
127

Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences:
2008 ISPRS Congress Book – Li, Chen & Baltsavias (eds)

© 2008 Taylor & Francis Group, London, ISBN 978-0-415-47805-2

CHAPTER 10

Remote sensing signatures: Measurements, modelling
and applications

Shunlin Liang, Michael Schaepman & Mathias Kneubühler

ABSTRACT: Signatures from five remote sensing domains—spectral, spatial, angular, temporal and 
polarization—provide the basis for the description and discrimination of Earth surfaces and their variability. 
These signatures have been used for a wide range of terrestrial applications. In this chapter, we review the 
measurements, modelling and applications of these signatures with emphasis on recent advances, and a focus 
mainly on optical remote sensing.
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(2005, China; 2007, Switzerland), organized by us on 
behalf of the ISPRS Commission VII Working Group 1, 
reflect the research involving multiple signatures.

10.2 SPECTRAL SIGNATURES

For any given object on the land surface, the amount 
of solar radiation that is reflected or emitted varies 
with wavelength. The spectral signatures are the radi-
ation signals collected at different spectral bands that 
form the basis to classify land surfaces and/or evaluate 
their geophysical and biophysical properties.

10.2.1 Measurements

The spectral properties of land surfaces are measured 
by either multispectral or hyperspectral sensor systems 
depending on the number and spectral width of bands. 
Table 10.1 shows the multispectral bands of some typi-
cal moderate resolution imaging radiometers.

Hyperspectral imagers typically acquire hundreds 
of contiguous spectral bands throughout the visible to 
thermal infrared spectrum. Multispectral signatures 
are discrete compared to the contiguous signatures 
obtained from hyperspectral images. Widely used 
hyperspectral imagers include the airborne AVIRIS, 
CASI, AISA and Hymap, as well as the satellite-
based Hyperion and CHRIS employed mainly for ter-
restrial applications.

10.1 INRODUCTION

The radiation signals (L) received by a remote sen-
sor can be generally represented mathematically as 
follows:

L = ƒ (λ, A, t, Θ, p, Ψ
a
, Ψ

s
) (1)

where λ indicates spectral dependence; A refers 
to the spatial context and t the temporal variations; 
Θ represents the angles specifying the illumination 
viewing geometry and p the degree to which the radia-
tion is polarized; Ψ

a
 and Ψ

s 
represent the parameter 

set describing the atmosphere and the land surface, 
respectively.

One of the most important objectives of terrestrial 
remote sensing is to estimate surface properties (Ψ

s
) 

from radiation signals (L) at specific spectral bands, 
spatial and temporal resolutions, viewing geometry 
and polarization states. These five domains (spec-
tral, spatial, angular, temporal and polarization) are 
denoted as remote sensing signatures (Gerstl 1990).

In the following, we review recent advances in acqui-
sition and use of these five signatures in the aspects of 
measurements, modelling, inversion and applications. 
Although these signatures are discussed separately, 
they are ultimately measured, modelled and utilized 
in combination for the most part. Worldwide confer-
ences, such as the “International Symposium on Physi-
cal Measurements and Signatures in Remote Sensing” 
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Table 10.1. Some of the principal sensors useful for terrestrial moderate resolution remote sensing, revised from 
Townshend & Justice (2002).

Sensor Platform Spatial resolution (m) Swath (km) Spectral bands (nm)

AATSR ERS-2 1000 500 480–500
540–560
630–690
795–835
1550–1700

AVHRR NOAA–POES 1100 2700 580–680
725–1000
1580–1640
3550–3930
10,300–11,300
11,500–12,500

MERIS Envisat 300 575 660–670
1200 1150 855–875

MODIS Terra and Aqua 500 459–479
500 545–565
250 620–670
250 841–876
500 1230–1250
500 1628–1652
500 2105–2155

1000 3929–3989
1000 10,780–11,280
1000 11,770–12,270

POLDER ADEOS 6000 2400 433–453
555–575
660–680
845–885

SeaWiFs OrbView2/Sea Star 1100 2800 443–453
4500 545–565

660–680
845–885

Microwave remote sensing uses several wave-
lengths, which were given code letters during World 
War II and which remain unchanged to this day 
(Table 10.2).

Lidar remote sensing relies on active laser systems 
operating at several wavelengths. Topographic map-
ping and vegetation monitoring Lidars generally use 
1064 nm lasers, while bathymetric systems typically 
use 532 nm frequency lasers due to the ability of this 
frequency to penetrate water with less attenuation.

10.2.2 Modelling

Spectral signatures can be modelled using three meth-
ods: radiative transfer (RT), geometric-optical (GO), 
and computer simulations. The distinction between 
RT and GO models is becoming increasingly blurred 
because hybrid models that integrate RT and GO 

models have been developed. Computer simulation 
models require extensive computer resources and 
processing time and are appropriate for surface radia-
tion simulations. The basic principles and representa-
tive models have been discussed by Liang (2004) 
and different authors of the special issue of Remote 
Sensing Reviews (Liang & Strahler 2000), and recent 
advances are reviewed below.

The development of new radiative transfer models 
has slowed significantly in recent years. An exhaustive 
review of existing literature resulted in only a few pub-
lications describing new RT models in a wide variety 
of fields. For example, Pitman et al. (2005) applied a 
numerical RT algorithm to calculate quartz emissiv-
ity. Kokhanovsky et al. (2005) developed an approxi-
mate snow reflectance model based on the asymptotic 
solution to the RT equation. Li & Zhou (2004) simu-
lated the snow-surface bidirectional reflectance factor 
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(BRF) and hemispherical directional reflectance 
factor (HDRF) of snow-covered sea ice multilayered 
azimuth- and zenith-dependent plane-parallel RT 
model.

In the field of vegetation canopy studies, recent 
efforts are mainly focused on determining the three-
dimensional (3-D) structure of the canopy using 
one-dimensional (1-D) models (Pinty et al. 2004a, 
Rautiainen & Stenberg 2005, Smolander & Stenberg 
2003, Widlowski et al. 2005) or stochastic radiative 
transfer models (Kotchenova et al. 2003, Shabanov 
et al. 2005). Liangrocapart & Petrou (2002) devel-
oped a two-layer model of the bidirectional reflect-
ance of homogeneous vegetation canopies, taking into 
account the anisotropic scattering of both the vegeta-
tion canopy and the background, such as bare soil or 
leaf litter. Community efforts to compare some veg-
etation radiative transfer models are ongoing (Pinty 
et al. 2004b, Widlowski et al. 2007). Nilson et al. 
(2003) demonstrated the possible applications of a 
multipurpose forest reflectance model. Combining 
leaf radiative transfer models with canopy scale mod-
els in various permutations has become more popular 
and is increasingly used in scaling based approaches 
(e.g. PROSPECT/GeoSAIL, PROSPECT/FLIGHT in 
Koetz et al. (2004); PROSPECT/DART (Malenovsky 
et al. 2008); and other coupled approaches in Bacour 
et al. (2002)).

The classic GO models essentially characterize 
the interaction of direct solar radiation with land 
surfaces. Including the diffuse radiation field in the 
GO model leads to a hybrid RT/GO model (Peddle 
et al. 2004). GO models have been used recently 
for classifying forest types and estimating biophysi-
cal parameters (Peddle et al. 2004) and detecting 
forest structural change (Peddle et al. 2003, Zeng 
et al. 2008b) from Thematic Mapper (TM) imagery, 
modelling soil reflectance (Cierniewski et al. 2004), 
determining the gap fraction of forest canopy (Liu 
et al. 2004), and estimating woody plant coverage 

of the grasslands (Chopping et al. 2006), and 
background reflectance (Canisius & Chen 2007) 
from multiangular observations. The same princi-
ple has also been used for topographic correction of 
remote sensing imagery in forested terrain (Soenen 
et al. 2005).

Little progress has been made in developing com-
puter simulation models (e.g. radiosity, Monte Carlo 
ray tracing), but several studies recently use this 
approach. For example, Casa & Jones (2005) esti-
mated potato crop biophysical parameters using a 
look-up table (LUT) created from a ray tracer. Börner 
et al. (2001) developed an end-to-end multispectral 
and hyperspectral simulation tool based on the ray 
tracing principle. Ray-tracing methods have been 
used to simulate both optical and microwave signa-
tures (Disney et al. 2006) and to estimate forest struc-
tural parameters (Kobayashi et al. 2007).

10.2.3 Signature generation and applications

The subset of the spectral signatures generated from a 
set of measurements at different wavebands is usually 
more valuable for specific applications. Colour com-
positing using two or three bands for visual interpreta-
tion is the classic example. Many quantitative models 
or image classifications are normally based on a few 
bands or their combinations. The linear transforma-
tion techniques include principal component transfor-
mation and Tasselled Cap transformation.

More popular methods are based on vegetation 
indices (VI). Earlier developed indices have been 
extensively summarized by Liang (2004). Numerous 
new indices have been put forth. A comprehensive 
analysis of broadband and narrowband vegetation 
indices and their angular sensitivity is described in 
Verrelst et al. (2008). A brief description of some of 
these algorithms follows. Gitelson et al. (2003) com-
pared a series of indices and found the following three 
perform very well:

Table 10.2. Microwave sensor band codes.

Band Frequency (GHz) Wavelength (cm) System applications

Ka 40–26 0.8–1.1 Early airborne radar systems
K 26.5–18.5 1.1–1.7 Early airborne radar systems
X 12.5–8 2.4–3.8 Extensively on airborne systems for military reconnaissance and 

terrain mapping
C 8–4 3.8–7.5 Common on many airborne research systems (NASA AirSAR) 

and spaceborne systems (including ERS-1 and 2 and 
RADARSAT).

L 2–1 15.0–30.0 Used onboard American SEASAT and Japanese JERS-1 satel-
lites and NASA airborne system

P 1–0.3 30.0–100.0 Longest radar wavelengths, used on NASA experimental 
airborne research system
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The last index is linearly related to chlorophyll con-
centrations. Ustin et al. (2008) compared the retrieval 
capacity of indices and models for the plant pigment 
system. In a recent study estimating leaf area index 
(LAI) and crown volume (VOL), Schlerf et al. (2005) 
demonstrated that linear regression models quantify 
LAI and VOL accurately using hyperspectral image 
data. Harris et al. (2005) used the floating-position 
water band index to estimate leaf water moisture. 
To assess the water content of vegetation, they also 
compare leaf water moisture to the normalized dif-
ference water index (NDWI) and the moisture stress 
index (MSI). The normalized difference snow index 
(NDSI) is an indicator of snow cover (Salomonson & 
Appel 2004). Chen et al. (2005b) developed a bio-
logical soil crust index (BSCI) that exaggerates the 
difference between biological soil crusts and bare 
sand, dry plant material or green plant backgrounds. 
Chikhaoui et al. (2005) proposed a “land degrada-
tion” index to characterize land degradation in a small 
Mediterranean watershed using Advanced Space-
borne Thermal Emission and Reflection Radiometer 
(ASTER) data and ground-based spectro-radiometric 
measurements.

Although the conventional multivariate regression 
analyses using spectral signatures are widely used, dif-
ferent machine learning methods and other advanced 
statistical analysis techniques show great potential, 
such as artificial neural network (ANN) methods 
for estimating various biophysical variables (Fang & 
Liang 2003, 2005); genetic algorithms for estimating 
LAI (Fang et al. 2003), regression tree methods for 
estimating fractional vegetation coverage (Hansen 
et al. 2002), Bayesian networks for estimating LAI 
(Kalacska et al. 2005), and support vector machines 
for estimating LAI from multiangular observations 
(Durbha et al. 2007).

