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Abstract

This paper presents component techniques essential for con-

verting executables to a high-level intermediate representa-

tion (IR) of an existing compiler. The compiler IR is then

employed for three distinct applications: binary rewriting us-

ing the compiler’s binary back-end, vulnerability detection

using source-level symbolic execution, and source-code re-

covery using the compiler’s C backend. Our techniques en-

able complex high-level transformations not possible in ex-

isting binary systems, address a major challenge of input-

derived memory addresses in symbolic execution and are the

first to enable recovery of a fully functional source-code.

We present techniques to segment the flat address space in

an executable containing undifferentiated blocks of memory.

We demonstrate the inadequacy of existing variable identifi-

cation methods for their promotion to symbols and present

our methods for symbol promotion. We also present methods

to convert the physically addressed stack in an executable

(with a stack pointer) to an abstract stack (without a stack

pointer). Our methods do not use symbolic, relocation, or

debug information since these are usually absent in deployed

executables.

We have integrated our techniques with a prototype x86

binary framework called SecondWrite that uses LLVM as

IR. The robustness of the framework is demonstrated by

handling executables totaling more than a million lines of

source-code, produced by two different compilers (gcc and

Microsoft Visual Studio compiler), three languages (C, C++,

and Fortran), two operating systems (Windows and Linux)

and a real world program (Apache server).
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1. Introduction

In recent years, there has been a tremendous amount of ac-

tivity in executable-level research targeting varied applica-

tions such as security vulnerability analysis [13, 37], test-

ing [17], and binary optimizations [30, 35]. In spite of a sig-

nificant overlap in the overall goals of various source-code

methods and executable-level techniques, several analyses

and sophisticated transformations that are well-understood

and implemented in source-level infrastructures have yet to

become available in executable frameworks. Many of the

executable-level tools suggest new techniques for perform-

ing elementary source-level tasks. For example, PLTO [35]

proposes a custom alias analysis technique to implement a

simple transformation like constant propagation in executa-

bles. Similarly, several techniques for detecting security vul-

nerabilities in source-code [10, 40] remain outside the realm

of current executable-level frameworks.

It is a well known fact that a standalone executable

without any metadata is less amenable to analysis than the

source-code. However, we believe that one of the prime rea-

sons why current binary frameworks resort to devising new

techniques is that these frameworks define their own low-

level intermediate representations (IR) which are signifi-

cantly more constrained than an IR used in a source-code

framework. IR employed in existing binary frameworks lack

high level features such as abstract stack and symbols, and

are machine dependent in some cases. This severely limits

the application of source-level analyses to executables and

necessitates new research to make them applicable.

In this work, we convert the executables to the same

high-level IR that compilers use, enabling the application

of source-level research to executables. We have integrated

our techniques in a prototype x86 binary framework called

SecondWrite that uses LLVM [27], a widely-used compiler

infrastructure, as IR. Our framework has the following main

applications:

• Binary Rewriting Existing binary backend of the com-

piler is employed to obtain a new rewritten binary. The

presence of a compiler IR provides various advantages
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int main(){ 
      int z; 
      z = foo(10,20); 
      return z; 
} 
int foo(int a, int b) { 
      int temp3,temp1; 
      temp1 = a+b; 
      if(a>40){ 
           temp3 = temp1 + 10; 
      } 
      else { 
           temp3 = temp1 - 10; 
      } 
      return temp3; 
} 
(a)  Original C Code  

//Global Stack Pointer 
int* llvm_ESP; 
 
char *main(){  
    llvm_ESP = llvm_ESP-2; //Local Allocation 
   
     llvm_ESP[1] = 20; //Outgoing argument 
     llvm_ESP[0] = 10; 
     int llvm_tmp_3 = rewritten_foo(); 
     return llvm_tmp3; 
} 
 
int rewritten_foo() 
{ 
     int* llvm_EBP = llvm_ESP; 
  //Local Frame Pointer 
     llvm_ESP = llvm_ESP-10;  
 //Local Allocation 
 
     int tmpIn1 = llvm_EBP[0]; //Incoming Arg 
     int tmpIn2; = llvm_EBP[1]; 
 
     int  llvm_tmp2 = tmpIn1+tmpIn2; 
     llvm_ESP[2] = llvm_tmp2; 
 
     int llvm_tmpIn3 = llvm_EBP[0]; 
     if (llvm_tmpIn3 > 40){ 
         int llvm_tmp5 = llvm_ESP[2]; 
         llvm_ESP[5] = llvm_tmp5 + 10; 
     }  
     else { 
        int llvm_tmp7 = llvm_ESP[2]; 
        llvm_ESP[5] = llvm_tmp7 - 10; 
    } 
    int llvm_tmp11 = llvm_ESP[5]; 
   return llvm_tmp11; 
} 
(b) Recovered C Code with physical stack  

char *main() 
{ 
    int llvm_ESP2[10]; 
 
    llvm_ESP2[1] = 20; 
    llvm_ESP2[2] = 10; 
    int llvm_tmp1 = llvm_ESP2[1]; 
    int llvm_tmp2 = llvm_ESP2[2]; 
    int llvm_tmp_3 =     
            rewritten_foo(llvm_tmp2, 
                  llvm_tmp1); 
    return llvm_tmp3; 
} 
 
int rewritten_foo( int llvmArg1,  
             int llvm_Arg2) 
{ 
     int llvm_ESP1[10]; 
 
     int llvm_tmp2 = llvm_Arg1+llvm_Arg2; 
     llvm_ESP1[2] = llvm_tmp2; 
     
     if (llvm_Arg1 > 40) { 
         int llvm_tmp5 = llvm_ESP1[2]; 
         llvm_ESP1[5] = llvm_tmp5 + 10; 
     }  
    else { 
          int llvm_tmp7 = llvm_ESP1[2]; 
          llvm_ESP1[5] = llvm_tmp7 - 10; 
     } 
 
     int llvm_tmp11 = llvm_ESP1[5]; 
     return llvm_tmp11; 
} 
 
(c) Recovered C Code with abstract stack 

char *main(){ 
     int llvm_tmp3; 
     llvm_tmp_3 = rewritten_foo(10,20); 
     return llvm_tmp3; 
} 
 
int rewritten_foo(int llvm_Arg1, 
              int llvm_Arg2){ 
     int llvm_tmp4; 
     int llvm_tmp2 = llvm_Arg1 +llvm_Arg2; 
     if (llvm_Arg1 >  40){ 
        llvm_tmp4 =  llvm_tmp2 +10; 
     }  
     else { 
        llvm_tmp4 = llvm_tmp2 - 10; 
     } 
     return llvm_tmp4; 
} 
(d) Recovered C Code with abstract 
stack and symbol promotion 

 

Figure 1. Source-code example. Variable names and types in the source-code recovered by LLVM C-backend have been

modified for readability.

to our framework (i) It enables every complex compiler

transformations like automatic parallelization and secu-

rity enforcements to run on executables without any cus-

tomization. (ii) Sharing the IR with a mature compiler

allows leveraging the full set of compiler passes built up

over decades by hundreds of developers.

• Symbolic Execution KLEE [11], a source-level sym-

bolic execution engine, is employed in our framework

without any modifications for detecting vulnerabilities in

executables. Our techniques of translating to a compiler

IR enable efficient reasoning of input-derived memory

addresses using logical solvers without an excessive cost.

