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Instructor: Gordan Žitković

Lecture 4
Generating functions

The path-counting method used in the previous lecture only works for
finite-horizon walks, where the of the horizon T is given in advance. We will
see later that most of the interesting questions do not fall into this category.
For example, the distribution of the time it takes for the random walk to hit
the level l 6= 0 is like that. While we know that it will happen eventually,
there is no way to give an a-priori upper bound on the number of steps it
will take to get to l. To deal with a wider class of properties of random walks
(and other processes), we need to develop some new mathematical tools. The
central among those is the method of generating functions we describe in this
lecture.

4.1 Definition and first properties

Generating functions provide a link between probability and analysis (cal-
culus). The definition provided below is somewhat confusing at first, as it
initially lacks any intuition. To give the proper treatment to the “why” be-
hind it, we would need to introduce a lot more mathematics than we can
at the moment1. The best way to gain understanding without the advanced
mathematical background is to learn how to work with generating functions
and appreciate what they can do for us.

Even though it can be used to deal with many other kinds of distributions,
we will use generating functions to study distributions of random variables
that take values in the set N0 of natural numbers (and zero). Such random
variables often model random times, but can also be given other interpreta-
tions.

The distribution (table) of an N0-valued random variable looks like this

0 1 2 3 . . .
p0 p1 p2 p3 . . .

and so, the distribution is completely defined by its probability-mass function
(pmf) {pk}k∈N0 . Each such pmf is a probability sequence, i.e., a sequence

1if you are curious, generating functions are a special case of the Fourier/Laplace transform
and the proper setting for their understanding is within the subfield of mathematics called
harmonic analysis.
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of numbers between 0 and 1 whose sum is 1. For example, the pmf of the
random variable X which models a roll of a fair die is the sequence p0 = 0,
p1 = 1/6, p2 = 1/6, . . . , p6 = 1/6, p7 = 0, p8 = 0, . . .

Definition 4.1.1. The generating function of a probability sequence
{pk}k∈N0 is the function P defined by the following power series:

P(s) =
∞

∑
k=0

pksk. (4.1.1)

Given an N0-valued random variable X, we define its generating func-
tion simply as the generating function of its pmf, i.e., of the sequence
{pk}k∈N0 , with pk = P[X = k], k ∈ N0. This generating function is
denoted by PX .

Since ∑k pk = 1 for each probability sequence the radius of convergence2

of {pk}k∈N0 is at least equal to 1. Therefore, the function P(s) given by (4.1.1)
is well defined for s ∈ [−1, 1], and, perhaps, other values of s, too.

Let us start by deriving expressions for the generating functions of some
of the popular N0-valued distributions.

Example 4.1.2.

1. Bernoulli (b(p)). Here p0 = q, p1 = p, and pk = 0, for k ≥ 2.
Therefore,

PX(s) = ps + q.

2. Binomial (b(n, p)). Since pk = (n
k)pkqn−k, k = 0, . . . , n, we have

PX(s) =
n

∑
k=0

(
n
k

)
pkqn−ksk = (ps + q)n,

by the binomial theorem.

3. Geometric (g(p)). For k ∈N0, pk = qk p, so that

PX(s) =
∞

∑
k=0

qksk p = p
∞

∑
k=0

(qs)k =
p

1− qs
.

4. Poisson (P(λ)). Given that pk = e−λ λk

k! , k ∈N0, we have

PX(s) =
∞

∑
k=0

e−λ λk

k!
sk = e−λ

∞

∑
k=0

(sλ)k

k!
= e−λesλ = eλ(s−1).

2Remember, that the radius of convergence of a power series ∑∞
k=0 akxk is the largest number

R ∈ [0, ∞] such that ∑∞
k=0 akxk converges absolutely whenever |x| < R.
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Some of the most useful analytic properties of PX are listed in the follow-
ing proposition

Proposition 4.1.3. Let X be an N0-valued random variable, {pk}k∈N0 its
pmf, and PX its generating function. Then

1. PX(s) = E[sX ], s ∈ [−1, 1],

2. PX(s) is convex and non-decreasing with 0 ≤ PX(s) ≤ 1 for s ∈ [0, 1]

3. PX(s) is infinitely differentiable on (−1, 1) with

dk

dsk PX(s) =
∞

∑
j=k

j(j− 1) . . . (j− k + 1)sj−k pj, k ∈N. (4.1.2)

In particular,

pk =
1
k!

dk

dsk PX(s)

∣∣∣∣∣
s=0

and so s 7→ PX(s) uniquely determines the sequence {pk}k∈N0 .

