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Abstract—Land surface radiation and energy budgets are
critical components of any land surface models that characterize
hydrological, ecological and biogeochemical processes. The esti-
mates of their components generated from remote sensing data
or simulations from numerical models have large uncertainties.
This paper provides a comprehensive review of recent advances in
estimating insolation, albedo, clear-sky longwave downward and
upwelling radiation, all-wave net radiation and evapotranspira-
tion from ground measurements, remote sensing algorithms and
products, as well as numerical model simulations. The decadal
variations of these components are also discussed.

Index Terms—Energy budget, evapotranspiration, model simu-
lation, net radiation, radiation budget, remote sensing.

I. INTRODUCTION

L AND surface energy balance is central to any land models
that characterize the land surface processes (e.g., ecolog-

ical, hydrological, biogeochemical). The land surface energy
balance equation can be written as

(1)

where is all-wave net radiation, G is soil heat flux, H is
sensible heat flux, and is latent heat flux in which is
the latent heat of evaporation of water and ET is the rate of
evaporation of water.

The land surface radiation budget, characterized by the net ra-
diation, represents the balance between incoming radiation from
the atmosphere and outgoing longwave and reflected shortwave
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radiation from the Earth surfaces. All-wave net radiation is the
sum of shortwave net radiation and longwave net radiation

, and can be expressed by

where is land surface broadband albedo, and are the
shortwave and longwave downward fluxes, is often called
insolation, is longwave upwelling radiation, is the broad-
band emissivity, is the surface skin temperature, and is
Stefan-Boltzmann’s constant.

Due to space limitations in this paper, we focus mainly on
the following components: all-sky insolation, albedo, clear-sky
longwave downward radiation, clear-sky longwave upwelling
radiation, all-wave all-sky net radiation, and evapotranspiration
(ET).

II. INSOLATION

Incident solar radiation, either photosynthetically active radi-
ation (PAR) in the visible spectrum (400–700 nm) or insolation
in the total shortwave (300–4000 nm), is a key variable required
by almost all land surface models. Many ecosystem models cal-
culate biomass accumulation linearly proportional to incident
PAR [1], [2]. Many models for calculating land surface ET are
also linearly related to insolation [3], [4].

Insolation is a measure of solar radiation received on a given
surface area in a given time, commonly expressed as average ir-
radiance in watts per square meter . Insolation is extra-
terrestrial irradiance at the top of the atmosphere (TOA) modi-
fied by the solar scattering and absorption of the different com-
ponents of the atmosphere, including Rayleigh scattering, per-
manent gas absorption, absorption by water vapor, and the ab-
sorption and scattering by aerosols and cloud components, re-
spectively. The cloud amount and aerosol loadings are the pri-
mary factors.

A. Ground Measurements

Since 1964, measurements of insolation and other compo-
nents of the surface radiation balance have been published by
the World Meteorological Organization (WMO). The meteoro-
logical stations in most countries measure insolation.

There are several major measurement networks for radiation
measurements—the Global Energy Balance Archive (GEBA)
[5]; the Baseline Surface Radiation Network (BSRN) [6]; the
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Surface Radiation Budget Network (SURFRAD) [7], [8], and
FLUXNET [9].

GEBA is a database maintained by ETH Zurich for the
worldwide measured radiation fluxes at the Earth’s surface. It
currently contains 2,000+ stations with 250,000 monthly mean
values of various surface energy balance components collected
since the 1950s. Gilgen et al. [10] estimated the relative random
error (root mean square error (RMSE)/mean) of the incoming
shortwave radiation values in GEBA at 5% for the monthly
means and 2% for yearly means.

BSRN became operational in 1992 and provides radiation
measurements with the highest possible accuracy at high tem-
poral resolution (minute values) in various climate zones. At
present, there are 35 BSRN stations in operation. The measure-
ment accuracy is about 5 Wm for the total insolation, but 2
Wm and 5 Wm for the direct and diffuse components, re-
spectively [6].

Established in 1993 by the U. S. National Oceanic and At-
mospheric Administration (NOAA) to support climate research
over the United States, SURFRAD currently operates seven sta-
tions in climatologically diverse regions. Independent measures
of upwelling and downwelling solar and infrared are the pri-
mary measurements; ancillary observations include direct and
diffuse solar radiation, PAR, spectral solar radiation, and me-
teorological parameters. Data are distributed in near real time
by anonymous FTP and the WWW (http://www.srrb.noaa.gov).
The documented measurement relative error ranges from 2%
to 5% [7].

FLUXNET is a global network of micrometeorological
tower sites that use eddy covariance methods to measure the
exchanges of carbon dioxide, water vapor, and energy between
terrestrial ecosystems and the atmosphere. It consists of a
set of regional networks, such as AmeriFlux, CarboEurope,
AsiaFlux, KoFlux, OzFlux, Fluxnet-Canada, and Chinaflux. As
of July 2009, over 500 tower sites are operating on a long-term
and continuous basis with the earliest sites dating from 1996.
Because of multiple instruments operated in different countries,
the accuracies of insolation measurements have not been well
documented.

In addition, a number of regional networks exist,
for example, the Atmospheric Radiation Measurement
(ARM) Program created in 1989 with data available at
http://www.arm.gov/docs/data.html; GEWEX Asian Monsoon
Experiment (GAME/AAN), the most reliable one for regions at
higher elevations [11], Greenland Climate Network (GC-Net)
for the Greenland ground measurements with instrument accu-
racy of 5–15%; and the Aerosol Robotic Network (AERONET)
which overestimates radiation parameters by Wm in
the Amazon area [12].

To insure high quality of the collected data, most of the
projects selected used Kipp & Zonen or Eppley standard
pyranometers and pyrgeometers to measure shortwave and
longwave radiation. The uncertainties of the instantaneous
values of solar shortwave radiation range from 5–20 Wm .
The uncertainties of the derived daily or monthly values are
expected to be much less [10]. The stated uncertainty of long-
wave radiation (pyrgeometers) is about 5% or 10–20 Wm ,
and the uncertainties of daily or monthly values are much less.

However, the performance of pyranometers and pyrgeometers
depends on their calibration, especially for pyrgeometers. The
symmetrical errors of longwave radiation of some FLUXNET
sites may be more than 10 Wm [13].

B. Remote Sensing Techniques

1) Satellite Sensors: Since 1960, meteorological satel-
lites have dramatically advanced our knowledge of the Earth
radiation budget. In contrast to ground-based observations,
space-borne observations have the advantage of global cov-
erage. The typical broadband radiometers include the Earth
Radiation Budget (ERB) sensors aboard Nimbus-7 [14], the
Earth Radiation Budget Experiment (ERBE) sensors aboard
three satellites [15], Clouds and the Earth’s Radiant Energy
System (CERES) [16], and the Geostationary Earth Radiation
Budget (GERB) sensors carried by Meteosat-8 launched in
2002 and Meteosat-9 launched in 2007 [17]. Note that satellite
instruments aim to be well calibrated, but some missions did
not have onboard calibration devices, and those that did had to
deal with complicated calibration issues related to the changing
of onboard optical devices over time.

