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Abstract

Plant foliage density expressed as leaf area index (LAI) is used in many ecological, meteorological, and agronomic models, and as a

means of quantifying crop spatial variability for precision farming. LAI retrieval using spectral vegetation indices (SVI) from optical

remotely sensed data usually requires site-specific calibration values from the surface or the use of within-scene image information without

surface calibrations to invert radiative transfer models. An evaluation of LAI retrieval methods was conducted using (1) empirical methods

employing the normalized difference vegetation index (NDVI) and a new SVI that uses green wavelength reflectance, (2) a scaled NDVI

approach that uses no calibration measurements, and (3) a hybrid approach that uses a neural network (NN) and a radiative transfer model

without site-specific calibration measurements. While research has shown that under a variety of conditions NDVI is not optimal for LAI

retrieval, its continued use for remote sensing applications and in analysis seeking to develop improved parameter retrieval algorithms based

on NDVI suggests its value as a ‘‘benchmark’’ or standard against which other methods can be compared. Landsat-7 ETM+ data for July 1

and July 8 from the Soil Moisture EXperiment 2002 (SMEX02) field campaign in the Walnut Creek watershed south of Ames, IA, were used

for the analysis. Sun photometer data collected from a site within the watershed were used to atmospherically correct the imagery to surface

reflectance. LAI validation measurements of corn and soybeans were collected close to the dates of the Landsat-7 overpasses. Comparable

results were obtained with the empirical SVI methods and the scaled SVI method within each date. The hybrid method, although promising,

did not account for as much of the variability as the SVI methods. Higher atmospheric optical depths for July 8 leading to surface reflectance

errors are believed to have resulted in overall poorer performance for this date. Use of SVIs employing green wavelengths, improved method

for the definition of image minimum and maximum clusters used by the scaled NDVI method, and further development of a soil reflectance

index used by the hybrid NN approach are warranted. More importantly, the results demonstrate that reasonable LAI estimates are possible

using optical remote sensing methods without in situ, site-specific calibration measurements.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Foliage density expressed as leaf area index (LAI) is a

critical parameter for many agronomic, ecological, and

meteorological applications. Estimates of LAI are used in
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plant growth models, energy balance models, climate mod-

els, and as a means of quantifying crop variability for

precision farming. Reasonable estimates of LAI over large

areas are needed for applications such as global climate

change predictions.

Accurate estimates of LAI can also be used to compen-

sate for the effects of vegetation moisture and vegetation

architecture on microwave remote sensing estimates of soil

moisture (Engman & Chauhan, 1995). Thus, near-simulta-

neous estimates of regional LAI are needed to derive

satellite-based estimates of soil moisture from radar data.
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Accurate LAI maps of the Soil Moisture EXperiment 2002

(SMEX02) study area were needed for input to soil moisture

retrieval algorithms as part of the experiment (Jackson,

2002). An important consideration for the selection of

SMEX02 LAI retrieval methods was to address algorithms

potentially suitable for operational estimates of soil moisture

from satellites. Reasonable accuracy and repeatability of

LAI estimates, computational simplicity, and most impor-

tantly, minimal calibration requirements for use in diverse

geographic locations are among the desirable attributes of

operational algorithms.

Optical remote sensing is an economically feasible way

to retrieve information such as LAI on regional to global

scales at acceptably high spatial and temporal frequencies

(Verstraete et al., 1996). A variety of approaches have

been developed for calculating LAI over large areas from

remotely sensed optical imagery: (1) empirical (parametric

statistics) correlations between surface-measured LAI and

spectral vegetation indices (SVI), (2) inversion of LAI

from physically based canopy reflectance models, and (3)

estimation using a neural network (NN) approach. The

results from these procedures vary by scale of observa-

tion, type of vegetation, spectral bands used, and the

sophistication of the models. Image calibration and atmo-

spheric correction can also affect results. A recurring

issue that inhibits the use of traditional LAI retrieval

approaches is that they often need to be optimized for a

specific geographic location or vegetation type to be used

successfully.

