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Abstract

Measured and modeled point spread functions (PSF) of sensor systems indicate that a significant portion of the recorded signal of each pixel

of a satellite image originates from outside the area represented by that pixel. This hinders the ability to derive surface information from

satellite images on a per-pixel basis. In this study, the impact of the PSF of the Moderate Resolution Imaging Spectroradiometer (MODIS)

250 m bands was assessed using four images representing different landscapes. Experimental results showed that though differences between

pixels derived with and without PSF effects were small on the average, the PSF generally brightened dark objects and darkened bright objects.

This impact of the PSF lowered the performance of a support vector machine (SVM) classifier by 5.4% in overall accuracy and increased the

overall root mean square error (RMSE) by 2.4% in estimating subpixel percent land cover. An inversion method based on the known PSF

model reduced the signals originating from surrounding areas by as much as 53%. This method differs from traditional PSF inversion

deconvolution methods in that the PSF was adjusted with lower weighting factors for signals originating from neighboring pixels than those

specified by the PSF model. By using this deconvolution method, the lost classification accuracy due to residual impact of PSF effects was

reduced to only 1.66% in overall accuracy. The increase in the RMSE of estimated subpixel land cover proportions due to the residual impact

of PSF effects was reduced to 0.64%. Spatial aggregation also effectively reduced the errors in estimated land cover proportion images. About

50% of the estimation errors were removed after applying the deconvolution method and aggregating derived proportion images to twice their

dimensional pixel size. D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Mapping land cover using remotely sensed images most

commonly involves using the reflectances or radiances of

each pixel to assign it to one of a number of land cover

classes. The assumption is made that the information content

of a pixel originates solely from within its footprint. In an

actual remotely sensed image, however, a substantial portion

of the spectral signal of each pixel comes from surrounding

areas (Forster & Best, 1994; Townshend, 1981). This is a

consequence of many factors including the optics of the

instrument, the detector and electronics, atmospheric effects,

as well as image resampling (Markham, 1985; Schowen-

gerdt, 1997). These effects are described either by the point

spread function (PSF), which characterizes a sensor’s

response to point signals, or alternatively by its Fourier

transform, the optical transfer function (Williams & Beck-

lund, 1989). Such effects constitute an inherent source of

uncertainty in satellite images because signals from beyond a

pixel’s area will contribute to the value assigned to it. For

example, it has been estimated that less than half of the signal

recorded by the Landsat’s first Multispectral Scanner System

originates from the pixel itself (Townshend, 1981).

A previous study demonstrated the impact of PSF effects

on the estimation of land cover proportions based on an anal-

ysis of a simplified landscape using linear mixture modeling

(Townshend et al., 2000). In this simplified landscape, actual

boundaries of land cover units were used, but all pixels of

each cover type were assigned to the mean signature of that
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cover type, resulting in an image consisting solely of pure

pixels at 30-m resolution. The 30-m pixels were then aggre-

gated to 250-m pixels, giving a landscape of exactly known

pixel proportions. The standard error of estimation (SEE) in

predicted subpixel land cover proportion, whichwould be 0%

without the impact of the PSF (Kalluri et al., 1997), was found

to be 6.69%. A combination of deconvolution and aggrega-

tion of pixel values reduced the SEE to 1.36%.

In this paper, we have quantified the impact of the PSF

on remote sensing images of real landscapes using a PSF

model of the Moderate Resolution Imaging Spectroradiom-

eter (MODIS), and have tested the effectiveness of a

deconvolution method. We first give a description of the

deconvolution method and then the experimental design of

this study. The PSF model and the deconvolution were

assessed of their impacts on image quality, land cover

classification, and subpixel land cover estimation.