Besides calibration, there exist significant gaps between
these missions, for example the eight years between ERBE
and CERES. The multispectral sensors on both polar-orbiting
or geostationary satellites also have been used to produce
surface radiation products, such as the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) radiometers onboard
the METEOSAT Second Generation (MSG) satellites [18],
Geostationary Operational Environmental Satellites (GOES)
[19], the ABI to be carried by GOES-R [20], and the Moderate
Resolution Imaging Spectroradiometer (MODIS) [21].

Earlier reviews by Schmetz [22] and Pinker et al. [23] re-
vealed that daily insolation estimates from geostationary satel-
lite data are generally within 10%–15% of pyranometer data,
while hourly estimates have errors that range from 5%–10% for
clear-sky conditions to 15%–30% for all-sky conditions. More
recent studies employing data from several different satellites
have improved accuracy, but further improvements are needed.

2) Estimation Algorithms: There are roughly two types of
algorithms for calculating insolation. The first approach is
to use the retrieved cloud and atmosphere parameters from
other sources, with measured TOA radiance/flux acting as a
constraint. They have been used for estimating insolation from
CERES, the International Satellite Cloud Climatology Project
(ISCCP), and SEVIRI.

The CERES algorithm [16] uses the cloud and aerosol in-
formation from MODIS, and TOA broadband fluxes as a con-
straint, to produce both insolation and PAR at a spatial resolu-
tion of 25 km for the instantaneous sensor footprint and 140 km
gridded products. Our recent validation results [24] using exten-
sive ground measurements show the 3-hour product has a mean
bias of 29.7 Wm (6.0% in relative value), and a standard de-
viation (STD) of 123.2 Wm (25.1% in relative value).

The first global shortwave radiation budget data set mainly
from ERBE/ERB has a spatial resolution of 280 km and daily
temporal resolution, with the bias between Wm and
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RMSE around 25 Wm globally, and much larger uncertain-
ties locally [25].

ISCCP has produced a global radiative flux data product
called ISCCP FD every three hours from 1983–2006 on a
280 km equal-area global grid [26]. ISCCP FD has been cal-
culated using a radiative transfer model from the Goddard
Institute for Space Studies (GISS) General Circulation Model
(GCM) using atmosphere and surface properties obtained pri-
marily from the TIROS Operational Vertical Sounding (TOVS)
data. The technical details are described by Zhang et al. [26]
who estimated that the error of this data set is on the order
of 10–15 Wm . Raschke et al. [27] found serious errors in
the input data that affect the surface radiation significantly.
The recent validation results [24] showed that the three-hour
product has a mean bias of 2.8 Wm (0.3% in relative value)
and an STD of 101.7 Wm (35.0% in relative error).

Deneke et al. [28] estimated surface solar irradiance based
on METEOSAT SEVIRI-derived cloud properties together with
data on water vapor column and surface albedo. Their valida-
tion results over the Netherlands with one year of pyranometer
measurements from 35 stations showed that the residual stan-
dard deviations from the linear regression analysis are 56, 11,
and 4 Wm for hourly, daily and monthly mean irradiance,
respectively.

The second approach is to establish the relationship between
the TOA radiance and surface incident insolation based on ex-
tensive radiative transfer simulations. This method was first ap-
plied to analyze the ERBE data [29], [30]. Liang et al. [21], [31]
generated the PAR and insolation products from MODIS data
directly. A similar approach has been used for GOES [32] and
AVHRR [33].

The Global Energy and Water Cycle Experiment (GEWEX)
surface radiation budget (SRB) Release 2 product has a spatial
resolution of and high temporal resolutions mainly from
GOES data [34]. Yang et al. [11] compared both ISCCP-FD
and GEWEX SRB data sets over the Tibetan Plateau and found
large discrepancies among them in highly variable terrain (such
as in the Himalayas region). In their official Web site, the
shortwave radiation products have biases of 6.64 (3-hourly),

3.67 (daily), and 4.09 (monthly) Wm , and an RMSE of
87.87 (3-hourly), 35.14 (daily) and 18.08 (monthly) Wm .
Our recent validation results using extensive ground mea-
surements [24] show that the three-hour product has a mean
bias of Wm ( 1.9% in relative value) and an STD of
101.3 Wm (35.0% in relative error).

Diak and Gautier [35] developed a simplified GEWEX
algorithm and produced hourly and daily insolation products
over the continental United States from GOES data. Compared
to pyranometer measurements at 11 sites in the U.S. Climate
Reference Network (USCRN) over a continuous 15-month
period, the validation results [36] showed seasonally aver-
aged model errors of 62 (19%) and 15 (10%) Wm for
hourly and daily-averaged insolation, respectively, including
both clear- and cloudy-sky conditions. Their daily integrated
insolation is available online at http://www.soils.wisc.edu/wim-
next/sun.html. Hourly data over the continental United States
back to 2002 can be obtained upon request.

The Satellite Application Facility on Climate Monitoring
(CM-SAF), part of EUMETSAT’s SAF Network, produces the
insolation product from AVHRR data [37] using a look-up table
(LUT) approach [38]. The product starts beginning Jan. 2004
with a spatial resolution of 15 km and daily and monthly tem-
poral resolutions. The LUT algorithm applies a pre-calculated
cloud mask, cloud top pressure and cloud type as inputs to the
LUT algorithm [38]. Validation of the instantaneous satellite
derived data versus hourly averaged surface measurements of
insolation showed good agreement within the targeted accuracy
of 10 Wm for monthly averages.

C. GCM Simulations

All atmospheric GCMs calculate incident insolation within
the atmosphere and at the surface. The generated products usu-
ally have much coarser spatial resolutions and fine tem-
poral resolutions (six hours).

Most GCMs tend to overestimate surface insolation. Exces-
sive surface insolation has been a long standing problem in
GCMs, and is still present in state-of-the-art GCMs [39]. Over-
estimates are particularly pronounced in lower latitudes in a
majority of models. This is in line with evidence from earlier
models in which a lack of adequate representation of absorbing
aerosol, particularly from biomass burning and desert dust pre-
vailing in lower latitudes, can cause significant overestimation
in surface insolation [40]. Bodas-Salcedo et al. [41] validated
the insolation of the surface radiation budget in the atmospheric
component of the new Hadley Centre Global Environmental
Model version 1 (HadGEM1) using the BSRN and ISCCP-FD
data sets and showed that this model also tends to overestimate
the surface incoming solar radiation.

