
Abstract
Time-series terrestrial parameters derived from NOAA/AVHRR,
SPOT/VEGETATION, TERRA, or AQUA/MODIS data, such as
Normalized Difference Vegetation Index (NDVI), Leaf Index
Area (LAI), and Albedo, have been extensively applied to
global climate change. However, the noise impedes these
data from being further analyzed and used. In this paper,
a wavelet-based method is used to remove the contaminated
data from time-series observations, which can effectively
maintain the temporal pattern and approximate the “true”
signals. The method is composed of two steps: (a), time-
series values are linearly interpolated with the help of
quality flags and the blue band, and (b), time series are
decomposed into different scales and the highest correlation
among several adjacent scales is used, which is more robust
and objective than the threshold-based method. Our objec-
tive was to reduce noise in MODIS NDVI, LAI, and Albedo time-
series data and to compare this technique with the BISE
algorithm, Fourier-based fitting method, and the Savitzky-
Golay filter method. The results indicate that our newly
developed method enhances the ability to remove noise
in all three time-series data products.

Introduction
Time-series data for some land surface parameters, such as
Normalized Difference Vegetation Index (NDVI), Leaf Area
Index (LAI), and albedo, have been successfully used a wide
range of fields. Many analysis methods have been developed
from NDVI time-series data to (a) detect land-cover changes
(Zhan et al., 2002; Friedl et al., 2002; Roy et al., 2002),
(b) derive biophysical parameters for other models (Sellers
et al., 1994; Moody and Johnson, 2001; Lu et al., 2003), and
(c) monitor vegetation dynamics (Sakamoto et al., 2005; Beck
et al., 2006). Observing the change of LAI in time and space
plays a significant part in understanding and modeling the
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land surface processes in the entire climate system (Running
et al., 1988; Potter et al., 1993; Chase et al., 1996). Studying
albedo time series plays a central role in global energy budget
and climate forcing issues (Dirmeyer and Shukla, 1994;
Dickinson, 1995; Roesch et al., 2002).

After National Aeronautics and Space Administration
(NASA) launched the Moderate Resolution Imaging Spectrora-
diometer (MODIS) sensor aboard both the Terra and Aqua
satellites, respectively, in December 1999 and May 2002,
researchers were given an unprecedented way to get a variety
of time-series data. However, these time-series data inevitably
contain disturbances caused by cloud presence (Gutman,
1991), atmospheric variability (Huete and Liu, 1994), and
aerosol scattering (Xiao et al., 2003). Noise degrades data
and hinders analysis. To reduce noise, the Maximum Value
Composite (MVC) method (Holben et al., 1986) is usually
composited to get a higher percentage of clear-sky data.
However, if the composite period is long, the land surface does
not remain static; and if it is too short, the atmospheric
disturbance cannot be removed effectively, especially in
cloudy regions. For example, there exist many low quality
pixels in 8- or 16-day composite MODIS products (Moody et al.,
2005). Several methods, based on interpolation of time series
data, have been proposed to remove such noise and to recon-
struct high-quality NDVI time-series data. These methods can be
generally categorized into two general types. The first methods
include removing noise in the time domain, such as the best
index slope extraction (BISE) algorithm (Viovy et al., 1992), the
asymmetric Gaussian function fitting approach (Jonsson and
Eklundh, 2002), the weighted least-squares linear regression
approach (Swets et al., 1999), the Savitzky-Golay filter approach
(Chen et al., 2005), and the ecosystem-dependent temporal
interpolation technique (Moody et al., 2005). The second type
includes noise-removal methods in the frequency domain, such
as Fourier-based fitting methods (Sellers et al., 1994; Roerink
et al., 2000). Each of the approaches has advantages. Before
time-series data can be utilized in advanced research applica-
tions, one of these data smoothing approaches must be
applied. The BISE algorithm has been used to classify vegeta-
tion and forest types (Xiao et al., 2002). The Fourier-based
fitting approach has been employed to derive terrestrial
biophysical parameters (Moody and Johnson, 2001), and to
classify land-cover types (Anders, 1994). Asymmetric Gaussian
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function fitting methods have been used to extract vegetation
seasonality information (Jonsson and Eklundh, 2002). The
ecosystem-dependent, temporal-interpolation technique can
provide researchers with a snow-free, land-surface albedo
product (Moody et al., 2005).