There are disadvantages associated with each approach.

Retrieval of LAI using empirical approaches, which establish

a correlation between SVI and the biophysical parameter of

interest, tends to be site-specific. Empirical relationships are

valid only under conditions similar to those at the time the

correlation was established. The relationship may break-

down if the solar and viewing geometries, soil background,

chlorophyll concentrations, or moisture conditions are dif-

ferent (Jacquemoud et al., 1995). Additionally, in situ

calibration measurements of LAI over regional or global

scales are impractical.

Retrieval of LAI through inversion of physically based

canopy reflectance models is computationally very cum-

bersome for large geographic areas. There is no universally

applicable canopy reflectance model for all vegetation

types, thus making model selection problematic. Model

selection is often a compromise between model complex-

ity, invertibility, and computational efficiency (Jacquemoud

et al., 1995). One-dimensional radiative transfer models are

best suited to inversion, but they often have the tendency

to oversimplify. Associated problems can include lack of

convergence, sensitivity of results to initial values chosen

for the solution, and difficulty in estimating model input

parameters that cannot be directly measured. For example,

Eklundh et al. (2001) found that inversion of LAI from

Landsat-7 ETM+ data was especially difficult because of

the large number of model input parameters needed as well
as the uncertainty associated with estimating some of the

parameters.

Neural network approaches have not been generalized

to handle arbitrary directional and spectral combinations

(Smith, 1993; Fang et al., 2003; Kimes et al., 1998).

Observations that are used to train the NN must encompass

the expected range of values for the landscape under

investigation. The availability of a large, surface-measured,

vegetation data set of high quality is therefore necessary

for the validation of the NN approach over large areas. An

advantage of the NN approach is that it allows the use of

complex, detailed models that would not be suitable for

classical inversion due to very slow inversion times

(Jacquemoud et al., 2000). Furthermore, NN approaches

are not as affected by initial choices as traditional model

inversion approaches are, nor are they as computationally

intensive as traditional techniques. Forward runs of the NN

are fast once NN training is completed.

Promising variations of the above approaches include

within-scene scaling of an SVI that yields LAI directly as a

function of the fraction of vegetation cover (Campbell &

Norman, 1998; Choudhury et al., 1994) and a hybrid

radiative transfer-neural network (RT-NN) approach (Fang

& Liang, 2003). The hybrid method has been used to

retrieve LAI of grasses, crops, and forests using Landsat-7

ETM+ top-of-atmosphere radiances as well as atmospheri-

cally corrected surface reflectances. Both the scaled nor-

malized difference vegetation index (NDVI) and the hybrid

method require little or no in situ calibration measurements

and are thus potential solutions for global operational

systems.

The objective of this study was to evaluate a variety of

approaches for the retrieval of LAI from Landsat-7 ETM+

data of the SMEX02 study area. These techniques include

the RT-NN hybrid and scaled SVI methods, an empirical

approach using NDVI, and an empirical approach using a

SVI incorporating green wavelengths as reported by Gitel-

son et al. (in press).

The normalized difference vegetation index (NDVI) has

been an extremely popular SVI for biophysical parameter

retrieval (Rouse et al., 1973). NDVI has been used at

virtually all scales ranging from small plot research to

global investigations. Part of its popularity stems from the

fact that it uses baseline spectral bands available from

virtually all remote sensing systems, including color infra-

red photography, and it is computationally very efficient.

Although numerous investigations have shown that NDVI

is not the best solution for LAI retrieval under all circum-

stances, its use persists in the literature and is popular

among operational users of remote sensing data (Best &

Harlan, 1985; Carlson & Ripley, 1997; Colombo et al.,

2003; Myneni et al., 1995; Spanner et al., 1990). The

continued widespread acceptance of NDVI by both the

application and research communities suggests that NDVI

is a suitable benchmark for comparing alternative biophys-

ical parameter retrieval algorithms and solutions.
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2. Algorithm descriptions