2. The MODIS PSF model and deconvolution method

The PSF can be modeled as a function PSF(u, v, x, y) that

maps an input pattern g(u, v) in the object space into an

output pattern R(x, y) in the image space (Williams &

Becklund, 1989):

Rðx; yÞ ¼
Z Z

PSFðx� u; y� vÞgðu; vÞdudv ð1Þ

According to the design specifications, the PSF of MODIS

250 m bands can be modeled as a circularly symmetric

Gaussian-like shape using the following function (Barker &

Burelhach, 1992):

PSFðx; y; u; vÞ ¼ exp � ðx� uÞ2 þ ðy� vÞ2

2s2

 !
ð2Þ

where x and y are the cross- and along-track coordinates of a

pixel in the image space and u and v the cross- and along-

track coordinates in the object space. The pixel size of the

sensor is determined by s, which is 123.5 m for the 250-m

bands (Barker & Burelhach, 1992). Laboratory measure-

ments of the sensor’s PSF were very close to the specifi-

cations (Barnes, Pagano, & Salomonson, 1998). Though the

actual PSF as would be measured from an orbiting satellite

should be more complex due to many factors, this model is

an ideal example for illustrating the impact of an actual PSF

and proving the concept of partially deconvolving such

impact based on a known PSF model.

Because we wanted to compare the use of 250-m

resolution data with and without the impact of the PSF, it

was more convenient to use TM data at 30-m resolution to

simulate 250-m pixels than to use MODIS data itself. Given

the transfer function of Landsat Thematic Mapper (TM)

(Markham, 1985), a filter was defined to simulate MODIS

data from TM image according to the above PSF model

(Barker & Burelhach, 1992). To avoid dealing with partial

TM pixels, the size of a simulated MODIS pixel was

defined to be 256.5 m in both scan and track directions,

nine times that of a TM pixel in one dimension (Fig. 1). This

adjustment should not affect the general conclusions on the

impact of the PSF and the effectiveness of the deconvolu-

tion method because it did not change the relative responses

of the sensor to neighboring pixels.

2.1. The deconvolution method

Fig. 1 illustrates how pixel values can be affected by the

impact of an actual PSF. Ideally, the signal of a pixel would

be solely derived from within that pixel using an ideal PSF

having a uniform response to signals from within that pixel

and no response to signals from outside that pixel. A PSF

with this attribute will be referred to as the ideal PSF

throughout this paper, though we recognize that there will

be some small PSF effects present from TM data and from

atmospheric effects (see below). The actual PSF model,

however, shows that the sensor not only responds to radiance

from within that pixel, but also to that from surrounding

pixels. For an orbiting sensor, such adjacency effect can be

more significant due to atmospheric effects and off nadir

view geometry, and likely will be different in the along- and

cross-track directions. Nevertheless, we will refer to the

‘‘actual PSF’’ model shown in Fig. 1 as the actual PSF

throughout this paper to distinguish it from the ideal PSF.

In order to reduce the impact of PSF effects, it is

necessary to invert the radiance derived using the ideal

PSF from that derived using the actual PSF. A straightfor-

ward method is to invert the PSF and apply it to the image to

be deconvolved. This procedure can also be performed in

the frequency domain using a Wiener filter (e.g., Fales,

Huck, McCormick, & Park, 1988). This method, however,

may enhance noises in the image being deconvolved (Frie-

den, 1980). While some efforts have been made to deal with

this problem in the space domain using iterative algorithms

Fig. 1. The actual and ideal PSFs for simulating MODIS data from TM

images. The PSFs are the same for both scan and track directions. The

integrated response of the actual PSF to a neighboring pixel normalized by

its overall response in one dimension is represented by a.
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(e.g., Frieden, 1980; Meinel, 1986), we found that after the

weighting factors of the PSF were adjusted slightly, the inversion

method could partially deconvolve the impact of the PSF without

introducing excessive noise.

Considering the resolution limitation of a given sensor

system, we represent the PSF model of Eq. (2) in a discrete

format. According to Fig. 1, only immediately neighboring

pixels have substantial contributions to the recorded radi-

ance of a pixel. Let a be the integrated response of the

sensor to radiance from an immediately neighboring pixel

normalized by the overall response in one dimension (the

shaded area of Fig. 1), which is 0.1464 according to Eq. (2).