Use of spectral signatures via physical reflectance 
or emittance models (see Section 2.2) and optimiza-
tion methods has been popular recently in terrestrial 
remote sensing. For example, Gascon et al. (2004) 
estimated LAI, crown coverage and leaf chlorophyll 
concentration from SPOT and IKONOS imagery 
using a 3-D canopy radiative transfer model. To 
reduce computational requirements, some paramet-
ric functions are determined using LUTs created 
by the 3-D reflectance model. Meroni et al. (2004) 
applied this algorithm to invert LAI from hyperspec-
tral data. Schaepman et al. (2005) inverted biophysi-
cal and biochemical variables from multiangular and 
hyperspectral remote sensing data using a coupled 
leaf-canopy-atmosphere radiative transfer model. 
The multiangle imaging spectroradiometer (MISR) 

science team also used this method to produce land 
surface products (Diner et al. 2005). Qin et al. (2008) 
incorporated the adjoint algorithm of the canopy 
RT model in the optimization process to speed up 
computation.

The high computational demands of the optimiza-
tion approach have led to the use of simpler surface 
reflectance models rather than forcing optimization 
algorithm efficiencies. One of the general trends in 
terrestrial remote sensing is to use simpler empirical 
or semi-empirical models. The optimization algo-
rithms are used to estimate the parameters in these 
simple models. The parameters are then related to sur-
face properties. For example, Widlowski et al. (2004) 
fitted a simple BRDF model to multiangular observa-
tions and then linked the surface structural properties 
to one of the parameters. Chen et al. (2005c) used 
this approach to map the global clumping index from 
multiangular observations.

An alternative solution to overcome the high 
computational demand problem is to use the LUT 
approach, which has been used for a variety of remote 
sensing inversion issues, such as atmospheric correc-
tion (Liang et al. 2006b), estimating LAI (Koetza 
et al. 2005) and incident solar radiation (Liang et al. 
2006a). In an ordinary LUT approach, the dimen-
sions of the table must be large enough to achieve 
high accuracy, which leads to much slower on-line 
searching. Moreover, many parameters must be fixed 
in the LUT method. To reduce the dimensions of the 
LUTs for rapid table searching, Gastellu-Etchegorry 
et al. (2003) developed empirical functions to fit 
the LUT values so that a table searching procedure 
becomes a simple calculation of the local functions. 
Alternatively, Liang et al. (2005) developed a simple 
linear regression instead of table searching for each 
angular bin in the solar illumination and sensor view-
ing geometry. Dorigo et al. (2007) gave an overview 
of models and LUT optimization techniques used in 
agro-ecosystem modelling.

Spectral signatures have been used to estimate 
atmospheric aerosol loadings and water vapour con-
tents that are especially important for atmospheric 
correction of optical remote sensing imagery. The dif-
ferential absorption technique is widely used to esti-
mate the total water vapour content of the atmosphere 
directly from multispectral or hyperspectral imaging 
systems. The general idea is to utilize one spectral 
band in the water absorption region (e.g. 0.94 μm) 
and one or more bands outside of the absorption 
region. In a recent study, Liang & Fang (2004) applied 
an ANN to estimate water vapour from hyperspectral 
data. Miesch et al. (2005) developed a water vapour 
correction algorithm for hyperspectral data using 
Monte Carlo simulations. A relatively long history 
exists for estimating aerosol loadings from remotely 
sensed imagery using the spectral signatures such as 
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the “dark-object” methods (e.g. Hsu et al. 2004, Liang 
et al. 1997) and the hyperspectral method (Liang & 
Fang 2004);

10.3 SPATIAL SIGNATURES

Land surface information is acquired by sensors at 
different spatial resolutions, which are usually charac-
terized by the pixel size on the ground. Spatial resolu-
tion is sometimes expressed in terms of Instantaneous 
Field of View (IFOV). The spatial signature depends 
on the spatial resolution of the sensor and its spatial 
response in addition to the surface variations. Gener-
ally speaking, the coarser the spatial resolution, the 
less variation there is between pixels in the image 
(Curran 2001, Jupp et al. 1988, 1989, Woodcock & 
Strahler 1987).

10.3.1 Measurements

Current remote sensing data are of different spatial 
resolutions, such as ultra resolution (e.g. Quick-
Bird, Ikonos), fine resolution (e.g. ETM+, ASTER), 
medium resolution (e.g. MODIS, MERIS) and coarse 
resolution. The microwave sensors are also providing 
finer spatial resolutions from kilometres to metres 
(Table 10.3).

10.3.2 Modelling

Spatial signatures characterize the spatial dependen-
cies of pixel values, which are generally spatially auto-
correlated, non-stationary, non-normal, irregularly 

spaced and discontinuous. Different methods can be 
used to model and characterize these spatial signatures 
and we discuss a few typical methods. Although there 
are also many other methods such as the Moran’s I spa-
tial autocorrelation metric for coral reef study (Purkis 
et al. 2006), lacunarity methods and fractal triangular 
prisms for classifying urban images (Myint & Lam 
2005), they are not addressed here. Additional details 
are available elsewhere (Lam 2008).

10.3.2.1 Geo-statistics
Geo-statistics, as part of spatial statistics, have been 
widely employed in remote sensing (e.g. Bailey & 
Gatrell 1995, Cressie 1993, Curran 1988, Goovaerts 
1997, Woodcock et al. 1988a, 1988b). The typical 
geo-statistical measures may include: (i) variogram, 
(ii) covariance function, (iii) correlogram, (iv) general 
relative variogram, (v) pairwise relative variogram, 
(vi) rodogram, and (vii) madogram. Combining GO 
models with geo-statisitcal methods such as regres-
sion kriging or annotated co-kriging substantially 
improves the elimination of model imperfections and 
allows the production of spatially continuous infor-
mation (Zeng et al. 2008a).

10.3.2.2 Grey level co-occurrence matrix
Co-occurrence measures use a grey tone spatial 
dependence matrix to calculate texture values of 
the image. This is a matrix of relative frequencies 
in which pixel values occur in two neighbouring 
processing windows separated by a specified distance 
and direction. It shows the number of occurrences 
of the relationship between a pixel and its specified 
neighbour. This type of spatial structure informa-
tion is particularly useful for high resolution images. 

Table 10.3. Characteristics of some typical microwave sensors, adapted from Shi (2008).

Sensor Frequency in GHz Polarization Incidence In degree
Pixel Resolution 
in m

Available 
Time Frame

ERS-1/2 5.3 VV Fixed at 23º 3.8 to 12.5 Since 1991/1995
ASAR 5.33 Dual-polarization varying with mode 3.8 to 150 Since 2002
Radarsat-1 5.3 HH varying with mode 10 to 100 Since 1997
SIR-C/X-SAR 1.25 and 5.3/9.6 Fully 

polarimetric/VV
varying with data 

takes
6 to 27 April and 

October, 1994
JERS-1 1.27 HH Fixed at 35° 18 1994–1997
PALSAR 1.27 Fully polarimetric, 

Dual-polarization, 
and HH

varying with mode 10 to 100 Since Dec. 2005

Radarsat-2 5.3 Fully polarimetric, 
Dual-polarization, 
and HH

Varying with mode 3 to 100 2006

Terral-SAR 9.6 VV or 
Dual-polarization

Varying with mode 1 to 16 2006
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Many investigations consider the use of the grey level 
co-occurrence probability texture features for classi-
fication purposes only (Jobanputra & Clausi 2006).

10.3.2.3 Fourier transformation
Power spectrum analysis is useful for those images 
that have regular wave patterns with a constant inter-
val, such as wave patterns of sand dunes. Fourier 
transformation is applied to determine the power 
spectrum, which gives the frequency and direction 
of the pattern. Fourier transformations are typically 
used for the removal of noise such as striping, spots, 
or vibration in imagery by identifying periodicities 
(areas of high spatial frequency).

10.3.2.4 Wavelet transform
The wavelet transform can be effectively used as a 
spatial analysis tool for modelling spatial relation-
ships of remote sensing data. Wavelet analysis is a 
technique to transform an array of N numbers from 
their actual numerical values to an array of N wavelet 
coefficients.

Since the wavelet functions are compact, the wave-
let coefficients measure only the variations around a 
small region of the image data. This property makes 
wavelet analysis very useful for image processing; the 
“localized” nature of the wavelet transform allows 
easy identification of features in the image data 
such as spikes (e.g. noise or discontinuities), discrete 
objects, edges of objects, etc. The localization also 
implies that a wavelet coefficient at one location is 
not affected by the coefficients at another location in 
the data. This makes it possible to remove “noise” of 
all different scales from a signal, simply by discard-
ing the lowest wavelet coefficients.

10.3.2.5 Markov random field models
A Markov random field (MRF) is recognized as a 
powerful stochastic tool to model the joint probability 
distribution of image pixels in terms of local spatial 
interactions. A wide range of MRF models have been 
proposed over the last several decades. Essentially, 
an MRF model considers an image as a realization 
of a Markov random field, and is often parameter-
ized by a function, consisting of two basic compo-
nents: observable variables and model parameters. 
MRF models can be used not only to extract texture 
features from image textures but also to model the 
image segmentation problem. Multiresolution spa-
tial models or approximate kriging methods have 
been adapted recently to handle massive data sets for 
imputation and smoothing (Magnussen et al. 2007).

10.3.2.6 Spatial scaling
Merging images of different spatial and spectral reso-
lutions to create a high spatial resolution multispectral 

combination is considered a spatial scaling process. 
Various approaches have been proposed to integrate 
image data with different spatial resolutions (Pohl & 
van Genderen 1998, Ranchin et al. 2003, Vesteinsson 
et al. 2008).

Spectral (un)mixing is an algorithm that estimates 
the percentage of each land cover (called endmem-
bers) within each low resolution multi- and hyper-
spectral pixel (Asner & Lobell 2000, Gross & Schott 
1998), which is considered as a spatial downscal-
ing problem. Here we do not attempt to distinguish 
subpixel mapping, unmixing, or soft classification. 
Recent developments include unmixing with variable 
endmembers (Garcia-Haro et al. 2005), the directional 
mixing method (Garcia-Haro et al. 2006), stochastic 
mixing model for hyperspectral imagery (Eismann & 
Hardie 2004, 2005), unmixing using neural networks 
and wavelets (Mertens et al. 2004) and genetic algo-
rithms (Mertens et al. 2003).

10.3.3 Applications

Geo-statistics has been widely applied in quantita-
tive remote sensing (Curran & Atkinson 1998), such 
as in studying the structure and understanding the 
nature of spatial variation in remote sensing images 
(Woodcock et al. 1988b, Ramstein & Raffy 1989); in 
forestry to analyse forest stand structure (Cohen et al. 
1990, St-Onge & Cavayas 1995); in the estimation of 
structural damage in balsam fir stands (Franklin & 
Turner 1992); in the sampling of ground data that is to 
be correlated with remotely sensed data (Atkinson & 
Emery 1999); and in estimating biomass (Phinn et al. 
1996).

Wavelet transformation has been used for image 
classification (Kandaswamy et al. 2005, Meher et al. 
2007, Schmidt et al. 2007), segmentation (De Grandi 
et al. 2007), compression (Li et al. 2007), noise 
removal (Chen et al. 2006b), and fusion (Amolins 
et al. 2007).

