Feature Engineering

Digging into Data: Jordan Boyd-Graber

University of Maryland

March 4, 2013
Roadmap

- How to split your dataset
- TV Tropes Dataset
- Feature engineering
- Demo of classification in Rattle
1. Preparing Data for Classification
2. Evaluating Classification
3. TV Tropes
4. Extracting Features
5. Trying Out Classifiers in Rattle
## Test Dataset

### Feature Engineering

<table>
<thead>
<tr>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2104</td>
<td>400</td>
</tr>
<tr>
<td>1600</td>
<td>330</td>
</tr>
<tr>
<td>2400</td>
<td>369</td>
</tr>
<tr>
<td>1416</td>
<td>232</td>
</tr>
<tr>
<td>3000</td>
<td>540</td>
</tr>
<tr>
<td>1985</td>
<td>300</td>
</tr>
<tr>
<td>1534</td>
<td>315</td>
</tr>
<tr>
<td>1427</td>
<td>199</td>
</tr>
<tr>
<td>1380</td>
<td>212</td>
</tr>
<tr>
<td>1494</td>
<td>243</td>
</tr>
</tbody>
</table>

The dataset is divided into a training set (70%) and a test set (30%).

\[
\begin{align*}
(x^{(1)}, y^{(1)}) \\
(x^{(2)}, y^{(2)}) \\
&\vdots \\
(x^{(m)}, y^{(m)}) \\
\end{align*}
\]

\[
\begin{align*}
(x^{(1)}_{\text{test}}, y^{(1)}_{\text{test}}) \\
(x^{(2)}_{\text{test}}, y^{(2)}_{\text{test}}) \\
&\vdots \\
(x^{(m)\text{test}}, y^{(m)\text{test}}) \\
\end{align*}
\]
Partitioning the Data

- **Train**: Learn a model
- **Validation**: Evaluate different models
- **Test**: See how well your model does (only do this once)

**Digging into Data: Jordan Boyd-Graber (UMD)**

Feature Engineering

March 4, 2013
Partitioning the Data

- Train: Learn a model
- Validation: Evaluate different models
- Test: See how well your model does (only do this once)
Overfitting

Consider error of hypothesis $h$ over

- training data: $\text{error}_{\text{train}}(h)$
- entire distribution $\mathcal{D}$ of data: $\text{error}_{\mathcal{D}}(h)$

Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that

$$\text{error}_{\text{train}}(h) < \text{error}_{\text{train}}(h')$$

and

$$\text{error}_{\mathcal{D}}(h) > \text{error}_{\mathcal{D}}(h')$$
Overfitting in Decision Tree Learning

The graph illustrates the relationship between the size of the tree (number of nodes) and accuracy, both on the training data and the test data. The accuracy on the training data generally increases with the size of the tree until it plateaus, while the accuracy on the test data shows a more moderate increase and tends to stabilize. This indicates that the model is overfitting to the training data, as evidenced by the higher accuracy on the training set compared to the test set, especially as the tree size increases.
Avoiding Overfitting

How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

How to select “best” tree:

- Measure performance over training data to find many models
- Measure performance over separate validation data set to choose one that doesn’t overfit
Why validate?

- Often, what you try doesn’t work the first time around
  - Process the data somehow
  - Add more features
  - Try different models
- After a while, you get better numbers on your test dataset
- Rattle does this automatically
### Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>Spam (Predicted)</th>
<th>Non-Spam (Predicted)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spam (Actual)</td>
<td>27</td>
<td>6</td>
<td>81.81</td>
</tr>
<tr>
<td>Non-Spam (Actual)</td>
<td>10</td>
<td>57</td>
<td>85.07</td>
</tr>
<tr>
<td>Overall Accuracy</td>
<td></td>
<td></td>
<td>83.44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$p'$ (Predicted)</th>
<th>$n'$ (Predicted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p$ (Actual)</td>
<td>True Positive</td>
<td>False Negative</td>
</tr>
<tr>
<td>$n$ (Actual)</td>
<td>False Positive</td>
<td>True Negative</td>
</tr>
</tbody>
</table>
When accuracy lies

<table>
<thead>
<tr>
<th></th>
<th>Spam (Predicted)</th>
<th>Non-Spam (Predicted)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spam (Actual)</td>
<td>0</td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>Non-Spam (Actual)</td>
<td>0</td>
<td>990</td>
<td>100.0</td>
</tr>
<tr>
<td>Overall Accuracy</td>
<td></td>
<td></td>
<td>99</td>
</tr>
</tbody>
</table>
### When accuracy lies

<table>
<thead>
<tr>
<th></th>
<th>Spam (Predicted)</th>
<th>Non-Spam (Predicted)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spam (Actual)</td>
<td>0</td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>Non-Spam (Actual)</td>
<td>0</td>
<td>990</td>
<td>100.0</td>
</tr>
<tr>
<td>Overall Accuracy</td>
<td></td>
<td></td>
<td>99</td>
</tr>
</tbody>
</table>