The PSF in the two-dimensional space can be written as:

PSFðaÞ ¼

a

1� 2a

a

2
66664

3
77775ða 1� 2a a Þ

¼

a2 að1� 2aÞ a2

að1� 2aÞ ð1� 2aÞ2 að1� 2aÞ

a2 að1� 2aÞ a2

2
66664

3
77775 ð3Þ

This representation of the PSF assumes that the sensor’s

response is uniform within each neighboring pixel. While

this is not accurate, it is a close and necessary approximation

because the spatial variation of radiance within each pixel is

unknown. With this assumption, and rewriting the 3� 3

matrix in Eq. (3) as {PSFi, j (a)}, i, j = 1, 2, 3, the following
relationship exists between the radiance derived using the

ideal filter (r) and that derived using the PSF filter (R) for

each pixel ( p,l) except the edge of the whole image:

Rp;l ¼
X1
i¼�1

X1
j¼�1

PSFiþ2; jþ2ðaÞrpþi;lþj;

p ¼ 2; . . . ;M � 1 and l ¼ 2; . . . ;N � 1 ð4Þ

where M and N are the number of pixels and lines of an

image. The boundary conditions for applying Eq. (4) to the

edge pixels of the whole image can be defined in many

ways. We expanded the entire image by one pixel in all four

directions by replicating the edge pixels. This gave the same

number of unknown variables and equations, and rp,l was

inverted from Rp,l by solving Eq. (4).

It should be noted that for a full satellite image, there

could be millions of equations in Eq. (4). Solving such a

huge equation group is computationally very expensive.

Fortunately, Eq. (4) is a sparse linear system and may be

handled efficiently using some special techniques (Press,

Teukolsky, Vetterling, & Flannery, 1992). In this study, we

used the ‘‘solve’’ routine of Splus to demonstrate this

deconvolution approach. The ‘‘solve’’ routine implements

several standard methods for solving linear equation groups

(Chambers & Hastie, 1992).

3. Data and experimental design

The imaging process described in Eq. (1) shows that the

impact of the PSF not only depends on the PSF itself, but

also on the spatial variability of the input pattern. In large

homogeneous areas, images derived using the actual PSF

may not be significantly different from those derived using

the ideal one. However, in heterogeneous regions with

strong contrast among neighboring areas, differences bet-

ween images derived using the two PSFs can be quite

significant. In this assessment, four TM images representing

different landscapes were used, each covering an area of

16.5� 16.5 km (Table 1).

To ensure compatibility of the results from different area,

the digital number (DN) of each image was converted to a

top-of-atmospheric reflectance using the procedure of Mark-

ham and Barker (1986). The reflectance images were then

degraded using the actual and ideal PSFs given in Fig. 1,

respectively. For simplicity, the resultant images are

referred to as the ‘‘convolved’’ and ‘‘ideal’’ images through

the rest of the paper. Because the ideal images were derived

from TM images, they were affected by the TM’s PSF.

Table 1

TM images for assessing the impacts of the PSF and the effectiveness of the

deconvolution method

Location Path Row Date

Major land use/

land cover types

Maryland, USA 015 033 August 14, 1985 Agriculture/

Forest/Urban

Al Buhayrah, Egypt 177 038 June 7, 1984 Desert/

Agriculture

Santa Cruz, Bolivia 230 072 July 2, 1986 Tropical forest

Ontario, Canada 020 026 October 20, 1985 Boreal forest

Table 2

Impact of the PSF on the standard deviation (S.D.) of images

Location of image

S.D.convolved
(reflectance %)

S.D.ideal
(reflectance %)

S.D.ideal
reduced (%)

MODIS band 1

Maryland, USA 1.13 1.22 7.64

Al Buhayrah, Egypt 5.58 5.78 3.37

Santa Cruz, Bolivia 0.40 0.45 9.76

Ontario, Canada 0.39 0.48 17.37

MODIS band 2

Maryland, USA 5.97 6.18 3.36

Al Buhayrah, Egypt 4.06 4.23 4.16

Santa Cruz, Bolivia 0.65 0.74 12.09

Ontario, Canada 2.29 2.52 9.13

The subscript ‘‘ideal’’ refers to images derived using the ideal PSF shown in

Fig. 1. The last column shows the percentage of the standard deviation of

the images derived using the ideal PSF (S.D.ideal) reduced when the images

were derived using the actual PSF (S.D.convolved).
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Fig. 2. Impact of PSF effects shown as the differences between the convolved images and the ideal ones (i.e., those derived using the ideal PSF). The units for