Random field models have been used for identify-
ing urban areas from optical imagery (Zhong & Wang 
2007), image classification (Luo et al. 2007) and 
segmentation (Xia et al. 2006), and spatial-temporal 
urban landscape change analysis using a Markov 
chain model and the genetic algorithm (Tang et al. 
2007).

The spatial co-occurrence matrix has been used 
for evaluating land development (Unsalan 2007), 
estimating forest structure variables (Kayitakire et al. 
2006), predicting population density (Liu et al. 2006), 
and discriminating urban features (Myint et al. 2004, 
Zhang et al. 2003).

Boucher et al. (2006) presented a method that 
exploits both the temporal and spatial domains of 
time series satellite data to map land cover changes.
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10.4 ANGULAR SIGNATURES

Many spaceborne sensors can observe earth surfaces 
off-nadir in order to increase swath width and tem-
poral resolution, and to exploit angular variations in 
the reflectance of various land surfaces. Angular sig-
natures are the observations of surfaces illuminated 
and measured at different directions. They may be 
considered as noise in calculating the vegetation indi-
ces, for example, and we need to remove the angular 
dependence. On the other hand, angular signatures 
can be extremely valuable for estimating land surface 
variables.

10.4.1 Measurements

The spaceborne sensors for near-simultaneous multi-
angular acquisition include the NASA MISR flown 
on the NASA Earth Observing System Terra; the 
French Space Agency’s (CNES) POLarization and 
Directionality of the Earth’s Reflectance (POLDER), 
flown initially on the Japanese ADEOS satellite series 
and currently on the CNES Parasol platform; and 
Sira (UK) Ltd.’s Compact High Resolution Imaging 
Spectrometer (CHRIS), flown on the European Space 
Agency (ESA) Proba-1 satellite. Terra was launched in 
December 1999, Proba in 2001 and Parasol in 2004.

To perform nearly simultaneous observations from 
space at multiple view angles, two technical solutions 
may be used: a) multiple optics or b) accurate along 
track pointing. The Along Track Scanning Radiom-
eter 1 (ATSR-1) flown on ERS-1 was based on solu-
tion (a). ATSR-1 was followed by ATSR-2 in 1995 
and the Advanced ATSR (AATSR) on ENVISAT in 
2001. All ATSR sensors acquire dual-view angle data 
(approximately 0° and 53° at surface) in four spec-
tral channels for ATSR-1 and seven spectral channels 
for ATSR-2 and AATSR. The use of the along track 
scanning technique makes it possible to observe the 
same point on the Earth’s surface at two view angles 
through two different atmospheric paths within a 
short period of time.

Multiangular data sets can be acquired sequentially 
rather than near-simultaneously, and work with these 
accumulating, or “sequential”, systems is also making 
important contributions to multiangle remote sensing.

10.4.2 Modelling, inversion and applications

The basic modelling methods are very similar to those 
described in Section 2.2, and the inversion methods 
focus mainly on physical approaches. The recent 
paper by Diner et al. (2005) in terms of MISR and 
three review papers on the optical and thermal multi-
angular remote sensing (Schaepman 2007, Chopping 
2008, Menenti et al. 2008) provide comprehensive 

discussions. Angular reflectance terminology has 
seen further standardization efforts, resulting in a 
comprehensive overview of multiangular data prod-
ucts (Schaepman-Strub et al. 2006). In the following, 
only a few application examples are introduced.

Angular signatures have been used to estimate 
aerosol properties (Grey et al. 2006, Martonchik et al. 
2002), fractional vegetation coverage (North 2002, 
Roujean & Lacaze 2002), LAI and FPAR (Casa & 
Jones 2005, North 2002, Qi et al. 2000, Roujean & 
Breon 1995, Zhang et al. 2000), canopy clumping 
index (Chen et al. 2005c), biochemical parameters 
(Kimes et al. 2002, Kuusk 1998), surface albedo 
(Schaaf et al. 2008), and land surface skin tem-
perature and emissivity (Coll et al. 2006, Jimenez-
Munoz & Sobrino 2007, Menenti et al. 2008, Sobrino 
et al. 2004).

There are additional studies combining angular 
signatures with other signature types (Baret & Buis 
2008). For example, Kimes et al. (2006) estimated 
forest structural data from the airborne Laser Vegeta-
tion Imaging Sensor and Airborne MISR (AirMISR). 
Kneubühler et al. (2006) assessed the spectral behav-
iour of agricultural crop stands using multitemporal 
angular CHRIS/PROBA data. In fact, angular signa-
tures are almost always combined with spectral signa-
tures (Diner et al. 2005).

10.5 TEMPORAL SIGNATURES

Temporal signatures are derived from time sequences 
of observations. They are particularly significant for 
monitoring the Earth’s environmental changes.

10.5.1 Measurements

The measurement of temporal signatures is syn-
onymous with temporal resolution and other related 
terms, such as the “repeat” cycle or “revisit time”. 
Temporal resolution depends on various other fac-
tors, including the satellite’s orbital altitude and the 
sensor’s view angle (which together influence the 
image’s area of coverage, or swath width), the instru-
ment’s tilting capabilities and the latitude of the area 
of interest (Aplin 2006).

The current and planned Landsat-type satellites 
cover the complete equatorial surface during each 
orbital repeat cycle by having ground swaths between 
120 and 200 kilometres. Their orbital periods, and 
thus global coverage times, vary from 16 days for 
Landsat to 22, 24 and 26 days for the Indian, French 
and Chinese/Brazilian satellites. Taken singly, even 
these repeat cycles are too long for many applications. 
The moderate resolution satellites (Table 10.1) have 
much higher temporal resolutions, typically daily. For 
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MODIS, the temporal resolutions, which depend on 
the geographic location, are shown in Figure 10.1.

To monitor the temporal variations of the dynamic 
atmospheric system for accurate weather and climate 
prediction, geo-stationary satellites are operational in 
geo-stationary orbits and are also useful for land envi-
ronmental monitoring. The imaging sensors acquire 
data typically every 15–30 minutes.

10.5.2 Modelling

Before reviewing the modelling techniques, it is 
helpful to discuss three pre-processing techniques, 
namely, temporal compositing, temporal smoothing, 
and gap filling.

10.5.2.1 Temporal compositing
One of the most common techniques used to obtain 
cloud-free and spatially coherent images is tempo-
ral compositing (Cihlar et al. 1994, Holben 1986). 
Compositing is a technique that for any given pixel 
selects the date that best fits a given criterion, for a 
pre-specified period of time.

The first compositing algorithm developed and 
most commonly used is the normalized difference 
vegetation index (NDVI) maximum value compos-
ite (Holben 1986). Several other compositing algo-
rithms have been studied, including the Soil Adjusted 
Vegetation Index (SAVI) maximum value composite 
(Qi & Kerr 1997), minimum value composite of the 
red band; NDVI maximum value composite followed 
by the minimum value of the viewing zenith angle 
(Cihlar et al. 1994). Cabral et al. (2003) compared 
five different algorithms using vegetation data, 
including maximization of NDVI, minimization of 
the red channel, maximization of NDVI followed by 

minimization of short-wave infrared, the third lowest 
value of near-infrared, and the third lowest darkness 
value (defined as the arithmetic mean of the red and 
NIR bands). Selection of the third lowest values is 
based on the assumption that there is a low likelihood 
of a cloud shadow falling on a given pixel more than 
twice, over a period of one month.

10.5.2.2 Temporal smoothing
Temporal compositing is a simple approach, but if the 
composite period is long, the land surface does not 
remain static; and if it is too short, the atmospheric 
disturbance cannot be removed effectively, especially 
in cloudy regions. For example, there exist many low 
quality pixels in 8- or 16-day composite MODIS prod-
ucts (Moody et al. 2005). Several methods, based on 
interpolation of time series data, have been proposed 
to remove such noise and to reconstruct high quality 
NDVI time-series data. These methods can be gener-
ally categorized into two types. The first type includes 
removing noise in the time domain, such as the best 
index slope extraction (BISE) algorithm (Viovy et al. 
1992), the asymmetric Gaussian function fitting 
approach (Jonsson & Eklundh 2002), the weighted 
least squares linear regression approach (Sellers et al. 
1994), the Savitzky-Golay filter approach (Chen et al. 
2005a) and the ecosystem-dependent temporal inter-
polation technique (Moody et al. 2005). The second 
type includes noise removal methods in the frequency 
domain, such as Fourier-based fitting methods 
(Roerink et al. 2000).

Lu et al. (2007) applied a wavelet-based method to 
remove the contaminated data from MODIS NDVI, 
LAI and albedo time-series, with a comparison with 
the BISE algorithm, Fourier-based fitting method, 
and the Savitzky-Golay filter method.

10.5.2.3 Gap filling
Many space agencies (e.g. NASA) are routinely pro-
ducing high-level land products, which are usually 
spatially and temporally discontinuous due to cloud 
cover, seasonal snow and instrument problems. To 
enable these products to be used with their various 
kinds of gaps, it is intuitively appealing to use either 
temporal or spatial filters. Several mathematical fil-
ters have been used to fill gaps in remotely sensed 
data, such as simple linear interpolation, BISE (Viovy 
et al. 1992), Fourier transformation (Hermance 2007, 
Julien et al. 2006, Roerink et al. 2000), Asymmet-
ric Gaussian filter (Jonsson & Eklundh 2002), 
Savitzky-Golay filter (Chen et al. 2005a), or locally 
adjusted cubic-spline capping method (Chen et al. 
2006a). These methods have been used mainly to 
restore the NDVI profile (Cihlar 1996, Sellers et al. 
1994), but they can also be used for LAI with some 
adjustments.

Figure 10.1. Number of MODIS overpass counts over North 
America based on the Terra and Aqua orbital simulation 
from GMT 12:00 to 24:00, 16 June 2006 (Wang et al. 2008). 
(see colour plate page 493)
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Moody et al. (2005) tried to combine both tempo-
ral and spatial methods and developed an ecosystem-
dependent temporal interpolation technique to fill 
missing or snow-covered pixels in the MODIS albedo 
data product. Fang et al. (2007, 2008) have devel-
oped a data filtering algorithm, called the temporal 
spatial filter (TSF), which integrates both spatial and 
temporal characteristics for different plant functional 
types.

10.5.2.4 Functional representation
Fisher (1994a,b) described the NDVI temporal pro-
file using an empirical statistical model for agri-
culture crops, each crop corresponding to a set of 
coefficients. The formula is a double logistic function 
with five coefficients (k, c, p, d, q) and two constant 
values (vb and ve):

NDVI t vb
k

c t p

k vb ve

d t q
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= +

+ − −
− + −
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where t is the time variable representing the day of 
the year, January 1 is set zero, k is related to the 
asymptotic value of NDVI, c and d ( day−1 ) denote 
the slopes at the first and second inflection points, 
p and q (day) are the dates of these two points, vb 
and ve are the NDVI values at the beginning and the 
end of the growing season. This function was used 
to decompose the temporal NDVI profile of a mixed 
pixel into the temporal NDVI profiles of several spe-
cific covers within the mixed pixel.

The temporal profiles of NDVI from AVHRR have 
also been presented by the classic Fourier function:
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where T is the period of record. The low-order finite 
Fourier series has been used for classifying land sur-
face cover types (Liang 2001).

A simplified version has been used for smoothing 
NOAA NDVI data (Hermance et al. 2007, Jonsson & 
Eklundh 2004):
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Another representation is the modified double-

Gaussian curve
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where the (a t b⋅ + ) is the “soil line” with parameters 
a and b.

