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A Weak-Constraint-Based Data Assimilation Scheme
for Estimating Surface Turbulent Fluxes
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Abstract—Much attention has been focused on the assimilation
of satellite data and products into land surface processes. In
this letter, a variational data assimilation scheme is developed
based on the weak-constraint concept. It assimilates surface skin
temperature into a simple land surface model for the estimation
of turbulent fluxes. An automatic differentiation technique is used
to derive the adjoint codes to evaluate the gradient of the cost
function. After the construction of this assimilation system, nu-
merical experiments are conducted to test its performance with
different model errors, and the comparison is also made with the
strong constraint scheme. The results show that the land surface
turbulent fluxes can be retrieved with highly satisfactory accuracy.

Index Terms—Data assimilation, evapotranspiration, land sur-
face temperature (LST), weak constraint.

I. INTRODUCTION

A CCURATE estimation of energy and momentum fluxes,
especially sensible and latent heat fluxes, between the

land surface and the atmospheric boundary layer is required in
a wide variety of agricultural, hydrological, and meteorological
applications [1], [2]. Many methods, such as eddy correlation
and Bowen ratio, can be used to measure these fluxes at the field
scale. Their applicability, however, is limited on the fine spatial
scale. At present, the only way to achieve this goal of mapping
fluxes on a regional scale is to use remote sensing techniques
that can provide various spatial and temporal imageries that
cover large areas.

Estimation of surface energy balance components using re-
mote sensing data can be roughly divided into three categories.
Empirical methods directly build on the relationship between
remote sensing products, such as various vegetation indexes
and retrieved land surface temperature (LST) for the estimation.
Residual methods of the energy budget couple some empirical
formulas and physical mechanisms to realize the estimation
of evapotranspiration (ET or LE) and sensible heat flux (H)
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by using remote sensing to directly estimate input parameters,
such as the surface energy balance system [2]. In recent years,
data assimilation methods have merged remote sensing data
and soil–vegetation–atmosphere transfer models for estimating
surface fluxes and have achieved encouraging results. This new
method has received considerable attention from researchers in
recent years [3]–[7], since it combines dynamic models and
temporal remote sensing data based on the control theory to
accurately retrieve critical parameters for flux estimation. The
first two methods more or less use only the instantaneous data
and empirical relationships.

A data assimilation system generally comprises the following
three components [8]: 1) underlying dynamic model; 2) merg-
ing scheme; and 3) observation. Dynamic models are usually
different in different disciplines, such as atmosphere, oceanog-
raphy, and land surfaces. There exist many merging schemes.
Some of them [9] are able to handle uncertainties both in mod-
els and observations, but others can consider the uncertainty
only in observations. As a matter of fact, models are imperfect
and always include uncertainties. It is important to consider this
kind of uncertainty in the data assimilation scheme to improve
the accuracy of estimation and prediction by a model. Kalman
filters (KFs) and weak-constraint variational methods have
attracted more and more attention from researchers since they
can simultaneously handle uncertainties both in models and
observations. Among the various kinds of KFs, the ensemble
KF is the most popular since its application is relatively easy.
However, it is more suitable for state estimation [10], [11]. If
there are unspecified parameters in the model, especially time-
varying parameters, which need to be estimated together with
state variables, its application poses many limitations. Weak-
constraint variational methods can estimate both state variables
and model parameters. However, it is difficult to develop the
adjoint model for the original one to evaluate the derivatives
of the cost function with respect to control variables, which
are composed of state variables and model parameters to be
estimated. However, automatic differentiation (AD) techniques
provide powerful tools to efficiently and effectively develop the
adjoint of the model at the level of computer language codes.

In this letter, a variational land data assimilation scheme
based on the weak-constraint concept [12]–[17] and AD tech-
niques [18], [19] is proposed to assimilate LST to estimate
surface turbulent fluxes by retrieving state variables and time-
varying parameters at the same time. Numerical experiments
are conducted to test the performance of this data assimi-
lation system when different values of model uncertainties
are used. Comparisons are also made to show the advantages
of this weak-constraint variational scheme over the strong
constraint variational scheme that assumes that the model is
perfect. Estimation results indicate that this data assimilation
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scheme can effectively retrieve LE and H with a satisfactory
accuracy.

This letter is organized as follows. In Section II, each com-
ponent that comprises the data assimilation system is presented.
Then, some numerical experiments are carried out to test the
system. Finally, the conclusion is given.