both the x and y axis are percent reflectance (%). Plots in the left side are for the red band and those in the right side are for the near infrared band.
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However, such impacts should be negligible at 256.5-m

resolution because most of them cancel one another when

the 28.5-m pixels were aggregated to 256.5 m. Applying the

deconvolution method described above to the convolved

images (see Eq. (4)) partially deconvolved them. Differ-

ences between the convolved images and the ideal ones can

be attributed to the impacts of the PSF, while those between

the partially deconvolved images and the ideal ones indicate

the residual impact of the PSF on the partially deconvolved

images. Improvements of the partially deconvolved images

over the convolved ones reflect the effectiveness of the

deconvolution method.

4. PSF impact on image quality and its deconvolution

4.1. Impact on image quality

The PSF affects image quality in several ways. First,

because the actual PSF includes signals from an area larger

than an individual pixel, it smoothens surface variability

more severely than the ideal PSF. As a result, the convolved

image derived using the actual PSF should have less spatial

variability than an ideal one derived using the ideal PSF.

Table 2 shows that for the red and NIR bands of all four test

areas, the convolved images had between 3% and 17% small-

er standard deviations than the ones without PSF effects.

A pixel derived using the actual PSF likely will have a

different value from a pixel derived using the ideal PSF

because the former originates from a larger area. Due to

uneven weighting factors of the actual PSF, such differences

are functions of the relative brightness of neighboring pixels

and the spatial arrangement of dark and bright objects

within each pixel. Fig. 2 compares the reflectance values

of the convolved images with the ideal ones, i.e., those with

minimal instrument PSF effects. These plots show that in

addition to the pixels being scattered in considerably wide

ranges along the 1:1 line, for the convolved images of all

four test sites, dark pixels were brighter and bright pixels

were less bright when compared to the corresponding pixels

in the ideal images.

4.2. Tuning the performance of the deconvolution method

In order to measure the performance of the deconvolution

method, we quantify the impact of the PSF by the mean

absolute difference (MADPSF) between the convolved

image (Ri) and the ideal one (ri). We also calculate the

mean absolute difference (MADDCV) between the partially

deconvolved image (DRi) and the ideal one to assess the

residual impact of the PSF in the partially deconvolved

image (Eqs. (5) and (6)):

MADPSF ¼
1

N

XN
i¼1

jRi � rij ð5Þ

MADDCV ¼ 1

N

XN
i¼1

jDRi � rij ð6Þ

where N is the number of pixels in the image. The

performance of the deconvolution method is measured by
Fig. 3. Performance of the deconvolution method as a function of a.
IMPROVE is defined in Eq. (7).

Fig. 4. Different impacts of underestimation (when a < 0.1464) and

overestimation (when a< 0.1464) by the deconvolution method of signals

originating from neighboring pixels on the performance of this method. In

order to separate overestimation from underestimation, the spatial

heterogeneity within each window of 9� 9 TM pixels was removed by

setting all pixels within the window to the average value of that window,

resulting in a simplified TM image. The actual PSF was then applied to this

simplified TM image and a simplified MODIS image was created. When

the deconvolution method was applied to this simplified MODIS image, for

each and every pixel in this image, the amount of signal derived from

surrounding areas was accurately estimated using Eq. (9) when a was set to

0.1464, underestimated when a was less than 0.1464, and overestimated

when a was greater than 0.1464. The initial increase in performance as a
increased from 0 to 0.1464 was solely due to the decrease of under-

estimation errors, while the decrease in performance as a exceeded 0.1464

was solely due to the increase of overestimation errors. IMPROVE is

defined in Eq. (7).
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Fig. 5. Residual impact of PSF effects on the partially deconvolved images. The units for both the x and y axes are percent reflectance (%). Plots in the left side

are for the red band and those in the right side are for the near infrared band.
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the percentage of the MADPSF removed by the deconvolu-

tion method:

IMPROVE ¼ MADPSF �MADDCV

MADPSF

� 100% ð7Þ

Deconvolving the impact of the PSF requires solving

equation group Eq. (4), the coefficients of which were

derived from a—the sensor’s integrated response to signals

from a neighboring pixel in one dimension. Intuitively,

the signals originating from neighboring pixels would be

most accurately accounted for by equation group Eq. (4)

when a equals its modeled value, which is 0.1464 accord-

ing to the PSF model defined by Eq. (2). However, for all

four test images, the deconvolution method performed

poorly when a was set to that value (Fig. 3). For both

the red and NIR bands of the four test images, the

proportion of the PSF’s impact removed by the deconvo-

lution method increased as a decreased, and reached a

maximum when a was around 0.105. Further decreases in

a gave decreased performances.

That the deconvolution method achieved best perfor-

mances when a was set to 0.105 rather than its modeled

value can be attributed to the inability of the deconvolution

method to accurately estimate the contributions of sur-

rounding areas for every pixel. According to Eq. (1), the

actual contribution of a neighboring pixel i in the input

space (u, v) to pixel j in the image space (x, y) should be

calculated as:

Z Z
pixel j

Z Z
pixel i

hðx� u; y� vÞgðu; vÞdudv

0
B@

1
CAdxdy ð8Þ

Because the input pattern g(u, v) is unknown beyond a sen-

sor’s resolving power, Eq. (8) is approximated using the fol-

lowing formula in the deconvolution equation group Eq. (4):

PSFi; jðaÞri ¼
Z Z
pixel j

�Z Z
pixel i

hðx� u; y� vÞ dudv
�

�dxdy

Z Z
pixel i

gðu; vÞdudv ð9Þ

For each pair of pixel i and j, the difference between Eqs.

(8) and (9) is a function of a and the spatial arrangement of

dark and bright objects within pixel i. Due to the uneven

weighting nature of h(x� u,y� v), Eq. (8) tends to be

underestimated by Eq. (9) when brighter objects in pixel i

are located near pixel j, but overestimated when darker

objects are located near pixel j. The overall amounts of

underestimation and overestimation of Eq. (8) by Eq. (9) for

an entire image are functions of a. When a increases, the

first part decreases while the second part increases. Statist-

ically, the contributions of neighboring pixels are best

estimated when the sum of underestimates and overesti-

mates is minimized, which would be achieved when a
equals its modeled value—0.1464. The deconvolution

would achieve its best performance at this value, if over-

estimation and underestimation of Eq. (8) by Eq. (9) had the

same effect on the performance of the deconvolution

method. However, because the inverted matrix of the PSF

enhances noises (Forster & Best, 1994; Frieden, 1980), the

performance of the deconvolution method degrades more

rapidly due to overestimates than due to underestimates of

Eq. (8) by Eq. (9). Fig. 4 shows that improvement brought

by the deconvolution method decreases more rapidly when

overestimates increase than when underestimates increase.

Thus, when a increases to around 0.1464, though increases

in overestimation are approximately balanced by decreases

Table 3

Deviations of convolved (MADPSF) and partially deconvolved images

(MADDCV) from ideal ones (i.e., those derived using the ideal PSF) as

measure by the mean absolute difference and improvements (IMPROVE)

brought by the deconvolution method

Location of image

MADPSF

(reflectance %)

MADDCV

(reflectance %)

IMPROVE

(MADDCV %)

MODIS band 1

Maryland, USA 0.152 0.075 50.36

Al Buhayrah, Egypt 0.462 0.214 53.65

Santa Cruz, Bolivia 0.031 0.022 34.91

Ontario, Canada 0.101 0.053 47.86

MODIS band 2

Maryland, USA 0.505 0.243 51.88

Al Buhayrah, Egypt 0.419 0.223 46.70

Santa Cruz, Bolivia 0.118 0.069 41.11

Ontario, Canada 0.337 0.175 48.15

Table 4

Performances of the SVM on the convolved, partially deconvolved, and ideal images of the Maryland, USA test site