2.1. Empirical SVI methods

Empirical approaches for estimating LAI have tradition-

ally used combinations of red and near infrared (NIR)

wavelengths in SVIs such as NDVI. The NDVI is given as

NDVI ¼ ðqNIR � qRedÞ
ðqNIR þ qRedÞ

ð1Þ

where qNIR and qRed are the NIR and red wavelength

reflectances. A least squares regression using linear or

curvilinear relationships between a sample of NDVI image

pixels and surface-measured LAI is determined and then

applied to the entire image. One limitation of NDVI is that it

becomes asymptotic at LAI values between 2.0 and 3.0 and

is therefore not responsive to further increases of LAI. The

SVI reported by Gitelson et al. (in press) uses green wave-

length reflectance instead of red reflectance and appears to

remain sensitive to changing levels of vegetation at LAIs

beyond 3.0. The Gitelson green index (GI) is given as

GI ¼ ðqNIRÞ
ðqGreenÞ

� 1:0 ð2Þ

where qGreen is the green wavelength band reflectance.

2.2. Scaled SVI method

The scaled SVI approach links an SVI for a fraction of

vegetation cover ( fc) reported by Choudhury et al. (1994)

and Gillies and Carlson (1995) with an equation for LAI

expressed as a function of fc reported by Campbell &

Norman (1998). Fraction of vegetation cover is calculated

using

fc ¼ 1� NDVIMAX � NDVIi

NDVIMAX � NDVIMIN

� �0:6
ð3Þ

where NDVIMAX is the maximum NDVI value for the

image, NDVIMIN is the minimum NDVI for the image,

and NDVIi is the NDVI of an individual pixel. The fc is then

used to calculate LAI via

LAI ¼ �2lnð1� fcÞ ð4Þ

As it is important to avoid including water pixels or

spurious high value pixels when determining the minimum

and maximum NDVI values, it is usually preferable to use

the mean of the end 3% of the tails of the NDVI histogram

for the minimum and maximum values. The scaled SVI

approach assumes random orientation and distribution of

leaves throughout the canopy with no clumping of elements.

Note that the relationship between fc and LAI is the basis for

algorithms used by nondestructive LAI field measurement

instrumentation widely accepted by the research community

(Welles, 1990; Welles & Norman, 1991).
2.3. Hybrid method

Implementation of the RT-NN hybrid approach requires

the creation of a simulation database or lookup table (LUT)

that relates canopy biophysical parameters and viewing

geometries to Landsat-7 ETM+ spectral reflectance. This

database is subsequently used to train the neural network.

The trained NN is then applied to atmospherically corrected

imagery of surface reflectances to generate LAI. It is

important that the canopy reflectance model inputs encom-

pass the full range and combination of expected field

conditions. To a large extent, the success of the NN

predictions is based on how accurately the soil–plant–

atmosphere continuum is physically modeled.

The Markov chain reflectance model (MCRM) (Kuusk,

1994) was used to create the simulation LUT. The MCRM is

a turbid medium, analytical multispectral canopy reflectance

model that calculates nadir reflectance in the 400- to 2500-

nm range for homogeneous vegetation canopies. It was

chosen because it is a physically based model that can be

successfully run in the forward direction using input param-

eters from field measurements or from parameter values

reported in the literature. An additional advantage of

MCRM is that it can model plant canopies largely made

up of vertical elements such as corn because it incorporates

Markov properties of stand geometry. The MCRM incorpo-

rates the PROSPECT leaf radiative transfer model to sim-

ulate leaf optical properties (Jacquemoud & Baret, 1990).

Soil reflectance is characterized by four basis functions as

defined by Price (1990). The MCRM also incorporates a

diffuse to total irradiation skylight ratio model.

Input values of LAI, a Markov clumping factor, and leaf

spatial distribution are needed to characterize canopy struc-

ture. Other parameter inputs include leaf biochemical and

structural properties (e.g., chlorophyll a + b and the number

of internal leaf layers), soil spectral reflectance and direc-

tional properties, the solar viewing geometry, and atmo-

spheric turbidity.