Proof. Statement 1. follows directly from the formula

E[g(X)] =
∞

∑
k=0

g(k)pk,

applied to g(x) = sx. As far as (3) is concerned, we only note that the
expression (4.1.2) is exactly what you would get if you differentiated the
expression (4.1.1) term by term. The rigorous proof of the fact this is allowed
is beyond the scope of these notes. With 3. at our disposal, 2. follows by the
fact that the first two derivatives of the function PX are non-negative and that
PX(1) = 1.

Remark 4.1.4.

1. If you know about moment-generating functions, you will notice that
PX(s) = MX(log(s)), for s ∈ (0, 1), where MX(t) = E[exp(tX)] is the
moment-generating function of X.

2. Generating functions can be used with sequences {ak}k∈N0 that are not
necessarily pmf’s of random variables. The method is useful for any se-
quence {ak}k∈N0 such that the power series ∑∞

k=0 aksk has a positive (non-
zero) radius of convergence (see the problem about Fibbonacci numbers
in the Problems section).

3. The name generating function comes from the last part of the property
(3). The knowledge of PX implies the knowledge of the whole sequence
{pk}k∈N0 . Put differently, PX generates the whole distribution of X.
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4.2 Convolution and moments

The true power of generating functions comes from the fact that they behave
very well under the usual operations in probability.

Definition 4.2.1. Let {pk}k∈N0 and {qk}k∈N0 be two sequences. The
convolution p ∗ q of {pk}k∈N0 and {qk}k∈N0 is the sequence {rk}k∈N0 ,
where

rk =
k

∑
j=0

pjqk−j, k ∈N0.

This abstractly-defined operation will become much clearer once we prove
the following proposition:

Proposition 4.2.2. Let X, Y be two independent N0-valued random vari-
ables with pmfs {pk}k∈N0 and {qk}k∈N0 . Then the sum Z = X + Y is also
N0-valued and its pmf is the convolution of {pk}k∈N0 and {qk}k∈N0 in the
sense of Definition 4.2.1.

Proof. Clearly, Z is N0-valued. To obtain an expression for its pmf, we use
the law of total probability:

P[Z = k] =
k

∑
j=0

P[X = j]P[Z = k|X = j].

On the other hand,

P[Z = k|X = j] = P[X + Y = k|X = j] = P[Y = k− j|X = j]
= P[Y = k− j],

where the last equality follows from independence of X and Y. Therefore,

P[Z = k] =
k

∑
j=0

P[X = j]P[Y = k− j] =
k

∑
j=0

pjqk−j.

Corollary 4.2.3. Let {pk}k∈N0 and {pk}k∈N0 be two sequences. Then

1. p ∗ q = q ∗ p, i.e., convolution is commutative.

2. The convolution r = p ∗ q of two probability sequences is a probability se-
quence itself, i.e., rk ≥ 0, for all k ∈N0 and ∑∞

k=0 rk = 1.

Corollary 4.2.4. Let {pk}k∈N0 and {qk}k∈N0 be two probability sequences, and let

P(s) =
∞

∑
k=0

pksk and Q(s) =
∞

∑
k=0

qksk
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be their generating functions. Then the generating function R(s) = ∑∞
k=0 rksk, of

the convolution r = p ∗ q is given by

R(s) = P(s)Q(s).

Equivalently, the generating function PX+Y of the sum of two independent N0-
valued random variables is equal to the product

PX+Y(s) = PX(s)PY(s),

of the generating functions PX and PY of X and Y.

Example 4.2.5.

1. The binomial b(n, p) distribution is a sum of n independent Ber-
noullis b(p). Therefore, if we apply Corrolary 4.2.4 n times to the
generating function (q + ps) of the Bernoulli b(p) distribution we
immediately get that the generating function of the binomial is

(q + ps) . . . (q + ps) = (q + ps)n.

2. More generally, we can show that the sum of m independent random
variables with the b(n, p) distribution has a binomial distribution
b(mn, p). If you try to sum binomials with different values of the
parameter p you will not get a binomial.