Wild [39] compared the 14 GCMs of the latest generation
used in the fourth assessment report of the Intergovernmental
Panel on Climate Change (IPCC-AR4) and the 3rd phase of
the Coupled Model Intercomparison Project (CMIP3) with a
comprehensive data set of 760 GEBA stations. The mean bias
amounts to Wm , with a range from 12 to Wm .

Xia et al. [42], [43] found that the National Center for Envi-
ronment Prediction (NCEP) reanalysis solar radiation data ex-
ceeded surface observations by 40 to 100 (or greater) Wm .
Zhao et al. [44] evaluated three reanalysis data sets (NASA
Data Assimilation Office, European Centre for Medium-Range
Weather Forecasts (ECMWF) (ERA-40) and NCEP/National
Center for Atmospheric Research (NCEP/NCAR) reanalysis)
and their impacts on the MODIS net primary productivity (NPP)
product. They found that the NCEP reanalysis also tends to over-
estimate surface solar radiation, ECMWF has the highest accu-
racy but its radiation is lower in tropical regions, and the accu-
racy of DAO lies between that of NCEP and ECMWF.

Table I shows the average insolation estimates over land sur-
faces from several sources. The first seven columns were ex-
tracted from two papers, where NRA, JRA and ERA-40 are re-
analysis data, and the last two columns are calculated in this
study.

D. Decadal Variations

Analysis of long-term GEBA measurements [45]–[47]
showed that the insolation undergoes significant decadal vari-
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TABLE I
ESTIMATED AVERAGED INSOLATION OVER LAND SURFACES �Wm �

mean value at 760 stations.

ations. The record of observed global radiation begins with an
increasing phase from the 1920s to the late 1940s/early 1960s.
This brightening period (first brightening phase) is followed
by a decreasing trend lasting to the late 1980s, known as the
global dimming, which finally transitions into the second
brightening phase in many regions of the world. Wang et
al. (in preparation) using globally available meteorological
visibility inverse aerosol optical depth and sunshine duration
measurements showed that dimming of insolation renewed
over Europe after 2004, over Southeast Asia and Middle Asia
after 2000, after 1995 over China, and after 1989 over India.
The decadal variations of insolation are highly correlated with
cloud coverage and aerosol loadings.

However, the studies on utilizing GEBA data have been chal-
lenged because the sparse surface point measurements have an
obvious urban bias [48]. Satellite-derived insolation has good
global coverage, but current long-term satellite estimated inso-
lation data often contain spurious changes resulting from satel-
lite changes, sensor calibration, satellite view geometry [49]
and the difficulty in incorporating long-term variation in atmo-
spheric aerosols [11], [50]. Evan et al. [49] suggested that the
ISCCP data in its current form may be inappropriate for certain
long-term global studies, especially those focused on trends.
The state-of-the-art GCMs have not been able to characterize
decadal variations well [40].

Global “brightening” and “dimming” has great implications
for climate change [51]–[54] and hydrological cycles [55]. In
the IPCC-AR4, continental- and global-scale surface tempera-
tures are shown to decrease slightly from the 1950s to the 1970s,
but drastically increase since the 1980s, with strongest tempera-
ture rises on northern continents. This kind of behavior matches
the similar patterns of the decadal variations of insolation.

III. SHORTWAVE ALBEDO

Land surface albedo modulates the amount of solar radiation
absorbed by surfaces and directly controls the distribution of
the solar radiation between the surface and the atmosphere. It
can significantly impact climate and weather. Betts [56] com-
pared the radiative forcing associated with changes in surface
albedo and atmospheric and suggested that the positive
forcing brought about by forestation-related decreases in albedo
in temperate and boreal forest regions could offset the nega-
tive forcing expected from carbon sequestration. Dethloff et al.
[57] found that the changed Arctic sea-ice and snow albedo can

trigger changes in the Arctic and North Atlantic Oscillation pat-
tern with strong implications for the European climate. Chapin
et al. [58] synthesized field data from Arctic Alaska, showing
that terrestrial changes in summer albedo contribute substan-
tially to recent high-latitude warming trends.

In terrestrial ecological systems, surface albedo controls the
radiation absorption and microclimate conditions of soil and
plant canopies, which, in turn, affect ecosystem physical, physi-
ological, and biogeochemical processes such as energy balance,
evapotranspiration, plant photosynthesis, and respiration [59].

Climate, biogeochemical, hydrological, and weather forecast
models require regional surface albedo with an absolute ac-
curacy of 0.02–0.05 for snow-free and snow-covered land. To
monitor anticipated changes in land albedo on the global mean
radiation budget, decadal-scale trends in continental-mean sur-
face albedo should be measured to an accuracy of 0.01.

Several ground measurement networks for radiation also in-
clude albedo measurements, such as SURFRAD, FLUXNET,
BSRN, ARM, and so on. These data sets have been used for val-
idating satellite products and numerical simulations, although
the sensors are located at different altitudes with different spa-
tial representations. Scale dis-match has always been an issue
between a footprint of only a few square meters for the albedo
measurements and a coarse grid of remotely sensed data or sim-
ulated data.

A. Remote Sensing Techniques

Three types of data have been used for routine mapping of
land surface albedos: multiangle and multispectral data from
polar-orbiting satellites, and multispectral data from geosta-
tionary satellites. Multiangle sensors include MISR [60], [61]
and POLDER [62]; multispectral sensors on polar orbiting
platforms include MODIS [63], [64], VIIRS [65], [66], EO1
[67], and others [68]. Sensors on geostationary satellites such
as Meteosat and MSG have also been used for albedo mapping
[69]–[72].

There are two types of algorithms for estimating land surface
broadband albedo from satellite observations: physically-based
estimation and direct estimation methods. The physically based
estimation methods typically include three steps [68], [73]:
(1) atmospheric correction, (2) surface directional reflectance
modeling, and (3) narrowband-to-broadband conversion. The
first step converts TOA reflectance into surface directional
reflectance, the second step converts directional reflectance into
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spectral albedos, and the last step converts spectral albedos to
broadband albedos.

The typical example of physically-based estimation is the
MODIS algorithm [63]. The albedo algorithm from the earlier
geostationary Meteosat observations [69], [70], [74], [75] com-
bined the first two steps by assuming one unknown constant
aerosol optical depth (AOD) for the whole period of time (daily)
and eventually ignored the last step since there is only one band
available. The algorithm for the Meteosat Second Generation
data [72] is very similar to the MODIS one with three steps
and known AOD. In physically-based estimation algorithms, the
albedo product depends on the performance of all the proce-
dures that characterize the known processes and it is unknown
whether errors associated with each procedure cancel or en-
hance each other.