A soil reflectance index (SRI) was used to retrieve soil

reflectance from the imagery. The SRI is based on the linear

relationship between red and near infrared reflectance of

bare soil as described by the soil line (Baret et al., 1993).

The soil line is actually a ‘‘buffer range’’ or ‘‘strip’’ at the

base of the tasseled-cap structure of a red-near infrared

scattergram of pixel values (Fang & Liang, 2003) (e.g. Fig.

3). The minimum and maximum reflectances of the soil line

are calculated as the means of clusters with centers located

typically at the 2% percentile (for the minimum) and the

98% percentile (for the maximum)

q1 ¼ MeanðS1Þ

q2 ¼ MeanðS2Þ

where q1 and q2 are minimum and maximum band reflec-

tances derived from the soil line and S1 and S2 are the lower
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Fig. 1. Subset from the July 1, 2002 Landsat-7 ETM+ band 3 (red) image

showing the Walnut Creek watershed. White stars indicate sites where

ground-based LAI-2000 measurements were made.
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and upper clusters of soil pixels for calculating q1 and q2.

SRI is given as

SRI ¼ qs � q1

q2 � q1

ð5Þ

The soil reflectance (qs) for a pixel can be calculated

using

qs ¼ qi1 þ ðqi2 � qi1ÞSRI ð6Þ

where qi1 and qi2 are the minimum and maximum values of

soil reflectance of band I estimated by calculating the mean

of the minimum and maximum soil pixel clusters as

determined by visual inspection.
3. Data collection and processing

3.1. Study site description

The SMEX02 experiment was conducted in and around

the Walnut Creek Watershed south of Ames, IA, during June

and July, 2002 (Fig. 1). Approximately 95% of the land area
Fig. 2. Split-bar graph of the aerosol optical thickness for July 1 (black bar) and Ju

the two overpass dates: 3.3 cm for July 1 and 4.5 cm for July 8.
is used for agriculture. Corn and soybean are grown on

approximately 80% of the row crop acreage, with greater

than 50% in corn, 40–45% in soybean, and the remaining

5–10% in forage and grains. The watershed is representa-

tive of the Des Moines Lobe, which covers approximately 1

quarter of the state of Iowa. The climate is humid with an

average annual rainfall of 835 mm. The experimental

watershed has some of the youngest soils in the United

States and is considered to be a part of the pothole region of

Iowa because of the undulating terrain. There are two

notable features of the landscape: (1) lack of a surface

stream channel except for areas near streams and rivers

and (2) significant variation of soil types within the spatial

scale represented by a typical production field. Surface

organic matter content can often range from 1–2% to over

8% within a single field as one follows a transect from

pothole areas to eroded knolls. This variability is also

associated with high variation of rooting depth. If the spring

or summer is extremely wet, the soil surface can be

randomly covered with water-filled potholes. These pot-

holes are usually dry by early spring due to subsurface

drainage and farmers are able to plant without difficulty. The

inherent variability experimental watershed demanded that

care be taken during the design of the sampling scheme to

ensure that surface conditions within fields are adequately

sampled.

3.2. Field data collection

Farm owners within the SMEX02 study area were

contacted for permission to collect vegetation data from

their fields. Color infrared aerial photography was used to

help identify three areas within each field that were repre-

sentative of low, average, and high vegetation amounts. The
ly 8 (white bar). Total precipitable water amounts were notably different for



Fig. 3. Two-dimensional scatter plot of July 1 Landsat-7 ETM+ red and

NIR surface reflectances. The minimum and maximum soil reflectance

values were obtained by calculating the mean (black dot) of the lower 2%

and upper 98% cluster of cells (hatched shading) at the ends of the ‘‘soil

strip’’.
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mean of five LAI measurements collected at each site was

considered the best estimate of LAI for that particular day

and location. A total of 94 sample sites across the entire

experimental watershed were measured for LAI (Anderson

et al., 2004).