10.5.3 Applications

Land surface change detection has to rely largely on 
the temporal signatures and some of the references 
can be found in the recent review papers (Coppin 
et al. 2004, Lam 2008).

These data smoothing approaches have also been 
utilized in a variety of other applications. The BISE 
algorithm has been used to classify vegetation and 
forest types (Xiao et al. 2003). The Fourier-based 
fitting approach has been employed to derive ter-
restrial biophysical parameters (Moody & Johnson 
2001). Vegetation seasonality information has been 
extracted by use of Asymmetric Gaussian function 
fitting methods (Jonsson & Eklundh 2002). The 
ecosystem-dependent, temporal-interpolation tech-
nique can provide researchers with a snow-free, land-
surface albedo product (Moody et al. 2005). Koetz 
et al. (2007) used multi-temporal CHRIS/PROBA 
data for LAI estimation based on an RTM inversion 
approach. The temporal signatures from the polar 
orbiting satellite data have been used recently for 
estimating aerosol optical depth (Liang et al. 2006b, 
Zhong et al. 2007) and incident solar radiation (Liang 
et al. 2006a, Liang et al. 2007).

Before finishing this section, we have to mention 
the terrestrial applications of temporal signatures 
from geo-stationary satellite data, including map-
ping surface albedos (Govaerts & Lattanzio 2007, 
Govaerts et al. 2004, Wang et al. 2007), land surface 
skin temperature (Oku & Ishikawa 2004, Sun et al. 
2004), and solar radiation (Pinker et al. 2007, Wang 
et al. 2007, Zheng et al. 2007).

10.6 POLARIZATION SIGNATURES

Polarization is the property of electromagnetic waves 
that describes the direction of the electric field and 
is used to distinguish between the different directions 
of oscillation of electromagnetic waves propagat-
ing in the same direction. Polarization by scattering 
is observed as light passes through the atmosphere. 
Solar light reflected by natural surfaces is partly 
polarized. The surface polarized reflectance is highly 
anisotropic, and varies between zero close to the 
backscattering direction and a few per cent in the 
forward scattering direction. For a given observation 
geometry, the polarization is about twice as large over 
the pixels classified as “desert” as those over veg-
etated surfaces.
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Polarization signatures represent the vector nature 
of the optical field across a scene. While the spec-
tral signature is more about surface inherent prop-
erties, polarization signature tells us about surface 
features, shape, shading and roughness. Polarization 
tends to provide information that is largely uncor-
related with spectral and intensity images, and thus 
has the potential to enhance many fields of optical 
metrology.

An earlier review of the understanding and pros-
pects of using polarized light was given by Herman & 
Vanderbilt (1997).

10.6.1 Measurements

In outdoor measurements, the most rapid variations of 
polarization with wavelength result from atmospheric 
spectral features. In the visible to shortwave-IR spec-
trum, there is strong variation with atmospheric aero-
sol content.

Polarized reflectance measurements have been 
made in the laboratory (Talmage & Curran 1986), 
at the surface (Breon et al. 1995a, Shibayama & 
Watanabe 2007), and from aircraft (Deuze et al. 
1993) and space from POLDER. Despite the short 
life of the POLDER instrument, a unique set of 
observations on the global distribution of polarized 
reflectance was obtained. In addition to its multispec-
tral and multidirectional capabilities, the POLDER 
radiometer is able to measure the polarization status 
of the reflected light at three wavelengths (443, 670 
and 865 nm).

Before the launch of the ADEOS platform, the 
only spaceborne measurements of the polarized light 
reflected by the Earth were acquired using a photo-
graphic device from the space shuttle (Egan et al. 
1991, Roger et al. 1994).

Polarization signatures are extremely valuable 
in microwave remote sensing. Horizontal polariza-
tion is much more sensitive to changes in the soil 
dielectric constant than vertical polarization meas-
urements and information on the polarization differ-
ence has been used to characterize the vegetation in 
several studies and algorithms (Jackson 2008). The 
RADAR systems have evolved from single polari-
zation to multi-polarization (Shi 2008), as shown in 
Table 10.3.

Polarization is also useful in Lidar remote sensing. 
For example, the presence of significant cross-polar-
ized light relative to a linearly polarized transmitter 
can indicate the presence of ice in clouds or non-
spherically shaped dust particles in the atmosphere. 
Polarized Lidars have been developed to measure 
Stokes parameters of backscattered light in studies of 
forest and Earth surface properties, and to enhance 
contrast in the Lidar detection of fish (Tyo et al. 
2006).

10.6.2 Modelling

Modelling of polarization signatures is mainly based 
on radiative transfer theory in the vector form. Many 
publically available RT codes are in the vector format. 
A widely used radiative transfer code (6S) in optical re-
mote sensing has a vector version now (Kotchenova & 
Vermote 2007, Kotchenova et al. 2006).

It is believed that polarized light is generated at 
the surface by specular reflection on the leaf surfaces 
or the soil facets. This hypothesis has been used to 
elaborate analytical models for the polarized reflect-
ance of vegetation (Rondeaux & Herman 1991, 
Vanderbilt & Grant 1985) and bare soils (Breon et al. 
1995b). For example, Nadal & Breon (1999) devel-
oped a simple polarized reflectance function to fit the 
POLDER data:
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where F
p
(α      ) is the specular reflectance of the Fresnel 

equation with the incident angle α, ρ and β are two 
parameters to be adjusted on the measurements for 
each cover type. ρ is the “saturation” value, whereas 
ρβ is the slope of the linear relationship toward the 
large scattering angles. θs (μ θs s= cos( )) and θv
(μ θv v= cos( ) ) are the solar and viewing zenith 
angles, ϕ is the relative azimuth angle between the 
solar illumination and viewing directions.

10.6.3 Applications

Polarization signatures can be treated as noise or sig-
nal. For most optical sensors, polarization effects are 
considered noise that requires correction.

Due to mirrors, gratings and prisms, the radiomet-
ric response function depends on the polarization of 
the incoming light. A correct radiometric calibration 
therefore requires knowledge of both the polarization 
properties of the instrument (measured before launch) 
and the actual polarization of the incoming light (meas-
ured for each observed pixel). Schutgens & Stammes 
(2002, 2003) developed the radiometric calibration 
methods for the polarization-sensitive spaceborne 
instruments for the correct retrieval of data products 
that require absolute radiances. Sun & Xiong (2007) 
analysed the MODIS visible bands sensitive to polari-
zation of incident light.

Levy et al. (2004) demonstrated that disregarding 
polarization introduces little error into global and 
long-term averages aerosol retrieval, yet can produce 
very large errors on smaller scales and individual aer-
osol retrievals. This correction has been incorporated 
into the latest MODIS aerosol retrieval algorithm 
(Levy et al. 2007).
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The polarization signature, characterized by the 
degree of polarization and the polarization direction, 
may contain some information about the surface such 
as its roughness (Curran 1981), water content (Curran 
1978), crop types (Shibayama & Akita 2002), or the 
leaf inclination distribution (Rondeaux & Herman 
1991, Shibayama & Watanabe 2007). Shibayama 
et al. (2007) linked the polarization of reflected light 
from crop canopies measured in the field with the leaf 
inclination angle.

Kokhanovsky et al. (2007) inter-compared the 
aerosol optical thickness (AOT) at 0.55 μm retrieved 
using different satellite instruments and algorithms 
based on the analysis of backscattered solar light for a 
single scene over central Europe. These algorithms are 
based on spectral, angular or polarization signatures. 
Studies demonstrate the great potential of polarization 
signatures in estimating AOT (Hasekamp & Landgraf 
2007). Kacenelenbogen et al. (2006) analysed the 
relationship between daily fine particle mass concen-
tration (PM2.5) and columnar aerosol optical depth 
derived from POLDER.

10.7 CONCLUSIONS

Five remote sensing signatures have been evaluated in 
terms of their measurement, modelling and applica-
tion potential. These signatures were discussed sepa-
rately in this chapter, but as has been demonstrated 
they are used jointly in many cases. Integration of 
data sets from multiple sources with different sig-
natures will continue to play a critical role in future 
remote sensing research. In particular, advanced data 
assimilation schemes (Liang & Qin 2008), evidential 
reasoning (e.g. Sun & Liang 2008) and bridging scal-
ing gaps from local to biome level will be of increas-
ing interest.

ACKNOWLDEGMENTS

We acknowledge the support of all WG VII/1 mem-
bers and participants of the spectral signatures con-
ference series contributing to the advancement of this 
research field. We gratefully acknowledge support 
from NASA, ESA and CAS, substantially contribut-
ing to these efforts.

REFERENCES

Amolins, K., Zhang, Y. & Dare, P. 2007. Wavelet based 
image fusion techniques—An introduction, review and 
comparison. ISPRS Journal of Photogrammetry and 
Remote Sensing 62: 249–263.

Aplin, P. 2006. On scales and dynamics in observing the 
environment. International Journal of Remote Sensing 
27: 2123–2140.

Asner, G.P., & Lobell, D.B. 2000. A biogeophysical approach 
for automated SWIR unmixing of soils and vegetation. 
Remote Sensing of Environment 74: 99–112.

Atkinson, P. & Emery, D. 1999. Exploring the relation 
between spatial structure and wavelength: Implications 
for sampling reflectance in the field. International Jour-
nal of Remote Sensing 20: 2663–2678.

Bacour, C., Jacquemoud, S., Leroy, M., Hautceur, O., Weiss, 
M., Prevot, L., Bruguier, N. & Chauki, H. 2002. Reli-
ability of the estimation of vegetation characteristics by 
inversion of three canopy reflectance models on airborne 
POLDER data. Agronomie, 22: 555–565.

Bailey, T.C. & Gatrell, A.C. 1995. Interactive Spatial Data 
Analysis. Harlow: Longman.

Baret, F. & Buis, S. 2008. Estimating Canopy Characteristics 
from Remote Sensing Observations: Review of Methods 
and Associated Problems. In S. Liang (ed.), Advances in 
Land Remote Sensing: System, Modelling, Inversion and 
Application, Chapter 7: 173–201. New York: Springer.

Börner, A., Wiest, L., Keller, P., Reulke, R., Richter, R., 
Schaepman, M. & Schläpfer, D. 2001. SENSOR: A tool 
for the simulation of hyperspectral remote sensing sys-
tems. ISPRS Journal of Photogrammetry and Remote 
Sensing 55: 299–312.

Boucher, A., Seto, K.C. & Journel, A.G. 2006. A novel 
method for mapping land cover changes: Incorporating 
time and space with geostatistics. IEEE Transactions on 
Geoscience and Remote Sensing 44: 3427–3435.

Breon, F.M., Tanre, D., Lecomte, P. & Herman, M. 1995a. 
Polarized Reflectance of Bare Soils and Vegetation—
Measurements and Models. IEEE Transactions on Geo-
science and Remote Sensing 33: 487–499.

Breon, F.M., Tanre, D., Lecomte, P. & Herman, M. 1995b. 
Polarized reflectance of bare soils and vegetation: Meas-
urements and models. IEEE Transactions on Geoscience 
and Remote Sensing 33: 487–499.

Cabral, A., De Vasconcelos, M.J.P., Pereira, J.M.C., 
Bartholome, E. & Mayaux, P. 2003. Multi-temporal 
compositing approaches for SPOT-4 VEGETATION. 
International Journal of Remote Sensing 24: 3343–3350.

