9.1
Try a Frobenius series type solution for Legendre functions* in powers of \(s = (1+x) \). Start from the complete Legendre equation for arbitrary \(\nu \). Rewrite this equation in the \(s \) variable and then try the series solution.

(a) Show that only one solution is obtainable. Check that this is consistent with the asymptotic behaviour of Legendre functions as \(s \to 0 \) (or \(x \to -1 \)).

(b) Show that the one good series solution may diverge at \(x=1 \) (a simple ratio test suffices). (In fact, this solution does, in general, diverge at \(x=1 \).)

(c) Show that the series terminates if \(\nu = n = \text{integer} \). Thus, for integer \(\nu \), one solution is well-behaved at both \(x=\pm 1 \). Find these integer solutions for \(n=0, 1, \text{and } 2 \), rewriting them in the \(x \) variable.

(d) *Compare (just browse) what you have found with what is asked for in AWH (7th Ed) Chapter 8 Problem 3.1.

9.2
(a) Try the Frobenius method to find solutions if \(y(x) \) satisfies the ODE \(y'' = y/x^4 \). Assume \(a_0 \) to be non-zero in commencing your trial solution. How many solutions can be found for this form of a series expansion?

(b) Find the leading order asymptotic behavior of this equation as \(x \to 0 \). Note that the Laurent expansions of the asymptotic solutions about \(x = 0 \) have a radius of convergence which does not include \(x = 0 \); and, in any case, the Laurent expansion does not have the same form as the starting ansatz of the Frobenius series.

9.3
The function \(\phi(x) \) satisfies

\[
(d/dx)[x d\phi/dx] - \phi/x = 0, \quad \phi(1) = 1, \quad \phi(\infty) = 0.
\]

Note that the domain excludes \(x=0 \), hence division by \(x \) is ok.

1.1 Find the solution by directly solving the ODE
1.2 Find the Green function for this problem, sketch a plot vs \(x' \)
1.3 Find \(\phi(x) \) using the Green function and compare

[1D Green function notes are posted.]