II. CONSTRUCTION OF DATA ASSIMILATION SYSTEM

A. Simple Land Surface Model

The land surface model used in the study is similar to the
one used by Caparrini et al. [5], [6]. However, it differs in two
respects: one concerns the deep soil temperature, and the other
is the parameterization of the sensible heat. The prognostic
equations for LST Ts and deep soil temperature Td are based
on the classical force-restore method described as follows:

dTs

dt
=

2
√
πω

P
(Rn −H − LE) − 2πω(Ts − Td) (1)

Td =
DN∑
i=1

Tsi

/
DN (2)

where Rn is the net radiation,H is the sensible heat, LE is the
latent heat, P is the thermal inertia of the land surface, ω is the
diurnal frequency, Tsi is the surface temperature for the ith time
step of the previous day, andDN is the number of time steps in
a day.

In (1), H and LE are parameterized as

H = ρcpCHU(Ts − Ta) (3)

LE =
EF

1 − EF H (4)

where Ta is the air temperature, ρ is the air density, cp is the air
specific heat, CH is the bulk transfer coefficient for heat, U is
the wind speed, and EF is the evaporative fraction. A different
scheme that was adopted from the biosphere–atmosphere trans-
fer scheme is used for the bulk transfer coefficient CH , i.e.,

CH =
{
CHN

(
1 + 24.5(−CHNRiB)1/2

)
, RiB < 0

CHN/(1 + 11.5RiB), RiB > 0
(5)

RiB =
g

θ

∆θzref
U2

(6)

CHN =
κ2

ln(zref/z0m) ln(zref/z0h)
(7)

where CHN is the bulk heat transfer coefficient under neu-
tral conditions, RiB is the bulk Richardson number, g is the
gravitational acceleration, θ is the potential temperature of the
air, ∆θ is the potential temperature difference between the air
and the surface, zref is the measurement height, and z0m and
z0h are the roughness lengths for momentum and heat transfer,
respectively.

From these formulas, it is noted that CHN and EF are the
two main factors [5], [6], [20] that directly affect the estimation
of H and LE. Thus, these two parameters will be retrieved
as control variables in the process of data assimilation. Since
the status of land surface slowly changes relative to meteo-
rological forcing, CHN is assumed to be constant during one
assimilation window. In other papers, it was assumed that EF

is kept invariant during 09:00–18:00, local time, based on the
analysis of some experimental data [5], [6], [21], [22]. In this
study, the daily averaged EF is retrieved. Thus, the original
assumption is relaxed. Values of Rn, ρ, U , and Ta are taken
from micrometeorological observations.

B. Merging Scheme

The merging scheme plays a key role in the entire data
assimilation scheme since it determines how LST and the
aforementioned land surface model are coupled. When using
the variation method, two merging schemes that minimize a
cost function exist. One is the strong constraint scheme, which
treats the physical model as perfect, and the other is the weak
constraint, which treats the physical model as imperfect. In this
study, the weak-constraint method is formulated. In addition
to those that were previously mentioned, control variables
also include state variables of the model. Thus, a prognostic
equation can be represented as after discretization in time, i.e.,

Ts(ti) =M (Ts(ti−1)) + εm(ti) (8)
Ts(t0) =T b

s + εb (9)
To(tk) =Ts(tk) + εo(tk) (10)

where M(·) denotes the discrete dynamic model, T b
s is the

background value for the initial surface temperature, To is
the observed LST, and εm, εb, and εo are the model error
with normal distribution, error for initial value of LST, and
observation error, respectively, and they are assumed to be
independent of each other. In this letter, εm(ti) and εo(tk) are
assumed to be temporally independent.

The cost function J can be represented as follows:

J =
N∑

i=1

(Ts(ti) −M (Ts(ti−1)) ·Q−1
m

· (Ts(ti) −M (Ts(ti−1)) +
(
Ts(t0) − T b

s

)
·Q−1

b

·
(
Ts(t0) − T b

s

)
+

K∑
k=1

(To(tk) − Ts(tk)) ·Q−1
o

· (To(tk) − Ts(tk)) +
(
CHN − Cb

HN

)
·Q−1

c

·
(
CHN − Cb

HN

)
+

D∑
j=1

(
EFj − EF b

)
·Q−1

e

·
(
EFj − EF b

)
(11)

where N is the total number of time steps, K is the number
of observations, D is the number of days in one assimilation
window, Cb

HN is the background value of CHN , EF b is the
background value of EF , Qm is the covariance of εm, Qb is
the covariance of εb, Qo is the covariance for error of To, Qc is
the covariance for error of Cb

HN , and Qe is the covariance for
error of EF b. The setting of these parameters in this letter will
be described later.