Instead of retrieving most of the variables explicitly from
remote sensing data, the second type of method for albedo
calculation is the direct estimation algorithm, which combines
all procedures together in one step through regression analysis
aiming only to make a best-estimate broadband albedo. The
direct retrieval method primarily consists of two steps [64],
[76]. The first step produces a large database of TOA direc-
tional reflectance and surface albedo for a variety of surface
and atmospheric conditions using radiative transfer model sim-
ulations. The second step links the simulated TOA reflectance
with surface broadband albedo statistically. This method will
be used to produce the albedo product from VIIRS in the future.

B. Numerical Simulations

Land surface albedo in climate models is either prescribed as
a parameter dependent on land cover types [77] or simulated
as an internal variable based on a simplified radiative transfer
scheme. The two-stream canopy radiative transfer model for dif-
ferent vegetation types [78]–[80] is one of the most widely used
approaches. This scheme has advanced the albedo calculation
in climate models from simple land cover based albedo parame-
terization or look-up tables to more physically based simulation
which enables the models to reproduce albedo changes caused
by variation in canopy leaf area index (LAI) and optical proper-
ties of canopy elements and soil [59]. Such simplified albedo pa-
rameterization schemes cannot physically characterize the dy-
namics of land surfaces.

Numerous studies have found serious discrepancies in these
models compared to satellite products [81]–[84]. Wang et al.
[84] analyzed 17 GCMs participating in the IPCC AR4, and
found that the climate model results and satellite-derived prod-
ucts differed up to 0.15–0.19 during winter of northern hemi-
sphere high latitudes. A similar conclusion was found for a
global land distribution [85].

Based on satellite albedo products, some improvements have
been proposed [86]–[90].

IV. LONGWAVE DOWNWARD RADIATION

Downward longwave radiation is vitally important for nu-
merous applications requiring surface radiation and energy bal-
ance, including predicting ET, snowmelt, surface temperature,
and frost occurrence.

A. Ground Measurements

The networks mentioned in Section II-A such as BSRN,
SURFRAD, ARM, and FLUXNET, also obtain longwave
radiation measurements.

The accuracy of downward longwave radiation measure-
ments according to BSRN standards was set to 30 Wm , but
the pyrgeometers used in the BSRN around 1995 for longwave
radiation measurements had accuracies of 10 Wm [6]. Recent
reports indicated that uncertainties associated with operational
BSRN measurements during this period are believed to be
about Wm (1.5%).

B. Remote Sensing Estimates

There have been several comprehensive reviews of methods
for estimating surface longwave radiation [22], [91], [92]. The
downward longwave radiation algorithms include three types.
The first is based on empirical functions using satellite-derived
meteorological parameters, for example, the near-surface tem-
peratures and water vapor burden. The second type calculates
the radiation quantities with radiative transfer models using
satellite-derived atmospheric temperature and water vapor
profiles. A strong feature of this approach is the validity of the
physics. Type three uses satellite-observed radiances directly to
avoid propagation of meteorological parameter retrieval errors
in the final radiation estimate. It embeds the physical merits
of radiative transfer within the parameterization of nonlinear
functions of observed radiance.

The first type of algorithms uses more readily available
meteorological observations, such as air temperature, humidity,
and solar radiation. Although these simpler algorithms may
have larger errors relative to the more complex methods, these
methods are needed and useful for a variety of applications.
Wang and Liang [13] evaluated two widely accepted methods
to estimate global atmospheric downward longwave radiation
under all-sky conditions using meteorological observations
from 1996 to 2007 at 36 globally-distributed sites, operated
by the SURFRAD, AmeriFlux, and AsiaFlux projects, and
then applied them to 3200 stations globally to estimate decadal
variation from 1973 to 2008. Kjaersgaard et al. [93] compared
20 simple models relying solely on air temperature or air
temperature plus water vapor pressure using long-term obser-
vations. The mean bias errors ranged from 23 to Wm
and 18 to Wm and RMSE from 39 to 45 Wm and
30–36 Wm at two sites, respectively. Flerchinger et al. [94]
evaluated the accuracy of 13 algorithms for predicting incident
longwave radiation under clear skies, ten cloud correction
algorithms, and four algorithms for all-sky conditions using
data from 21 sites across North America and China.

For the second type of algorithms, it is straightforward to
calculate using atmosphere profiles and a radiative transfer
model. However, the physical method is prone to errors in the
atmosphere profile. is dominated by the radiation from a thin
atmospheric layer close to the Earth’s surface. The contribu-
tion from the atmosphere above 500 m from the surface only
accounts for 16–20% of total [22], and some satellite sen-
sors cannot capture the atmospheric profiles near the surface.
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Fig. 1. Monthly averages of longwave downward radiation from two satellite products (ISCCP and GEWEX) and different GCMs in the IPCC AR4.

For example, the vertical resolution of the MODIS-retrieved at-
mosphere profiles is quite coarse, and only five layers are avail-
able between 1000–800 hPa pressure levels; detailed structures
of the atmosphere are not captured [95]. Wang and Liang [96]
showed that is not estimated with acceptable accuracy using
the MODIS atmospheric profile product, especially over high
altitude surfaces. Most GCMs use this type of algorithm to cal-
culate .

The third type of algorithm is often referred to as the hybrid
algorithm, which combines physical modeling through radiative
transfer simulations and statistical regression that links some
of the inputs and output of the simulations [96], [97]. Wang
and Liang [96] used the hybrid method to derive clear-sky
models for MODIS data over land surfaces with the emissivity
effect explicitly considered in the radiative transfer simulation
process. The validation results show that the derived product
has a RMSE of 17.60 Wm (Terra) and 16.17 Wm (Aqua).
A similar algorithm has been developed to estimate clear-sky
longwave downward radiation from GOES data [98].

The longwave downward radiation products from remote
sensing data include ISCCP-FD, GEWEX, and CERES, as dis-
cussed in Section II-B. In addition, the EUMETSAT CM-SAF
also produces the monthly longwave downward radiation
product by merging AVHRR and SEVERI data [37] with a
spatial resolution of 15 km. Based on their official Web site,
the GEWEX longwave radiation products have biases of 0.70
(3-hourly), 0.61 (daily) and 2.01 (monthly) Wm , and RMS
of 31.41 (3-hourly), 22.86 (daily) and 13.63 (monthly) Wm .

C. GCM Simulations

All GCMs mentioned in Section II-C can produce longwave
downward radiation. Opposite to insolation, the underestima-
tion of downward longwave models is another long standing
problem in GCMs [39], [99], [100].