All these methods also have disadvantages. The effective-
ness of the BISE algorithm is subjective and dependent on the
researchers’ experience; it is difficult to determine a reason-
able length of sliding window for the smoothing as well as
a threshold for acceptable percentage change. Finding one
optimal sliding window and threshold that can be used in
any circumstance is impossible. Furthermore, these parame-
ters are often obtained by a tedious trial and error procedure.
The result processed by the Fourier-based fitting approach is
smooth, but often shows large biases with the original time-
series data. It operates well on time-series data as long as that
data can be approximately expressed as the total of several
sine or cosine functions, otherwise it may generate spurious
oscillations. As for the Savitzky-Golay filter approach, it also
required empirical analyses to determine the width of the
smoothing window and the degree of the smoothing polyno-
mial. In addition, to prevent the adverse edge-effect associ-
ated with filtering, original time series should be padded with
some data points to constitute a complete filter window. But
padding may skew/distort the accuracy of values in the head
and tail of post-processed, time-series data. And, due to its
design of keeping the upper time-series envelope, some useful
information may be lost in the filtering process. The asym-
metric Gaussian function fitting approach works well under
some favorable conditions, but it requires users to determine
a set of maxima and minima to which the local functions can
be fitted. There are difficulties in identifying the two parame-
ters from noisy time-series data. Finally, for the ecosystem-
dependent, temporal-interpolation technique, pixels of the
same ecosystem classification may exhibit different phenolog-
ical or temporal behavior within a broad region. Imposing the
behavior onto retrieved pixel data may lead to errors in the
resulting value-added products.

Our objective is to present a new method to reduce
contamination in time-series data. Our method was tested on
the NDVI eight-day composite data generated by MOD09A1
surface reflectance data, MODIS LAI eight-day composite data
and MODIS Albedo 16-day composite data. The time series
parameters processed by our method were also compared
with the existing noise reducing methods. The results
indicate that our method can reduce noise in time-series
data and maintain its real pattern effectively.

Method Description
The wavelet transform (WT) can analyze signals in time-
frequency space. Its strength is the feasibility of identifying
and reducing noise while maintaining useful information in
time-series data. In the past two decades, WT has been
developed as a powerful tool in signal processing. At
present, the WT has been widely used in remote sensing
applications such as image fusion (Ranchin et al., 2003),
hyperspectral data feature extraction (Pu and Gong, 2004),
phenology detection (Sakamoto et al., 2005), morphotectonic
lineament investigation (Jordan and Schott, 2005). We use
the wavelet transform to remove noise in time-series data.

The Denoising Method by Wavelet Technique
Wavelets are groups of functions �a,b(x) generated from a
mother wavelet �(x) by dilations and translations:

(1)�a,b(x) �
1w �a �

 �� x � b
a �

where a is the dilation parameter, and b is the translation
parameter. Since �(x) is compact support, which indicates that
the duration of the function is very limited, wavelet analysis
can accurately capture the local characteristics of non-station-
ary signals. The WT of function f (x) can be expressed by:

(2)

From Equation 2, the wavelet transform decomposes signals
at various scales or resolution and shifts. For most practical
applications, the discrete wavelet transform (DWT), which
analyzes signals over a discrete set of scales usually sampled
at dyadic sequence (2j, j � 1,2,3, . . . ), is accurate enough
and can recover signals perfectly (Mallat, 1989). In the
dyadic form, the wavelet function can be given as:

(3)

where j is the j th decomposition level or scale and k is the
kth wavelet coefficient. In contrast with Equation 1, we
have a � 2,4,8, . . . 2j. The WT can decompose a signal
both the large-scale components that represent the optimal
approximation or low frequency parts of the original signal
and small-scale components that represent the detailed
information or high frequency parts of the signal.