Corn and soybean LAIs were collected using the nonde-

structive optical methods of Welles and Norman (1991) and

Li-Cor. (1992). Using this approach, the resulting LAI

measurement yields a foliage area index that includes

standing green foliage LAI, standing non-green foliage

LAI, and non-foliage canopy architectural components such

as stalks, fruit, and branches. Assumptions of the algorithm

include (1) random positioning of small foliage elements

within the canopy and also with respect to azimuth and (2)

only sky radiation is seen by the sensors when positioned

beneath the canopy. The procedure permits rapid LAI

measurements from multiple canopies and locations.
Table 1

Performance of the LAI retrieval methods

Index Date Percent R/V r2 RMSE

Scaled 07-01-02 N/A 0.72 0.41

Scaled 07-08-02 N/A 0.48 0.45

Gitelson 07-01-02 65/35 0.79 0.53

Gitelson 07-08-02 65/35 0.38 1.27

NDVI 07-01-02 65/35 0.87 0.44

NDVI 07-08-02 65/35 0.48 1.26

NN 07-01-02 N/A 0.63 0.63

NN 07-08-02 N/A 0.40 0.70

Here Percent R/V is the percentage of the SVI/LAI dataset used for regression an

square error, n is the number of observations, O is the mean observed value, P i
3.3. Landsat-7 ETM+ imagery

Landsat-7 ETM+ imagery was acquired throughout the

duration of the SMEX02 field experiment. The ground

instantaneous field of view of the ETM+ imagery is 30 m.

Cloud-free ETM+ overpasses from July 1 to July 8 were

chosen for analysis. Two Landsat-7 images 1 week apart

were available because the study area falls within the

overlap area of adjacent satellite tracks (i.e., paths 26 and

27; row 31).

The 520–600 nm (green, band 2), 630–690 nm (red,

band 3), and 760–900 nm (near infrared, band 4) channels

of both Landsat-7 ETM+ scenes were converted from

spectral radiance to surface reflectance prior to analysis.

The second simulation of the satellite signal in the solar

spectrum (6S) atmospheric radiative transfer model was

chosen to perform atmospheric correction of the ETM+

scenes and for calculation of surface reflectance (Vermote et

al., 1997). Input parameters for 6S include solar and sensor

view angle geometries, target and sensor elevations, ozone

concentration, spectral aerosol optical depth, total precipi-

table water, aerosol volume, and aerosol size distribution.

A sunphotometer borrowed from the AErosol RObotic

NETwork (AERONET; Holben et al., 1998) was centrally

located within the study area. The AERONET sunphotom-

eters are automatic solar-tracking spectral radiometers that

collect narrow field of view (1.2j) direct sun and sky

radiance measurements of aerosol optical properties at 340,

380, 440, 500, 675, 870, 940, and 1020 nm. After data

quality checks and cloud screening were performed, these

measurements were used to calculate atmospheric aerosol

size distribution, aerosol refractive indices, aerosol optical

depth at 550 nm (logarithmic interpolation between mea-

sured aerosol optical depths at 500 and 675 nm), and

precipitable water (Eck et al., 1999). Atmospheric ozone

measurements were obtained from the World Ozone and

Ultraviolet Data Center (http://www.msc-smc.ec.gc.ca/

woudc/index.html). Aerosol optical depths from July 1 to

July 8 are presented as Fig. 2. Note the higher aerosol

optical depth values and precipitable water contents for

July 8. SMEX02 field participants reported visual obser-

vations of ‘‘smoke in the air’’ on that date. It was later
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n O P MBE Percent error

72 2.50 2.36 � 0.14 22.5

60 3.13 2.88 � 0.25 27.0

27 2.62 2.41 � 0.21 21.2

21 3.04 3.16 0.12 30.7

25 2.57 2.41 � 0.16 18.57

21 3.04 2.21 � 0.83 66.7

83 2.50 2.94 0.44 17.5

67 3.10 3.13 0.03 0.9

d validation, r2 is the coefficient of determination, RMSE is the root mean

s the mean predicted value, and MBE is the mean-bias-error.

 http:\\www.msc-smc.ec.gc.ca\woudc\index.html 
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confirmed that large forest fires in Colorado during the

summer of 2002 were the source of the smoke.