Studies on validating GCM downward longwave radiation are
limited. Morcrette [101] validated the ECMWF forecast system
used for the ECMWF-40 reanalysis with surface radiation mea-
surements for the April–May 1999 period, available as part of
the BSRN, SURFRAD, and ARM programs, and found that the
model underestimated observed values by 10 Wm or less.

Markovic et al. [102] validated the downward longwave ra-
diation of three regional climate models over North America
using SURFRAD measurements, and found that for all models
all-sky biases are significantly influenced by cloud-free radia-
tion, cloud emissivity and cloud cover errors, with a system-
atic negative bias during cold, dry conditions, probably due to a
combination of omission of trace gas contributions to the down-
ward longwave radiation and a poor treatment of the water vapor
continuum at low water vapor concentrations.

Bodas-Salcedo et al. [41] found the simulation of downward
longwave radiation from the HadGEM1 is closer to observations
than its shortwave counterpart with results about 6.0 Wm less
than the BSRN measurements.

Wild [39] compared the downward longwave radiation of
the IPCC AR4 and AMIP II GCMs with measurements at 44
BSRN sites and found that the multiple model mean bias in the
IPCC AR4 models amounts to Wm , which is slightly
smaller than in AMIP II Wm . Improvements in the pa-
rameterization of the water vapor continuum can help to remove
some of the negative biases in the downward longwave compo-
nent [103], [104]. The monthly averages of IPCC AR4 models
are shown in Fig. 1 which illustrates the significant differences
among these GCMs.

Table II shows the average estimates of downward longwave
radiation over land surfaces from several sources similar to
Table I. The last column value is calculated in this study. It is
clear that different estimates of longwave downward radiation
from various models and satellite data vary significantly.

D. Decadal Variations

Consistent with global warming, increases substantially.
Prata [105] calculated using radiative transfer that during the
period between 1964 and 1990, there was a global increase in
the clear-sky longwave radiation at the Earth’s surface. The
global trend is approximately Wm per decade. Wang
and Liang [13] calculated that, based on 3200 observation
stations globally, daily increased at an average of 2.2 Wm
from 1973 to 2008 under all-sky conditions. Wild et al. [55]
estimated an increase in of 2.1 Wm over the
period 1986–2000, and of 2.6 Wm over the period
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TABLE II
ESTIMATED AVERAGE DOWNWARD LONGWAVE RADIATION OVER LAND SURFACES �Wm �

1992–2000 based on BSRN data. The rising trend results from
increases in air temperature, atmospheric water vapor and
concentration. From 1973 to 2008, increased worldwide,
while high latitudes in the Northern Hemisphere increased at
a greater rate.

V. LONGWAVE UPWELLING RADIATION

Longwave upwelling radiation that is highly heterogeneous is
very difficult to measure, and point measurements on the ground
represent a very small area. As mentioned in Section III-A, mul-
tiple surface measurement networks include the measurements
of longwave upwelling radiation but they are lacking quanti-
fied accuracies. In the following, we briefly review the remote
sensing methods and evaluate the GCM simulation results.

A. Remote Sensing Estimates

The upwelling longwave radiation emitted in the spectral
wavelengths greater than 4 is often referred to as “infrared
radiation” or longwave radiation. Given surface skin temper-
ature and spectral emissivities that are converted to
broadband emissivity [106]–[108], we can easily calculate
this quantity:

(5)

For two-thermal-band sensors, such as AVHRR and GOES, a
known emissivity is assumed (or inferred from land cover maps
or vegetation indices) to estimate surface skin temperature using
a split-window algorithm [68]. Fortunately, the new generation
of sensors, such as the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) and MODIS, has mul-
tiple thermal bands that allow the estimation of spectral emis-
sivities and land surface skin temperature simultaneously [109],
[110]. Besides MODIS and ASTER, surface skin temperature
and emissivity can also be estimated from other satellite sensors
[111], such as TM, SEVIRI, AVHRR, ATSR, AATSR, GOES,
GMS, VIIRS, and AIRS.

The current surface temperature and emissivity products from
remote sensing data still have large uncertainties [112]–[114].
New algorithms for estimating surface emissivity from hyper-
spectral data [115] or temperature from microwave data [116]
deserve further exploration. The alternative solution is to es-
timate surface longwave upwelling radiation from TOA long-
wave observations directly. Wang et al. [117] applied the hybrid

method to estimate upwelling radiation from MODIS using both
artificial neural network (ANN) and linear regression, and also
compared with the temperature-emissivity based method. They
found that the averaged RMSEs of the ANN model method are
15.89 Wm (for Terra) and 14.57 Wm (for Aqua), and the
averaged biases are Wm (for Terra) and Wm
(for Aqua). The biases and RMSEs of the ANN model method
are 5 Wm smaller than the temperature-emissivity method
and 2.5 Wm smaller than the linear regression method.

The longwave upwelling radiation products from remote
sensing data include ISCCP-FD, GEWEX, CERES, and EU-
METSAT CM-SAF. The monthly averages of two satellite
estimates from ISCCP and GEWEX are shown in Fig. 2, and
their temporal differences are significant although their annual
average values are close.

B. GCM Simulations

Like downward longwave radiation, upwelling longwave ra-
diation simulations from different GCM models have very large
differences. Zhang et al. [118] found that the difference of skin
temperature among four reanalysis data sets is around 2–4
that can easily cause 10–15 Wm uncertainty in calculated sur-
face upwelling longwave fluxes. Most models have simplified
surface emissivity, which is another major source of uncertainty
[106].

Table III shows the estimates of global upwelling longwave
radiation over land surfaces from multiple sources. The last two
estimates are obtained in this study. Fig. 2 also compares the
monthly averages of upwelling radiation from various IPCC
AR4 GCMs. Both Fig. 2 and Table III show significant differ-
ences among all these models and satellite estimations.

VI. NET RADIATION

As indicated in (2), all-wave net radiation is the sum of
shortwave and longwave net radiation, but the former is much
larger than the latter in the day time. Shortwave net radiation
depends on both insolation and shortwave albedo. Table I has
already shown the significant differences of insolation among
GCMs and different satellite estimates, but the differences in
albedo are also significant. Wang et al. [84] compared IPCC
AR4 GCM surface albedo with satellite estimates in the high
latitudes. Fig. 3 shows the monthly averages of IPCC AR4
GCMs and three satellite estimates (ISCCP, GEWEX and
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Fig. 2. Monthly averages of longwave upwelling radiation from two satellite products (ISCCP and GEWEX) and different GCMs in the IPCC AR4.

TABLE III
ESTIMATED AVERAGE UPWELLING LONGWAVE RADIATION OVER LAND SURFACES �Wm �

TABLE IV
ESTIMATED AVERAGE SHORTWAVE NET RADIATION OVER LAND SURFACES �Wm �

mean value at 760 stations.

