (y) : Xn = y}, k ≥ 1,

where t0x(y) := 0 and where the subscript xmeans that the process starts from state x ∈ S. Let pxy := P (t1x(y) <∞).

(a) Show that for each k ≥ 1, P (tkx(y) <∞) = pxyp
k−1
yy . Please give a formal proof. Did you need to assume that

the chain is recurrent? Justify your answer.

(b) Now show that the number Ny := |{n : Xn = y, n ≥ 1}| of visits to y satisfies Ex(Ny) =
pxy

1−pyy
.

SOLUTION: (a) If pxy = 0, then all the probabilities P (tkx(y) < ∞) are zero, proving the statement. If pyy = 0,
then P (tkx(y) < ∞) = 0 except for k = 1, again proving the statement. Now suppose that neither pxy nor pyy are
zero. By the problem statement, P (t1x(y) <∞) = pxy . We use this as induction base.

Now let k ≥ 1 and suppose that we have proved P (tk−1x (y) < ∞) = pxyp
k−2
yy . We use the strong Markov

property to perform the induction step. Since we now have that pxy, pyy > 0, P (tkx < ∞) > 0 for all k ≥ 1. Define
Fn = σ(X0, X1, . . . , Xn), n ≥ 1. The strong Markov property tells us that for all k ≥ 1

P (Xtkx+1 = z|Ftkx) = PX
tkx
(Xtkx+1 = z) = P (Xtkx

, z),

where P (Xtkx
, z) is the transition probability from the (random) state Xtkx

to z. In our case, Xtk−1
x

= y, and the
probability P (Xtk−1

x
, y) = pyy,

P (tkx(y) <∞) = P (tk−1x (y) <∞)pyy = pxyp
k−1
yy .

Since our argument does not depend on pyy = 1, it covers both the recurrent and transient cases, so we do not need
the recurrence assumption.

(b)

ENy = E
(∑
n>0

1(Xn = y)
)
= E

(∑
k≥1

1(tkx(y) <∞)
)
=

{
pxy

1−pyy
pyy < 1

∞ pyy = 1
.

Problem 2. Let (Xk, k ≥ 1) be a sequence of i.i.d. RVs with a finite mean.

(a) Define the RVs

Sn :=
1

n

n∑
k=1

XkXk+1, n ≥ 1.

Is the claim Kolmogorov’s SLLN theorem implies that Sn
a.s.→ (EX1)

2 true? Explain your answer.

(b) Define the sequences Yk = X2(k−1)+1X2k, k ≥ 1 and Zk = X2kX2k+1, k ≥ 1. Do the sequences

1

m

m∑
k=1

Yk,
1

m

m∑
k=1

Zk, m ≥ 1

converge; if yes, then how, to which limits, and for what reason?
(c) Use the result of Part (b) to prove that Sn

a.s.→ (EX1)
2.

SOLUTION:



(a) Since the RVs X1X2 and X2X3 are not independent, SLLN cannot be used directly. At the same time, the
dependence is weak and the statement of interest is still true, as shown below.

(b) Both sequences Yk and Zk are formed of iid RV’s, and thus the sample averages 1
n

∑n
k=1 Yk and 1

n

∑n
k=1 Zk

converge to (EX)2 a.s.
(c) For n = 2m we have

Sn =
1

2m

m∑
k=1

Yk +
1

2m

m∑
k=1

Zk

and for n = 2m+ 1 we have

Sn =
m+ 1

2m+ 1

1

m+ 1

m+1∑
k=1

Yk +
m

2m+ 1

1

m

m∑
k=1

Zk.

In both cases when m→∞ we obtain that Sn
a.s.→ 1

2 (EX)2 + 1
2 (EX)2 = (EX)2.

Problem 3. Let X and Y be independent RVs.
(a) Suppose that a number a satisfies 0 < P (X > a) < 1. Show that then {X > a} 6∈ σ(Y ).
(b) Show that if {X > Y } ∈ σ(Y ) then there exist numbers a, b such that P (a ≤ X ≤ b) = 1 and either a = b or
P (a < Y < b) = 0.
(c) Show that if the distribution of Y is continuous and such that P (Y ∈ supp(X)) > 0, then {X < Y } 6∈ σ(Y ).
The last page of this document reproduces a ChatGPT “solution” of this problem. Your task is to go over it step by
step and either argue that the step is correct (if so, make it formal) or not (in this case, replace with a correct argument).

Problem 4. Let U ∼ Unif[0, 1] be a uniform RV. Define a sequence of RVs Xn, n ≥ 0 where Xn = k2−n for the
unique integer k such that k2−n ≤ U < (k + 1)2−n. Let f : [0, 1] → R be a bounded measurable function and put
f(x) = f(1) for all x ≥ 1. Finally, define

Yn = 2n(f(Xn + 2−n)− f(Xn)), n ≥ 0.

(a) Find the conditional distribution P (U |X0, X1, . . . , Xn).
(b) Prove that the sequence (Yn)n forms a martingale with respect to the filtration given by the sequence (Xn).
(c) Does the sequence (Yn)n converge a.s., and if yes, what is the limit?