The high frequency part of the original data is dominant
at fine scales. Larger amplitude variations and slowly chang-
ing features of the original signal are mainly represented at
coarse scales. On the basis of the distinct characteristics of
decomposition coefficients at different scales, the traditional
scheme of directly applying a certain threshold to wavelet
coefficients is most widely used. Specifically, significant
wavelet coefficients above a certain threshold at fine scales are
discarded as noise and the signal is restored by the remaining
coefficients. However, it may be difficult for the traditional
scheme to set a reasonable threshold. The variation of decom-
position coefficients at several adjacent scales, however, may
help us resolve this dilemma (Xu et al., 1994). The coefficients
corresponding to low frequency signal have high correlation at
the neighboring scales and their absolute values increase from
the finest scale to the coarsest scale. In contrast, noise has an
inverse relationship with scales, as its decomposition coeffi-
cients diminish swiftly with increasing scale and do not
propagate up to the next scale. Direct multiplying of coeffi-
cients at the adjacent two levels may enhance important
variations while diluting high-frequency components. We can
use the direct spatial correlation coefficients at adjacent two
levels, which is defined (Xu et al., 1994) as:

(4)

To build comparability between the direct spatial correlation
and wavelet decomposition coefficients, we normalize the
direct spatial correlation coefficients (Xu et al., 1994):

(5)

where ncor(m,n) is the normalization of correlation coeffi-
cients, pw(m) and pcor(m) represent the power of wavelet
decomposition coefficients and correlation coefficients at the
level of m, respectively.

For each level, we compare the absolute values of
ncor(m,n) with w(m,n) at all positions. Thus, we implement
our method at the first scale. If |ncor(1,n)| is smaller than
|w(1,n)| at the position of n, which implies that correlation

pcor (m) � �
n

cor (m,n)2

pw(m) � �
n

w(m,n)2

ncor(m,n) � cor(m,n) � wpw(m)/pcor(m)

cor(m,n) � w(m,n) � w(m � 1, n).

�j, k(x) � 2
�j
2� ��2�j x � k�

wf (a,b) � ���

��

f (x)*�a,b (x)dx
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coefficient at this position becomes small through the first
scale to the second scale and noise is dominant at that
position, the w(1,n) is reset to zero. This comparison can be
made at all levels. After we identify and modify the values,
we refer to w(m,n) as wnew (m,n).

In the flowchart, we make a comparison between the
normalized data |ncor(m,n)| and |w(m,n)| to extract the
important information from w(m,n) at the mth scale. By
repeating the procedure at every scale, we can acquire
filtered wavelet transform data wnew(m,n). Finally, the
reconstruction from wnew(m,n) through the inverse wavelet
transform will yield the filtered time series.

Implementation of the New Wavelet-based Method
Weighted Inverse Distance Interpolation of Low
Quality Values
Most remote sensing data include quality control (QC)
information. For time-series data, each observation is
assigned a QC flag during processing. This information is
encoded in a standard format and stored in a special dataset
so that any specific condition can be easily extracted and
used. The ancillary data are valuable for us to indicate and
remove low-quality data points (Jonsson and Eklundh, 2002;
Chen et al., 2005). In this paper, we use weighted inverse
distance interpolation to improve the quality of time-series
data. Concretely, supposing that there is a time series of data
points (ti,Vi,Fi), i � 1,2,3 . . . n, where ti is the date, Vi is
the value of time-series data, and Fi is the quality status flag. If
the ith point is flagged as a cloud or snow point, then Vi will
be replaced by the result from the weighted inverse distance
interpolation, which uses adjacent clear points that are not
identified as cloud or snow points. The distance is the time
interval between points to be replaced and adjacent clear
points used in the interpolation. But the QC flag is not
reliable in all cases; the cloud mask algorithm is adequate for
identifying larger, cooler clouds but problematic in detecting
small clouds and cloud edges (Giglio et al., 2003). We use
the blue band of MODIS as an additive indicator of cloud
status. The observations whose reflectance of the blue band
is more than 0.1 are rejected as abnormal data and replaced
by the interpolated results. In Figure 1a, some drops in the
NDVI time series are identified by cloud flags or mix flags,
while those flags do not indicate the sudden drop on the
151st day, which shows that the cloud mask algorithm based
on setting certain thresholds is not very reliable. The linear
interpolation of this NDVI time series, using only quality
control flags, is limited, as is illustrated by the fact that the
abnormal value on the 151st day remains in the interpolation
result (Figure 1b). Fortunately, the information provided by
the MODIS blue band helps overcome the drawback and the
observation on the 151st day is properly captured using the
weighted inverse distance interpolation (Figure 1c).

Removal of Noise In Time Series by Wavelet
After the process of step one, we assume that the sharp
variations remaining result from intense changes in the land
surface. Some residual noise also remains from the first
processing step, but this residual noise is shown as small
fluctuations. We assume that the frequency of remaining
noise components in time-series data is higher than that of
the normal surface change. Removing this noise allows us to
highlight actual surface-related changes while suppressing
noise with relatively high frequency.