The objective of the variational data assimilation method is
to minimize the cost function J to seek the most optimal control
variables and, thus, accurately estimate H and LE. There are
two approaches to solve this optimization problem: one is the
representer method [15], [17], and the other is the direct deriva-
tion of the derivatives of J with respect to control variables and,
thus, the use of the optimization algorithm [13]. The representer



QIN et al.: WEAK-CONSTRAINT-BASED DATA ASSIMILATION SCHEME 651

Fig. 1. Illustrations for the evaluation of derivatives of the cost function with
AD techniques. F denotes the whole codes for evaluating the cost function.
F ′∗ represents the adjoint codes of the original codes, which can be used to
evaluate derivatives with ease.

method derives coupled Euler–Lagrange equations and then
solves them. However, its formulation is very complicated. The
second approach is easy to use. However, the process of manual
derivation is tedious and time consuming. In this letter, AD
techniques are used to develop adjoint codes for the evaluation
of derivatives of the cost function J at the level of computer
source codes. AD is based on two facts [18], [23]. First, any
computer code statement can be regarded as a composition of
elementary functions. Second, the chain rule can be used to
differentiate this composition of elementary functions. Many
software packages have been developed in accordance with
the principles described above for FORTRAN and C computer
languages. In this study, the software package TAPENADE
is applied to develop adjoint codes. The illustration of the
AD running process is presented in Fig. 1. Provided that the
derivatives of the cost function are evaluated, an optimization
algorithm has to be chosen to minimize the cost function. In
this letter, scaled conjugate gradient algorithms developed by
Andrei [24] are used.

C. LST

In this letter, three different concepts of surface temperature
occur: 1) radiometric surface temperature retrieved from remote
sensing, which is used as the observation to be assimilated;
2) effective vegetated surface temperature, which is the state
variable in the simple land surface model; and 3) aerodynamic
surface temperature, which is used in the calculation of H
and LE. Assumptions have to be made in some studies for
using these temperatures, having different physical meanings
in a consistent way. Caparrini et al. [5] assume that the
effective vegetated surface temperature modeled in the land
surface model is the radiometric surface temperature, and thus,
retrieved CHN is consistent with using radiometric LST in
turbulent flux calculations. As a matter of fact, the difference
between the physical meanings of these three temperatures can
be considered as a part of model and observation errors in the
framework of weak constraint. Therefore, no assumptions are
needed about the physical meanings of quantities in the entire
data assimilation system, and all variables and parameters have
their original physical meanings. Observations To are derived
from the field infrared radiative thermometer in this study. The
use of satellite-retrieved LST is the eventual goal.

III. NUMERICAL EXPERIMENTS AND DISCUSSIONS

After setting up the aforementioned data assimilation system,
numerical experiments are performed to test its performance by

TABLE I
SETTINGS FOR THE PARAMETERS IN THIS DATA ASSIMILATION SYSTEM

Fig. 2. Inversion results with increasing model errors from 0 to 9 K2.
(a) RMSE of the retrieved LST. (b) RMSE of the retrieved H and LE.

using field data, which are taken from the AmeriFlux Bondvill
site. This site is located at 40.00◦ latitude, −88.29◦ longitude,
and its land cover is broadleaf crop. Measured micrometeoro-
logical variables and surface fluxes every 30 min from Julian
day 231 to 260 in 1999 are used in this study, including air
temperature, wind speed, air density, net radiation, temperature
by infrared radiative thermometer, and sensible and latent heat
fluxes. The length of one assimilation window is ten days,
with five days overlap, and the total number of days in this
assimilation experiment is 30 days. Parameters needed in this
study, which are introduced in the second section, are set in
Table I.

It is difficult to estimate the model errors, which are nor-
mally assigned according to experiences from researchers and
a priori information. In this study, measurements of 1–9 K2

are taken with an increment of 1 K2 to investigate their ef-
fects on estimation results, as listed in Table I. In fact, the
weak-constraint scheme will be close to the strong one when
the model error takes a very minor value. Thus, the strong
constraint scheme can be considered as a special case with
a model error that is equal to 0 K2. Fig. 2 indicates the
changes of the root mean square errors (RMSE) of LST, H ,



652 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 4, NO. 4, OCTOBER 2007

Fig. 3. Scatter plots for estimation results from data assimilation experiments. Measured versus estimated (a) surface temperature, (b) sensible heat flux, and
(c) latent heat flux.