SOLUTION:
(a) The sequence Xn forms a sequence of progressively more accurate approximations of U . Suppose we know

X0, . . . , Xn, which means that we also know k0, . . . , kn, i.e., in particular, we know that kn2−n ≤ U < (kn+1)2−n,

and furthermore, P (U |Xn
0 ) = P (U |Xn). If kn < 2n, then this means that

U |Xn
0 ∼ Unif[kn2−n, (kn + 1)2−n) = Unif[Xn, Xn + 2−n).

If kn = 2n, then P (U = 1|Xn) = 1.
(b) Check that E|Yn| < ∞. Since f(x) ≤ N for some N > 0, E|Yn| ≤ 2n(2N) < ∞ for all n. Suppose that

kn < 2n, so Xn = kn2
−n and

Xn+1 =

{
2kn
2n+1 w.p.1/2
2kn+1
2n+1 w.p.1/2



Then compute the martingale condition:

E(Yn+1|Fn) = 2n+1
[1
2

(
f
(2kn + 1

2n+1
+

1

2n+1

)
− f

(2kn + 1

2n+1

))
+

1

2

(
f
( 2kn
2n+1

+
1

2n+1

)
− f

( 2kn
2n+1

))]
= 2n

[
f
(kn
2n

+
1

2n

)
− f

(kn
2n

)]
= Yn.

(c) The sequence (Xn) converges a.s. to U since P (limn→∞ |Xn−U | = 0) = 1.However boundedness of f alone
does not guarantee convergence of (Yn). If f is differentiable at every point of [0, 1], then 2n(f(x+ 2−n)− f(x))→
f ′(x), and Yn

a.s.→ f ′(U). Otherwise we cannot claim that Yn is L1-bounded since supnE(Yn) is not controlled by the
boundedness of f alone, so the sufficient condition for martingale convergence does not apply.

Problem 5. Let (Sn, n ≥ 0) be a sequence of random variables defined as S0 = 0 and Sn = S0 +
∑n
i=1Xn, where

the increments Xn are i.i.d.
(a) Suppose that the increments have the distribution P (X = 1) = p = 1− P (X = −1), 0 < p < 1, i.e., (Sn)n is

a biased random walk. Let λ be a real number. Find the value(s) γ ∈ R for which the sequence eγSn−λn, n ≥ 0 forms
a martingale with respect to the natural filtration.

(b) Now let (Xn)n be i.i.d. N (0, 1) Gaussian RVs. Show that the sequence (Yn = euSn−nu2/2, n ≥ 0), where
u ∈ R, forms a martingale with respect to the natural filtration.

SOLUTION:
(a) Let Fn = σ(Xn

1 ), n ≥ 1. We have

E(eγSn+1−(n+1)λ|Fn) = E(eγSn+γXn+1−(n+1)λ|Fn) = eγSn−(n+1)λE(eγXn+1).

Now, note that E(eγXn+1) = peγ + (1− p)e−γ , and let us choose γ such that peγ + (1− p)e−γ = eλ, or

γ = ln
(
eλ ±

√
e2λ − 4p(1− p)

)
− ln(2p)

With each of these choices,
E(eγSn+1−(n+1)λ|Fn) = eγSn−λn,

confirming the martingale property. Moreover, since the RVs eγSn−λn are nonnegative, the martingale property im-
plies integrability:

E|eγSn−λn| = E[E[eγSn−λn|Fn]] = E[eγSn−1−λ(n−1)] = · · · = 1.

(b) Integrability follows as in part (a) once we establish the martingale property. To prove it, write

E(euSn+1−(n+1)u2/2|Fn) = euSn−(n+1)u2/2E(euXn+1 |Fn)

= euSn−(n+1)u2/2E(euXn+1) = euSn−(n+1)u2/2eu
2/2 = Yn

as required. Here we used the expression for the moment generating function of the Gaussian RV:

E(euXn+1) =
1√
2π

∫
eus−

s2

2 ds =
e

u2

2

√
2π

∫
e−

(s−u)2

2 ds = e
u2

2 .



AI-provided “solution” of Problem 3:
(a) Suppose 0 < P (X > a) < 1. Show that {X > a} 6∈ σ(Y ).

Proof: The event {X > a} depends only on the random variable X . Since X and Y are independent, their σ-
algebras σ(X) and σ(Y ) are independent as well. If {X > a} ∈ σ(Y ), then {X > a}would be determined by Y . This
would violate the independence of X and Y , as the event {X > a} has non-trivial probability (0 < P (X > a) < 1)
and depends solely on X .