There are many different types of mother wavelets,
such as Daubechies family (dbN), Biorthogonal family,
Coiflets family, and Symlets family. Daubechies family
(dbN) is a series of compactly supported orthogonal
wavelets. N specifies the order of the mother wavelet and
is related to the number of coefficients necessary to
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Figure 1. An example showing the NDVI time series
and its linear interpolation results by two methods:
(a) Original NDVI time series and cloud and mixed
points (diamonds in the figure), (b) The linear
interpolated NDVI time series (thick solid line) on
the basis of quality control flags, and (c) The linear
interpolated NDVI time series (thick solid line) on
the basis of quality control flags and the informa-
tion of MODIS blue band (point with more than 0.1
in the blue band is squared in the figure).

PMSRS-02.qxd  9/14/07  11:18 PM  Page 1131



represent the associated low-pass and high-pass filters in
the dyadic filter tree implementation. The “db” is the
“surname” of the wavelet. The high order means we get
smooth results but have a poor ability to localize the small
features. In this study, we use “db3” as the mother
wavelet, and the decomposition level is three. Unfortu-
nately, the classical DWT suffers a drawback: the DWT is not
a time-invariant transform. This means the DWT of a
translated version of a signal X is not, in general, the
translated version of the DWT of X even with periodic
signal extension. But in some studies such as phenology,
the position of the variations may correspond to important
changes in time series and thus need to be accurately
reserved; time distortions may lead to a large number of
artifacts. In order to overcome this difficulty and to get
more complete characteristics of the analyzed signal, we
use the stationary wavelet transform (SWT) (Pesquet et al.,
2003) to decompose the time series since it has the follow-
ing characteristics: (a) the time series processed by DWT
may have overshoots at discontinuities, while SWT will not
bring the phenomenon into the results; (b) the number of
decomposition coefficients at different scales must be
equal, which is a prerequisite to multiplying coefficients at
adjacent scales. The numbers of decomposition coefficients
acquired by SWT are equal on all scales, while these
numbers decrease from fine to coarse scales.

Results and Analysis
Description of the Study Data
We used the eight-day composite NDVI product as the test
data set for evaluating the performance of our method.
Because the standard NDVI products from the EOS Data
Gateway are 16-day composite, MODIS eight-day composite
surface reflectance products (MOD09A1) were downloaded
to create an NDVI data set for the experiments. The surface
reflectance product name is “MODIS/TERRA surface reflectance
eight-day Global 500 m SIN GRID v004.” In the production
of MOD09A1, atmospheric corrections for gases, thin cirrus
clouds and aerosols are implemented. Each eight-day compos-
ite product includes the measurement of surface spectral
reflectance of the seven spectral bands at 500 m spatial
resolution as it would be measured at ground level in the
absence of atmospheric scattering or absorption. MOD09A1
also includes quality control flags to account for various
image artifacts (e.g., clouds, cloud shadow). The MODIS
products are organized in a tile system with the Sinusoidal
(SIN) projection grid, and each tile covers an area of 1,200 km
by 1,200 km (approximately 10� latitude by 10� longitude at
equator). In this study, we downloaded MOD09A1 data
during the period from January 2004 to December 2004 for
eastern China from the EOS data center. The tile H27V05
covers the study area. For each eight-day composite, we
calculated NDVI by using surface reflectance values from the
red and NIR (841 to 875 nm) bands:

(6)

For eight-day composite datasets, the time series contains
46 observations per pixel per year. The number of elements in
the input data array should be 2N for SWT, where N stands for
the decomposition level. With this in mind, the original input
data array was extended by the symmetric boundary value
replication to constitute the input array with 48 observations.
During the data preparation stage, NDVI values were scaled to
the range of �1 to 1.

NDVI �
rnir � rred

rnir � rred

.