3. What is even more interesting, the following statement can be
shown: Suppose that the sum Z of two independent N0-valued
random variables X and Y is binomially distributed with parame-
ters n and p. Then both X and Y must be binomial with parameters
nX , p and ny, p where nX + nY = n. In other words, the only way
to get a binomial as a sum of independent random variables is if
they are both binomial with the same p.

Another useful thing about generating functions is that they make the
computation of moments easier.

Proposition 4.2.6. Let {pk}k∈N0 be the pmf of the N0-valued random vari-
able X and let PX(s) be its generating function. For n ∈ N the following
two statements are equivalent

1. E[Xk] < ∞,

2. dk P(s)
dsk

∣∣∣
s=1

exists (in the sense that the left limit lims↗1
dk P(s)

dsk exists)
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In either case, we have

E[X(X− 1)(X− 2) . . . (X− k + 1)] =
dk

dsk P(s)
∣∣∣
s=1

.

The quantities

E[X], E[X(X− 1)], E[X(X− 1)(X− 2)], . . .

are called factorial moments of the random variable X. You can get the
classical moments from the factorial moments by solving a system of linear
equations. It is very simple for the first few:

E[X] = E[X],

E[X2] = E[X(X− 1)] + E[X],

E[X3] = E[X(X− 1)(X− 2)]] + 3E[X(X− 1)] + E[X], . . .

A useful identity which follows directly from the above results is the follow-
ing:

E[X] = P′(1) and Var[X] = P′′(1) + P′(1)− (P′(1))2,

and is valid if all the involved derivatives exist.

Example 4.2.7. Let X be a Poisson random variable with parameter λ.
Its generating function is given by

PX(s) = eλ(s−1).

Therefore, dk

dsk PX(1) = λk, and so, the sequence (E[X], E[X(X −
1)], E[X(X − 1)(X − 2)], . . . ) of factorial moments of X is just
(λ, λ2, λ3, . . . ). It follows that

E[X] = λ,

E[X2] = λ2 + λ, Var[X] = λ

E[X3] = λ3 + 3λ2 + λ, . . .

4.3 Random sums

Our next application of generating functions in the theory of stochastic pro-
cesses deals with so-called random sums. Let {ξk}k∈N be a sequence of ran-
dom variables, and let N be a random time (we allow the value +∞ here,
too). We can define the random variable

Y =
N

∑
k=1

ξk
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for ω ∈ Ω by

Y(ω) =


0, N(ω) = 0,

∑
N(ω)
k=1 ξk(ω), 1 ≤ N(ω) < ∞.

∑∞
k=1 ξk(ω), N(ω) = +∞.

In the case when N does not take the value +∞, we can define this more
generally: for an arbitrary stochastic process {Xk}k∈N0 we define the random
variable XN by XN(ω) = XN(ω)(ω), for ω ∈ Ω. When N is a constant (N = n),
then XN is simply equal to Xn. In general, think of XN as a value of the
stochastic process X taken at the time which is itself random. If Xn = ∑n

k=1 ξk,
then XN = ∑N

k=1 ξk.

Example 4.3.1. Let {ξk}k∈N be the increments of a symmetric simple
random walk; we denoted these by {δk}k∈N when we talked about
random walks. Let N be a random variable independent of all {ξk}k∈N

with the following distribution

N ∼
(

0 1 2
1/3 1/3 1/3

)
Let us compute the distribution of Y = ∑N

k=1 ξk in this case. The for-
mula of total probability comes in very handy here:

P[Y = m] = P[Y = m|N = 0]P[N = 0] + P[Y = m|N = 1]P[N = 1]
+ P[Y = m|N = 2]P[N = 2]

= P[
N

∑
k=0

ξk = m|N = 0]P[N = 0]

+ P[
N

∑
k=0

ξk = m|N = 1]P[N = 1]

+ P[
N

∑
k=0

ξk = m|N = 2]P[N = 2]

=
1
3
(P[0 = m] + P[ξ1 = m] + P[ξ1 + ξ2 = m]) .

When m = 1 (for example), we get

P[Y = 1] =
0 + 1

2 + 0
3

= 1/6.

Perform the computation for some other values of m for yourself.

What happens when N and {ξk}k∈N are dependent? This will usually
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be the case in practice, as the value of the time N when we stop adding
increments will typically depend on the behaviour of the sum itself.