Moral: If you care about $X$, make sure your data have it!
Outline

1. Preparing Data for Classification
2. Evaluating Classification
3. TV Tropes
4. Extracting Features
5. Trying Out Classifiers in Rattle
TV Tropes

- Social media site
- Catalog of “tropes”
- Functionally like Wikipedia, but . . .
  - Less formal
  - No notability requirement
  - Focused on popular culture

Absent-Minded Professor

- The drunk mathematician in Strangers on a Train becomes a plot point, because of his forgetfulness, Guy is suspected of a murder he didn’t commit.
- The Muppet Show: Dr. Bunsen Honeydew.
Spoilers

- What makes neat is that the dataset is annotated by users for **spoilers**.
- A spoiler: “A published piece of information that divulges a surprise, such as a plot twist in a movie.”

<table>
<thead>
<tr>
<th>Spoiler</th>
<th>Not a spoiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Han Solo arriving just in time to save Luke from Vader and buy Luke the vital seconds needed to send the proton torpedos into the Death Star’s thermal exhaust port.</td>
<td>Diving into the garbage chute gets them out of the firefight, but the droids have to save them from the compacter.</td>
</tr>
<tr>
<td>Leia, after finding out that despite her (feigned) cooperation, Tarkin intends to destroy Alderaan anyway.</td>
<td>They do some pretty evil things with that Death Star, but we never hear much of how they affect the rest of the Galaxy. A deleted scene between Luke and Biggs explores this somewhat.</td>
</tr>
<tr>
<td>Luke rushes to the farm, only to find it already raided and his relatives dead harkens to an equally distressing scene in The Searchers.</td>
<td>Luke enters Leia’s cell in a Stormtrooper uniform, and she calmly starts some banter.</td>
</tr>
</tbody>
</table>
The dataset

- Downloaded the pages associated with a show. Took complete sentences from the text and split them into ones with spoilers and those without
- Created a balanced dataset (50% spoilers, 50% not)
- Split into training, development, and test shows
The dataset

- Downloaded the pages associated with a show. Took complete sentences from the text and split them into ones with spoilers and those without.
- Created a balanced dataset (50% spoilers, 50% not).
- Split into training, development, and test shows.
  - Why is this important?
The dataset

- Downloaded the pages associated with a **show**. Took complete sentences from the text and split them into ones with spoilers and those without.
- Created a balanced dataset (50% spoilers, 50% not).
- Split into training, development, and test **shows**
  - Why is this important?
- I’ll show results using SVM; similar results apply to other classifiers.
Step 1: The obvious

- Take every sentence, and split on on-characters.
- Input: “These aren’t the droids you’re looking for.”
Step 1: The obvious

- Take every sentence, and split on on-characters.
- Input: “These aren’t the droids you’re looking for.”

<table>
<thead>
<tr>
<th>Features</th>
<th>False</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>These:1 aren:1 t:1 the:1 droids:1</td>
<td>56</td>
<td>583</td>
</tr>
<tr>
<td>you:1 re:1 looking:1 for:1</td>
<td>34</td>
<td>605</td>
</tr>
</tbody>
</table>

Accuracy: 0.517
Step 1: The obvious

- Take every sentence, and split on on-characters.
- Input: “These aren’t the droids you’re looking for.”

**Features**

<table>
<thead>
<tr>
<th></th>
<th>False</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>56</td>
<td>34</td>
</tr>
<tr>
<td>True</td>
<td>583</td>
<td>605</td>
</tr>
</tbody>
</table>

Accuracy: 0.517

What’s wrong with this?
Step 2: Normalization

- Normalize the words
  - Lowercase everything
  - Stem the words (not always a good idea!)
- Input: “These aren’t the droids you’re looking for.”
Step 2: Normalization

- Normalize the words
  - Lowercase everything
  - Stem the words (not always a good idea!)
- Input: “These aren’t the droids you’re looking for.”

Features

<table>
<thead>
<tr>
<th></th>
<th>False</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>52</td>
<td>27</td>
</tr>
<tr>
<td>True</td>
<td>587</td>
<td>612</td>
</tr>
</tbody>
</table>

Accuracy: 0.520
Step 3: Remove Useless Features

- Use a “stoplist”
- Remove features that appear in > 10% of observations (and aren’t correlated with label)
- Input: “These aren’t the droids you’re looking for.”
Step 3: Remove Usless Features

- Use a “stoplist”
- Remove features that appear in > 10% of observations (and aren’t correlated with label)
- Input: “These aren’t the droids you’re looking for.”