Comparison of New and Existing Methods
Comparisons at the Pixel Level
For a detailed assessment of the new method, comparisons
between the new method and other existing methods were
carried out for three primary vegetation types at pixel level.
The three vegetation types are: deciduous broadleaf forest
(No.1 test pixel), evergreen broadleaf forest (No.2 test pixel),
and double-cropping rice (No.3 test pixel). One pixel is
selected for each cover type, respectively. Figure 2 shows
a MODIS land-cover (Friedl et al., 2002) map of our study area
and the distribution of the three test pixels. The attributes
of these pixels are given in Table 1. The methods in our
comparison are: (a) the BISE algorithm; (b) the Savitzky–Golay
filter method; (c) the weighted Fourier series fitting method,
and (d) our wavelet-based method. For the BISE algorithm,
the slide window is three and the threshold is 0.2. In the
Savitzky–Golay (S-G) filter method, the half-width of the
smoothing window is four and the degree of the smoothing
polynomial is five. For the weighted Fourier series fitting
method, we reconstruct a new NDVI time series by using the
first three harmonics of the Fourier series. The mother
wavelet used in the new method is db3 and the decomposi-
tion level is three.

Figure 3 demonstrates the reconstructed NDVI time series
for the type of deciduous broadleaf forest. From Figure 3a, the
BISE algorithm can remove a large amount of noise in the time
series. On the other hand, because the rising does not exceed
the pre-established threshold, the abnormal peak in data at
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Figure 2. Land-cover map in study area and distribution
of test pixels. A color version of this figure is available
at the ASPRS website: www.asprs.org.

TABLE 1. ATTRIBUTES OF PIXELS SELECTED FOR TESTING THE

NEW AND EXISTING METHODS. THE SPATIAL DISTRIBUTION OF

THESE PIXELS IS SHOWN IN FIGURE 2

Test Pixels Land-cover Latitude (N) Longitude (E)

1 Deciduous 31.475234° 110.968835°
Broadleaf 
Forest

2 Evergreen 31.225241° 107.643634°
Broadleaf 
forest

3 Cropland 32.108550° 116.719538°
4 Cropland 38.658370° 117.751021°
5 Cropland 39.391683° 117.016452°
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day 33 is not smoothed. The weighted Fourier series fitting
method can make the most smoothed profile of NDVI time
series. Since negative deviations receive low weights during
the fitting process and positive deviations are assigned
high weights, the weighted Fourier series fitting has better 
de-noising performance than traditional Fourier-based ones.
Because the original NDVI time series in Figure 3 can be well
approximated by the summation of several sine or cosine
functions, the result of the weighted Fourier series fitting is
good for most observations except that the overestimation was
made at several head points, as showed in Figure 3b. From
Figure 3c, the S-G method remains the value at data day 33
and overestimates several points near the peak observation.
By comparison, our method can also remove noise shown as
abrupt rises or drops and the unreasonable peak value at data
day 33 is also partly smoothed. Moreover, the right observa-
tions that are near the contaminated points are not confused
as noise (Figure 3d).

Figure 4 shows the reconstructed NDVI time series for an
evergreen broadleaf forest. In Figure 4a, there is still much
noise in the time series after the BISE algorithm is applied.
To interpret this poor result, it is important to note that
there is cloud cover during the three consecutive eight-day
periods (Julian days: 153 to 160, 161 to 168, and 169 to
176 days) and the slide window of the BISE algorithm is
only 3. We found that the BISE algorithm has no ability to
remove the data contaminated by clouds more than for two
consecutive eight-day periods. The weighted Fourier series
fitting method obtained the smoothed result and the most-
noisy observations were remained, as shown in Figure 4b.

Because the values of the blue band for Julian days 41 and
49 are small (0.021 and 0.022), we assume the decline in
these two data points is due to sudden land surface changes.
The two observations should remain unchanged in the noise
removal, but the values for the two data days are overestimated
by the weighted Fourier series fitting method. The situation
can be explained by the idea of punishing negative deviations
in the weighted fitting. The weights of the two observations
are low in the fitting operation and their values are falsely
exaggerated in the de-noising. Examining Figure 4c, we find
that the Savizky-Golay (S-G) method can effectively remove
noise. But the values for Julian days 41 and 49 are affected
by the nearby high value points in the polynomial fitting
and are overestimated by about 0.1. The S-G method is
biased toward high values. In Figure 4d, the wavelet-based
method indicates the good performance in denoising time
series even in the face of consecutive cloud cover days,
including Julian days 41 and 49.