Bands 3 and 4 of the atmospherically corrected Landsat-

7 ETM+ image were used to compute NDVI. Bands 2 and 4

were used to compute GI. A 65% subset of the data was

used to calculate regression equations, with the remaining

data used to validate the results.

The LUTs for corn and soybeans were created by

forward runs of the MCRM. Input parameters (excluding

the solar zenith angle at the time of the satellite overpass

and soil reflectance values determined directly from the

ETM+ imagery for calculation of the SRI) were obtained

from values reported by Fang and Liang (2003). Their

values were obtained through inversion of ETM+ imagery

acquired over the eastern half of the state of Maryland and

fell within the range of values reported by other inves-

tigators (Kuusk, 1995). MCRM was run using multiple

values for the solar zenith angle (10–70j by a 10j step)

and LAI (0.0–10.0 by a 0.1 step). The minimum and

maximum soil reflectance values used for the calculation

of SRI were determined from the soil line as revealed in

the 2D spectral plot of red and near infrared surface

reflectances from the SMEX02 ETM+ imagery (Fig. 3).

A feed-forward, back-propagating NN was trained on the

LUT (Venables & Ripley, 1994).

Validation LAI values for comparison with LAI esti-

mates from the July 1, 2002 Landsat-7 ETM+ image were

obtained by interpolating between ground base LAI meas-

urements made immediately before and after the satellite

overpass date. Linear interpolation could not be used to

derive the LAI ground data for comparison with the July

8 image because vegetation sampling did not occur after

the 8th. As a result, those LAI measurements acquired

immediately before the July 8 overpass were used to make

up the validation dataset. LAI measurements from the

riparian areas were not used for this analysis.

Point data were retrieved from the NN-predicted LAI

image using the geographic locations of the ground-truth

LAI sample sites. However, due to unavoidable geo-regis-

tration errors and the close proximity of some of the sites to

features such as roads, homesteads, and adjacent fields

under different cropping systems, some of the retrieved

LAI image pixels were either directly on or too close to

unrepresentative surface features. These data points were

considered to be outliers and were excluded from further

analysis.
Fig. 4. (a) LAI-2000 ground measurements vs. LAI estimated from

empirical NDVI approach for July 1 Landsat-7 ETM+ overpass. The solid

line is the regression line (r2 = 0.87) and the dashed line is the one-to-one

line. (b) LAI-2000 ground measurements vs. LAI estimated from empirical

NDVI approach for July 8 Landsat-7 ETM+ overpass. The solid line is the

regression line (r2 = 0.48) and the dashed line is the one-to-one line.
4. Results

Table 1 contains a summary of the LAI retrieval results.

Comparisons of estimated versus measured LAI using the

NDVI and GI empirical methods for July 1 and July 8 are

plotted as Figs. 4a,b and 5a,b. Both NDVI and GI results for

July 1 are considerably better than results obtained for July

8. Linear regressions of estimated versus measured LAI for
July 1 for both SVIs resulted in very small offsets from 0.0

and slopes close to the 1:1 line. For July 1, the r2 for the

NDVI is slightly higher than the r2 for the GI while both



Fig. 6. (a) LAI-2000 ground measurements vs. LAI estimated from scaled

approach for July 1 Landsat-7 ETM+ overpass. The solid line is the

regression line (r2 = 0.72) and the dashed line is the one-to-one line. (b)

LAI-2000 ground measurements vs. LAI estimated from scaled approach

for July 8 Landsat-7 ETM+ overpass. The solid line is the regression line

(r2 = 0.48) and the dashed line is the one-to-one line.

