




Michael E. Fisher
Distinguished University Professor
and Regents Professor
Institute for Physical Science and Technology
and Department of Physics
Address:
Institute for Physical Science and Technology
University of Maryland
College Park, MD 207422431
Telephone: (301) 4054819
Fax: (301) 3149404
Email: xpectnil@ipst.umd.edu

A fundamental question in the theory of matter concerns the nature of
different phases, the transitions between them and the associated critical
phenomena. The researches of Michael Fisher address many aspects of these
basic questions ranging from establishing rigorous theorems for the
underlying statistical mechanics through exact analytical and precise
numerical solutions for model systems, dimensional expansions and
renormalization group calculations, Monte Carlo simulations, and
phenomenological and thermodynamic analysis of concrete experimental
observations.
Current work focuses on ionic fluids, their fluctuations,
correlations and criticality, on surface and interfacial phenomena,
including wetting transitions, etc., and on biophysical problems
including motility and the mechanochemistry of molecular motors.
Some recent papers are listed below, followed by a link to selected
biographical details.



Depiction of renormalization group flows in a space of Hamiltonians
representing different real and conceptally possible physical
systems. See Rev. Mod. Phys. 70, 653 (1998).

Selected recent publications by M. E. Fisher:
 The story of Coulombic criticality, J. Stat. Phys. 75,136 (1994).
 On the absence of intermediate phases in the twodimensional Coulomb
gas (M.E.F., X.J. Li and Y. Levin) J. Stat. Phys. 79, 111; 81 [E]
865 (1995).
 The renormalized coupling constants and related amplitude ratios
for Ising systems (S.Y. Zinn, S.N. Lai, and M.E.F.) Phys. Rev. E
54, 11761182 (1996).
 Prewetting transitions in a nearcritical metallic vapor, V.F. Kozhevnikov,
D.I. Arnold, S.P. Naurzakov, and M.E.F., Phys. Rev. Lett. 78, 17351738
(1997).
 Renormalization group theory: Its basis and formulation in statistical
physics, Rev. Mod. Phys. 70, 653681 (1998).
 Fluctuations in electrolytes: the Lebowitz and other correlation
lengths (S. Bekiranov and M.E.F.) Phys. Rev. Lett. 81, 583639 (1998).
 The force exerted by a molecular motor, M.E.F. and A.B. Kolomeisky,
Proc. Nat'l Acad. Sci. USA, 96, 65976602 (1999).
 The YangYang anomaly in fluid criticality: Experiment and scaling
theory (M.E.F. and G. Orkoulas) Phys. Rev. Lett. 85, 696699 (2000).
 Extended kinetic models with waitingtime distributions: exact results
(A.B. Kolomeisky and M.E.F.) J. Chem. Phys. 113, 10 867877 (2000)
 Forcevelocity relation for growing microtubules (A.B. Kolomeisky
and M.E.F.) Biophys. J. 80, 149154 (2001).
 The critical locus of a simple fluid with added salt (Y.C. Kim and
M.E.F.) J. Phys. Chem. B 105, 1178595 (2001).
 Universality class of criticality in the restricted primitive model
electrolyte (E. Luijten, M.E.F. and A. Z. Panagiotopoulos) Phys. Rev.
Lett. 88, 185701:14 (2002).
 A simple kinetic model describes the processivity of myosinV (A.B.Kolomeisky
and M.E.F.) Biophys. J. 84, 16421650 (2003).
 Precise simulation of nearcritical fluid coexistence (Y.C. Kim,
M.E.F. and E. Luijten) [arXiv:condmat/0304032] Phys. Rev. Lett. 91,
065701:14 (2003).
 Ionic criticality: an exactly soluble model (J.N. Aqua and M.E.F.)
[arXiv:condmat/0311491] Phys. Rev. Lett. 92, 135702:14 (2004).
 Discretization dependence of criticality in model fluids: a hard
core electrolyte (Y.C. Kim and M.E.F.) [arXiv:condmat/0402275] Phys.
Rev. Lett. 92, 185703:14 (2004).
 Charge and density fluctuations lock horns: ionic criitcality with powerlaw forces
(J.N. Aqua and M.E.F.) J. Phys. A 37, L241L248 (2004).
 Scaling for interfacial tensions near critical endpoints (S.Y.
Zinn and M.E.F.) [arXiv: condmat/0410673] Phys. Rev. E 71, 011601:117
(2005).
 Interfacial tensions near critical endpoints: experimental checks
of EdGF theory (S.Y. Zinn and M.E.F.) Molec. Phys. 103, 29272942 (2005):
issue in honor of B. Widom
 How multivalency controls ionic criticality (J.N. Aqua, S. Banerjee and M.E.F.)
[arXiv:contmat/0507077] Phys. Rev. Lett. 95, 135701:14 (2005).
 Criticality in charge asymmetric ionic fluids (J.N. Aqua, S. Banerjee
and M.E.F.) [arXiv:condmat/0410692] Phys. Rev. E 72,041501:125(2005).
 Convergence of finelattice discretization for nearcritical fluids (S. Moghaddam,
Y.C. Kim and M.E.F.) [arXiv:condmat/0502169] J. Phys. Chem. B 109, 682437(2005).
 Fluid coexistence close to criticality: Scaling algorithms for precise simulation (
Y.C. Kim and M.E.F.) [arXiv:condmat/0411736] Comp. Phys. Commun. 169, 295300 (2005).
 Singular coexistencecurve diameters: Experiments and simulations (Y.C. Kim and M.E.F.)
[arXiv:condmat/0507369] Chem. Phys. Lett. 414, 185192 (2005).
 Vectorial loading of processive motor proteins: Implementing a landscape picture (
Y.C. Kim and M.E.F.) [arXiv: condmat/0506185] J. Phys.: Condens. Matt. 17, S3821S3838
2005).
 Kinesin crouches to sprint but resists pushing (M.E.F. and Y.C. Kim) Proc. Natl.
Acad. Sci. USA 102, 1620916214 (2005).
 Universality of ionic criticality: Size and chargeasymmetric electrolytes (Y.C. Kim,
M.E.F. and A.Z. Panagiotopoulos) Phys. Rev. 95, 195703:14 (2005).
Other Links