Thus, {X > a} 6∈ σ(Y ).
The ideas are correct, but the presentation is not rigorous enough. The statements “If {X > a} ∈ σ(Y ), then

{X > a} would be determined by Y ” and “This would violate the independence of X and Y ” are not well-formulated
mathematical claims. Formally, assume for contradiction that {X > a} ∈ σ(Y ), so there is a σ(Y )-measurable
event A such that A = {X > a} (more precisely, there is a set B ∈ B(R) such that A = {ω : X(ω) ∈ B}). The
sigma-algebras σ(X) and σ(Y ) are independent. By definition, the event {X > a} ∈ σ(X) and is independent of A.
Then

P ({X > a}) = P ({X > a}, A) = P ({X > a})P (A) = P ({X > a})2,
so P ({X > a}) = 0 or 1. This contradicts the assumption 0 < P (X > a) < 1, so {X > a} 6∈ σ(Y ).
(b) Show that if {X > Y } ∈ σ(Y ), then there exist numbers a, b such that P (a ≤ X ≤ b) = 1 and either a = b or
P (a < Y < b) = 0.

Proof:
(1) Assume {X > Y } ∈ σ(Y ). This means the event {X > Y } is measurable with respect to Y , i.e., there exists

a Y -measurable set A such that:
{X > Y } = {Y ∈ A}.

This is correct and well stated.
(2) Independence of X and Y : If X and Y are independent, then the probability of the event {X > Y } must

depend only on the marginal distribution of X , not on Y .
For a fixed value Y = y, P (X > y) is fully determined by the distribution of X . The fact that P (X > Y )

depends only on PX does not immediately follow. Anyway, this step can be discarded.
(3) Implication of {X > Y } ∈ σ(Y ):

• For {X > Y } to depend only on Y , X must take values in a deterministic set relative to Y . Specifically,
there must exist two constants a and b such that P (a ≤ X ≤ b) = 1. This forces the distribution of X to
be degenerate or concentrated in some deterministic range.

(4) Additional constraint:
• If a < b, then the event {X > Y } implies that P (a < Y < b) = 0, as otherwise {X > Y } would

depend on random variability of X outside the control of Y , contradicting {X > Y } ∈ σ(Y ).

Informal; reasoning unclear. Formally, Let B = {X > Y } ∈ σ(Y ). Then∫
B

P (X > y)dFY (y) =

∫
B

(1− P (X ≤ y))dFY (y) = P (Y ∈ B)−
∫
B

P (X ≤ y)dFY (y)

= P (Y ∈ B)− P (X ≤ Y, Y ∈ B) = 0

and, analogously,
∫
Bc P (X ≤ y)dFY (Y ) = 0. Thus, there is a set Z ∈ σ(Y ) with P (Z) = 0 and such that for

all y ∈ B\N , P (X > y) = 0 and for all y ∈ Bc\N , P (X ≤ y) = 0. So we put a = sup{y : y ∈ Bc\N} and
b = inf{y : y ∈ B\N}. Then, unless a = b, P (X < a) = 0, P (X ≤ b) = 1. Moreover, B\N ⊂ [b,∞) and
Bc\N ⊂ (−∞, a). Then (a, b) ⊂ N and thus, P (a < Y < b) = 0, and also P (a ≤ X ≤ b) = 1.

Conclusion: If {X > Y } ∈ σ(Y ), then P (a ≤ X ≤ b) = 1, and either:

• a = b, or
• P (a < Y < b) = 0.

(c) Show that if the distribution of Y is continuous and P (Y ∈ supp(X)) > 0, then {X < Y } 6∈ σ(Y ).
Proof:



(1) Assumptions and Definitions:
• The support of X , supp(X), is the smallest closed set such that P (X ∈ supp(X)) = 1.
• Y has a continuous distribution, so for any y, P (Y = y) = 0.
• P (Y ∈ supp(X)) > 0, meaning there exists a set of positive measure where Y can take values in
supp(X).

This is correct.
(2) Contradiction if {X < Y } ∈ σ(Y ):

• If {X < Y } ∈ σ(Y ), then the event {X < Y } depends only on Y . For each realization of Y = y, we
can determine whether X < Y .
• However, since Y ∈ supp(X) with positive probability and P (Y = y) = 0 (due to the continuity of Y ),

the comparison X < Y cannot be determined by Y alone. This is because X is independent of Y , and
X takes values over its full support.

(3) Support Argument:
• For Y ∈ supp(X), P (X = Y ) > 0 for values in the overlap of their supports. Hence, for such y,
P (X < Y ) cannot depend solely on Y , as X and Y are independent.

Again informal. It can be formalized, but it is easier to use (b) and show a contrapositive. If {X < Y } ∈ σ(Y ),
then Part (b) tells us that there are numbers a ≤ b such that either a = b or P (a < Y < b) = 0 and supp(X) ⊂ [a, b].
If a = b, then P (Y ∈ supp(X)) = 0 since Y is continuous. If not, then

P (Y ∈ supp(X)) ≤ P (a ≤ Y ≤ b) = P (a < Y < b) = 0,

where the first of the two equalities is by continuity of Y and the second by part (b)
Conclusion: The assumption that {X < Y } ∈ σ(Y ) contradicts the independence of X and Y . Therefore,

{X < Y } 6∈ σ(Y ).
End of solution