### Features

<table>
<thead>
<tr>
<th>Features</th>
<th>False</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>droid:1</td>
<td>59</td>
<td>20</td>
</tr>
<tr>
<td>look:1</td>
<td>578</td>
<td>621</td>
</tr>
</tbody>
</table>

Accuracy: 0.532
Step 4: Add Useful Features

- Use bigrams ("these_are") instead of unigrams ("these", "are")
- Creates a lot of features!
- Input: “These aren’t the droids you’re looking for.”
Step 4: Add Useful Features

- Use bigrams (“these_are”) instead of unigrams (“these”, “are”)
- Creates a lot of features!
- Input: “These aren’t the droids you’re looking for.”

```
Features
these_are:1 aren_t:1 t_the:1
the_droids:1 you_re:1 re_looking:1
looking_for:1
```

<table>
<thead>
<tr>
<th></th>
<th>False</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>203</td>
<td>104</td>
</tr>
<tr>
<td>True</td>
<td>436</td>
<td>535</td>
</tr>
</tbody>
</table>

Accuracy: 0.578
Step 5: Prune (Again)

- Not all bigrams appear often
- SVM has to search a long time and might not get to the right answer
- Helps to prune features
- Input: “These aren’t the droids you’re looking for.”
Step 5: Prune (Again)

- Not all bigrams appear often
- SVM has to search a long time and might not get to the right answer
- Helps to prune features
- Input: “These aren’t the droids you’re looking for.”

<table>
<thead>
<tr>
<th>Features</th>
<th>False</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>these_are:1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>the_droids:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>re_looking:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>looking_for:1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accuracy: 0.605
How do you find new features?

- Make predictions on the development set.
- Look at contingency table; where are the errors?
- What do you miss?
How do you find new features?

- Make predictions on the development set.
- Look at contingency table; where are the errors?
- What do you miss? **Error analysis!**
- What feature would the classifier need to get this right?
- What features are confusing the classifier?
  - If it never appears in the development set, it isn’t useful
  - If it doesn’t appear often, it isn’t useful
How do you know something is a good feature?

- Make a contingency table for that feature (should give you good information gain)
- Throw it into your classifier (accuracy should improve)
Homework 2

- I’ve given you TV Tropes data
- And development data
- And test data (no labels)
- Only have 15 features (should get you around 56%)
  - For these features, it doesn’t matter (much) which classifier you use
- Your job: add additional features and see how they do
Outline

1. Preparing Data for Classification
2. Evaluating Classification
3. TV Tropes
4. Extracting Features
5. Trying Out Classifiers in Rattle
Selecting a model

- Go to “model” tab and select one of the models
- Make sure the model makes sense
- For logistic regression, select “linear” and “logistic”
Selecting a model

- Go to “model” tab and select one of the models
- Make sure the model makes sense
- For logistic regression, select “linear” and “logistic”

<table>
<thead>
<tr>
<th>Data</th>
<th>Explore</th>
<th>Test</th>
<th>Transform</th>
<th>Cluster</th>
<th>Associate</th>
<th>Model</th>
<th>Evaluate</th>
<th>Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>○ Tree</td>
<td>○ Forest</td>
<td>○ Boost</td>
<td>○ SVM</td>
<td>○ Linear</td>
<td>○ Neural Net</td>
<td>○ Survival</td>
<td>○ All</td>
</tr>
<tr>
<td></td>
<td>○ Numeric</td>
<td>○ Generalized</td>
<td>○ Poisson</td>
<td>○ Logistic</td>
<td>○ Probit</td>
<td>○ Multinomial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For SVM, you also need to select a kernel (try linear first, then “Gaussian” which will be much slower)

Output varies by model
- SVM is least informative (hard to summarize)
- Note you can click **draw** to see decision trees
Decision Trees Have Many Options . . .

- **Prior**: The prior observation probabilities (in case your training data are skewed)
- **Min Split**: How many observations can be in an expanded leaf (pre-test)
- **Min Bucket**: How many observations can be in any resulting leaf (post-test)
- **Max Depth**: How many levels the tree has
- **Complexity**: How many “if” statements the tree has

Defaults are reasonable; tweak if you are having complexity issues.
How’d we do?

- Fit the model by clicking on the “execute” button

- Click on the evaluate tab, have your boxes checked for the models you want to compare

- Select specific datasets (e.g. external csv file)

- For the weather dataset, SVM does best (.14)

- To get explicit predictions, click the score button

- We’ll learn about the other metrics next week!
library(RTextTools)

train.df <- read.csv("train/train.csv")
train.df$sentence <- as.character(train.df$sentence)

dev.df <- read.csv("dev/dev.csv")
dev.df$sentence <- as.character(dev.df$sentence)

train.df <- train.df[1:1000,]
dev.df <- dev.df[1:100,]

data <- rbind(train.df, dev.df)
dev_size <- dim(dev.df)[1]
total_size <- dim(data)[1]

matrix <- create_matrix(cbind(data$sentence, data$trope),
  language="english", removeNumbers=TRUE, stemWords=FALSE,
  weighting=weightTfIdf)

container <- create_container(matrix, data$spoiler, trainSize=1:dev_size,
  testSize=(1+dev_size):total_size, virgin=FALSE)

models <- train_models(container, algorithms=c("MAXENT","SVM"))
results <- classify_models(container, models)