• Source-code recovery The compiler’s C backend is used

to convert the IR obtained from a binary to C source-

code. The functional correctness of recovered IR ensures

the correctness of resulting source-code. Unlike existing

tools, which do not ensure functional correctness [7, 23],

the source-code recovered by our framework can be up-

dated and recompiled by any source-code compiler.

Various organizations [3] have critical applications that

have been developed for older systems and need to be

ported to future versions. In many cases, the application

source-code is no longer accessible requiring these appli-

cations to continue to run on outdated configurations. The

ability of our framework to recover a functionally correct

source-code is highly useful in such scenarios.

It is conventional wisdom that static analysis of executa-

bles is a very difficult problem, resulting in a plethora of

dynamic binary frameworks. However, a static binary frame-

work based on a compiler IR enables applications not possi-

ble in any existing tool and our results establish the feasility

of this approach for several pragmatic scenarios. We do not

claim that we have fully solved all the issues; statically han-

dling every program in the world may still be an elusive goal.

However, the resulting experience of expanding the static en-

velope as much as possible is a hugely valuable contribution

to the community.

2. Contributions

We have identified the two tasks below as key for translat-

ing binaries to compiler IR. We illustrate the advantages of

these two methods through the source-code recovered from

a binary corresponding to the example code in Fig 1(a).

• Deconstruction of physical stack frames A source pro-

gram has an abstract stack representation where the local

variables are assumed to be present on the stack but their pre-

cise stack layout is not specified. In contrast, an executable

has a fixed (but not explicitly specified) physical stack lay-

out, which is used for allocating local variables as well as for

passing the arguments between procedures.

To recreate a compiler IR, the physical stack must be de-

constructed to individual abstract frames, one per procedure.
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Stack                  q: edx                       p: esp + 8 
allocations         a: esp + 20                b: esp + 24 

 
foo(int a, int b) { 
    int *p, *q; 
   
    p = &a; 
    … 
    *q = …;  
    … = b; 
    } 

foo: 
1    subl $16, %esp              
2    lea 20(%esp), 8(%esp)   
3    store …, (%edx)            
4    load 8(%esp),%ecx        
5    load 4(%ecx)                 
                                                

 
// Allocate 16-byte stack frame 
// Put &a(esp+20) into p(esp+8) 
// Store to MEM[q] 

// Temp ecx ← p (same as &a)  
// Load “b” by using the fact that 
     &b = &a + 4 = ecx + 4 

Source Code           Pseudo Assembly Code 

Figure 2. A small source-code example and its pseudo-

assembly code, showing the limitation of existing methods

for detecting arguments.

Since the relative layout of these frames might change in the

rewritten binary, the correct representation requires all the

arguments (interprocedural accesses through stack pointer)

to be recognized and translated to symbols in the IR.

Unfortunately, guaranteeing the static discovery of all the

arguments is impossible. Some indirect memory references

with run-time-computed addresses might make it impossible

for an analysis to statically assign them to a fixed stack

location, resulting in undiscovered interprocedural accesses.

Existing frameworks circumvent this problem by preserving

the monolithic unmodified stack in the IR, resulting in a low-

level IR where no local variables can be added or deleted.

Some executable tools analyze statically determinable

stack accesses to recognize most arguments [5], aiding lim-

ited code understanding. However, the lack of guaranteed

discovery of all the arguments renders such best-effort tech-

niques insufficient for obtaining a functional IR. Fig 2 shows

an example procedure where the first argument a can be rec-

ognized statically while the second argument b is not stat-

ically discoverable. In the assembly-code, &a (esp+20)

is stored to the memory location for p (esp+8) (Line 2),

which is loaded later to temporary ecx (Line 4). The source

compiler exploited the layout information (&a+4=&b) to

load b by incrementing p (&a) by 4 (Line 5). This is safe

since the compiler was able to determine that p does not

alias q. However, the executable framework may not be able

to establish this relation, since alias analysis in executables

is less precise. Hence, it has to conservatively assume that

*q reference (Line 3) could modify p which contained the

pointer to a. Consequently, the source address at Line 5 is

no longer known and argument b is not recognized.

Our analysis in Section 4 defines a source-level stack

model and checks if the executable conforms to this model.

If the model is verified for a procedure, the analysis discov-

ers the arguments statically when possible, but when not pos-

sible, embeds run-time checks in IR to maintain the correct-

ness of interprocedural dataflow. Otherwise, stack abstrac-

tion is discontinued only in that procedure.

Fig 1(c) demonstrates the impact of abstract stack on the

recovered source-code. Fig 1(b) employs a global pointer

llvm ESP, corresponding to the physical stack frame in the

input binary, for interprocedural communication as well as

for representing local allocations in each procedure. How-

    main() { 
        int A[10], i, x; 
        x = read-from-file(); 
        for (i = 0; i < x; i++) { 
            A[i] = 10; 
        } 
    } 

main: 
1 subl $48, %esp 
2 %ebx = read_from_file 
3 mov %ebx, 44(%esp) //Initializing x 
4 movl $0, 40(%esp) //Initializing i 
5 jmp L2  // jump to condition check 
     L3: 
6 movl 40(%esp), %eax  //load i 
7 movl $10, (%esp,%eax,4) //Reference A[i] 
8 addl $1, 40(%esp)      //Increment i 
     L2: 
9 cmpl 40(%esp), 44(%esp) //compare x and i 
10 jl L3 

 

Figure 3. An example showing that variable identification

and symbol promotion are different.

ever, in Fig 1(c), the stack pointer disappears; instead, local

allocations appear as separate local arrays llvm ESP1 and

llvm ESP2 and arguments are represented explicitly.

• Symbol promotion Another key challenge we solve is

symbol promotion, which is the process of safely translat-

ing a memory location (or a range of locations) to a sym-

bol in the recovered IR. Existing frameworks do not pro-

mote symbols; instead they retain memory locations in their

IR [29, 34, 35, 39]. Some post-link time optimizers like

Ispike [30] promote memory locations to symbols employ-

ing the symbol table information in the object files. How-

ever, deployed binaries do not contain symbol information,

rendering such solutions unsuitable for our framework.

At first glance, it may seem that the well-known methods

for variable identification in executables, such as IDAPro [24]

and Divine [6], can be used for symbol promotion. How-

ever, this is not the case. The presence of potentially aliasing

memory references is a key hindrance to the valid promotion

of these identified variables to symbols.

IDAPro characterizes statically determinable stack off-

sets in the program as local variables while Divine divides

the stack memory region into abstract locations by analyz-

ing indirect memory accesses instructions as well.

Fig 3 illustrates the key limitations of both these meth-

ods. When the code is compiled, we obtain a stack frame

for main() of size 48 bytes (10×4 bytes for A[], and

4×2 = 8 bytes for i and x). The accesses to variables i

and x appear as direct memory references (Lines 3,4,6,9)

while the array A is accessed using an indirect memory ref-

erence (Line 7). Both Divine and IDAPro identify memory

locations esp+44(x) and esp+40(i) as variables based on

the direct references. Since the upper bound for the indi-

rect reference A[i] is statically indeterminable, even Di-

vine does not generate any useful information about this ac-

cess. Hence, it creates three abstract locations — two scalars

of 4 bytes each, and a leftover range of 40 bytes.

Despite dividing stack memory region into three abstract

locations, none of them can be promoted to symbols. It is

impossible to statically prove from an executable that the in-

direct reference at Line 7 does not alias with references to i

or x. Hence, the promotion of memory locations correspond-

ing to i and x to symbols would be unsafe since it leads to
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potentially inconsistent dataflow for underlying memory lo-

cations. (Source-level alias analyses often assume that any

A[x] will access A[] within its size. However, such size

information is not present in a stripped executable.)