Per-class agreement with reference map (pixel)

Source images Closed forest Open forest Woodland Nonforest land Land–water mix Water Overall accuracy (%)

Convolved image 1154 529 316 607 189 291 75.34

Partially deconvolved image 1206 578 341 620 196 298 79.08

Ideal image 1215 614 348 630 200 300 80.74

Number of pixels

in the reference map

1342 782 626 824 219 303 100.00
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in underestimation, the impact of increased overestimation

on the performance of the deconvolution method exceeds

that of decreased underestimation. As a result, the net

effectiveness of the deconvolution method reaches its peak

value before a reaches its modeled value.

4.3. Effectiveness of the deconvolution method

The fact that the deconvolution method achieved optimal

performances on both the red and NIR bands of all four test

images with an a value around 0.105 suggests that regard-

Fig. 6. Impact of the PSF on the estimation of subpixel land cover proportions and improvements brought by the deconvolution method and spatial aggregation.

The proportions were estimated from (a) convolved, (c) partially deconvolved, and (e) ideal (i.e., that derived using the ideal PSF) images from the Maryland,

USA test site using a SRT method, and were aggregated to 513 m (b, d, and f respectively) through spatial averaging.

C. Huang et al. / Remote Sensing of Environment 80 (2002) 203–212210



less of surface conditions, the impact of a known PSF model

may be partially deconvolved using this deconvolution

method with a single a value, which was set to 0.105 for

the remainder of this study.

Fig. 5 compares the partially deconvolved images to

the ideal ones. A comparison of this figure to Fig. 2

shows that not only are the points in these plots much

closer to the 1:1 line, but the trends of dark objects being

brightened and bright ones being darkened in the con-

volved image have also been corrected. Table 3 gives

quantitative measures of the impact of the actual PSF

(MADPSF) on the four test images, its residual impact

(MADDCV) after the deconvolution method was applied,

and the improvements (IMPROVE) brought by the decon-

volution method. The deconvolution method removed

more than 40% of the impact of the actual PSF on all

images except the red band of the Santa Cruz, Bolivia

image. The relatively smaller improvement brought by the

deconvolution method to this image was probably because

this image had relatively uniform and very low signals.

The relative noise enhancement of this deconvolution

method on such images tends to be higher than on

brighter and more heterogeneous images.

5. Implications for land cover characterization

In order to evaluate the consequences of the impact of the

actual PSF and the deconvolution method on land cover

characterization, classifications and estimations of subpixel

land cover proportions were carried out on the convolved,

partially deconvolved, and ideal images. This was carried

out for the Maryland, USA test site, where wall-to-wall

reference land cover maps for training and validation

purposes had been collected through field work.

The classifications were derived using a support vector

machine (SVM) classifier (Vapnik, 1995). The computer

program of this classifier, SVMlight, was developed by

Joachims (1998). Subpixel land cover proportions were

derived using a stepwise regression tree (SRT) method

(Huang & Townshend, in press). Both algorithms were

trained using 20% of the pixels randomly sampled from

the Maryland, USA data set. The remaining 80% pixels

were used as test pixels in accuracy assessment. The

SVM and SRT have been found in previous studies to

be more accurate than commonly available alternatives

(Huang, Davis, & Townshend, in press; Huang & Town-

shend, in press).

Table 4 gives the overall accuracies and per-class agree-

ments between the reference map and classifications

developed from the convolved, partially deconvolved,

and ideal images. For all six land cover classes, the

classifications from both the ideal and partially decon-

volved images had higher per-class agreements with the

reference map than that from the convolved image. As a

result, the overall accuracies of classifications developed

from the ideal and partially deconvolved image were

5.40% and 3.74% higher than that of the classification

developed from the convolved image.

The accuracy of the estimate of the subpixel land cover

proportions was measured using the root mean square error

(RMSE) of predicted proportions (ŷi) measured against the

reference proportions ( yi) (Eq. (10)).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ð ŷi � yiÞ2
vuut ð10Þ

Fig. 6 compares the subpixel proportions predicted from

the convolved, partially deconvolved and ideal images to

the reference proportions and gives the RMSEs. The

RMSE was 7.1% when proportions were predicted from the

ideal image, i.e., image with minimal PSF effects (Fig. 6e).

It increased in absolute terms by 2.4% in percent land cover,

when PSF effects were introduced in the convolved image,

representing a 35% proportional increase (Fig. 6a). After

applying the deconvolution method, the RMSE was only

0.6% greater than that obtained from the ideal image

(Fig. 6c).

Previously, we showed in a simulation study (Town-

shend et al., 2000) that the impact of PSF effects in

estimating subpixel land cover proportions could also be

reduced simply by aggregating derived proportion images

to coarser resolutions. Consequently, we doubled the pixel

size to 513 m and aggregated the proportion images by

simple spatial averaging. Fig. 6b shows that the estimation

error was reduced by more than 40% when we spatially

averaged the estimates from the convolved data set. The

error was further reduced when the proportion images were

derived from the partially deconvolved image and then

aggregated (Fig. 6d), slightly higher than that when the

proportions were derived from the ideal image and then

aggregated (Fig. 6f). Differences between Fig. 6d and f

indicate that after applying the deconvolution method and

aggregating the proportion images, only 0.3% of the

RMSE in absolute value was due to the residual impact

of the PSF.

6. Conclusions

The quality of a satellite image and its use for land cover

characterization are affected by the PSF of the instrument.

An actual PSF generally reduces the spatial variability of

satellite images more severely than an ideal PSF, i.e., a

spatial averaging filter, and the pixel values derived using

the actual PSF will be different from those derived using the

ideal one. Using a PSF model of the MODIS 250 m bands

as an example, convolved images derived using this model

had up to 17% smaller standard deviations than the ideal

ones, i.e., images with minimum instrument PSF effects
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derived using the ideal PSF. Though the mean absolute

differences (MAD) in reflectance between the convolved

images and the ideal ones were small, on the average, less

than 0.5%, most dark objects in the convolved images were

brighter than those in the ideal images while bright objects

in the convolved images were darker than those in the ideal

images. Depending on the spatial arrangement of ground

objects, such impact of the PSF may vary from image to

image, and cannot be deconvolved effectively by simply

inverting the PSF. When the PSF was adjusted with lower

weighting factors for signals originating from neighboring

pixels than those specified by the actual PSF, however, this

inversion method reduced the MAD by about 50%. Though

this modification was empirically derived, it was found

robust for images of different landscapes.

The above impact of instrument PSF resulted in consid-

erable uncertainties in derived land cover products. While a

classification derived from the ideal image of the Maryland,

USA data set, i.e., the image with minimum PSF effects, had

an overall accuracy of 80.74%, the accuracy dropped to

75.34% when the classification was derived from the con-

volved image. On the same data set, PSF effects increased the

RMSE of the estimates of subpixel land cover from 7.1% to

9.5%. Applying the deconvolution method to the convolved

image effectively reduced the uncertainties due to the impact

of PSF effects in derived land cover products. The overall

accuracy of the classification increased from 75.34% to

79.08%, while the RMSE of subpixel land cover proportions

decreased from 9.5% to 7.7%. The RMSE was further

reduced to 4.9% when the proportion images were spatially

aggregated from 256.5 to 513 m.

These results were based on model simulations using a

nadir viewing geometry. Due to atmospheric effects and off

nadir view geometry, the impact of the PSF of an orbiting

sensor likely will be more significant than revealed in this

study. An accurate model of instrument PSF as a function of

viewing geometry may allow for partial deconvolution of

such impact using the developed deconvolution method.

Adjacency effect due to the atmosphere, however, are more

difficult to deconvolve because the needed data on atmos-

pheric conditions is often unavailable.

This study reinforces earlier investigation based on

modeled landscapes that PSF effects on land cover char-

acterization can be considerable. Much of these effects

can be reduced using the developed deconvolution meth-

od. To achieve a desired performance level the derived

land cover products may need to be aggregated to coarser

spatial resolutions.
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