Example 4.3.2. Let {ξk}k∈N be as in Example 4.3.1 above - we can think
of a situation where a gambler is repeatedly playing the same game in
which a coin is tossed and the gambler wins a dollar if the outcome is
heads and loses a dollar otherwise. A “smart” gambler enters the game
and decides on the following tactic: Let’s see how the first game goes. If
I lose, I’ll play another 2 games and hopefully cover my losses, and If I win,
I’ll quit then and there. The described strategy amounts to the choice of
the random time N as follows:

N =

{
1, ξ1 = 1,
3, ξ1 = −1.

Then

Y =

{
1, ξ1 = 1,
−1 + ξ2 + ξ3, ξ1 = −1.

Therefore,

P[Y = 1] = P[Y = 1|ξ1 = 1]P[ξ1 = 1] + P[Y = 1|ξ1 = −1]P[ξ1 = −1]
= 1 ·P[ξ1 = 1] + P[ξ2 + ξ3 = 2]P[ξ1 = −1]

= 1
2 (1 +

1
4 ) =

5
8 .

Similarly, we get P[Y = −1] = 1
4 and P[Y = −3] = 1

8 . The expectation
E[Y] is equal to 1 · 5

8 + (−1) · 1
4 + (−3) · 1

8 = 0. This is not an accident.
One of the first powerful results of the beautiful martingale theory states
that no matter how smart a strategy you employ, you cannot beat a fair
gamble.

We will return to the general (non-independent) case in the next lecture.
Let us use generating functions to give a full description of the distribution
of Y = ∑N

k=1 ξk in this case.

Proposition 4.3.3. Let {ξn}n∈N be a sequence of independent N0-valued
random variables, all of which share the same distribution with pmf {pk}k∈N0
and generating function Pξ(s). Let N be a random time independent of
{ξn}n∈N. Then the generating function PY of the random sum Y = ∑N

k=1 ξk
is given by

PY(s) = PN(Pξ(s)).

Proof. (*) We use the idea from Example 4.3.1 and condition on possible val-
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ues of N. We also use the following fact (Tonelli’s theorem) without proof:

If aij ≥ 0, for all i, j, then
∞

∑
j=0

∞

∑
i=0

aij =
∞

∑
i=0

∞

∑
j=0

aij. (4.3.1)

PY(s) =
∞

∑
k=0

skP[Y = k]

=
∞

∑
k=0

sk
( ∞

∑
i=0

P[Y = k|N = i]P[N = i]
)

=
∞

∑
k=0

sk
( ∞

∑
i=0

P[
i

∑
j=0

ξ j = k]P[N = i]
)

(by independence)

=
∞

∑
i=0

∞

∑
k=0

skP[
i

∑
j=0

ξ j = k]P[N = i] (by Tonelli)

=
∞

∑
i=0

P[N = i]
∞

∑
k=0

skP[
i

∑
j=0

ξ j = k] (by (4.3.1))

By (iteration of) Corollary 4.2.4, we know that the generating function of the
random variable ∑i

j=0 ξ j - which is exactly what the second sum above repre-
sents - is (Pξ(s))i. Therefore, the chain of equalities above can be continued
as

=
∞

∑
i=0

P[N = i](Pξ(s))i = PN(Pξ(s)).

Corollary 4.3.4 (Wald’s Identity I). Let {ξn}n∈N and N be as in Proposition
4.3.3. Suppose, also, that E[N] < ∞ and E[ξ1] < ∞. Then

E[
N

∑
k=1

ξk] = E[N]E[ξ1].

Proof. We just apply the composition rule for derivatives to the equality PY =
PN ◦ Pξ to get

P′Y(s) = P′N(Pξ(s))P′ξ(s).

After we let s↗ 1, we get

E[Y] = P′Y(1) = P′N(Pξ(1))P′ξ(1) = P′N(1)P′ξ(1) = E[N]E[ξ1].

Example 4.3.5. Every time Springfield Wildcats play in the Superbowl,
their chance of winning is p ∈ (0, 1). The number of years between two
Superbowls they get to play in has the Poisson distribution P(λ), λ >
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0. What is the expected number of years Y between two consecutive
Superbowl wins?