Since identification is inadequate for promotion, we have

devised a new algorithm to safely promote a set of memory

locations to symbols. It computes a set of non-overlapping

promotion lifetimes for each memory location taking into

consideration the impact of aliasing memory accesses. Our

method is oblivious to the underlying method employed for

identifying these locations. The locations can be identified

by IDAPro, Divine or through a similar method we use.

Fig 1(d) shows the improvement in source-code recovery

from symbol promotion, illustrating the replacement of all

access to local array llvm ESP1 and llvm ESP2 in pro-

cedures foo and main respectively by local symbols. As

evident, this greatly simplifies the IR and the source-code.

2.1 Benefits of abstract stack and symbols

The presence of abstract stack and symbols has the following

advantages:

→ Improved dataflow analysis since standard dataflow anal-

yses only track symbols and not memory locations.

→ Improved readability of the recovered source-code.

→ The ability to employ source-level transformations with-

out any changes. Advanced transformations like compiler-

level parallelization [38, 43] add new local variables as

barriers and rely on the recognition of induction vari-

ables. Several compile-time security mechanisms like

StackGuard [19] and ProPolice [21] modify stack lay-

out by placing a canary (a memory location) on the stack

or by allocating local buffers above other local variables.

These methods can be implemented only if the frame-

work supports stack modification and symbol promotion.

→ Efficient reasoning about symbolic memory in case of

symbolic execution, as discussed next.

2.1.1 Symbolic Execution

Symbolic execution, e.g. [12], is a well-known technique for

automatically detecting bugs and vulnerabilities in a pro-

gram. Among various challenges facing symbolic execu-

tion, handling symbolic memory addresses (addresses de-

rived from user-input) is an important one. There are two

primary approaches for handling symbolic memory. Previ-

ous symbolic executors for executables [37] make simpli-

fying and unsound assumptions by concretizing the sym-

bolic memory reference to a fixed memory location. On the

other hand, popular source-level tools [11, 12] employ logi-

cal constraint solvers to reason about possible locations ref-

erenced by a symbolic memory operation. Even though the

expressions involving symbolic memory become more so-

phisticated, these tools outperform the former approaches in

terms of path exploration and bug detection [13].

     
 
foo()  
{ 
    int A[10], x,y; 
    x = read-from-file();           
    y=  read-from-file(); 
 
    if(x<10) 
    { 
       A[x] = 30; 
    } 
    if(y>20) 
    { 
        return; 
     } 
     ….. 
}     

x: esp+48         y: esp + 44 
 
 
 L0: 
1  FOO= alloca i32,48 
2  ebx1 = read_from_file() 
3  store ebx1, 48(FOO)   //store x 
4  ebx2 = read_from_file() 
5  store ebx2, 44(FOO)   //store y 
 
6  ebx3 = load 48(FOO) //load x 
7 if(ebx3>=10), jmp L2: 
 
L1:          

8  store $30, FOO[4*ebx3] 
 
L2: 
9  eax = load 44(FOO)    //load y 
10 if(eax<=20)  jmp L3 
      return 
L3:….. 

esp+48: symX   
esp+44: symY 
 
L0: 
1  FOO= alloca i32,48 
2  ebx1 = read_from_file() 
3  symX=ebx1 
4  ebx2 = read_from_file() 
5  symY = ebx2 
 
6  ebx3= symX 
7  if(ebx3>=10), jmp L2: 
 
L1:          
8  store $30, FOO[4*ebx3] 
 
L2: 
9   eax = symY  
10  if(eax<=20)  jmp L3 
      return 
L3:…. 

 

 

a) Original Code b) IR without symbol promotion c) IR with symbol promotion 

Figure 4. An example showing the simplification in sym-

bolic execution constraints with symbol promotion.

The presence of a physical stack and the lack of symbols

in an executable pose a difficult challenge in efficiently ex-

tending the logical solver based approach for representing

symbolic memory in executables. The most straightforward

representation of the memory would be a flat byte array.

Unfortunately, the constraint solvers employed in existing

source-level symbolic execution tools would almost never

be able to solve the resulting constraints [11].

 

Constraints: 
 A1=write(FOO,48,ebx1) 
 A2= write(A1,44,ebx2) 
 read(A2,48)<10 
 A3 = write(A2, 
          4*read(A2,48),30) 
Solve:     
read(A3,44) <= 20 

Figure 5. Constraints for Fig 4(b).

The segmented memory representation in our framework,

obtained by abstract stack and symbol promotion, improves

the efficiency of such constraint solvers by enabling them to

only consider the constraints related to the segments refer-

enced by the current memory address expression and ignore

the remaining segments.

Fig 4 illustrates this case. Fig 4(a) contains a symbolic

memory store to array A. Fig 4(b) and Fig 4(c) show the

pseudo IR obtained from an executable corresponding to

Fig 4(a), without and with the application of symbol pro-

motion. Fig 5 shows the constraints and query generated at

Line 10 while symbolically executing the path L0→L1→L2

in Fig 4(b). Here, read(A,i) returns the value at index i

in array A and write(A,j,v) returns a new array with

same value as A at all indices except j, where it has value v.

However, in Fig 4(c), symbol promotion has segmented

the array FOO in different segments and references to vari-

ables x and y do not refer the segment FOO. Hence, the

solver only needs to solve the following simplified query:

Solve : symY ≤ 20
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Figure 6. SecondWrite system.

This example only shows the simplification of constraints

with symbol promotion. The presence of an abstract stack

also results in a similar simplification of constraints by seg-

menting the memory space within each procedure.

3. Overview

Fig 6 presents an overview of the SecondWrite framework.

The frontend module, consisting of a disassembler and a cus-

tom reader module, processes the individual instructions in

an input executable and generates an initial LLVM IR. The

framework implements several techniques [20] for recog-

nizing arguments passed through registers and for handling

floating point registers. This initial IR is devoid of the de-

sired features like abstract stack frame and symbols. This

initial IR is analyzed to obtain an enhanced IR which has all

the information and features mentioned previously.

SecondWrite has been already been employed for sev-

eral applications such as automatic parallelization [26] and

security enforcements [31]. As discussed in Section 2, the

features of abstract stack and symbols are critical for an ef-

ficient implementation of these applications.

3.1 Disassembler Module

The disassembler module implements several mechanisms,

as proposed by Smithson and Barua [36], to address code

discovery problems and to handle indirect control transfers.

Here, we briefly summarize these mechanisms.

A key challenge in executable frameworks is discovering

which portions of the code section in an input executable are

definitely code. Smithson and Barua [36] proposed specu-

lative disassembly, coupled with binary characterization, to

efficiently address this problem. SecondWrite speculatively

disassembles the unknown portions of the code segments as

if they are code. However, it also retains the unchanged code

segments in the IR to guarantee the correctness of data ref-

erences in case the disassembled region was actually data.

SecondWrite employs binary characterization to limit

such unknown portions of code. It leverages the restriction

that an indirect control transfer instruction (CTI) requires an

absolute address operand, and that these address operands

must appear within the code and/or data segments. The code

and data segments are scanned for values that lie within

the range of the code segment. The resulting values are

guaranteed to contain all of the indirect CTI targets.