MODIS) over global land surfaces. The global annual mean
land albedo varies from 0.18–0.26 [85].

Table IV shows the average estimates of shortwave net radi-
ation from various sources. We calculated the values in the last
two columns.

As shown in (4), longwave net radiation is the difference be-
tween downward and upwelling radiation. There are multiple
error sources [119], a significant difficulty in the estimation of
the incident longwave flux at the surface is quantifying the ef-
fects of clouds [92]. As Diak et al. [120] pointed out, a satellite
monitors the temperature of the cloud top, however, the cloud-
base temperature is a critical quantity controlling the downward

longwave radiation at the surface under cloudy conditions. The
common practice is to correct the cloud effect using cloud infor-
mation [13], [121], [122]. For example, Diak [123] provided a
parameterization of downward longwave radiation under cloudy
skies from GOES data using cloud temperature and emissivity,
and Flerchinger et al. [94] compared eight models based on
cloud coverage and two models based on solar index. We de-
veloped a method to estimate net radiation under both clear-sky
and cloudy conditions from solar radiation, which is validated
to accurately predict long-term variation in net radiation [124].

As discussed in Sections II-C and IV-C, most GCMs overes-
timate insolation but underestimate longwave downward radi-
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ation, however, the overall net radiation remains more or less
correct globally [39], while this cancellation no longer applies
on regional, seasonal, and diurnal time scales.

VII. EVAPOTRANSPIRATION

Evapotranspiration (ET) is a major component of the terres-
trial water, energy, and biogeochemical cycles. It is the sum
of water lost to the atmosphere from the soil surface through
evaporation and from plant tissues via transpiration, and cools
the surface and moistens the atmosphere near the Earth’s sur-
face. Hence, characterizing its regional and global variability
and change is important.

The most accurate measurements of ET have been made lo-
cally. ET is not readily observable with remote sensing, but can
be calculated (inferred) from some products generated from re-
mote sensing data. Different land surface models yield different
ET values even when the same forcing data are used.

A. Ground Measurements

ET from land surfaces has not been well observed with in situ
instruments. Micrometeorological based methods are widely
employed [125], [126], such as Bowen ratio energy balance
(BREB), and eddy covariance (EC). Weighing lysimeters have
also been commonly applied to measure the ET at ground
level, and provide the only direct measure of water flux from
a vegetated surface.

The BREB method uses direct measurements of net radia-
tion , ground flux , and gradients of temperature and
water vapor in the atmosphere to estimate latent heat flux (ET)
and sensible heat flux by assuming similarity between heat
and water vapor transport and conservation of energy. It is in-
dependent of weather conditions and requires no information
about aerodynamic characteristics of the experimental surface.
However, any inaccuracy in one of the instruments will reflect
directly on all heat fluxes.

The EC method is based on direct measurements of the
product of vertical velocity fluctuations and scalar concen-
tration fluctuations yielding a direct estimate of and LE
assuming the mean vertical velocity is negligible. The EC
method has overtaken the BREB as being the preferred mi-
crometeorological technique for ET measurement because it
involves minimal theoretical assumptions and is now afford-
able and available off-the-shelf. However, it suffers from an
energy imbalance problem. Clearly the BREB method must
be consistent with conservation of energy because it forces
energy-balance closure; however, the EC method provides
estimates of and LE separately so that when combined with
measurements of Rn, , and S all major components of the
energy balance are independently measured. An average imbal-
ance of 20% across 22 FLUXNET eddy correlation sites was
attributed to underestimated and/or overestimated
available energy [127]. A 10% to 30% underestimation of

was reported even over relatively flat homogenous
short vegetation [128], and the closure error is typically higher
over strongly evaporating surfaces such as irrigated crops.

The common belief is that measuring errors or storage terms
are the reason for the unclosed energy balance, however, Foken
[129] argued that exchange processes on larger scales of the

heterogeneous landscape have a significant influence and the
problem is actually a scale problem.

BREB and EC use in situ observations that can provide di-
rect, site-specific estimates of ET at high temporal resolution.
However, spatial heterogeneity and the relatively few number of
sites prevent direct scaling of these calculations to regional es-
timates. Regional measurements can be made through airborne
measurement systems [130] at short temporal scales, but the cost
is prohibitive for wide use. One alternative solution is the de-
velopment of a mobile system [131]. In recent years progress
has been made in making theory-based area-average estimates
of evaporation using scintillometers. For example, Kleissl et al.
[132] reported a first-of-its-kind network of seven large aperture
scintillometer (LAS) sites in New Mexico established in 2006 to
measure sensible heat fluxes over irrigated fields, riparian areas,
deserts, lava flows, and mountain highlands.

B. Remote Sensing Estimates

Despite the inability to measure ET directly with remote
sensing, it is possible to measure states and processes that are
needed to estimate ET. Various remote sensing techniques have
been used to estimate ET at different scales [133]–[136]. Un-
fortunately, none of these methods estimate ET very accurately,
with an average RMSE value for all of about 50 Wm and
relative errors of 15–30%. We briefly introduce three methods:
statistical methods, energy balance based methods, and data
assimilation methods.

In natural ecosystems the vegetation indexes may be used
for up-scaling from ground based ET? measurements from
flux towers to larger spatial domains. For example, Nagler
et al. [137] correlated 16-day MODIS EVI values with ET
observations obtained with flux towers in semi-arid rangeland
in Arizona, and a simple multiple linear regression fit of ET to
EVI resulted in the correlation coefficient of 0.80–0.94. To use
both vegetation index and thermal brightness temperature, the
so-called “triangle method” has also been used for estimating
ET fraction, which is the ratio of the ET and available energy
(net radiation) [138]. This method is named this way because
the scatters of the pixels in the two-dimensional space of
temperature and vegetation indexes form a triangle shape. To
incorporate the surface moisture status, Wang and Liang [4]
developed a statistical formula using ground measurements
over the US Southern Great Plains based on vegetation index,
air or surface skin temperature and their day/night difference.
A similar approach was also explored by Yang et al. [139]
who used the support vector machines, a widely used machine
learning technique.

Building on recent advances in ecophysiological theory that
allows detection of multiple stresses on plant function using
biophysical remote sensing metrics, some formulae for calcu-
lating potential ET have been extended to calculate the actual
ET globally but by using both meteorological observations
and remote sensing products, for example, the Priestley-Taylor
Formula [140] and the Penman-Monteith (PM) formula [141],
[142]. The revised PM algorithm [141] can estimate the 8-day
latent heat flux (LE) from the MODIS data with a RMSE of
27.3 Wm using tower meteorological data, and 29.5 Wm
with reanalysis data.
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TABLE V
ESTIMATED AVERAGE LATENT HEAT FLUX FROM ET OVER LAND SURFACES �Wm �

Many algorithms have been developed to estimate ET based
on energy balance [91], [143], [144]. Most of them attempt to
calculate ET as a residual of the energy balance equation (e.g.,
(1)), once , and are determined through a combina-
tion of ground, remote sensing, and modeling techniques. These
models use information available from the scene in remotely
sensed imagery to provide context for estimating the surface
energy budget components, typically one-source models [145],
[146] that treat the landscape as a single unit; and two source
models [143], [147] that divide the landscape into vegetated and
non-vegetated units, and estimate the surface energy budget for
each separately.