Let {ξk}k∈N be the sequence of independent P(λ)-random variables
modeling the number of years between two consecutive Superbowl
appearances by the Wildcats. Moreover, let Ñ be a geometric g(p)
random variable with success probability p, and let N = Ñ + 1 be its
“shifted-by-one” versiona. Every time the Wildcats lose the Superbowl,
another ξ· years have to pass before they get another chance and the
whole thing stops when they finally win. Therefore,

Y =
N

∑
k=1

ξk.

To compute the expectation of Y we use Corollary 4.3.4

E[Y] = E[N]E[ξk] =
λ

p
.

athis is one of the examples where the version of the geometric that starts from 1,
and not from 0, is better suited. Indeed, you cannot win two Superbowls in the same
year.

Problems

Problem 4.3.1. If P(s) is the generating function of the random variable X,
then the generating function of 2X + 1 is

(a) P(2s + 1)

(b) 2P(s) + 1

(c) P(s2 + 1)

(d) sP(s2)

(e) none of the above

Problem 4.3.2. Let (p0, p1, p2, . . . ) be a sequence, and let P(s) be its generat-
ing function. Then (1− s)P(s2) is the generating function of the sequence:

(a) (p0, p0 + p2, p0 + p2 + p4, p0 + p2 + p4 + p6, . . . )

(b) (p0, p0 + p1, p0 + p1 + p2, p0 + p1 + p2, . . . )
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(c) (p0,−p0, p1,−p1, p2,−p2, p3,−p3, . . . )

(d) (p0, p1 − p0, p2 − p1, p3 − p2, . . . )

(e) none of the above

Problem 4.3.3. Let X be a random variable with the generating function PX .
The generating function of the random variable X2 is

(a) 2PX(s)

(b) PX(2s)

(c) PX(s2)

(d) PX(s)2

(e) none of the above

Problem 4.3.4. Let X be a random variable whose generating function PX is
given by

PX(s) = 1
2 (1 + s)/(2− s)

Compute the following:

1. E[X], E[X2] and E[X3].

2. P[X > 2].

3. The generating function of the random variable Y = 3X + 2

4. The generating function of the random variable Z obtained as follows. A
coin is tossed and the value of X is drawn (independently). If the outcome
of the coin is H, we set Z = X. Otherwise, Z = 2X.

Problem 4.3.5. 1. Use generating functions to compute the probability that
the sum on two independent fair dice is 9.

2. Determine the distribution of the sum of two independent Poisson ran-
dom variables with parameters λ1 > 0 and λ2.

3. Determine the distribution of the sum of two independent geometric ran-
dom variables with (the same) parameter p > 0.

Problem 4.3.6. Let X and Y be two N0-valued random variables, let PX(s)
and PY(s) be their generating functions and let Z = X − Y, V = X + Y,
W = XY. Then
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(a) PX(s) = PZ(s)PY(s)

(b) PX(s)PY(s) = PZ(s)

(c) PW(s) = PX(PY(s)),

(d) PZ(s)PV(s) = PX(s)PY(s)

(e) none of the above.

Problem 4.3.7. Let X be an N0-valued random variable and P(s) its generat-
ing function. If Q(s) = P(s)/(1− s), then

(a) Q(s) is a generating function of a random variable,

(b) Q(s) is a generating function of a non-decreasing sequence of non-
negative numbers,

(c) Q(s) is a concave function on (0, 1),

(d) Q(0) = 1,

(e) none of the above.

Problem 4.3.8. The generating function of the N0-valued random variable X
is given by

PX(s) =
s

1 +
√

1− s2
.

1. Compute p0 = P[X = 0].

2. Compute p1 = P[X = 1].

3. Does E[X] exist? If so, find its value; if not, explain why not.

Problem 4.3.9. Let P(s) be the generating function of the sequence (p0, p1, . . . )
and Q(s) the generating function of the sequence (q0, q1, . . . ). If the sequence
{rn}n∈N0 is defined by

rn =

{
0, n ≤ 1
∑n−1

k=1 pkqn−1−k, n > 1,

then its generating function is given by (Note: Careful! {rn}n∈N0 is not exactly
the convolution of {pn}n∈N0 and {qn}n∈N0 . )

(a) P(s)Q(s)− p0q0
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(b) (P(s)− p0)(Q(s)− q0)

(c) 1
s (P(s)− p0)Q(s)

(d) 1
s P(s)(Q(s)− q0)

(e) s(P(s)− p0)Q(s)

Problem 4.3.10. A fair coin and a fair 6-sided die are thrown repeatedly until
the the first time 6 appears on the die. Let X be the number of heads obtained
(we are including the heads that may have occurred together with the first 6)
in the count. Find the generating function of X.