The indirect CTIs are handled by appropriately trans-

lating the original target to the corresponding location in

IR through a runtime translator. Each recognized procedure

(through speculative disassembly) is initially considered a

possible target of the translator, which is pruned further us-

ing alias analysis. The arguments for each possible target

procedure are unioned to find the set of arguments to be

passed to the translator; a stub inside the translator populates

the arguments according to the actual target.

The method above is not sufficient for discovering in-

direct branch targets where addresses are calculated in bi-

nary. Hence, various procedure boundary determination

techniques, like ending the boundary at beginning of next

procedure, are also proposed [36] to limit possible targets.

The disassembler also implements several additional

techniques [33] to recover procedure boundaries and inserts

additional checks that are essential for the IR to be functional

in case of inaccurate recovered boundaries.

3.2 Limitations/Assumptions

SecondWrite relies on the following assumptions, which

constitute the limitations of our current framework. We plan

to look at them in future work.

• Disassembly assumptions: As mentioned above, our un-

derlying disassembler derives possible addresses using

the restriction that an indirect control transfer instruction

requires an absolute address operand. A compiled code is

expected to adhere to this convention unless it has been

generated to be position independent.

• Memory assumptions: Similar to most executable anal-

ysis frameworks [5, 6, 18, 35], our techniques assume

that executables follow the standard compilation model

where each procedure maintains its local frame, which is

allocated on entry and deallocated on exit and each vari-

able resides at a fixed offset in its corresponding region.

We also assume that in x86 programs, a particular regis-

ter esp refers to the top of memory stack. This assump-

tion is expected to hold in all practical scenarios since

x86 ISA inherently makes this assumption. For exam-

ple, call instruction moves eip to esp and return

decrements esp. An assembly code not adhering to this

convention would be extremely hard to write.

• Self Modifying code: Like most static binary tools, we

do not handle self modifying code. Various tools [41]

statically detect the presence of self-modifying code in a

program. Such a tool can be integrated in our front-end

to warn the user and to discontinue further operation.

• Obfuscated Code: We have not tested our techniques

against executables with hand-coded assembly or with

obfuscated control flow.
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4. Deconstruction of physical stack frames

In order to recover a source-level stack representation, we

first recognize the local stack frame of a procedure and rep-

resent it as a local variable in the IR. As explained in Sec-

tion 2, this local variable is coupled with the rest of the stack

due to interprocedural accesses. We achieve this decoupling

by recognizing interprocedural accesses and replacing them

with symbolic accesses to the procedure arguments. Below,

both these techniques are presented in detail.

4.1 Representing the local stack frame

We begin by finding an expression for the maximum size of

the local stack frame in a procedure X. We analyze all the

instructions which can modify the stack pointer, and find the

maximum size, P, to which the stack can grow in a single

invocation of procedure X among all its control-flow paths.

P need not be a compile-time constant; a run-time expression

for P suffices when variable-sized stack objects are allowed.

An array ORIG FRAME of size P is then allocated as a local

variable at the entry point of procedure X in the IR.

The local variables for the frame pointer and stack pointer

are initialized to the beginning of ORIG FRAME at the entry

point of procedure X. Thereafter, all the stack pointer mod-

ifications — by constant or non-constant values — are rep-

resented as adjustments of these variables. Allocation of a

single array representing the original local frame guarantees

the correctness of stack arithmetic inside the procedure X.

In some procedures, it might not be possible to obtain a

definite expression for the maximum size of the local stack

frame. For example, scoped variable-sized local objects in

source-code might result in a stack allocation with a non-

constant amount, whose expression is not available at the

beginning of the procedure. Consequently, a single array

ORIG FRAME of a definite size cannot be allocated. Neither

can multiple local arrays, one per such stack increment, be

allocated since IR optimizations and compiler backend can

modify their relative layout thereby invalidating the stack

arithmetic. In such procedures, we do not convert the phys-

ical stack to an abstract frame. A physical stack frame is

maintained in the IR using inline assembly versions of all

the stack modification instructions while the remaining in-

structions are converted to LLVM IR. The runtime checks

mechanism presented in the next section is employed to dis-

tinguish the local and ancestor accesses.

Persistent stack modification: Returns from a procedure

ordinarily restore the value of the stack pointer to the value

before the call. However, in some cases, the stack pointer

might point to a different location after returning from a pro-

cedure call. For example, the called procedure can cleanup

the arguments passed through the stack. To represent this

stack pointer modification, which persists beyond a proce-

dure call, we introduce the following definition:

Balance Number: The balance number for a procedure is

defined as the net shift in the stack pointer from before its

entry to after its exit. Four different cases can arise:

Case 1: Balance Number = 0

This is the common case; no modification required.

Case 2: Balance Number < 0

This case arises when a procedure cleans up a portion of

the caller stack frame and is represented as an adjustment of

the stack pointer by Balance Number amount in the caller

procedure after the call. The amount need not be a constant.

Case 3: Balance Number > 0

This case implies that a procedure leaves its local frame on

the stack and the corresponding frame outlives the activa-

tion of its procedure. Such procedures are represented by

considering their allocation as part of the caller procedure

allocation. The Balance Number amount is added to the size

of ORIG FRAME array in the caller procedure and the stack

pointer is adjusted after the call by this amount.

Case 4: Balance Number Indeterminable

In such a case, we do not convert the physical frame into

abstract frame and represent the stack as a default global

variable in the IR, as shown in Fig 1(b). This is an extremely

rare case and in fact, it did not appear in our experiments.

4.2 Representing procedure arguments

As per the source-level representation, we aim to represent

all the stack-based interprocedural communication through

an explicit argument framework. We discuss why this is not

feasible in all the cases and propose our novel methods based

on run-time checks to handle such scenarios.

We use Value Set Analysis (VSA) [5] to aid our anal-

ysis. VSA determines an over-approximation of the set of

memory addresses and integer values that each register and

memory location can hold at each program point. Value Set

(VS) of the address expression present in a memory access

instruction provides a conservative but correct estimate of

the possible memory locations accessed by the instruction.

VSA accurately captures the stack pointer modifications and

the assignments of stack pointer to other registers.

The stack location at the entry point of a procedure is

initialized as the base (zero) in VSA and the local frame

allocations are taken as negative offsets. Intuitively, memory

accesses with positive offsets represent accesses into the

parent frame and constitute the arguments to a procedure.

A formal argument is defined for each constant offset into

the parent frame and each such access is directly replaced

by an access to the formal argument.

However, the above method for recognizing arguments is

suitable only if VS of the address expression is a singleton

set. If the VS has multiple entries, it is not possible to

statically replace it with a single argument.

Fig 7 contains an x86 assembly fragment which will be

used to illustrate the handling of interprocedural accesses.

Fig 8 shows the output IR that results from Fig 7.

300



 

1. function foo: 
2.     sub 100, esp              // Subtract 100 from sp  
3.     call bar           // call bar  
 
4. function bar: 
5.     sub 10, esp               // Subtract 10 from sp  
6.     lea  4(esp),edi          //Move address esp+4 to edi  
7.     mov  2, ebx              // Move value 2 to ebx 
8.     mov  15, ecx            // Move value 15 to ecx 
9.     if (esi < 5) jmp B2     //Conditional Branch 
 
10. B1: mov 4,ebx            // Move value 4 to ebx 
11.   mov 16,ecx              //Move value 16 to ecx 
 
12. B2: store 10, ebx[edi]  // Store 10 to indirect offset (edi + ebx) 
13.   store 10, ecx[esp]     // Store 10 to indirect offset (esp + ecx) 
14.   store 10, edx[edi]    // Store 10 to indirect offset (edi + edx) 

Figure 7. A small pseudo-assembly code. The second

operand in the instruction is the destination.

