Preparing for the Academic Job Market

Tips I learned from our University of Maryland faculty search(es)

Betsy Beise
University of Maryland
and
National Science Foundation
beise at jlab.org
Outline

• what do departments look for?
• how to get the most from your postdoc
• marketing yourself to academia
• when to look elsewhere

Also

• what to look for in a postdoc position
My personal background/caveats

• B.A. small college (no research experience)
• Ph.D. @ “top 10” research university w/ on-site lab
• postdoc at private university in a well-funded group (not at lab)
• prof (since 1993) in large public research university with large (70 faculty) and diverse physics dept
 – a small fraction is nuclear physics
 – competition between fields for hiring
 – teaching load low, but teaching to nonscientists likely

you might get a different perspective from someone else
→ seek it out!
resources

• NSAC Education subcommittee report

• “Making the Right Moves” (scientific management)

• CV preparation:
 http://chronicle.com/jobs/tools/cvdoctor/03.htm

• General: http://chronicle.com/jobs/

• Look on the web for other resources (there are lots!)

• Seek out advice from senior colleagues
Career plans: current nuclear science graduate students & postdocs

Current graduate students
- Tenure track Faculty: 39%
- Researcher: 22%
- Business, government or non-profit: 14%
- Undecided: 25%

Current postdocs
- Tenure track Faculty: 51%
- Researcher: 34%
- Business, government or non-profit: 11%
- Undecided: 4%

Slide from J. Cizewski, Rutgers University
Source: Graduate Student & Postdoc Surveys, C. Beausang, T. Hallman, et al.

Summer 2006
Current positions nuclear science PhDs, 1992-1998

Slide from J. Cizewski, Rutgers University
Source: Nuclear Science PhD 5-10 Years Later Survey, J. Cerny et al.
Typical Academic Life

• 50/30/20: Research/Teaching/Committees
 – teaching load higher at non-PhD granting schools
• write grant/research proposals
• recruit and advise students
• teach science to nonscientists
• department governance
 – hiring priorities, curriculum, advising/mentoring
• university-wide committees
• write more grant proposals
• manage budgets and people (and sometimes projects)
What do departments look for?

• fundability
 – sometimes means popular field

• high likelihood of tenure
 – will you have a new physics result to talk about within 3-5 years?

• leadership/
 – can you manage other people?

• collegiality
 – can you work with other faculty?

• good communication skills (teaching potential)

• flexibility
 – are you prepared to change directions when funding directions change?
Getting the most from your postdoc

• Round out your experience
 – (lab vs university, hardware vs software, etc.)
• Take on a position of responsibility on a running experiment (spokesperson is only one of many ways of leadership)
• Look for opportunities to mentor students
• Earn the respect of visible senior colleagues (who will write letters for you)
• Don’t overstay your welcome! (3 years in one job is generally enough)
• be sure your work is getting published
Marketing yourself

• volunteer to give briefings at collaboration meetings
• Look for opportunities to give talks
• Go to a major conference per year (at most 2?)
• Keep a current professional web page with your own work
• talk to your supervisor annually about your progress/potential
What goes in your application

- **letter of introduction**
 - 1 page max, indicate who will be letter-writers
- **CV** (include letter-writers here too)
- **Research statement** (see next)
 - should include both past and future
- **Teaching statement**
 - experience not essential, but highlight if you have some
 - should have a “teaching philosophy”
Research statement

• Have 2 “visions”
 – short term (3-5 yrs): will get results in 5 years
 – long term (5-10 yrs): exciting, visionary, can be speculative (doesn’t have to be exactly what you do)

• Highlight where you’ve been a leader (how will you make your new university a “player”)

• Be (somewhat) specific about how you plan to get students involved (on campus is good if possible)

• Do some background on where you are applying
 – What is the department looking for? What new dimension would you bring?
the interview

• Get lucky! but be opportunistic (and open-minded)
• Get a copy of your interview schedule in advance and do some research on who you will meet
• Know your strengths and tell people about them (but don’t be arrogant!)
• know your audience (they’re probably not working at JLab!)
• Have a teaching philosophy
 • graduate quantum mechanics? NO!
 • freshman nonmajor physics? YES!

• See this link by P. Beuning: “Preparing for Academic Job Interviews”
 http://web.mit.edu/career/www/graduate/academiccareers.html
typical interview schedule

- ½ hour interviews w/ many faculty
- seminar
- teaching interview
- meet w/ department chair
- sometimes meet w/ Dean or administrator
- sometimes meet w/ groups of students

Prepare:
- prepare 1-2 minute summary of your research
- ditto for teaching experience/interest
- brief yourself on research interests of faculty you will meet: show interest and look for areas of overlap
- think about what lab space/resources you might want
- Be positive!
What also happens (out of your control)

• Department politics
• Demographics
• fashion trends in physics
• resources
Finding a good postdoc

• Get out of graduate school as quickly as possible
• Don’t be afraid to change
 • experimental Halls at a minimum!
 • experimental subfields
 • experimental fields
• Name brands count (perhaps more than they should)
• Laboratory vs University tradeoffs
add’t’l Web resources I found for this talk

Jonathan Danzig, UI UC Mechanical Engineering Dept.
“Landing an Academic Job”
http://quattro.me.uiuc.edu/~jon/ACAJOB/Latex2e/academic_job.pdf

APS Careers in Physics web site
http://www.aps.org/jobs/index.cfm

http://www.phds.org/jobs/

Berkeley Physics and Astronomy Job Hunting Resources
http://cosmology.berkeley.edu/jobs/jobover.html
Supplementary
Number of physics PhDs conferred in the United States, 1931 to 2004.

Statistical Research Center, Enrollments and Degrees Report.
<table>
<thead>
<tr>
<th>Academic Year</th>
<th>Foreign N</th>
<th>U.S. citz. N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2004</td>
<td>1292</td>
<td>1746</td>
</tr>
<tr>
<td>Fall 2003</td>
<td>1481</td>
<td>1697</td>
</tr>
<tr>
<td>Fall 2002</td>
<td>1339</td>
<td>1535</td>
</tr>
<tr>
<td>Fall 2001</td>
<td>1434</td>
<td>1343</td>
</tr>
<tr>
<td>Fall 2000</td>
<td>1485</td>
<td>1228</td>
</tr>
<tr>
<td>Fall 1999</td>
<td>1328</td>
<td>1182</td>
</tr>
<tr>
<td>Fall 1998</td>
<td>1251</td>
<td>1166</td>
</tr>
</tbody>
</table>
Employer Type by Year of PhD, 2001

<table>
<thead>
<tr>
<th>Year</th>
<th>PhD</th>
<th>Industry</th>
<th>Academe</th>
<th>Gov't, Non-Profit, Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996-2000</td>
<td>46</td>
<td>40</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1991-1995</td>
<td>54</td>
<td>30</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1986-1990</td>
<td>41</td>
<td>36</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>1981-1985</td>
<td>47</td>
<td>34</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>1976-1980</td>
<td>46</td>
<td>28</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>1971-1975</td>
<td>45</td>
<td>31</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>1970 & earlier</td>
<td>37</td>
<td>44</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Source: NSF Survey of Doctoral Recipients

R. Czujko, AIP, presentation at APS March 2006 meeting, Baltimore, MD