Canisius, F. & Chen, J.M. 2007. Retrieving forest back-
ground reflectance in a boreal region from Multi-anglo 
Imaging SpectroRadiometer (MISR) data. Remote Sens-
ing of Environment 107: 312–321.

Casa, R. & Jones, H.G. 2005. LAI retrieval from multian-
gular image classification and inversion of a ray tracing 
model. Remote Sensing of Environment 98: 414–428.

Chen, J., Jonsson, P., Tamura, M., Gu, Z.H., Matsushita, B. & 
Eklundh, L. 2005a. A simple method for reconstructing 
a highquality NDVI time-series data set based on the 
Savitzky-Golay filter. Remote Sensing of Environment 
91: 332–344.

Chen, J., Zhang, M.Y., Wang, L., Shimazaki, H. & Tamura, 
M. 2005b. A new index for mapping lichen-dominated 
biological soil crusts in desert areas. Remote Sensing of 
Environment 96: 165–175.

Chen, J.M., Deng, F. & Chen, M.Z. 2006a. Locally adjusted 
cubic-spline capping for reconstructing seasonal trajecto-
ries of a satellite-derived surface parameter. IEEE Transac-
tions on Geoscience and Remote Sensing 44: 2230–2238.



138

Chen, J.M., Menges, C.H. & Leblanc, S.G. 2005c. Global 
mapping of foliage clumping index using multi-angu-
lar satellite data. Remote Sensing of Environment 97: 
447–457.

Chen, J.S., Lin, H., Shao, Y. & Yang, L.M. 2006b. Oblique 
striping removal in remote sensing imagery based on 
wavelet transform. International Journal of Remote 
Sensing 27: 1717–1723.

Chikhaoui, M., Bonn, F., Bokoye, A.I. & Merzouk, A. 2005. 
A spectral index for land degradation mapping using 
ASTER data: Application to a semi-arid Mediterra-
nean catchment. International Journal of Applied Earth 
Observation and Geoinformation 7: 140–153.

Chopping, M. 2008. Terrestrial Applications of Multiangle 
Remote Sensing. In S. Liang (ed.), Advances in Land 
Remote Sensing: System, Modelling, Inversion and Appli-
cation, Chapter 5. New York: Springer.

Chopping, M.J., Su, L.H., Laliberte, A., Rango, A., Peters, 
D.P.C. & Martonchik, J.V. 2006. Mapping woody plant 
cover in desert grasslands using canopy reflectance mod-
elling and MISR data. Geophysical Research Letters 33, 
Art. No. L17402.

Cierniewski, J., Gdala, T. & Karnieli, A. 2004. A hemispherical-
directional reflectance model as a tool for understanding 
image distinctions between cultivated and uncultivated bare 
surfaces. Remote Sensing of Environment 90: 505–523.

Cihlar, J. 1996. Identification of contaminated pixels in 
AVHRR composite images for studies of land biosphere. 
Remote Sensing of Environment 56: 149–163.

Cihlar, J., Manak, D. & Diorio, M. 1994. Evaluation of 
Compositing Algorithms for Avhrr Data over Land. 
IEEE Transactions on Geoscience and Remote Sensing 
32: 427–437.

Cohen, W., Spies, T. & Bradshaw, G. 1990. Semivariograms 
of digital imagery for analysis of conifer canopy struc-
ture. Remote Sensing of Environment 34: 167–178.

Coll, C., Caselles, V., Galve, J.M., Valor, E., Niclos, R. & 
Sanchez, J.M. 2006. Evaluation of split-window and 
dual-angle correction methods for land surface tempera-
ture retrieval from Envisat/Advanced Along Track Scan-
ning Radiometer (AATSR) data. Journal of Geophysical 
Research-Atmospheres 111: Art. No. D12105.

Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B. & 
Lambin, E. 2004. Digital change detection methods in 
ecosystem monitoring: a review. International Journal of 
Remote Sensing 25: 1565–1596.

Cressie, N. 1993. Statistics for Spatial Data. New York: John 
Wiley and Sons, Inc.

Curran, P. 1981. The Relationship between Polarized 
Visible-Light and Vegetation Amount. Remote Sensing of 
Environment 11: 87–92.

Curran, P. & Atkinson, P. 1998. Geostatistics and remote 
sensing. Progress in Physical Geography 22: 61–78.

Curran, P.J. 1978. Photographic Method for Recording of 
Polarized Visible-Light for Soil Surface Moisture Indica-
tions. Remote Sensing of Environment 7: 305–322.

Curran, P.J. 1988. The semi-variogram in remote sensing: an 
introduction. Remote Sensing of Environment 3: 493–507.

Curran, P.J. 2001. Remote sensing: Using the spatial domain. 
Environmental and Ecological Statistics 8: 331–344.

De Grandi, G.D., Lee, J.S. & Schuler, D.L. 2007. Target 
detection and texture segmentation in polarimetric SAR 
images using a wavelet frame: Theoretical aspects. IEEE 

Transactions on Geoscience and Remote Sensing 45: 
3437–3453.

Deuze, J.L., Breon, F.M., Deschamps, P.Y., Devaux, C., 
Herman, M., Podaire, A. & Roujean, J.L. 1993. Analysis 
of the Polder (Polarization and Directionality of Earths 
Reflectances) Airborne Instrument Observations over 
Land Surfaces. Remote Sensing of Environment 45: 
137–154.

Diner, D.J., Martonchik, J.V., Kahn, R.A., Pinty, B., Gobron, 
N., Nelson, D.L. & Holben, B.N. 2005. Using angular 
and spectral shape similarity constraints to improve 
MISR aerosol and surface retrievals over land. Remote 
Sensing of Environment 94: 155–171.

Disney, M., Lewis, P. & Saich, P. 2006. 3D modelling of 
forest canopy structure for remote sensing simulations in 
the optical and microwave domains. Remote Sensing of 
Environment 100: 114–132.

Dorigo, W.A., Zurita-Milla, R., de Wit, A.J.W., Brazile, J., 
Singh, R. & Schaepman, M.E. 2007. A review on reflec-
tive remote sensing and data assimilation techniques for 
enhanced agroecosystem modelling. International Jour-
nal of Applied Earth Observation and Geoinformation 9: 
165–193.

Durbha, S.S., King, R.L. & Younan, N.H. 2007. Support 
vector machines regression for retrieval of leaf area index 
from multiangle imaging spectroradiometer. Remote 
Sensing of Environment 107: 348–361.

Egan, W.G., Johnson, W.R. & Whitehead, V.S. 1991. Ter-
restrial Polarization Imagery Obtained from the Space—
Shuttle—Characterization and Interpretation. Applied 
Optics 30: 435–442.

Eismann, M.T. & Hardie, R.C. 2004. Application of the 
stochastic mixing model to hyperspectral resolution, 
enhancement. IEEE Transactions on Geoscience and 
Remote Sensing 42: 1924–1933.

Eismann, M.T. & Hardie, R.C. 2005. Hyperspectral reso-
lution enhancement using high-resolution multispectral 
imagery with arbitrary response functions. IEEE Transac-
tions on Geoscience and Remote Sensing 43: 455–465.

Fang, H., Kim, H., Liang, S., Schaaf, C., Strahler, A., 
Townshend, G.R.G. & Dickinson, R. 2007. Spa-
tially and temporally continuous land surface albedo 
fields and validation. Journal of Geophysical 
Research-Atmosphere, 112, Article Number D20206,
doi:20210.21029/22006JD008377.

Fang, H. & Liang, S. 2003. Retrieve LAI from Landsat 7 
ETM+ Data with a Neural Network Method: Simulation 
and Validation Study. IEEE Transactions on Geoscience 
and Remote Sensing 41: 2052–2062.

Fang, H. & Liang, S. 2005. A hybrid inversion method for 
mapping leaf area index from MODIS data: experiments 
and application to broadleaf and needleleaf canopies. 
Remote Sensing of Environment 94: 405–424.

Fang, H., Liang, S. & Kuusk, A. 2003. Retrieving Leaf Area 
Index (LAI) Using a Genetic Algorithm with a Canopy 
Radiative Transfer Model. Remote Sensing of Environ-
ment 85: 257–270.

Fang, H., Liang, S., Townshend, J. & Dickinson, R. 2008. 
Spatially and temporally continuous LAI data sets based 
on a new filtering method: Examples from North Amer-
ica. Remote Sensing of Environment 112: 75–93.

Fischer, A. 1994b. A simple model for the temporal varia-
tions of NDVI at regional scale over agricultural countries. 



139

Validation with ground radiometric measurements. 
International Journal of Remote Sensing 15: 1421–1446.

Fisher, A. 1994a. A model for the seasonal variations of veg-
etation indices in coarse resolution data and its inversion 
to extract crop parameters. Remote Sensing of Environ-
ment 48: 220–230.

Franklin, J. & Turner, D.L. 1992. The application of a geo-
metric optical canopy reflectance model to semiarid 
shrub vegetation. IEEE Transactions on Geoscience and 
Remote Sensing 30: 293–301.

Garcia-Haro, F.J., Camacho-de Coca, F. & Melia, J. 2006. 
A directional spectral mixture analysis method: Appli-
cation to multiangular airborne measurements. IEEE 
Transactions on Geoscience and Remote Sensing 44: 
365–377.

Garcia-Haro, F.J., Sommer, S. & Kemper, T. 2005. A new 
tool for variable multiple endmember spectral mixture 
analysis (VMESMA. International Journal of Remote 
Sensing 26: 2135–2162.

Gascon, F., Gastellu-Etchegorry, J.P., Lefevre-Fonollosa, 
M.J. & Dufrene, E. 2004. Retrieval of forest biophysical 
variables by inverting a 3-D radiative transfer model and 
using high and very high resolution imagery. Interna-
tional Journal of Remote Sensing 25: 5601–5616.

Gastellu-Etchegorry, J.P., Gascon, F. & Esteve, P. 2003. An 
interpolation procedure for generalizing a look-up table 
inversion method. Remote Sensing of Environment 87: 
55–71.

Gerstl, S.A.W. 1990. Physics concepts of optical and radar 
reflectance signatures A summary review. International 
Journal of Remote Sensing 11: 1109–1117.

Gitelson, A.A., Gritz, Y. & Merzlyak, M.N. 2003. Rela-
tionships between leaf chlorophyll content and spectral 
reflectance and algorithms for non-destructive chloro-
phyll assessment in higher plant leaves. Journal of Plant 
Physiology 160: 271–282.

Goovaerts, P. 1997. Geostatistics for Natural Resources 
Evaluation. New York: Oxford University Press.

Govaerts, Y.M. & Lattanzio, A. 2007. Retrieval error estima-
tion of surface albedo derived from geostationary large 
band satellite observations: Application to Meteosat-2 
and Meteosat-7 data. Journal of Geophysical Research-
Atmospheres 112, Art. No. D05102.

Govaerts, Y.M., Lattanzio, A., Pinty, B. & Schmetz, J. 2004. 
Consistent surface albedo retrieval from two adjacent 
geostationary satellites. Geophysical Research Letters 
31, Art. No. L15201.

Grey, W.M.F., North, P.R.J., Los, S.O. & Mitchell, R.M. 2006. 
Aerosol Optical Depth and Land Surface Reflectance 
from Multi-angle AATSR Measurements: Global Valida-
tion and Inter-sensor Comparisons. IEEE Transactions 
on Geoscience and Remote Sensing 44: 2184–2197.

Gross, H.N. & Schott, J.R. 1998. Application of spectral 
mixture analysis and image fusion techniques for image 
sharpening. Remote Sensing of Environment 63: 85–94.

Hansen, M., DeFries, R.S., Townshend, J.R.G., Sohlberg, R., 
Dimiceli, C. & Carroll, M. 2002. Towards an operational 
MODIS continuous field of percent tree cover algorithm: 
Examples using AVHRR and MODIS data. Remote Sens-
ing of Environment 83: 303–319.

Harris, A., Bryant, R.G. & Baird, A.J. 2005. Detecting near-
surface moisture stress in Sphagnum spp. Remote Sens-
ing of Environment 97: 371–381.

Hasekamp, O.P. & Landgraf, J. 2007. Retrieval of aerosol 
properties over land surfaces: capabilities of multiple-
viewing-angle intensity and polarization measurements. 
Applied Optics 46: 3332–3344.

Herman, M. & Vanderbilt, V. 1997. Polarimetric observa-
tions in the solar spectrum for remote sensing purposes. 
Remote Sensing Reviews 15: 35–57.

Hermance, J.F. 2007. Stabilizing high-order, non-classical 
harmonic analysis of NDVI data for average annual mod-
els by damping model roughness. International Journal 
of Remote Sensing 28: 2801–2819.

Hermance, J.F., Jacob, R.W., Bradley, B.A. & Mustard, 
J.F. 2007. Extracting phenological signals from multi-
year AVHRR NDVI time series: Framework for apply-
ing high-order annual splines with roughness damping. 
IEEE Transactions on Geoscience and Remote Sensing 
45: 3264–3276.

Holben, B.N. 1986. Characteristics of maximum-value com-
posite images for temporal AVHRR data. International 
Journal of Remote Sensing 7: 1435–1445.

Hsu, N.C., Tsay, S.C., King, M.D. & Herman, J.R. 2004. 
Aerosol properties over bright-reflecting source regions. 
IEEE Transactions on Geoscience and Remote Sensing 
42: 557–569.

Jackson, T. 2008. Passive Microwave Remote Sensing for 
Land Applications. In S. Liang (ed.), Advances in Land 
Remote Sensing: System, Modelling, Inversion and Appli-
cation, Chapter 2: 9–18. New York: Springer.

Jimenez-Munoz, J.C. & Sobrino, J.A. 2007. Feasibility of 
retrieving land-surface temperature from ASTER TIR 
bands using two-channel algorithms: A case study of 
agricultural areas. IEEE Geoscience and Remote Sensing 
Letters 4: 60–64.

Jobanputra, R. & Clausi, D.A. 2006. Preserving boundaries for 
image texture segmentation using grey level co-occurring 
probabilities. Pattern Recognition 39: 234–245.

Jonsson, P. & Eklundh, L. 2002. Seasonality extraction by 
function fitting to time—series of satellite sensor data. 
IEEE Transactions on Geoscience and Remote Sensing 
40: 1824–1832.

Jonsson, P. & Eklundh, L. 2004. TIMESAT—a program for 
analyzing time-series of satellite sensor data. Computers 
and Geosciences 30: 833–845.

Julien, Y., Sobrino, J.A. & Verhoef, W. 2006. Changes in 
land surface temperatures and NDVI values over Europe 
between 1982 and 1999. Remote Sensing of Environment 
103: 43–55.

Jupp, D.L.B., Strahler, A.H. & Woodcock, C.E. 1988. Auto-
correlation and regularization in digital images I. Basic 
theory. IEEE Transactions on Geoscience and Remote 
Sensing 26: 463–473.

Jupp, D.L.B., Strahler, A.H. & Woodcock, C.E. 1989. Auto-
correlation and regularization in digital images II. Sim-
ple image models. IEEE Transactions on Geoscience and 
Remote Sensing 27: 247–258.

Kacenelenbogen, M., Leon, J.F., Chiapello, I. & Tanre, D. 
2006. Characterization of aerosol pollution events in 
France using ground-based and POLDER-2 satellite data. 
Atmospheric Chemistry and Physics 6: 4843–4849.

Kalacska, M., Sanchez-Azofeifa, A., Caelli, T., Rivard, B. & 
Boerlage, B. 2005. Estimating leaf area index from satel-
lite imagery using Bayesian networks. IEEE Transactions 
on Geoscience and Remote Sensing 43: 1866–1873.



140

Kandaswamy, U., Adjeroh, D.A. & Lee, A.C. 2005. Efficient 
texture analysis of SAR imagery. IEEE Transactions on 
Geoscience and Remote Sensing 43: 2075–2083.

Kayitakire, F., Hamel, C. & Defourny, P. 2006. Retrieving 
forest structure variables based on image texture analysis 
and IKONOS-2 imagery. Remote Sensing of Environment 
102: 390–401.

Kimes, D., Gastellu-Etchegorry, J. & Esteve, P. 2002. Recov-
ery of forest canopy characteristics through inversion of a 
complex 3D model. Remote Sensing of Environment 79: 
320–328.

Kimes, D.S., Ranson, K.J., Sun, G. & Blair, J.B. 2006. 
Predicting lidar measured forest vertical structure from 
multi-angle spectral data. Remote Sensing of Environ-
ment 100: 503–511.

Kneubühler, M., Koetz, B., Huber, S., Schopfer, J., Richter, 
R. and Itten, K.I. 2006. Monitoring vegetation growth 
using multitemporal CHRIS/PROBA data. IEEE Geo-
science and Remote Sensing Symposium (IGARSS 2006): 
2677–2680. IEEE Denver (USA).

Kobayashi, H., Suzuki, R. & Kobayashi, S. 2007. Reflect-
ance seasonality and its relation to the canopy leaf area 
index in an eastern Siberian larch forest: Multi-satellite 
data and radiative transfer analyses. Remote Sensing of 
Environment 106: 238–252.

Koetz, B., Baret, F., Poilve, H. & Hill, J. 2005. Use of cou-
pled canopy structure dynamic and radiative transfer 
models to estimate biophysical canopy characteristics. 
Remote Sensing of Environment 95: 115–124.

Koetz, B., Kneubühler, M., Huber, S., Schopfer, J. and 
Baret, F. 2007. Radiative transfer model inversion based 
on multi-temporal CHRIS/PROBA data for LAI esti-
mation. In M.E. Schaepman, S. Liang, N.E. Groot & 
M. Kneubühler (eds.), 10th Intl. Symposium on Physi-
cal Measurements and Spectral Signatures in Remote 
Sensing, Intl. Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences XXXVI, Part 
7/C50, 344–349. ISSN 1682-1777.

Kokhanovsky, A.A., Aoki, T., Hachikubo, A., Hori, M. & 
Zege, E.P. 2005. Reflective properties of natural snow: 
Approximate asymptotic theory versus in situ measure-
ments. IEEE Transactions on Geoscience and Remote 
Sensing 43: 1529–1535.

Kokhanovsky, A.A., Breon, F.M., Cacciari, A., Carboni, E., 
Diner, D., Di Nicolantonio, W., Grainger, R.G., Grey, 
W.M.F., Holler, R., Lee, K.H., Li, Z., North, P.R.J., Sayer, 
A.M., Thomas, G.E. & von Hoyningen-Huene, W. 2007. 
Aerosol remote sensing over land: A comparison of satel-
lite retrievals using different algorithms and instruments. 
Atmospheric Research 85: 372–394.

Kotchenova, S.Y., Shabanov, N.V., Knyazikhin, Y., Davis, 
A.B., Dubayah, R. & Myneni, R.B. 2003. Modelling 
lidar waveforms with time-dependent stochastic radiative 
transfer theory for remote estimations of forest structure. 
Journal of Geophysical Research-Atmospheres 108, Art. 
No. 4484.

Kotchenova, S.Y. & Vermote, E.F. 2007. Validation of a vec-
tor version of the 6S radiative transfer code for atmos-
pheric correction of satellite data. Part II. Homogeneous 
Lambertian and anisotropic surfaces. Applied Optics 46: 
4455–4464.

Kotchenova, S.Y., Vermote, E.F., Matarrese, R. & Klemm, 
F.J. 2006. Validation of a vector version of the 6S radiative 

transfer code for atmospheric correction of satellite data. 
Part I: Path radiance. Applied Optics 45: 6762–6774.

Kuusk, A. 1998. Monitoring of vegetation parameters on 
large areas by the inversion of a canopy reflectance 
model. International Journal of Remote Sensing 19: 
2893–2905.

Lam, N. 2008. Methodologies for Mapping Land Cover/
Land Use and its Change. In S. Liang (ed.), Advances 
in Land Remote Sensing: System, Modelling, Inver-
sion and Application, Chapter 13: 341–367. New York: 
Springer.

Levy, R.C., Remer, L.A. & Kaufman, Y.J. 2004. Effects of 
neglecting polarization on the MODIS aerosol retrieval 
over land. IEEE Transactions on Geoscience and Remote 
Sensing 42: 2576–2583.

Levy, R.C., Remer, L.A., Mattoo, S., Vermote, E.F. & 
Kaufman, Y.J. 2007. Second-generation operational 
algorithm: Retrieval of aerosol properties over land from 
inversion of Moderate Resolution Imaging Spectrora-
diometer spectral reflectance. Journal of Geophysical 
Research-Atmospheres 112.

Li, B., Jiao, R.H. & Li, Y.C. 2007. Fast adaptive wavelet for 
remote sensing image compression. Journal of Computer 
Science and Technology 22: 770–778.

Li, S.S. & Zhou, X.B. 2004. Modelling and measuring the 
spectral bidirectional reflectance factor of snow-covered 
sea ice: An intercomparison study. Hydrological Proc-
esses 18: 3559–3581.

Liang, S. 2001. Land cover classification methods for multi-
year AVHRR data. International Journal of Remote Sens-
ing 22: 1479–1493.

Liang, S. 2004. Quantitative Remote Sensing of Land Sur-
faces. New York: John Wiley and Sons, Inc.

Liang, S., Fallah-Adl, H., Kalluri, S., JaJa, J., Kaufman, Y.J. 
& Townshend, J.R.G. 1997. An operational atmospheric 
correction algorithm for Landsat Thematic Mapper 
imagery over the land. Journal of Geophysical Research-
Atmospheres 102: 17173–17186.

Liang, S. & Fang, H. 2004. An improved atmospheric cor-
rection algorithm for hyperspectral remotely sensed 
imagery. IEEE Geoscience and Remote Sensing Letters 
1: 112–117.

Liang, S. & Strahler, A. 2000. Land surface Bidirectional 
Reflectance Distribution Function (BRDF): Recent 
advances and future prospects. Remote Sensing Reviews 
18: 83–551.

Liang, S. & Qin, J. 2008. Data assimilation methods for land 
surface variable estimation. In S. Liang (ed.), Advances 
in Land Remote Sensing: System, Modelling, Inversion 
and Application: 313–339. New York: Springer.

Liang, S., Zheng, T., Liu, R., Fang, H., Tsay, S.C. & 
Running, S. 2006a. Mapping incident Photosyntheti-
cally Active Radiation (PAR) from MODIS Data. Jour-
nal of Geophysical Research-Atmospheres 111, D15208, 
doi:15210.11029/12005JD006730.

Liang, S., Zhong, B. & Fang, H. 2006b. Improved estima-
tion of aerosol optical depth from MODIS imagery over 
land surfaces. Remote Sensing of Environment 104: 
416–425.

Liang, S.L., Stroeve, J. & Box, J.E. 2005. Mapping daily 
snow/ice shortwave broadband albedo from Moderate 
Resolution Imaging Spectroradiometer (MODIS): The 
improved direct retrieval algorithm and validation with 



141

Greenland in situ measurement. Journal of Geophysical 
Research-Atmospheres 110, Art. No. D10109.

Liang, S.L., Zheng, T., Wang, D.D., Wang, K.C., Liu, R.G., 
Tsay, S.C., Running, S. & Townshend, J. 2007. Mapping 
high-resolution incident photosynthetically active radia-
tion over land from polar–orbiting and geostationary 
satellite data. Photogrammetric Engineering and Remote 
Sensing 73: 1085–1089.

Liangrocapart, S. & Petrou, M. 2002. A two-layer model of 
the bidirectional reflectance of homogeneous vegetation 
canopies. Remote Sensing of Environment 80: 17–35.

Liu, J.C., Melloh, R.A., Woodcock, C.E., Davis, R.E. & 
Ochs, E.S. 2004. The effect of viewing geometry and 
topography on viewable gap fractions through forest can-
opies. Hydrological Processes 18: 3595–3607.

Liu, X.H., Clarke, K. & Herold, M. 2006. Population density 
and image texture: A comparison study. Photogrammet-
ric Engineering and Remote Sensing 72: 187–196.

Lu, X., Liu, R., Liu, J. & Liang, S. 2007. Removal of Noise 
by Wavelet Method to Generate High Quality Temporal 
Data of Terrestrial MODIS Products. Photogrammetric 
Engineering and Remote Sensing 73: 1129–1139.

Luo, J., Ming, D., Shen, Z., Wang, M. & Sheng, H. 2007. 
Multi-scale information extraction from high resolution 
remote sensing imagery and region partition methods 
based on GMRF-SVM. International Journal of Remote 
Sensing 28: 3395–3412.

Magnussen, S., Naesset, E. & Wulder, M.A. 2007. Efficient 
multiresolution spatial predictions for large data arrays. 
Remote Sensing of Environment 109: 451–463.

Malenovsky, Z., Martin, E., Homolova, L., Gastellu-Etchegory, 
J.P., Zurita-Milla, R., Schaepman, M.E., Pokorny, R., 
Clevers, J.G.P.W. & Cudlin, P. 2008. Influence of woody 
elements of a Norway spruce canopy on nadir reflectance 
simulated by the DART model at very high spatial resolu-
tion. Remote Sensing of Environment 112: 1–18.

Martonchik, J.V., Diner, D.J., Crean, K.A. & Bull, M.A. 
2002. Regional Aerosol Retrieval Results From MISR. 
IEEE Transactions on Geoscience and Remote Sensing 
40: 1520–1531.

Meher, S.K., Shankar, B.U. & Ghosh, A. 2007. Wavelet-
feature-based classifiers for multispectral remote sensing 
images. IEEE Transactions on Geoscience and Remote 
Sensing 45: 1881–1886.

Menenti, M., Jia, L. & Li, Z.L. 2008. Multi–angular Ther-
mal Infrared Observations of Terrestrial Vegetation. In S. 
Liang (ed.), Advances in Land Remote Sensing: System, 
Modelling, Inversion and Application, Chapter 4: 51–93. 
New York: Springer.

Meroni, M., Colombo, R. & Panigada, C. 2004. Inversion 
of a radiative transfer model with hyperspectral obser-
vations for LAI mapping in poplar plantations. Remote 
Sensing of Environment 92: 195–206.

Mertens, K.C., Verbeke, L.P.C., Ducheyne, E.I. & De 
Wulf, R.R. 2003. Using genetic algorithms in sub-pixel 
mapping. International Journal of Remote Sensing 24: 
4241–4247.

Mertens, K.C., Verbeke, L.P.C., Westra, T. & De Wulf, R.R. 
2004. Sub-pixel mapping and sub-pixel sharpening using 
neural network predicted wavelet coefficients. Remote 
Sensing of Environment 91: 225–236.

Miesch, C., Poutier, L., Achard, W., Briottet, X., Lenot, X. & 
Boucher, Y. 2005. Direct and inverse radiative transfer 

solutions for visible and near-infrared hyperspectral 
imagery. IEEE Transactions on Geoscience and Remote 
Sensing 43: 1552–1562.

Moody, A. & Johnson, D.M. 2001. Land-surface phenolo-
gies from AVHRR using the discrete fourier transform. 
Remote Sensing of Environment 75: 305–323.

Moody, E.G., King, M.D., Platnick, S., Schaaf, C.B. & 
Gao, F. 2005. Spatially complete global spectral surface 
albedos: Value-added datasets derived from terra MODIS 
land products. IEEE Transactions on Geoscience and 
Remote Sensing 43: 144–158.

Myint, S.W. & Lam, N. 2005. Examining lacunarity 
approaches in comparison with fractal and spatial auto-
correlation techniques for urban mapping. Photogram-
metric Engineering and Remote Sensing 71: 927–937.

Myint, S.W., Lam, N.S.N. & Tyler, J.M. 2004. Wavelets for 
urban spatial feature discrimination: Comparisons with 
fractal, spatial autocorrelation & spatial co-occurrence 
approaches. Photogrammetric Engineering and Remote 
Sensing 70: 803–812.

Nadal, F. & Breon, F.M. 1999. Parameterization of surface 
polarized reflectance derived from POLDER spaceborne 
measurements. IEEE Transactions on Geoscience and 
Remote Sensing 37: 1709–1718.

Nilson, T., Kuusk, A., Lang, M. & Lukk, T. 2003. Forest 
reflectance modelling: Theoretical aspects and applica-
tions. Ambio 32: 535–541.

North, P.R.J. 2002. Estimation of f(APAR), LAI & veg-
etation fractional cover from ATSR-2 imagery. Remote 
Sensing of Environment 80: 114–121.

Oku, Y. & Ishikawa, H. 2004. Estimation of land surface 
temperature over the Tibetan Plateau using GMS data. 
Journal of Applied Meteorology 43: 548–561.

Peddle, D.R., Franklin, S.E., Johnson, R.L., Lavigne, M.B. & 
Wulder, M.A. 2003. Structural change detection in a dis-
turbed conifer forest using a geometric optical reflectance 
model in multiple-forward mode. IEEE Transactions on 
Geoscience and Remote Sensing 41: 163–166.

Peddle, D.R., Johnson, R.L., Cihlar, J. & Latifovic, R. 2004. 
Large area forest classification and biophysical parameter 
estimation using the 5-Scale canopy reflectance model in 
multiple forward-mode. Remote Sensing of Environment 
89: 252–263.

Phinn, S., Franklin, J., Hope, A., Stow, D. & Huenneke, L. 
1996. Biomass distribution mapping using airborne dig-
ital video imagery and spatial statistics in a semi-arid 
environment. Journal of Environmental Management 47: 
139–164.

Pinker, R.T., Li, X., Meng, W. & Yegorova, E.A. 2007. Toward 
improved satellite estimates of short-wave radiative 
fluxes—Focus on cloud detection over snow: 2. Results. 
Journal of Geophysical Research-Atmospheres 112.

Pinty, B., Gobron, N., Widlowski, J.L., Lavergne, T. & 
Verstraete, M.M. 2004a. Synergy between 1-D and 3-D 
radiation transfer models to retrieve vegetation canopy 
properties from remote sensing data. Journal of Geo-
physical Research-Atmospheres 109, Art. No. D21205 .

Pinty, B., Widlowski, J.L., Taberner, M., Gobron, N., Ver-
straete, M.M., Disney, M., Gascon, F., Gastellu, J.P., 
Jiang, L., Kuusk, A., Lewis, P., Li, X., Ni-Meister, W., 
Nilson, T., North, P., Qin, W., Su, L., Tang, S., Thomp-
son, R., Verhoef, W., Wang, H., Wang, J., Yan, G. & 
Zang, H. 2004b. Radiation Transfer Model Intercom-



142

parison (RAMI) exercise: Results from the second phase. 
Journal of Geophysical Research-Atmospheres 109, Art. 
No. D06210, ISI:000220622400004.

Pitman, K.M., Wolff, M.J. & Clayton, G.C. 2005. Appli-
cation of modern radiative transfer tools to model 
laboratory quartz emissivity. Journal of Geophysical 
Research-Planets 110, Art. No. E08003.

Pohl, C. & van Genderen, J.L. 1998. Multisensor image 
fusion in remote sensing: concepts, methods and appli-
cations. International Journal of Remote Sensing 19: 
823–854.

Purkis, S.J., Myint, S.W. & Riegl, B.M. 2006. Enhanced 
detection of the coral Acropora cervicornis from satel-
lite imagery using a textural operator. Remote Sensing of 
Environment 101: 82–94.

Qi, J. & Kerr, Y. 1997. On current compositing algorithms. 
Remote Sensing Reviews 15: 235–256.

Qi, J., Kerr, Y.H., Moran, M.S., Weltz, M., Huete, A.R., 
Sorooshian, S. & Bryant, R. 2000. Leaf area index esti-
mates using remotely sensed data and BRDF models in 
a semiarid region. Remote Sensing of Environment 73: 
18–30.

Qin, J., Liang, S., Li, X. & Wang, J. 2007. Development of 
the adjoint model of a canopy radiative transfer model 
for sensivity study and inversion of leaf area index. 
IEEE Transactions on Geoscience and Remote Sensing, 
revised.

Ramstein, G. & Raffy, M. 1989. Analysis of the structure of 
radiometric remotely sensed images. International Jour-
nal of Remote Sensing 10: 1049–1073.

Ranchin, T., Aiazzi, B., Alparone, L., Baronti, S. & Wald, L. 
2003. Image fusion—the ARSIS concept and some suc-
cessful implementation schemes. ISPRS Journal of Pho-
togrammetry and Remote Sensing 58: 4–18.

Rautiainen, M. & Stenberg, P. 2005. Application of pho-
ton recollision probability in coniferous canopy reflect-
ance simulations. Remote Sensing of Environment 96: 
98–107.

Roerink, G.J., Menenti, M. & Verhoef, W. 2000. Recon-
structing cloudfree NDVI composites using Fourier anal-
ysis of time series. International Jour. of Remote Sensing 
21: 1911–1917.

Roger, J.C., Santer, R., Herman, M. & Deuze, J.L. 1994. 
Polarization of the Solar Light Scattered by the Earth 
Atmosphere System as Observed from the United States. 
Shuttle. Remote Sensing of Environment 48: 275–290

Rondeaux, G. & Herman, M. 1991. Polarization of light 
reflected by crop canopies. Remote Sensing of Environ-
ment 38: 63–75.

Roujean, J.-L. & Breon, F.-M. 1995. Estimating PAR absorbed 
by vegetation from bidirectional reflectance measure-
ments. Remote Sensing of Environment 51: 375–384.

Roujean, J.L. & Lacaze, R. 2002. Global mapping of 
vegetation parameters from POLDER multiangular 
measurements for studies of surface-atmosphere interac-
tions: A pragmatic method and its validation. Journal of 
Geophysical Research-Atmospheres, 107.

Salomonson, V.V. & Appel, I. 2004. Estimating fractional 
snow cover from MODIS using the normalized differ-
ence snow index. Remote Sensing of Environment 89: 
351–360.