We introduce the following definitions to ease the under-

standing:

CURRENT BASE: Stack pointer at the entry point of a procedure.

addrm: The address expression of a memory access instruction m

VS(addrm):Value Set of addrm

(x,y): Lower and upper bounds, respectively, of the possible offsets relative to

CURRENT BASE in VS(addrm)

LOCAL SIZE: Size of local frame variable ORIG FRAME

SIZEi:Size of ORIG FRAMEi of the ‘ith’ ancestor in the call graph, with the caller

being represented as the first ancestor. SIZE0 is defined as value 0.

Three different cases for memory reference categoriza-

tion of a memory access instruction m arise:

Case 1: (x,y) ⊂ (-LOCAL SIZE,0)

This condition implies that the current memory access

instruction strictly refers to a local stack location. In Fig 7,

Line 12 corresponds to this case. Instruction at Line 6

moves address esp+4 to register edi. Since the size of

the current frame in bar (LOCAL SIZE) is 10 and the

local allocations are taken as negative offsets, this trans-

lates to VS of edi as {CURRENT BASE-6}. The VS of

ebx at Line 12 is {2,4}; therefore the VS(addrm) is

{CURRENT BASE-2,CURRENT BASE-4}, which trans-

lates as a subset of (-LOCAL SIZE,0). In this case, we

replace the indirect access by an access to the local frame as

shown Fig 8 (Line 12).

Case 2: ∃ N : (x,y)⊂ (
∑

i‖i∈(0,N) SIZEi,
∑

i‖i∈(0,N+1) SIZEi)

This case implies that the current instruction exclusively

accesses the local frame of Nth ancestor. In such cases, we

make the local frame variable of the Nth ancestor procedure,

ORIG FRAMEN, an extra incoming argument to the current

procedure as well as to all the procedures on the call-graph

paths from the ancestor to the current procedure. The indi-

rect stack access is replaced by an explicit argument access.

Line 13 in Fig 7 represents this case. Here, VS of ecx

is {15,16} which translates to the stack-offset range (5,6)

 

1.function foo: 
2.     ORIG_FRAME_FOO=alloca i32, 100   // Local frame allocation  
3.     call bar(ORIG_FRAME_FOO)              // call bar  
 
4.function bar(i32* inArg)  
5.     ORIG_FRAME_BAR=alloca i32, 10     // Local frame allocation  
6.     edi = ORIG_FRAME_BAR+4  
7.     ebx = 2                   // Move value 2 to ebx 
8.     ecx = 15                // Move value 15 to ecx 
9.     if (esi < 5) jmp B2 
 
10. B1: ebx = 4               // Move value 4 to ebx 
11.   ecx = 16                // Move value 16 to ecx 
 
12. B2: store 10, ebx[edi]            // Store 10 to local frame 
13.   store  10, (ecx-SIZE_BAR)[inArg]   // Ancestor Store 
14.   if ((edx+edi - ORIG_FRAME_BAR) < SIZE_BAR) //Run Time Check 
15       store 10, edx[edi]            //Local Store 
16.   else 
17.      store 10, (edx+edi – SIZE_BAR)[inArg]  //Ancestor Store 

Figure 8. IR of the pseudo-assembly code. SIZE BAR is size

of ORIG FRAME BAR, register names are pure IR symbols.

which is subset of (0,SIZE1). Line 13 in Fig 8 shows the

adjusted offset into the formal argument inArg.

Case 3:

∃ N: { {(x,y) ∩(
∑

i‖i∈(0,N) SIZEi,
∑

i‖i∈(0,N+1) SIZEi) 6= ∅}∧

{(x,y) 6⊂ (
∑

i‖i∈(0,N) SIZEi,
∑

i‖i∈(0,N+1) SIZEi) } }

This case arises when VSA cannot bound the memory

access exclusively to the local frame of one ancestor or to the

local frame of the current procedure. It also includes cases

where VS of the target location is TOP (i.e., unknown).

We propose a run-time-check-based solution to represent

such accesses in the IR. We define all the possible ancestor

stack frames in the call graph as arguments to this procedure.

Further, at the indirect stack access, a run-time check is

inserted in the IR to dynamically translate the access to the

local frame or to one of the ancestor stack frames.

Line 14 in Fig 7 represents this case. Suppose edx is

data-dependent and hence its VS is TOP. Line 14 in Fig 8

shows the run-time check inserted based on this value. De-

pending on this check, we either access the local frame (Line

15) or the incoming argument (Line 17).

We have neglected the return address buffer in our cal-

culations for ease of understanding. It is easily considered

in our model by adding the return buffer size to each an-

cestor’s local frame size. In the case of dynamically linked

libraries (DLLs), the procedure body is not available; hence

the above method for handling the arguments cannot be ap-

plied. In order to make sure that the external procedures ac-

cess arguments as before, the LLVM code generator is mini-

mally modified to allocate the abstract frame, ORIG FRAME,

at the bottom of the stack in each procedure in the rewritten

binary. Since external procedures are not aware of the call

hierarchy inside a program, their interprocedural references

are usually limited to only the parent frame. When the proto-

types of these external procedures are available (such as for

standard library calls), this stack maintenance restriction is

avoided altogether by employing the solution presented for

any other procedure.
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5. Translating memory locations to symbols

Section 4 presented methods for deconstructing the physi-

cal stack frame into individual abstract frames, one per pro-

cedure. Even though this representation allows unrestricted

modification of the stack frame, accesses to local variables

appear as explicit memory references to locations within this

array, which are not amenable to standard dataflow analysis.

In this section, we propose our methods for translating these

memory operations to symbol operations in the IR.

5.1 Motivation for partitions

As discussed in Section 2, maintaining data-flow consistency

of the underlying memory locations across the whole pro-

gram is imperative while promoting memory accesses to

symbolic accesses. Fig 9(a) shows a small example with

three direct accesses to location (esp+8) at Lines 2,3,4;

the remaining two are unbounded indirect accesses. The

simplest method for maintaining the data-flow consistency

across the program is to load the data from the memory loca-

tion into the symbol just after each aliasing definition, store

the symbol back to the memory location just before each

aliasing use and promote each candidate stack access to a

symbolic access, as shown in Fig 9(b). The load inserted

just after the aliasing definition is referred to as a Promoting

Load and the store just before the aliasing use is referred to

as a Promoting Store (shown as bold in Fig 9(b)). Although

this method ensures correct data flow propagation, it results

in a large number of promoting loads and stores which might

overshadow the benefit of symbol promotion.

Fig 9(c) illustrates this unprofitable case. In this example,

suppose VS of ebx is TOP. Consequently, the instructions

at Line 3, 4 and 6 are aliasing indirect accesses to the stack

location (esp+8). In order to promote the direct memory

accesses at instructions 1, 2 and 5, we need to insert Promot-

ing Stores just before instruction 3 and instruction 6 and a

Promoting Load just after instruction 4. Hence, promoting

three direct memory operations entails the insertion of three

extra memory operations, nullifying the benefit.

We propose a novel partition-based symbol promotion

algorithm where we divide the program into a set of non-

overlapping promotional lifetimes for each memory loca-

tion. It serves as a fine-grained framework where the symbol

1. store eax, ebx[esi] 

 

2. load 8[esp], edx 

….. 

3. store ecx, 8[esp] 

…. 

4. load 8[esp], edi 

 

5. load ebx[esi], edx   

1. store eax, ebx[esi]  

 load 8[esp],sym 

2. mov sym, edx 

….. 

3. mov  ecx, sym 

…. 

4. mov sym, edi 

store sym, 8[esp] 

5. load ebx[esi], edx 

….. 

1. store eax, 8[esp] 

2. load 8[esp], edx 

3. load ebx[esi],edx 

…… 

4. store eax,ebx[esp] 

5. load 8[esp], ecx 

6. load ebx[esi],edx 

….  

 

 

a) b) c) 

Figure 9. Symbol promotion. Second operand in the in-

struction is the destination of the instruction.

Statement s gen[s] kill[s]

d:store x,mem[reg] if([sp+addr]∈VS(mem+reg)) if([sp+addr]∈VS(mem+reg))
d defs(addr) - d

else { } else { }
d: store y,addr[sp] d defs(addr) - d

d: z = load mem[reg] {} {}
d: z = load addr[sp] {} {}

Memory location loc : [sp + addr]
mem: Non-constant access
addr: Constant
defs(addr): Set of instructions defining the memory location [sp+addr]
in[n]: Set of definitions that reach the begining of node n
out[n]: Set of definitions that reach the end of node n
pred[n]: Predecessor nodes of node n
in[n] = ∪i|i∈pred[n]{(out[p])}
out[n] = gen[n] ∪ (in[n] − kill[n])

Figure 10. The reaching definition description. Definitions

are propagated across the control flow of program.

promotion decision can be made independently for each life-

time (a partition) instead of the entire program at once. Not

doing symbol promotion in a partition does not affect the

correctness of the data-flow in the program. The symbol pro-

motion can be selectively performed in only those partitions

where it is provably beneficial. Fig 9(c) shows an intuitive

division of the current example into two safe partitions.

5.2 Reaching definition framework

We define a new reaching definition analysis on memory lo-

cations for computing the partitions. This is different from

the standard reaching definitions on symbols well-known in

compiler theory. For each memory location loc, this anal-

ysis computes the set of instructions defining the memory

location loc that reach each program point. The set of def-

initions includes stores to the memory location loc using

direct addressing mode as well as possibly aliasing stores.

Fig 10 formulates the reaching definition in terms of VS

of the memory accesses. These reaching definitions are prop-

agated across the control flow of the program, similar to the

standard compiler dataflow propagation, allowing the parti-

tions to be formed across basic blocks. The interprocedural

version of VSA implicitly takes into consideration a local

pointer passed to a procedure through an argument.

5.3 Symbol promotion algorithm

The candidates for symbol promotion in a procedure P, rep-

resented by a set LOCS, are computed as follows:

M: Set of memory accesses in P

DM: Statically determinable memory accesses,
⋃

d∈M{d|‖V S(addrd)‖ = 1}

LOCS: Statically determined stack locations in P,
⋃

d∈DM{m|m ∈ V S(d)}

Mathematically, for a stack location loc, a single parti-

tion constitutes three sets of memory accesses: DirectAcc,

BeginSet and EndSet. DirectAcc contains statically deter-

minable accesses to the location loc and constitutes the

potential candidates for symbol promotion. BeginSet consti-

tutes the indirect stores that may-alias with loc and have a

control flow path to at least one element of the set DirectAcc.

EndSet consists of all the aliasing accesses such that there is
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Algorithm 1: Algorithm for computing partitions for a

location loc in a procedure P

1 L: Set of loads in P; S: Set of stores in P

2 DL:
⋃

l∈L{l|{loc} = V S(addrl)} //Direct Loads

3 IL:
⋃

l∈L{l|{loc} ⊂ V S(addrl)} //Indirect Aliasing Loads

4 DS:
⋃

s∈S{s|{loc} = V S(addrs)} //Direct Stores

5 IS:
⋃

s∈S{s|{loc} ⊂ V S(addrs)} //Indirect Aliasing Stores

6 Processed: Set of elements processed

7 while DS != ∅‖IS != ∅ do

8 define new Partition P, define new list ActiveList

9 if DS != ∅ then

10 s = DS.begin; add s to P.DirectAcc

11 else

12 s = IS.begin; add s to P.BeginSet

13 add s to ActiveList

14 while ActiveList.size!=0 do

15 s = ActiveList.top; Add s to Processed

16 for dl ∈ DL do

17 if s ∈ in[dl] then

18 add dl to P.DirectAcc

19 for s′ ∈ in[dl] do

20 add s’ to ActiveList if s’/∈ Processed

21 remove dl from DL

22 if s ∈ IS then

23 continue /* No need to store symbol back */

24 for il ∈ {IL,IS} do

25 if s ∈ in[il] then

26 add il to P.EndSet

27 for s′ ∈ in[il] do

28 add s’ to ActiveList if s’/∈ Processed

29 remove il from IL if il ∈ IL

a control flow path from some element of BeginSet to these

accesses. Intuitively, program points just after the elements

in BeginSet represent the locations for inserting Promoting

Loads. Similarly, program points just before the elements of

EndSet are the locations for inserting Promoting Stores.

Algorithm 1 provides a formal description of the method

for computing partitions for a memory location loc. We be-

gin with an empty partition. We analyze a store instruction,

say ds. If ds is a direct addressing mode instruction then

it is added to the DirectAcc set; otherwise it is added to Be-

ginSet (Line 9-12). Load instructions using direct addressing

where ds is one of the reaching definitions are added to the

DirectAcc set of the partition (Line 16-18). The remaining

reaching definitions at these load instructions are added to

the analysis list (Line 19-20). If ds uses a direct addressing

mode, indirect load and store instructions with ds as one of

the reaching definitions are added to the EndSet (Line 24-

26). For indirect stores, the symbol need not be stored back

to the memory (Line 22-23). As with the direct loads, the rest

of the reaching definitions are added to the analysis list (Line

27-29). This analysis is applied repeatedly until the analysis

list is empty. At that point, we have one independent parti-

tion. We repeatedly obtain new partitions until there are no

more direct stores or indirect stores to analyze.

We implement a simple benefit-cost model to determine

whether the symbol promotion should be carried out for a

particular partition. In a partition, the size of DirectAcc set

is the number of memory accesses replaced by symbol ac-

cesses. We define Freqi as the statically determined execu-

App Source Lang LOC # Proc Platform

bwaves Spec2006 F 715 22 Linux

lbm Spec2006 C 939 30 Linux,Win

equake OMP2001 C 1607 25 Linux,Win

art OMP2001 C 1914 32 Linux,Win

wupwise OMP2001 F 2468 43 Linux

mcf Spec2006 C 1695 36 Linux,Win

namd Spec2006 C++ 4077 193 Linux,Win

leslie3d Spec2006 F 3024 32 Linux

libq Spec2006 C 2743 73 Linux,Win

astar Spec2006 C++ 4377 111 Linux,Win

bzip2 Spec2006 C 5896 51 Linux,Win

milc Spec2006 C 9784 172 Linux,Win

sjeng Spec2006 C 10628 121 Linux,Win

sphinx Spec2006 C 13683 210 Linux,Win

zeusmp Spec2006 F 19068 68 Linux

omnetpp Spec2006 C++ 20393 3980 Linux,Win

hmmer Spec2006 C 20973 242 Linux,Win

soplex Spec2006 C++ 28592 1523 Linux,Win

h264 Spec2006 C 36495 462 Linux,Win

cactus Spec2006 C 60452 962 Linux,Win

gromacs Spec2006 C/F 65182 674 Linux

dealII Spec2006 C++ 96382 15619 Linux

calculix Spec2006 C/F 105683 771 Linux

calculix Spec2006 C/F 105683 771 Linux

povray Spec2006 C++ 108339 3678 Linux,Win

perl Spec2006 C 126367 2183 Linux,Win

gobmk Spec2006 C 157883 4188 Linux,Win

gcc Spec2006 C 236269 6426 Linux,Win

apache Real C 267318 14441 Linux

server World

Program

Table 1. Benchmarks Table.