Given the inability to accurately measure ET directly over
large areas with in situ or remote sensing methods, assimilating
remotely sensed products into land surface models that have
improved boundary-layer physics for estimating ET is another
active research area and the most important progress may likely
be made in this area [148], [149].

ET is also a component of the water budget:

(6)

where S is land water storage (e.g., snow, soil moisture,
lakes/reservoirs/streams, canopy storage), P is precipitation,
and Q is runoff/streamflow. All these water budget components
can now be estimated from remote sensing data [150]–[152],
for example, changes in total surface and subsurface storage
dS/dt can be derived using gravity anomaly measurements, such
as the Gravity Recovery and Climate Experiment (GRACE)
launched in March 2002 [153], [154], P is regularly retrieved
using a variety of techniques from multi-sensor microwave and
infrared data, such as the Tropical Rainfall Measuring Mission
(TRMM) satellite [155] and the Climate Prediction Center mor-
phing method (CMORPH) [156], and Q from laser altimetry
and interferometric synthetic aperture radiometry technologies
data [157]. Thus, ET can also be estimated from the water
budget equation in principle at regional and continental scales,
but there are currently large uncertainties in estimating the
individual components [151]. With the Surface Water Ocean
Topography (SWOT) mission in the near future, all components
of the water budget can be well observed.

C. Model Simulations

Almost all atmospheric GCM models have a land surface en-
ergy balance module [144] for simulating the individual heat

fluxes. The modeling development has been recently reviewed
by Shuttleworth [158]. Current model simulations do not pro-
vide the degree of accuracy required for climate and weather
prediction. For example, even when forced by the same dataset,
land surface models from the North American Land Data As-
similation System differ substantially from each other in ET
simulation [159], although their parameterizations appear to be
similar in some ways.

Different model simulations vary significantly and ET clima-
tology is not well known [160], [161]. For example, Grotjahn
[162] pointed out that the surface energy budgets differ between
the ECMWF ERA-40 and NCEP NDRa2 reanalysis datasets in
that ERA-40 data have greater sensible heat flux into the air,
while NDRa2 data have greater latent heat flux.

Table V shows the global average latent heat flux from ET
over land surfaces. The first four estimates were given by Tren-
berth et al. [163], and the last five numbers are estimated in
this study, where both Global Soil Wetness Project 2 (GSWP-2)
[164], [165] and the Global Land Data Assimilation System
(GLDAS) ET estimates are averages of model simulations. The
last number is based on the statistical formula developed by Yao
et al. [166]. It is clear that the differences of various estimates
are also very significant.

D. Temporal Variations

One expected consequence of global warming is the increase
in ET. Long-term data records have been maintained for the
evaporative loss from a pan of water. Numerous studies [167],
[168] have reported decreasing pan evaporation over large areas
and in different regions of the world over the past 50 years.
These decreases in pan evaporation are interpreted to be the re-
sult of a number of mechanisms, e.g., decreasing surface solar
radiation [169] and decreasing wind speed [170]. The contrast
between the expected and observed ET is called the “evapora-
tion paradox”.

Cong et al. [171] found that from 1956 to 2005, the pan evap-
oration paradox existed in China as a whole while pan evapo-
ration kept decreasing and air temperature became warmer and
warmer, but the actual evaporation decreased in the former 30
years and increased in the latter 20 year for the whole of China.
Gordon et al. [172] found that ET decreased in southeastern
China, the eastern U.S. and the U.K. over the past 30 years, but
has increased in the western U.S. and northwestern China. Other
water budget-based studies showed long-term changes in ET in
northeastern and middle China [4], [173], decreases over the
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eastern U.S., and increases over the western U.S. [174]–[176].
Teuling et al. [177] demonstrated the strong regional and tem-
poral differentiation of trends in actual evaporation. Using a
modified Penman-Monteith method with station measurements,
Wang et al. [3] recently calculated that the ET daytime value in-
creased by 0.18 Wm year averaged over all 858 stations, or
3.7 Wm (4% in relative value) from 1982 to 2002, equal to 24
mm year in water flux, and increased solar radiation and veg-
etation cover (quantified by vegetation index) are the two most
important factors determining the long-term increase in ET.

VIII. CONCLUSION

We have reviewed the recent advances in estimating land sur-
face radiation and energy budget components from ground mea-
surements, remote sensing techniques and numerical simula-
tions. Though progress has been made, the task still faces many
challenges.

Differences between various numerical model simulations
are quite significant, which may be the result of different model
physics, model structure, and input/forcing data. Compared
to ground measurements, most state-of-the-art GCMs still
tend to overestimate the surface incident shortwave radiation,
which has been a long standing problem. The overestimation
in some reanalysis data sets is even much larger. Concerning
land surface albedo, most GCMs tend to underestimate this
parameter compared to estimates from MODIS. Opposite to
incident shortwave radiation, the underestimation of downward
longwave models is another long standing problem in GCMs.
Fortunately, GCMs simulate the net radiation reasonably well
globally due to overestimation of insolation and underesti-
mation of downward longwave radiation. The cancellation of
errors is probably a consequence of the energy conservation
implemented in the models. Because of the uncertainties, the
simulation results do not well characterize the decadal varia-
tions in land surface radiation and energy budgets.

Remotely sensed products are usually considered to be the
most appropriate sources to verify and test the accuracy of nu-
merical models, but most of the surface radiation and energy
budget components have to be estimated from satellite observa-
tions, and the inversion process always introduces uncertainties.
However, as the inversion algorithms approach maturity, the un-
certainties of satellite products are becoming smaller than those
in the numerical model simulations and the satellite products
will be used more and more effectively for model initialization,
calibration and validation.

The retrieved remotely sensed quantities have to be validated
by ground measurements. The ground “point” measurements
cannot match the size of the remote sensing pixel or model grid
spatially. Spatial upscaling always results in errors, but the use
of remote sensing observations with different spatial resolutions
will help to reduce uncertainties. Overall, the number of current
ground measurement networks is inadequate for a good spatial
and temporal representation. Uncertainties of ground measure-
ments in different networks, or even in the same network, vary
considerably, and cross-calibration is highly needed. Consistent
processing and effective management of ground measurements

from various sources to make them accessible to the users re-
mains a considerable challenge.

