ENEE620-24. Home assignment 5. Date due December 8, 11:59pm EDT.

Instructor: A. Barg

- Please submit your work as a single PDF file to ELMS (under the "Assignments" tab)
- Papers submitted as multiple pictures of individual pages are difficult for grading and will not be accepted.
- Justification of solutions is required.
- Each problem is worth 10 points.

Problem 1. Consider a standard Galton-Watson branching process $(X_n)_{n\geq 0}$ with $X_0 = 1$ and $X_{n+1} = \sum_{k=1}^{X_n} Z_{n+1}^{(k)}$, where $(Z_n^{(k)}, n \geq 1, k \geq 1)$ is a collection of iid RVs with finite expectation μ and variance σ^2 , taking values in \mathbb{N}_0 .

(a) Prove that $M_n := X_n/\mu^n$ forms a martingale with respect to the natural filtration $(\mathcal{F}_n)_n$ defined by $\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)$.

(b) Show that $E(X_{n+1}^2 | \mathcal{F}_n) = \mu^2 X_n^2 + \sigma^2 X_n$.

- (c) Show that M_n is bounded in L^2 (i.e., $\sup_{n>1} EM_n^2 < \infty$) if and only if $\mu > 1$.
- (d) Show that for $\mu > 1$, $Var(M_{\infty}) = \sigma^2/(\mu(\mu 1))$.

Problem 2. Let X_i , $i \ge 1$ be a symmetric random walk on \mathbb{Z} , and let S_n be the position at time n. Consider $D_n := \max_{0 \le k \le n} S_k - S_n$. Now take an integer d > 0 and let $T := \inf\{n \ge 0 : D_n \ge d\}$.

(a) (OST) Is it true that $ES_T = 0$?

(b) Show that $ET < \infty$ for any d > 0.

(c) Find $E(\max_{0 \le k \le T} S_k)$. Does the optional stopping theorem (OST) apply to this calculation, i.e., are its assumptions satisfied?

Problem 3. Given a Brownian motion process $B(t), t \ge 0$ and a time value s > 0. For each of the following processes

- (1) X(t) = -B(t)
- (2) X(t) = B(s-t) B(s)
- (3) $X(t) = aB(t/a^2)$, where $a \neq 0$ is a number
- (4) X(t) = tB(1/t), t > 0 and X(0) = 0

show that X(t) is a Gaussian process with $Cov(X(t_1)X(t_2)) = t_1 \wedge t_2$. Argue further that X(t) is a Brownian motion.

Problem 4. For a standard Brownian motion process on \mathbb{R}_+ , define $M(t) = \max_{s \le t} B(s), t \ge 0$.

(a) Show that $M(t) \stackrel{d}{=} |B(t)|$ (the RVs M(t) and |B(t)| have the same distribution). (Hint: for instance, use the reflection principle)

(b) Show moreover that $M(t) - B(t) \stackrel{d}{=} M(t)$.

Problem 5. Let B(t) be a standard BM and let a > 0. Define the process $X(t) = e^{-at}B(e^{2at}), t \ge 0$.

(a) Show that X(t) Gaussian, i.e., that every finite-dimensional sample forms $X(t_1), \ldots, X(t_n)$ a Gaussian vector.

(b) Find EX(t) and Cov(X(t), X(s)).