tion frequency at program point i. Hence, the benefit of sym-

bol promotion in terms of eliminated memory references:

Benefit =
∑

i|i∈DirectAcc

{(Freqi)}

One promoting load/store is needed for each element of

BeginSet and Endset, consequently, the cost:

Cost =
∑

i|i∈BeginSet

{(Freqi)} +
∑

i|i∈EndSet

{(Freqi)}

We calculate the net benefit of each partition as Benefit -

Cost. Symbol promotion is carried out in a partition only if

the net benefit is positive.

6. Results

Table 1 lists all the benchmarks which have been success-

fully evaluated with the SecondWrite prototype. It includes

SPEC2006 benchmark suite, benchmarks from other suites

and a real world program, Apache server. Benchmarks on

Linux are compiled with gcc v4.4.1 (O0 (No optimization)

and O3 (Full optimization) flags) without any symbolic or
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debug information. Windows benchmarks are compiled with

Microsoft Visual Studio compiler (O0 (No optimization) and

O2 (Maximum optimization) flags). Only the C and C++

programs are included for Windows since Visual Studio does

not compile Fortran. The benchmarks are compiled for x86-

32 ISA and results are obtained for SPEC2006 ref datasets

on a 2.4GHz 8-core Intel Nehalem machine running Ubuntu.

The performance analysis of Apache server is carried out

using ab tool [4]. Analyzing executables compiled by a

new compiler causes several engineering challenges with our

evolving prototype such as presence of yet unsupported x86

features like SSE and other advanced instructions. However,

successful experimentation with distinct compilers such as

gcc and Visual Studio demonstrates the lack of any funda-

mental problem in this regard. In future work, we aim to

expand our support base by evaluating executables compiled

by other compilers such as Intel compiler and LLVM. Un-

less mentioned explicitly, the benchmarks in figures are the

ones compiled by gcc.

Fig 11 plots the variation in the time taken by Second-

Write, with increasing lines of code, to recover an interme-

diate representation from an executable. This constitutes the

time spent in disassembling the executable and other analy-

ses including abstract stack recovery and symbol promotion.

Fig 11 highlights the nearly linear scalability of our frame-

work. The analysis time for large programs such as gcc, con-

taining 250,000 lines of code, is around eight minutes. A

particular SPEC benchmark dealII takes around 35 minutes,

forming an outlier to the linear model. It employs templates

excessively which causes the compiler to create multiple ver-

sions of the same procedure for different template param-

eters. This extensively slows down several interprocedural

analyses resulting in a huge overall analysis time.

6.1 Static characteristics

Our symbol promotion techniques promote the stack mem-

ory locations to symbols and direct stack memory accesses

to symbol accesses in the IR. On average, 67% of stack lo-

cations are promoted to symbols resulting in promotion of

72% of direct stack accesses for the programs listed in Ta-

ble 1. The detailed statistics for individual benchmarks are

presented in an extended version of the paper [1]. For the

remaining memory operations, the net benefit for promo-

tion didn’t meet the corresponding threshold. Theoretically,

our framework can achieve 100% symbol promotion if the

promotion threshold is ignored, but this leads to high over-

head in the rewritten binaries due to Promoting Loads and

Promoting Stores. The development of more advanced alias

analysis would improve results of our symbol promotion

without adversely affecting the performance.

Fig 12 relates the above promoted symbolic references to

the original source-level artifacts. We enumerated the sym-

bolic references in the input program using debug informa-

tion (employed only for counting the references) and com-

pared how many of these symbolic references are restored in
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Figure 11. Variation of analysis time with lines of code.

Outlier program dealII has been omitted for the ease of

presentation.
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Figure 12. Percentage of original symbolic accesses recov-

ered in IR.

the IR. It shows that our techniques are able to restore 66%

of the original symbolic references.

Our partitioning algorithm (Alg 1) creates fine-grained

promotional lifetimes for each memory location. On aver-

age, around 76% of the memory locations have one partition,

18% have two to five, and 6% have five or more partitions.

This is not unexpected since large procedures are relatively

rare. An extended version of the paper [1] presents the visu-

alization of partitioning results for individual benchmarks.

Table 2 lists the programs which hit corner cases dur-

ing the deconstruction of physical stack. The analysis of the

original source-code revealed that a physical stack frame

was required for procedures that call alloca(). Runtime

checks are inserted in some procedures which accept a vari-

able number of arguments using the va arg mechanism.

Most of the procedures using va arg do not require run-

time checks. This result establishes our earlier hypothesis

Program Version # Proc with # Proc with run-

Physical stack time Checks

gcc gcc-O0,VS-O0 117 0

gcc gcc-O3, VS-Ox 117 10

tonto gcc-O0, gccO3 20 0

Table 2. Corner cases of our analysis.
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Figure 13. Normalized runtime of rewritten binary as compared to its corresponding input version (=1.0) compiled by gcc.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lb
m

e
q

u
a

k
e

a
rt

m
c

f

n
a

m
d

a
s

ta
r

b
z
ip

2

m
il

c

s
je

n
g

s
p

h
in

x

o
m

n
e

tp
p

h
m

m
e

r

h
2

6
4

p
e

rl

g
o

b
m

k

g
c

c

A
V

G

Benchmarks

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

O0 O2

Figure 14. Normalized runtime of rewritten binary as com-

pared to its corresponding input version (=1.0) compiled by

Visual Studio.

that scenarios requiring run-time checks are extremely rare

and consequently, have negligible overhead. Nonetheless,

not handling these scenarios prohibits obtaining a functional

IR and hence, are imperative for any translation system.

6.2 Un-optimized input binaries

Fig 13 shows the normalized run-time of each rewritten bi-

nary compared to an input binary produced using gcc with

no optimization (-O0 flag). Fig 14 shows the corresponding

run-time for binaries produced using Visual Studio compiler

with no optimization (-O0 flag). We obtain an average im-

provement of 40% in execution time for binaries produced

by gcc and 30% for binaries produced by Visual Studio, with

an improvement of over 65% in some cases (bwaves). In fact,

our tool brings down the normalized runtime of unoptimized

input binaries from 2.2 to close to the runtime (1.25) of gcc-

optimized binaries [1].

6.3 Optimized input binaries

Fig 13 shows the normalized execution time of each rewrit-

ten binary compared to an input binary produced using gcc

with the highest-available level of optimization (-O3 flag).

In this case, we obtain an average improvement of 6.5% in

execution time. It is interesting that we were able to obtain

this improvement over already optimized binaries without

any custom optimization of our own. One of our rewritten

binaries (hmmer) had a 38% speedup vs the input binary.

Although gcc -O3 is known to produce good code, it missed

the creation of few predicated instructions whereas LLVM

did this optimization, explaining the speedup. Fig 14 shows

the corresponding run-time for binaries produced using Vi-

sual Studio compiler with full optimization flag (-O2). As

evident, our framework was able to retain the performance

of these binaries, with a small overhead of 2.7% on average.