Figure 5 compares the reconstructed NDVI time series for
the land-cover type, double-crop rice. The BISE algorithm
effectively removes noise and does not change the original
low NDVI value points after harvesting, as shown in Figure 5a.
In Figure 5b, the observations for Julian days 137, 145,
and 153 corresponding to the periods after cropping are
overestimated by the weighted Fourier series fitting method.
The reconstructed time series does not correctly show the
pattern of double-cropping. The distortion in de-noising is
due to both the high priorities assigned to positive devia-
tions and observations of low value are replaced by the
relatively high-value results. Figure 5c shows that the S-G
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Figure 3. The denoised NDVI time series of deciduous broadleaf generated by use of (a) the
BISE algorithm, (b) the weighted Fourier series fitting method, (c) the S-G filter method, and
(d) the wavelet method.
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filter method has steady de-noising ability. But due to its
bias towards high values, the data at Julian days 137, 145,
and 153, corresponding to the periods after cropping, are
overestimated. In Figure 5d, the wavelet-based method
removes noisy points accurately and preserves key features
of the time series. The low NDVI value points after cropping
are not confused in the filtered time series. The recon-
structed time series represents the actual process of the
bi-annual vegetation cycle.

Comparisons at the Image Level
In order to compare the new and existing methods at the
regional scale, we used the same NDVI data at the image level.
Figure 6a and Figure 6b are the NDVI images for Julian days
233 and 241 of 2004, respectively. We found from the two
images that cloudy days lasted more than half of one month
and thus many areas were masked out. Since the threshold in
the BISE algorithm is not suitable for eliminating the continu-
ous noise, Figure 6c still shows much noise in the southern
area. Little obvious noise remains in the NDVI image after the
weighted Fourier series fitting method is used. The high NDVI
data in the original image have also been modified to give
lower values (Figure 6d). To interpret the result, it is impor-
tant to note that the first three harmonics can effectively
characterize the basic behavior of the surface, while these
high-value observations are mainly expressed by high-
frequency harmonics. Figure 6e and Figure 6f are the results
of implementing the S-G method and our method, respec-
tively. Both methods effectively remove noise and the correct

parts of the original data are also retained perfectly. It
indicates that the two methods work more effectively than
other methods in the face of long-term noise.

Figure 7a and Figure 7b are the NDVI images for Julian
days 297 and 305 in 2004, respectively. Due to cropping,
many areas in the two images have low NDVI values, and it is
clear that there is still some noise in the image for Julian day
297. Figure 7c shows a reconstructed NDVI image for Julian
day 297 by using the BISE method, and we can see from the
image that the noise is almost completely removed, and the
NDVI values in the cropped areas are not modified. The result
of implementing the weighted Fourier series fitting method for
Julian day 297 shows less noise, but the NDVI values in the
cropped area are also replaced by higher NDVI values, shown
in Figure 7d. The concept of ignoring low-value observations
in time series causes undesirable distortion. Figure 7e and
Figure 7f demonstrate that the S-G method and our method are
effective for constructing noise-free, NDVI time-series data sets.
But after cautious comparison with Figure 7a, it can be found
that some NDVI values in cropping areas in Figure 7e are
overestimated to some extent. We assume that the S-G filter
method is designed to be biased toward relatively high values,
thus explaining the results for this method.

Applications
To demonstrate the performance of the proposed method
when applied to other time-series data, it is also used to
reduce noise in MODIS LAI and albedo time-series data.
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Figure 4. The denoised NDVI time series of evergreen broadleaf generated by use of (a) the
BISE algorithm, (b) the weighted Fourier series fitting method, (c) the S-G filter method, and
(d) the wavelet method.
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Figure 5. The denoised NDVI time-series of double-cropping rice generated by use of (a) the
BISE algorithm, (b) the weighted Fourier series fitting method, (c) the S-G filter method, and
(d) the wavelet method.

Figure 6. Composite NDVI images at (a) data day 233, (b) data day 241 and reconstructed time
series at data day 233 generated by (c) the BISE method, (d) the weighted Fourier series fitting
method, (e) the S-G filter method, and (f) the wavelet method. A color version of this figure is
available at the ASPRS website: www.asprs.org.
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Figure 8. The original (thin line) and denoised
(thick line) LAI time series using the new method.

Figure 7. Composited NDVI images at (a) data day 297, (b) data day 305 and reconstructed time
series at data day 297 generated by (c) the BISE method, (d) the weighted Fourier series fitting
method, (e) the S-G filter method, and (f) the wavelet method. A color version of this figure is
available at the ASPRS website: www.asprs.org.