Fig. 5. (a) LAI-2000 ground measurements vs. LAI estimated from

empirical Gitelson approach for July 1 Landsat-7 ETM+ overpass. The

solid line is the regression line (r2 = 0.79) and the dashed line is the one-to-

one line. (b) LAI-2000 ground measurements vs. LAI estimated from

empirical Gitelson approach for July 8 Landsat-7 ETM+ overpass. The

solid line is the regression line (r2 = 0.38) and the dashed line is the one-to-

one line.
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SVIs appear to overestimate higher LAI values and under-

estimate lower values. The comparisons for the July 8 date

show a higher r2 and slope closer to 1.0 for the NDVI than
for the GI. There is considerable scatter of the data for both

dates.

The scaled NDVI measured versus estimated LAI results

for both dates are shown as Fig. 6a and b. The July 1

comparison has a higher r2, a slope closer to 1.0, and a
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smaller offset from the origin than the July 8 comparison.

Both dates show a tendency to overestimate lower LAI

values and underestimate higher values. Note that the

empirical NDVI and scaled NDVI approaches perform

comparably within each date.

The measured versus estimated LAIs for both dates using

the hybrid NN approach are shown as Fig. 7a and b. The r2
Fig. 7. (a) LAI-2000 ground measurements vs. LAI estimated from NN

approach for July 1 Landsat-7 ETM+ overpass. The solid line is the

regression line (r2 = 0.63) and the dashed line is the one-to-one line. (b)

LAI-2000 ground measurements vs. LAI estimated from NN approach for

July 8 Landsat-7 ETM+ overpass. The solid line is the regression line

(r2 = 0.40) and the dashed line is the one-to-one line.
is greater for the July 1 date and the slope is closer to the 1:1

line than the July 8 date. The offset from the origin for the

July 8 comparison is slightly higher than the July 1

regression.
5. Discussion

Although all of the SVI methods out-performed the

hybrid RT-NN method on July 1, it is significant that the

RT-NN approach had the second highest r2 on July 8 (0.40

versus 0.48) and that the scaled NDVI method performed

reasonably well relative to the empirical SVI methods on

the 1st (0.72 versus 0.79 and 0.87) and shared the highest

r2 for July 8 (0.48) with the NDVI approach. Note also

that the changes of RMSE between July 1 and July 8 for

the scaled NDVI and RT-NN methods were an order of

magnitude less (0.4 and 0.7, respectively) than changes of

the RMSE for the empirical SVI methods (0.74 and 0.82

for the GI and NDVI approaches, respectively).

Prior analysis of the RT-NN method showed that a

reflectance error of F 10% causes an error of 0.41 LAI

difference (Fang & Liang, 2003). The LAI error increases to

0.70 when the uncertainty of reflectance is F 15%. The

performance of the RT-NN process may be improved if

model input parameters were estimated from direct field

measurements. This, however, would run counter to one of

the stated objectives of this analysis which is how to retrieve

regional LAI estimates from satellite data without the need

for site-specific, ground calibration measurements. For the

purposes of this investigation, the RT-NN input parameters

reported to be appropriate values for corn and soybeans

were obtained from the literature. The lack of site-specific

inputs directly measured in the field at the time of the

satellite overpass did not produce unrealistic LAI retrieval

values from the RT-NN or the scaled NDVI methods; in

fact, the acceptable performance of these approaches sug-

gests that literature values for model input parameters can

suffice.

All of the LAI retrieval methods performed better for

the July 1 imagery than for the July 8 imagery. The most

notable differences between the dates that may have

influenced LAI retrieval performance include availability

of ground measurement datasets for the determination of

LAI for the satellite overpass dates and the presence of

smoke in the atmosphere on July 8. The inability to

interpolate exact LAI values for the July 8 overpass due

to the lack of any ground-truth LAI measurements ac-

quired after the 8th would not seem to explain the

significant differences noted between the two dates be-

cause all LAI retrieval results, including those lacking

calibration measurements, showed decreased performance

for July 8.

Another complicating factor is that by July 8 many of

the corn plants would have tasseled, and tasseling is

known to affect reflectance. The consistently lower r2
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and higher RMSE for the July 8 data suggest that this

imagery contains surface reflectance calculation errors and

that the atmospheric corrections may not have accounted

for the much higher atmospheric turbidity caused by the

presence of smoke on this date. Investigations using

MODIS and GOES imagery from SMEX02 acquired on

July 8 have also encountered difficulty calculating surface

reflectance. In situ near infrared surface reflectance meas-

urements acquired with hand-held radiometers on July

8 showed reasonable agreement with satellite reflectances.