6.4 Impact of symbol promotion

Next, we substantiate the impact of symbol promotion on

the run-time of rewritten binaries. Fig 15 and Fig 16 show

the normalized improvement in execution time obtained by

applying only LLVM optimizations and by applying our

symbol promotion techniques. It shows that symbol promo-

tion is responsible for improving the average performance

of rewritten binary from 30% to 40% in the case of unopti-

mized binaries (produced by gcc) and from 1% to 6.5% in

the case of optimized binaries (produced by gcc). Since our

cost metric is based on static profiling, we observed a small

slowdown with symbol promotion in bzip2 O3.

It is important to note that these results only measure the

impact of symbol promotion. The impact of our method to

convert physical frames to abstract frames is not measured

above. However, we can infer that number since without

obtaining abstract frames, none of the existing LLVM passes

would run at all, leading to zero run-time improvement.

6.5 Symbolic Execution

KLEE is efficiently designed to obtain a high code coverage

on source programs. We run KLEE in our framework on a

set of 50 alphabetically-chosen Coreutils executables and

achieve a code coverage of 73% on average compared to

76% obtained by KLEE on source programs when running

KLEE with the same options and for the same amount of

time (30 minutes/benchmark) in both cases.
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Figure 15. Impact of symbol promotion on runtime of rewritten binary v/s unoptimized input binary (=1.0).
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Figure 16. Impact of symbol promotion on runtime of rewritten binary v/s optimized input binary (=1.0).

Binary No Promotion With Promotion

Time(s) STP Time(s) Time(s) STP Time(s)

htget 300 186 37 27

cut 300 252 111 76

split 300 225 157 88

Table 3. Improvement in constraints processing with sym-

bol promotion.

Recall from Section 2.1.1 that symbol promotion enables

our framework to efficiently reason about symbolic memory

accesses. However, most of the Coreutils programs do not

contain symbolic array accesses, consequently, these pro-

grams are not likely to benefit from our analyses. Instead,

a set of programs [13] with known symbolic accesses were

chosen to demonstrate the effectiveness of our analysis. Each

application was run with KLEE without symbol promotion

for five minutes. Then, the applications were run with sym-

bol promotion with the exact same workload. As evident

from Table 3, our analysis is highly effective in reducing the

time spent by STP solvers in query processing.

KLEE has been shown to detect various bugs in a par-

ticular version of Coreutils (6.10). Our framework enables

the detection of these bugs from their corresponding exe-

cutables. Further, the presence of a rewriting path in our

framework enables us to remedy the above detected bugs di-

rectly from executables. We analyzed the dump for one of

the Coreutil executable (mkdir), fixed the corresponding be-

havior in IR and obtained a rewritten bug-free executable.

6.6 Automatic Parallelization

Kotha et al. [26] presented a method for automatic par-

allelization for binaries. Symbol promotion increases the

speedup for a subset of PolyBench and Stream benchmark

suite by 2.25x for 4 threads.

The underlying reason for the speedup is that symbol pro-

motion enables discovery of more induction variables. Many

induction variables for outer loops are often allocated on the

stack instead of registers. Consequently, such induction vari-

ables are not detected by compiler methods, resulting in par-

allelization of inner loops, which have high synchronization

overhead. Symbol promotion enables the discovery of more

induction variables, enabling the parallelization of more ben-

eficial outer loops [1].

7. Related Work

Binary rewriting: Binary rewriting research is being car-

ried out in two directions: static and dynamic. None of
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the previous dynamic rewriters, PIN [29], FX!32 [14], Dy-

namoRIO [8], and others, employ a compiler IR.

Existing static binary rewriters related to our approach

include Etch [34], ATOM [22], PLTO [35], Diablo [39] and

UQBT [18]. All these rewriters define their own low-level

custom IR as opposed to using a compiler IR. These IRs are

devoid of features like abstract frames, symbols and main-

tain memory as a flat address space; the limitations of which

have already been discussed in Section 1. PLTO implements

stack analysis to determine the use-kill depths of each proce-

dure [35]. However, this information is used only for custom

optimizations like load/store forwarding rather than obtain-

ing a high-level IR. UQBT [18] employs procedure proto-

types in its IR, but relies on users to provide this information,

instead of determining it automatically from an executable.

This severely limits its applicability since only the develop-

ers have access to that information.

Virtual machines [2] implement stack-walking tech-

niques to determine the calling context by simply iterating

over the list of frame pointers maintained as metadata in the

dynamic framework; making it orthogonal to our mechanism

which statically inserts run-time checks in the IR.

Binary Analysis/Intermediate representation recov-

ery: There are several executable analysis tools such as

BAP [9], BitBlaze [37], Phoenix [32] and others which re-

cover an IR from an executable for further analysis. How-

ever, these tools have several limitations. All these tools

define their own custom IR without the features of abstract

stack and symbol promotion, facing limitations similar to

tools like Diablo [39] discussed above. Phoenix [32] recov-

ers a register transfer language (RTL) resembling architec-

ture neutral assembly, which does not expose the semantics

of several complicated instructions. Further, Phoenix and

several other tools require debugging information, which is

usually absent in deployed executables.

There are some frameworks which recover LLVM IR

from executables. S2E [17] and Revnic [15] present a

method for dynamically translating x86 to LLVM using

QEMU. Unlike our approach, these methods convert blocks

of code to LLVM on the fly which limits the application of

LLVM analyses to only one block at a time. Revnic [15]

and RevGen [16] recover an IR by merging the translated

blocks, but the recovered IR is incomplete and is only valid

for current execution; consequently, various whole program

analyses will provide incomplete information. Further, the

translated code retains all the assumptions of the original bi-

nary about the stack layout. They do not provide any meth-

ods for obtaining an abstract stack or promoting memory

locations to symbols, which are essential for the application

of several source-level analyses.

King et al. [25] provide a comprehensive survey of sev-

eral executable analysis tools. The analysis related to our

methods are presented by [5, 6, 42]. Balakrishnan et al. [5, 6]

present Value Set Analysis for analyzing memory accesses

and extracting high level information like variables and their

types. As presented in Section 2, analyzing variables does

not guarantee promotion to symbols in IR. Zhang et al. [42]

present techniques for recovering parameters and return val-

ues from executables but they do not consider the scenarios

where the information cannot be derived.

Jianjun et al. [28] promote stack variables to registers

dynamically, relying on hardware mechanism for memory

disambiguation. In contrast, we provide theoretical formula-

tions for symbol promotion without any hardware support.

Symbolic execution : KLEE [11], EXE [12] are example

of source-level tools and cannot be applied directly to exe-

cutables. Previous binary-only symbolic execution tools like

BitBlaze [37] do not represent symbolic memory. S2E [17]

and MAYHEM [13] propose a new memory model for sim-

ulating symbolic memory, while our techniques enable ap-

plication of existing models to binaries.

8. Conclusions

This paper presents several component techniques essential

for translating executables to a high-level intermediate repre-

sentation of an existing compiler. Our techniques overcome

challenges unique to executables: an explicitly addressed

stack, the lack of function prototypes and the lack of sym-

bols. The compiler IR allows the application of source-level

complex transformations and advanced symbolic execution

strategies on executables and enables functional source-code

recovery. In future, we plan to extend our framework for var-

ious platform-specific optimizations.
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