Fig. 4. Time profiles for estimation results and measurements. (a) Surface temperature. (b) Sensible heat flux. (c) Latent heat flux.

and LE, with increasing model errors from 0 to 9 K2. As
seen, the weak-constraint scheme performs generally better
than the strong one. The RMSE of the retrieved LST drops
down with the variance of model errors ranging from 0 to
9 K2. The RMSE of the retrieved H largely declines when
the model error is considered and then becomes stable when
the model error increases. The RMSE of the retrieved LE first
declines and then rises while the model error increases. This
illustrates that the choice of the magnitude of the model error
has an apparent effect on the retrieved latent heat flux. However,
influences are not clear as far as other retrieved parameters are
concerned.

Results, which correspond to the case where the model error
is equal to 2 K2, are presented in Figs. 3(a) and 4(a). They show
that measured and estimated surface temperatures match very
well and that the RMSE is 0.55 K. Figs. 3(b) and 4(b) indicate
that the data assimilation method developed can estimate the

sensible heat flux with satisfactory accuracy; the RMSE is about
40 W · m−2, considering the error inLE andH measured in the
field to be around 50 W · m−2. Retrieved latent heat fluxes are
not as good as sensible heat fluxes, as shown in Figs. 3(c) and
4(c), with an RMSE equal to about 65 W · m−2. In particular,
estimated LE values are systematically biased low largely
during the nighttime of Julian days 242 and 251, and several
LE values during the daytime of Julian days 244 and 249 are
biased high. Control variables, including modeling effective
surface temperature, bulk transfer coefficient for heat, and
daily averaged evaporative fraction, are adjusted to minimize
mostly the misfit between modeling surface temperature and its
observed counterpart. As a result, accurate surface temperatures
are retrieved and so do sensible heat fluxes in accordance with
(3). Since daily averaged EF are retrieved in this study and
approximate constant EF are held only around the local noon
[21], [22], large biases will occur when patterns greatly differ
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Fig. 5. Performance of cost function and its gradient in the course of mini-
mization for a period from Julian day 231 to 240. (a) Value of the cost function.
(b) Norm of the gradient of the cost function.

between LE andH . The discussions above indicate that the rel-
atively high RMSE of the retrieved latent heat flux stems from
some systematic errors since the parameterization for water
balance processes that are closely related to evapotranspiration
is rather simple in this letter. However, the whole retrieved
results are encouraging, although the RMSE of the retrieved
latent heat flux is a little high compared to the aforementioned
measurement uncertainties since there is no additional infor-
mation introduced, such as soil texture and land cover type,
in addition to the observed LST and a few meteorological
variables.

Fig. 5 shows the performance of minimization of the cost
function for a period from Julian day 231 to 240 in the case
above. It can be seen that the optimization works effectively
and efficiently. Both the value of the cost function and the
norm of its gradient rapidly decline with the increase in the
number of iteration cycles and reach stability after roughly
80 iterations. Minimizations in other assimilation windows
show similar patterns.

IV. CONCLUSION

Quantitative estimation of turbulent fluxes between at-
mospheric boundary layer and land surface plays an important
part in a wide range of applications. The data assimilation
method has received more and more attention because of its
advantages over other estimation methods. In this study, a sim-
ple land surface model has been developed based on the work
by Caparrini et al. The variational data assimilation method was
developed using the weak-constraint concept. Rather than using
the representer method or manual derivation, direct evaluation
of derivatives of the cost function through AD techniques was
applied. This can greatly accelerate the speed of the data assim-
ilation system. After the construction of the data assimilation
system, different model errors were used to test it. The retrieval
values were validated against the field measurements, and the
results were very encouraging. The RMSEs for sensible and
latent heat fluxes were around 40 and 60 W · m−2, respectively.
The eventual goal was to use this algorithm with satellite
data on a regional scale. Much work needs to be done to
improve this data assimilation system, such as the comparison
between different optimization algorithms and the replacement
of the land surface model used in this study with a more
advanced and complex one. Research along these lines is
on the way.
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