Schaaf, C., Martonchik, J., Pinty, B., Govaerts, Y., Gao, F., 
Lattanzio, A., Liu, J., Strahler, A. & Taberner, M. 2008. 

Retrieval of Surface Albedo from Satellite Sensors. In S. 
Liang (ed.), Advances in Land Remote Sensing: System, 
Modelling, Inversion and Application, Chapter 9: 219–
243. New York: Springer.

Schaepman-Strub, G., Schaepman, M.E., Painter, T.H., 
Dangel, S. & Martonchik, J.V. 2006. Reflectance quanti-
ties in optical remote sensing—definitions and case stud-
ies. Remote Sensing of Environment 103: 27–42.

Schaepman, M.E. 2007. Spectrodirectional Remote Sens-
ing: From Pixels to Processes. International Journal 
of Applied Earth Observation and Geoinformation 9: 
204–223.

Schaepman, M.E., Koetz, B., Schaepman-Strub, G. & Itten, 
K.I. 2005. Spectrodirectional remote sensing for the 
improved estimation of biophysical and chemical vari-
ables: Two case studies. International Journal of Applied 
Earth Observation and Geoinformation 6: 271–282.

Schlerf, M., Atzberger, C. & Hill, J. 2005. Remote sensing 
of forest biophysical variables using HyMap imaging 
spectrometer data. Remote Sensing of Environment 95: 
177–194.

Schmidt, F., Doute, S. & Schmitt, B. 2007. WAVANGLET: 
An efficient supervised classifier for hyperspectral 
images. IEEE Transactions on Geoscience and Remote 
Sensing 45: 1374–1385

Schutgens, N.A.J. & Stammes, P. 2002. Parametrisation of 
Earth’s polarisation spectrum in the ultra-violet. Jour. of 
Quan titative Spectroscopy and Radiative Transfer 75: 
239–255.

Schutgens, N.A.J. & Stammes, P. 2003. A novel approach to 
the polarization correction of spaceborne spectrometers. 
Journal of Geophysical Research-Atmospheres, 108, NO. 
D7, 4229, doi:10.1029/2002JD002736.

Sellers, P., Tucker, C., Collatz, G., Los, S., Justice, C., Dazlich, 
D. & Randall, D. 1994. A global 1 by 1 NDVI data set for 
climate studies. Part 2: The generation of global fields of 
terrestrial biophysical parameters from the NDVI. Inter-
national Journal of Remote Sensing 15: 3519–3546.

Shabanov, N.V., Huang, D., Yang, W., Tian, B., Knyazikhin, 
Y., Myneni, R.B., Ahl, D.E., Gower, S.T., Huete, A.R., 
Arogao, L.E.O.C. & Shimabukuro, Y.E. 2005. Analysis 
and optimization of the MODIS leaf area index algorithm 
retrievals over broadleaf forests. IEEE Transactions on 
Geoscience and Remote Sensing 43: 1855–1865.

Shi, J. 2008. Active Microwave Remote Sensing Systems 
and Applications to Snow Monitoring. In S. Liang (ed.), 
Advances in Land Remote Sensing: System, Modelling, 
Inversion and Application, Chapter 3: 19–49. New York: 
Springer.

Shibayama, M. & Akita, S. 2002. A Portable Spectropola-
rimeter for field crop canopies—Distinguishing species 
and cultivars of fully developed canopies by polarized 
light. Plant Production Science 5: 311–319.

Shibayama, M. & Watanabe, Y. 2007. Estimating the mean 
leaf inclination angle of wheat canopies using reflected 
polarized light. Plant Production Science 10: 329–342.

Smolander, S. & Stenberg, P. 2003. A method to account for 
shoot scale clumping in coniferous canopy reflectance 
models. Remote Sensing of Environment 88: 363–373.

Sobrino, J.A., Soria, G. & Prata, A.J. 2004. Surface temper-
ature retrieval from Along Track Scanning Radiometer 
2 data: Algorithms and validation. Journal of Geophysi-
cal Research-Atmospheres 109, Art. No. D11101.



143

Soenen, S.A., Peddle, D.R. & Coburn, C.A. 2005. SCS + C: 
A modified sun-canopy-sensor topographic correction in 
forested terrain. IEEE Transactions on Geoscience and 
Remote Sensing 43: 2148–2159.

St-Onge, B.A. & Cavayas, F. 1995. Estimating forest stand 
structure from high resolution imagery using the direc-
tional variogram. International Journal of Remote Sens-
ing 16: 1999–2021.

Sun, D.L., Pinker, R.T. & Basara, J.B. 2004. Land surface tem-
perature estimation from the next generation of Geosta-
tionary Operational Environmental Satellites: GOES 
M-Q. Journal of Applied Meteorology 43: 363–372.

Sun, J.Q. & Xiong, X.X. 2007. MODIS polarization—
sensitivity analysis. IEEE Transactions on Geoscience 
and Remote Sensing 45: 2875–2885.

Sun, W. & Liang, S. 2008. Methodologies for mapping 
plant functional types. In S. Liang (ed.), Advances in 
Land Remote Sensing: System, Modelling, Inversion and 
Application: 369–393. New York: Springer.

Talmage, D.A. & Curran, P.J. 1986. Remote Sensing Using 
Partially Polarized Light. International Journal of Remote 
Sensing 7: 47–64.

Tang, J., Wang, L. & Yao, Z. 2007. Spatio-temporal urban 
landscape change analysis using the Markov chain model 
and a modified genetic algorithm. International Journal 
of Remote Sensing 28: 3255–3271.

Tyo, J.S., Goldstein, D.L., Chenault, D.B. & Shaw, J.A. 2006. 
Review of passive imaging polarimetry for remote sens-
ing applications. Applied Optics 45: 5453–5469.

Unsalan, C. 2007. Measuring land development in urban 
regions using graph theoretical and conditional statistical 
features. IEEE Transactions on Geoscience and Remote 
Sensing 45: 3989–3999.

Ustin, S., Asner, G., Gamon, J., Huemmerich, K., Jacque-
moud, S., Zarco-Tejada, P. & Schaepman, M.E. 2008. 
Retrieval of Quantitative and Qualitative Information 
about Plant Pigment Systems from High Resolution 
Spectroscopy. Remote Sensing of Environment.

Vanderbilt, V.C. & Grant, L. 1985. Plant canopy specular 
reflectance model. IEEE Transactions on Geoscience 
and Remote Sensing 23: 722–730.

Verrelst, J., Schaepman, M.E., Kötz, B. & Kneubühler, M. 
2008. Angular sensitivity of vegetation indices derived 
from CHRIS/PROBA data in two Alpine eco-systems. 
Remote Sensing of Environment, in press.

Vesteinsson, A., Aanaes, H., Sveinsson, J.R. & Benedikts-
son, J.A. 2008. Spectrally Consistent Pansharpening. In 
S. Liang (ed.), Advances in Land Remote Sensing: Sys-
tem, Modelling, Inversion and Application, Chapter 11: 
293–311. New York: Springer.

Viovy, N., Arino, O. & Belward, A.S. 1992. The Best Index 
Slope Extraction (Bise)—a Method for Reducing Noise 
in Ndvi Time-Series. International Journal of Remote 
Sensing 13: 1585–1590.

Wang, K., Liang, S., Zheng, T. & Wang, D. 2007. Simul-
taneous estimation of surface photosynthetically active 
radiation and albedo from GOES. Remote Sensing of 
Environment, revised.

Widlowski, J.L., Pinty, B., Gobron, N., Verstraete, M.M., 
Diner, D.J. & Davis, A.B. 2004. Canopy structure 
parameters derived from multi-angular remote sensing 
data for terrestrial carbon studies. Climatic Change 67: 
403–415.

Widlowski, J.L., Pinty, B., Lavergne, T., Verstraete, M.M. & 
Gobron, N. 2005. Using 1-D models to interpret the 
reflectance anisotropy of 3-D canopy targets: Issues and 
caveats. IEEE Transactions on Geoscience and Remote 
Sensing 43: 2008–2017.

Widlowski, J.L., Taberner, M., Pinty, B., Bruniquel-Pinel, 
V., Disney, M., Fernandes, R., Gastellu-Etchegorry, 
J.P., Gobron, N., Kuusk, A., Lavergne, T., Leblanc, S., 
Lewis, P.E., Martin, E., Mottus, M., North, P.R.J., Qin, 
W., Robustelli, M., Rochdi, N., Ruiloba, R., Soler, C., 
Thompson, R., Verhoef, W., Verstraete, M.M. & Xie, 
D. 2007. Third Radiation Transfer Model Intercompari-
son (RAMI) exercise: Documenting progress in canopy 
reflectance models. Journal of Geophysical Research-
Atmospheres 112, Art. No. D09111.

Woodcock, C.E. & Strahler, A.H. 1987. The factor of scale 
in remote sensing. Remote Sensing of Environment 21: 
311–332.

Woodcock, C.E., Strahler, A.H. & Jupp, D.L.B. 1988a. The 
use of variograms in remote sensing: Part I. Scene mod-
els and simulated images. Remote Sensing of Environ-
ment 25: 323–348.

Woodcock, C.E., Strahler, A.H. & Jupp, D.L.B. 1988b. The 
use of variograms in remote sensing: Part II. Real digital 
images. Remote Sensing of Environment 25: 349–379.

Xia, Y., Feng, D. & Zhao, R.C. 2006. Adaptive segmentation 
of textured images by using the coupled Markov random 
field model. IEEE Transactions on Image Processing 15: 
3559–3566.

Xiao, X.M., Braswell, B., Zhang, Q.Y., Boles, S., Frolking, 
S. & Moore, B. 2003. Sensitivity of vegetation indices 
to atmospheric aerosols: continental—scale observations 
in Northern Asia. Remote Sensing of Environment 84: 
385–392.

Zeng, Y., Huang, J., Wu, B., Schaepman, M.E., de Bruin, S. & 
Clevers, J. 2008a. Comparison of two canopy reflectance 
models inversion for mapping forest crown closure using 
imaging spectroscopy. Canadian J. of Rem Sens (in press).

Zeng, Y., Schaepman, M.E., Wu, B., Clevers, J.G.P.W. & 
Bregt, A. 2008b. Quantitative forest canopy structure 
assessment using an inverted geometric-optical model 
and up-scaling. International Journal of Remote Sensing, 
in press.

Zhang, Q., Wang, J., Gong, P. & Shi, P. 2003. Study of urban 
spatial patterns from SPOT panchromatic imagery using 
textural analysis. International Journal of Remote Sens-
ing 24: 4137–4160.

Zhang, Y., Tian, Y., Knyazikhin, Y., Martonchik, J.V., Diner, 
D.J., Leroy, M. & Myneni, R.B. 2000. Prototyping of 
MISR LAI and FPAR algorithm with POLDER data over 
Africa. IEEE Transactions on Geoscience and Remote 
Sensing 38: 2402–2418.

Zheng, T., Liang, S. & Wang, K.C. 2007. Estimation of inci-
dent PAR from GOES imagery. Journal of Applied Mete-
orology and Climatology, in press.

Zhong, B., Liang, S. & Holben, B. 2007. Validating a new 
algorithm for estimating aerosol optical depths from 
MODIS imagery. International Journal of Remote Sens-
ing 28: 4207–4214.

Zhong, P. & Wang, R.S. 2007. A multiple conditional 
random fields ensemble model for urban area detection 
in remote sensing optical Images. IEEE Transactions on 
Geoscience and Remote Sensing 45: 3978–3988.