Denoising LAI Time Series
In the present study, MODIS LAI eight-day composite scenes
from January 2004 to December 2004 were downloaded from
the Earth Observing System data gateway as the experiment
data set. LAI time series of a pixel (No. 4 test pixel in Figure 2)
in the study area was plotted as test time series (Figure 8).
The MODIS LAI product (MOD15A2; collection 4) with 1 km
resolution is produced on eight-day compositing period, where
the selected value in a compositing period is that with the
highest corresponding fraction of absorbed photosynthetically
active radiation (FPAR). But there are still many observations

under cloudy conditions in LAI time series, as is detected
through the sudden drop or rebound of LAI in the time series.
Before the removal of noise by the wavelet, the observations
contaminated by cloud in the time series are also filtered by
the weighted inverse distance interpolation. Some observations
in the time series are not in the valid range and they are filled
with fill values. These values are replaced by zeros before
denoising by wavelet. Just like the wavelet used in NDVI time
series, the mother wavelet used here is still db3, and the
decomposition level is also 3.

There is an observation with abnormally sudden drop in
the original LAI time series (Figure 8). The value is success-
fully removed in the de-noised time series, and some small
fluctuations are also smoothed by the new method. Com-
pared to the original LAI time series, the reconstructed LAI
time series is more smooth and appropriate for further
researches, such as assessing phenological events and
estimating terrestrial biophysical parameters accurately
when combined with advanced models.

Denoising Albedo Time Series
The MOD43B MODIS BRDF/Albedo algorithm provides four
standard products in HDF-EOS format. The third operational
product (MOD43B3) provides a standard suite of albedos. It
provides users with black-sky and white-sky albedos for seven
spectral bands (MODIS channels 1 through 7) and the three
broadbands (0.3 to 0.7, 0.7 to 3.0, and 0.3 to 5.0 �m). All
BRDF/Albedo products supply per-pixel quality flags, as do all
MODIS land products. For the albedo quality dataset stored in
BRDF/Albedo products, the first word of it is band-averaged
quality information and the second is band-specific quality
information. In addition to the mandatory QA flags, the snow
cover flag for every pixel is also stored in the first word. The
information on the number of observations for each pixel over
16-day period is provided by the second word.

PMSRS-02.qxd  9/14/07  11:18 PM  Page 1136



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Oc t obe r  2007 1137

Figure 9. The original (thin line) and denoised (thick
line) albedo time series using the new method.

Figure 10. An example showing the NDVI time series
of a single year and 4-year aggregation: (a) NDVI time
series of a test pixel in 2003, cloud and mix flag
points are shown as diamond flags, and (b) four-year
aggregate NDVI time series of the same pixel.

The black-sky albedo for the MODIS red spectral band
time series is used as the test time series in this paper. A
test pixel (No. 5 test pixel in Figure 2) in the study area was
selected and albedo time series for the pixel during January
2004 to December 2004 was plotted (Figure 9). The spatial
distribution of the test pixel is shown in Figure 2. Both
snow-covered and cloudy observations are replaced by
the result of the weighted inverse distance interpolation.
Because they are not enough observations to have confi-
dence in the retrieved albedo values, data with less than
three observations over the 16-day period were also replaced
by the same interpolation method.

The mother wavelet and the decomposition level used
here are db3 and 3, respectively. Because the composite period
of MOD43B3 albedo data is 16 days, there are 23 observations
for one year. To satisfy the qualification for input data length,
the last observation in time series is duplicated and added to
the tail of the albedo time-series data. Before denoising by
wavelet, the observations with values outside of the valid
range are reset to zero. The de-noising albedo time-series data
is showed in Figure 9.

In Figure 9, we can see some drops and peaks in the
original albedo data series. Using the newly developed
method, the reconstructed albedo time series does not pick up
short-term strong fluctuations and however shows smooth
transitions closely related to the natural change. In comparison
with the waved original time series, we can anticipate that the
denoised time series is closer to the natural change pattern.