Problem 4.3.11. Let N be geometrically distributed with parameter p = 1
2 ,

and let {ξn}n∈N be iid with

ξ1 ∼
0 1 2
1
4

1
2

1
4

.

Then the generating function of the random sum Y = ∑N
k=0 ξk is

(a) ( 7
4 −

s
2 −

s2

4 )
−1

(b) 1
4 + s

2 + s2

4

(c) (s−3)2

4(s−2)2

(d)
1
4+

s
2+

s2

4
1
2−

1
2 s

(e) none of the above

Problem 4.3.12. A fair coin is tossed 100 times, and the number of H (heads)
is denoted by N1.

1. After that, N1 fair coins are tossed and the number of H is denoted by N2.
Compute P[N2 = 1].

2. We continue by tossing N2 fair coins, count the number of heads obtained
and denote the result by N3. Compute P[N3 = 1].
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Problem 4.3.13. Let N be a random time, independent of {ξk}k∈N, where
{ξk}k∈N is a sequence of mutually independent Bernoulli ({0, 1}-valued) ran-
dom variables with parameter pB ∈ (0, 1). Suppose that N has a geometric
distribution g(pg) with parameter pg ∈ (0, 1). Compute the distribution of
the random sum

Y =
N

∑
k=1

ξk,

i.e., find P[Y = k], for k ∈ N0. (Note: You can think of Y as a binomial
random variable b(n, p) with “random n”.)

Problem 4.3.14. Six fair gold coins are tossed, and the total number of tails
is recorded; let’s call this number N. Then, a set of three fair silver coins is
tossed N times. Let X be the total number of times at least two heads are
observed (among the N tosses of the set of silver coins).

(Note: A typical outcome of such a procedure would be the following:
out of the six gold coins 4 were tails and 2 were heads. Therefore N = 4
and the 4 tosses of the set of three silver coins may look something like
{HHT, THT, TTT, HTH}, so that X = 2 in this state of the world. )

Find the generating function and the pmf of X. You don’t have to evaluate
binomial coefficients.

Problem 4.3.15. Tony Soprano collects his cut from the local garbage man-
agement companies. During a typical day he can visit a geometrically dis-
tributed number of companies with parameter p = 0.1. According to many
years’ worth of statistics gathered by his consigliere Silvio Dante, the amount
he collects from the ith company is random with the following distribution

Xi ∼
(

$1000 $2000 $3000
0.2 0.4 0.4

)
The amounts collected from different companies are independent of each
other, and of the number of companies visited.

1. Find the (generating function of) the distribution of the amount of money
S that Tony will collect on a given day.

2. Compute E[S] and P[S > 0].

Problem 4.3.16. (*) The Fibonacci sequence {Fn}n∈N0 is defined recursively
by

F0 = F1 = 1, Fn+2 = Fn+1 + Fn, n ∈N0.

1. Find the generating function P(s) = ∑∞
k=0 Fksk of the sequence {Fn}n∈N0 .

(Hint: What is (1− s− s2)P(s)?)
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2. Use P to derive an explicit expression for Fn, n ∈ N0. (Hint: use partial
fractions )

Note: the purpose of this problem is to show that one can use generating
functions to do other things, as well. Indeed {Fn}n∈N0 is not a probability
distribution, but the generating function techniques still apply.

Problem 4.3.17. (*) When two fair dice are thrown, and their sum is com-
puted, different values come with different probabilities (getting a sum of
2 is less likely than getting the sum of 3, etc.). How about if we start with
two loaded dice? Suppose that you can build a die with face probabilities of
p1, . . . , p6, for any 6-tuple of positive numbers that sum to 1. Can you find
“loadings” p1, . . . , p6 for the first die and q1, . . . , q6 for the second one, so
that, when we toss them together, all possible sums (namely 2, 3, . . . 12) have
the same probability (namely 1/11)?

(Hint: Argue that no matter how you pick p1, . . . , p6 and q1, . . . , q6, the
product of their generating functions must be of the form s2F(s), where F
has a real zero.)
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