2. Since \(R \) is Noetherian, the zero-ideal \((0)\) in \(R \) has a minimal primary decomposition \(q_1 \cap \cdots \cap q_n \), where \(q_j \) is \(p_j \)-primary and the \(p_j \)'s are the prime ideals associated to \((0)\). By a theorem proved in class, each \(p_j \) is of the form \((0 : x_j) = \text{Ann} x_j\) for some \(x_j \in R \), and thus consists of zero-divisors. In fact, the set of zero-divisors in \(R \) is precisely the union of the \(p_j \)'s, by Proposition 4.17 in A-M. Thus \(S \) is the intersection of the complements of the \(p_j \)'s.

Now the prime ideals of \(S^{-1}R \) are precisely the \(S^{-1}p \), with \(p \) a prime ideal of \(R \) not meeting \(S \). Not meeting \(S \) means \(p \subseteq \bigcup_j p_j \). By the “Prime avoidance” theorem proved in class, that means \(p \subseteq p_j \) for some \(j \). If \(S^{-1}p \) is maximal, then in fact \(p \) must be equal to \(p_j \) for some \(j \), and so there are only finitely many maximal ideals in \(S^{-1}R \).

If \(R \) is not Noetherian, this argument falls apart. In fact, if \(I \) is an infinite set and if \(R = \prod_{i \in I} \mathbb{F}_2 \), then \(R \) is a Boolean ring (each element is its own square, since this holds in \(\mathbb{F}_2 \) and passes to products). Furthermore, the only element of \(S \) is 1, since an element of \(R \) that is not the identity must have a coordinate 0 at some point \(i \in I \), and then is a zero-divisor (its product with the element \(e_i \) that is 1 at this value of \(i \) and 0 everywhere else is 0). So \(S^{-1}R = R \), which is not Noetherian. Indeed, if \(i_1, i_2, \cdots \) is an infinite sequence in \(I \), then

\[
(0) \subsetneq (e_{i_1}) \subsetneq (e_{i_1}, e_{i_2}) \subsetneq (e_{i_1}, e_{i_2}, e_{i_3}) \subsetneq \cdots
\]

in an infinite non-terminating ascending chain of ideals. The kernel of evaluation at \(i \in I \), \(p_i : \prod_{i \in I} \mathbb{F}_2 \to \mathbb{F}_2 \), is a maximal ideal \(p_i \) that contains \(1 - e_i \) but not \(1 - e_j \) for any \(j \neq i \), so \(R \) has infinitely many maximal ideals.