Discussion
From above comparison experiments, we learn that the
weighted Fourier series fitting method obtains the smoothest
profile of time series, but shows a large displacement away
from the original observations with low values. Its indistin-
guishable discard of low-value observations may obliterate the
useful information in time series. The BISE algorithm is
simple in theory and its calculation is very fast, but its
performance depends highly on the optimal threshold and the
sliding window. The setting of the two parameters requires
the tedious trial-and-error procedure, which may restrict its
use in large-scale regions. The S-G filter method is an effective
way to improve the quality of time series, but it always gives
priority to high values and overlooks some useful information

contained in low values. The proposed wavelet-based method
makes the most of quality flags in products. To make up the
limitation of the flags, the blue band of MODIS is also used.
When compared with other methods, the proposed method is
more effective in identifying and removing noise. At the same
time, it can properly maintain the characteristics of the
original data and the correct data in original time series are
not confused in the reconstruction.

It is difficult to provide an estimate of error for the
temporal interpolation technique, as the validation data and
the instruments used to validate the data both suffer from
the same issues. Namely, when it is cloudy or poor in
atmospheric condition, reliable retrievals cannot be made.
However, we can use the pixels that have almost full clear
temporal coverage as the validation data and these pixels
can be acquired by the multi-year aggregation method. We
use NDVI time-series data as an example to show the aggrega-
tion method and use it to evaluate our method. We down-
loaded eight-day composite reflectance data covered from
2001 to 2004 to create NDVI data in these four years. For
each pixel, an average from the valid data in the four years
is computed for generating the aggregation data. By the
operation, the NDVI data in these four years can provide
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Figure 11. Comparison of the aggregate MODIS NDVI time series and the reconstructed
results generated by different methods: aggregate NDVI time series and the final NDVI
time-series using (a) the BISE algorithm, (b) the weighted Fourier series fitting method,
(c) the Savitzky-Golay filter method, and (d) the new method.

us with aggregate NDVI product. It is clear that a pixel is
unlikely to be screened by cloud in all the four years. So we
assume that the aggregate product is almost noise-free and
can express the real land condition to a great extent.

Figure 10 shows us the advantage of the aggregate
production. In Figure 10a, there are 20 percent observations
acquired on the condition of cloud or mix. On the other hand,
the aggregate NDVI time series is completely clear for the test
point (Figure 10b). The aggregate NDVI time series are used as
reference data to evaluate the performance of our method. We
use the proposed wavelet-based method to remove the noise
in the NDVI time series, which is shown in Figure 10a and
compare the reconstructed result with the aggregate time
series. Other existing methods are also carried out to show
their performances. The results are showed in Figure 11.

Of the four methods, almost all points obtained by the
weighted Fourier series fitting method show large displace-
ment away from the aggregate points (Figure 11b). The NDVI
time series provided by the BISE and the S–G filter method are
similar to the aggregate result in most of the points, which is
clearly expressed in Figure 11a and Figure 11c. However,
through carefully comparing them with the aggregate product,
we can find that there is an abnormal decrease in the NDVI
time series obtained by the BISE method and the S–G filter
method gives higher outcome at the observations with low
values in the aggregate time series. As for our wavelet-based
method, visual examinations of Figure 11d reveal that the two
time series are matched well. The results generated by the
new wavelet-based method are in good agreement with most
points of aggregate time series.

Conclusions
The noise in time series impedes the study of global envi-
ronmental change when these time-series data sets are used
as input. However, existing methods for reconstructing time
series are not steady under various conditions or bring
errors to original right data. We assume that the quality flags
and the blue band of MODIS can effectively remove signifi-
cant low-quality points in time series and wavelet can help
us approximate the real profile of time-series data The
remainder sudden changes in time series which have been
processed by the first step indict the intense changes of land
surface (e.g., due to cutting of meadows, removal of trees,
agricultural harvesting, etc.). Because influences of these
events on variations in the time series data are larger
compared to the residual noise, these sudden changes are
easily retained and are not degraded in the wavelet-based
de-noising. By comparing the performance with the newly
developed method, the BISE algorithm, the Fourier-based
fitting method and the S–G filter method, it have been found
that our method shows the following four advantages over
existing methods: (a) it takes advantage of ancillary data in
the form of cloud flags and the information of the blue
band; (b) it does not depend on the subjective parameters
and the threshold in the blue band is robust in most cases;
(c) it can maintain the real patterns of time series change,
while it removes noise; (d) it is easy to implement because
commercial software such as MATLAB and IDL include the
wavelets in their function library. For these reasons, the new
method can be applied to reconstruct high-quality time-
series data sets in many researches, such as the monitoring
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inter-annual vegetation changes, deriving biophysical land
surface variables and modeling terrestrial ecosystems.
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