ENEE620-23. Home assignment 2. Date due September 29, 11:59pm EDT.

Instructor: A. Barg

Please submit your work as a single PDF file to ELMS (under the "Assignments" tab)

- Papers submitted as multiple pictures of individual pages are difficult for grading and will not be accepted.
- Justification of solutions is required.
- Each problem is worth 10 points.

Problem 1. We say that a random variable X is constant a.s. if there is a real number a such that P(X = a) = 1.

For each of the following statements, determine whether it is true or false and explain why.

- (1) If X is independent of itself, then X is constant a.s. (Hint: a contradiction should be easy to construct)
- (2) If X is independent of X^2 , then X is constant a.s. (Hint: squaring smoothes out differences)
- (3) If X, Y, X + Y are jointly independent, then X and Y are constants a.s. (Hint: do not think)

(4) If X and Y are independent and X + Y and X - Y are independent, then X and Y are constants a.s. (Hint: think Gaussian)

Problem 2. (a) Let X and Y be RVs and suppose that X = Y a.s. Suppose that EX exists. Using the definition of the expectation (integral) as a limit, prove formally that EY also exists and EX = EY.

(b) For any finite number of independent integrable RVs X_1, \ldots, X_n , $E(\prod_{i=1}^n X_i) = \prod_{i=1}^n EX_i$. Now suppose that we are given a sequence of independent integrable RVs X_1, X_2, \ldots . Is it always true that $E(\prod_{i=1}^\infty X_i) = \prod_{i=1}^\infty EX_i$? If not, is it sometimes true?

Problem 3. Let X be an RV with $EX^2 < \infty$. Show that

$$P(X - EX \ge \epsilon) \le \frac{\operatorname{Var}(X)}{\operatorname{Var}(X) + \epsilon^2}.$$

Give examples to show that this bound is sometimes attained.

Problem 4. (a) Let X, Y be RVs. Show that if $E \max(X, Y)$ and $E \min(X, Y)$ exist, then also EX and EY exist, and moreover

$$EX + EY = E\max(X, Y) + E\min(X, Y).$$

(b) Furthermore, let X_1, \ldots, X_n be RVs with finite expectations. Show that

$$E\max\{X_1,\ldots,X_n\} \ge \max\{EX_1,\ldots,EX_n\}$$

and

$$E\min\{X_1,\ldots,X_n\} \le \min\{EX_1,\ldots,EX_n\}$$

(c) Let $(X_n)_n$ be a sequence of nonnegative RVs. We are given that $P(\sum_{n=1}^{\infty} X_i < \infty) = 1$. Show that in this case also

$$E\left(\sum_{n=1}^{\infty} X_n\right) = \sum_{n=1}^{\infty} EX_n.$$

Problem 5. Let F(x) be a distribution function (CDF).

(a) Find $\int_{\mathbb{R}} F(x) dF(x)$ (Hint: rather than thinking, change the variable)

(b) Find $\int_{\mathbb{R}} F^k(x) dF^n(x)$, where *n* and *k* are some natural numbers.

(c) Show that any distribution function satisfies the following relations:

(i)
$$\lim_{x \to +\infty} x \int_{x}^{\infty} \frac{dF(y)}{y} = 0;$$
 (ii) $\lim_{x \to -\infty} x \int_{-\infty}^{x} \frac{dF(y)}{y} = 0$
(iii) $\lim_{x \to 0} x \int_{-\infty}^{x} \frac{dF(y)}{y} = 0;$ (iv) $\lim_{x \to 0} x \int_{x}^{\infty} \frac{dF(y)}{y} = 0$