The ultimate solution may be to assimilate all observations
and data products from various sources into the numerical
models to generate accurate spatiotemporal continuous land
surface radiation and energy budgets. It is becoming an active
research area.

One difficult issue we were faced with is the variable error
measures used by different studies, such as the bias, RMSE,
RMS, percentage error, STD, and so on. This makes intercom-
parisons of the errors among ground measurements, satellite
products and numerical simulations difficult. One point is that
the comparison with ground based measurements does not ad-
equately provide the error of the model or inversion algorithm.
Even a perfect model or retrieval algorithm would fail if it is
feed with inaccurate input data.

ACKNOWLEDGMENT

This paper benefits from the presentations and discussions of
the International Conference on Land Surface Radiation and En-
ergy Budgets, March 18–20, 2009, Beijing, China. The authors
would like to thank reviewers for their valuable comments and
suggestions, and Dr. Carol Russell for editing the paper.

REFERENCES

[1] S. W. Running, R. R. Nemani, F. A. Heinsch, M. S. Zhao, M. Reeves,
and H. Hashimoto, “A continuous satellite-derived measure of global
terrestrial primary production,” BioScience, vol. 54, pp. 547–560, Jun.
2004.

[2] S. D. Prince and S. N. Goward, “Global primary production: A remote
sensing approach,” J. Biogeography, vol. 22, pp. 815–835, 1995.

[3] K. Wang, R. E. Dickinson, M. Wild, and S. Liang, “Evidence for
decadal variation in terrestrial evapotranspiration between 1982 and
2002, Results,” J. Geophys. Res., 2010.

[4] K. Wang and S. Liang, “An improved method for estimating global
evapotranspiration based on satellite determination of surface net radi-
ation, vegetation index, temperature, and soil moisture,” J. Hydrome-
teorol., vol. 9, pp. 712–727, Aug. 2008.

[5] H. Gilgen and A. Ohmura, “The global energy balance archive,” Bull.
Amer. Meteorol. Soc., vol. 80, pp. 831–850, May 1999.

[6] A. Ohmura, E. G. Dutton, B. Forgan, C. Frohlich, H. Gilgen, H. Hegner,
A. Heimo, G. Konig-Langlo, B. McArthur, G. Muller, R. Philipona,
R. Pinker, C. H. Whitlock, K. Dehne, and M. Wild, “Baseline Surface
Radiation Network (BSRN/WCRP): New precision radiometry for cli-
mate research,” Bull. Amer. Meteorol. Soc., vol. 79, pp. 2115–2136,
Oct. 1998.

[7] J. A. Augustine, J. J. DeLuisi, and C. N. Long, “SURFRAD—A na-
tional surface radiation budget network for atmospheric research,” Bull.
Amer. Meteorol. Soc., vol. 81, pp. 2341–2357, Oct. 2000.

[8] J. A. Augustine, G. B. Hodges, C. R. Cornwall, J. J. Michalsky, and
C. I. Medina, “An update on SURFRAD—The GCOS Surface Radia-
tion budget network for the continental United States,” J. Atmospher.
Ocean. Technol., vol. 22, pp. 1460–1472, Oct. 2005.

[9] D. Baldocchi, E. Falge, L. H. Gu, R. Olson, D. Hollinger, S. Running,
P. Anthoni, C. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein,
G. Katul, B. Law, X. H. Lee, Y. Malhi, T. Meyers, W. Munger, W.
Oechel, K. Pilegaard, H. P. Schmid, R. Valentini, S. Verma, T. Vesala,
K. Wilson, and S. Wofsy, “FLUXNET: A new tool to study the tem-
poral and spatial variability of ecosystem-scale carbon dioxide, water
vapor, and energy flux densities,” Bull. Amer. Meteorol. Soc., vol. 82,
pp. 2415–2434, 2001.

[10] H. Gilgen, M. Wild, and A. Ohmura, “Means and trends of shortwave
incoming radiation at the surface estimated from Global Energy Bal-
ance Archive data,” J. Climate, vol. 11, pp. 2042–2061, 1998.

[11] K. Yang, R. T. Pinker, Y. Ma, T. Koike, M. M. Wonsick, S. J. Cox, Y.
Zhang, and P. Stackhouse, “Evaluation of satellite estimates of down-
ward shortwave radiation over the Tibetan Plateau,” J. Geophys. Res.
–Atmospheres, vol. 113, p. 11, Sep. 2008.



236 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 3, NO. 3, SEPTEMBER 2010

[12] O. E. Garcia, A. M. Diaz, F. J. Exposito, J. P. Diaz, O. Dubovik, P.
Dubuisson, J. C. Roger, T. F. Eck, A. Sinyuk, Y. Derimian, E. G.
Dutton, J. S. Schafer, B. N. Holben, and C. A. Garcia, “Validation of
AERONET estimates of atmospheric solar fluxes and aerosol radia-
tive forcing by ground-based broadband measurements,” J. Geophys.
Res.–Atmospheres, vol. 113, p. 16, Nov. 2008.

[13] K. Wang and S. Liang, “Global atmospheric downward longwave radi-
ation over land surface under all-sky conditions from 1973 to 2008,” J.
Geophys. Res.–Atmospheres, vol. 114, 2009, 10.1029/2009JD011800.

[14] H. Jacobowitz and R. J. Tighe et al., “The Earth radiation budget de-
rived from the Nimbus-7 ERB experiment,” J. Geophys. Res., vol. 89,
pp. 4997–5010, 1984.

[15] B. R. Barkstrom and G. L. Smith, “The earth radiation budget ex-
periment: Science and implementation,” Rev. Geophys., vol. 24, pp.
379–390, 1986.

[16] B. A. Wielicki, B. R. Barkstrom, B. A. Baum, T. P. Charlock, R. N.
Green, D. P. Kratz, R. B. I. Lee, P. Minnis, G. L. Smith, T. Wong, D.
F. Young, R. D. Cess, J. A. J. Coakley, D. A. Crommelynck, L. Donner,
R. Kandel, M. D. King, A. J. Miller, V. Ramanathan, D. A. Randall, L.
L. Stowe, and R. M. Welch, “Clouds and the Earth’s Radiant Energy
System (CERES): Algorithm overview,” IEEE Trans. Geosci. Remote
Sens., vol. 36, pp. 1127–1141, 1998.

[17] J. E. Harries, J. E. Russell, J. A. Hanafin, H. Brindley, J. Futyan, J.
Rufus, S. Kellock, G. Matthews, R. Wrigley, A. Last, J. Mueller, R.
Mossavati, J. Ashmall, E. Sawyer, D. Parker, M. Caldwell, P. M. Allan,
A. Smith, M. J. Bates, B. