% Simple Matlab script for calculating the first-order least-square fit of y vs x, % including the Slope and Intercept and the predicted standard deviation of % the slope (SDSlope) and intercept (SDIntercept). NumPoints=length(x); Sxx = sum((x-mean(x)).^2); Syy = sum((y-mean(y)).^2); Sxy = sum((x-mean(x)).*(y-mean(y))); Slope = Sxy./Sxx; Intercept = mean(y)-Slope*mean(x); Sy = sqrt((Syy-Slope^2*Sxx)/(NumPoints-2)); SDSlope = Sy/sqrt(Sxx); SDIntercept = Sy*sqrt(1./(NumPoints-(sum(x).^2)./sum(x.^2))); % Optional plot of data and fitted line plotx = linspace(min(x),max(x)); plot(x,y,'o',plotx,Slope*plotx +Intercept)