However, in situ visible surface reflectance measurements

were lower than satellite-based reflectance (P. Doraiswamy,

personal communication). Increased visible reflectance

would affect determination of the minimum and maximum

soil reflectance values of the NN approach and calculation

of NDVI for the scaled procedure. It is, however, notable

that the RMSE for the scaled approach had a modest

increase for the July 8 data. The NDVI and GI approaches

would also be affected by brighter visible reflectance.

Increased visible reflectance would be analogous to a

decrease in vegetative cover and increasing soil exposure,

thus introducing a bias.

The plots of estimated versus predicted LAI show

interesting trends about the various retrieval methods. The

NDVI and GI methods for July 1, conducted with site-

specific in situ calibration measurements, show regression

lines that are parallel to the 1:1 lines with a slight negative

offset. This suggests that the calibrated methods do a

reasonable job of estimating the full range of LAI of the

study area.

The scaled and NN approaches of July 1, which lack

site-specific in situ calibration measurements, show regres-

sion lines that cross the 1:1 lines with a positive offset.

This trend also occurs for the July 8 scaled and NN

approaches. This suggests that the uncalibrated methods

perform reasonably well for mid-range LAI estimations

while providing poorer estimates of lower and higher LAI

values.

The July 8 NDVI method has a regression line that

appears to follow the July 1 pattern. The July 8 GI

method has a regression line that is very close to the 1:1

line, this time with a positive offset largely due to

several high LAI outliers. Removal of the extreme out-

liers would shift the July 8 GI regression line closer to

the 1:1 line.

Examination of the location of the outliers for all LAI

retrieval approaches showed no obvious geographic trends

or patterns. Stratification of the outliers according to

whether LAI estimations were made for corn or soybean

also showed no obvious trends. One sample site appeared

as an outlier in three of the methods on July 1; another site

was an outlier in three of the methods on July 8. This

suggests that these validation measurements may not have

corresponded with or were not adequately representative of

the vegetative canopy conditions recorded by the satellite

sensors.
6. Conclusions

The SVI methods—NDVI regression, GI regression, and

scaled NDVI—appear to perform comparably. Plots of

estimated versus measured LAI appear to suggest that the

calibrated methods do a better job of estimating the full range

of LAI values while the uncalibrated methods perform

reasonably well for mid-range LAI estimations with less

consistent estimation of higher and lower LAI values. While

not performing as well as the SVI approaches, the hybrid RT-

NN results are still impressive given that site-specific data

for calibration or optimization of the MCRM are not needed.

The hybrid RT-NN approach is computationally complex

as multiple analytical steps must be completed before an

estimate can be produced. This method would be less

cumbersome if LUTs could be produced and used to train

the NN for many view angle/solar angle/soil brightness/

growth stage scenarios before image acquisition and pro-

cessing. The sensitivity of the procedure to the derivation of

soil brightness inputs to the radiative transfer model via SRI

suggests that further refinement of this procedure is war-

ranted. The scaled NDVI and hybrid RT-NN methods raise

issues concerning the choice of boundaries for determina-

tion of minimum and maximum image values. Implemen-

tation of a rigorous approach for avoiding the inclusion of

water pixels and other outliers when selecting the minimum

and maximum values would benefit these LAI retrieval

approaches.

This study suggests that the most efficient method for

LAI retrieval is the scaled NDVI approach as it does not

require site-specific in situ measurements for calibration and

uses simple formulae. However, the procedure does require

a wide range of NDVI values to be present in the scene to

properly pick minimum and maximum limits. Determina-

tion of the exponent in the fc equation also warrants further

investigation.

The results demonstrate that reasonable LAI estimates

are possible using optical remote sensing methods without

site-specific calibration measurements.
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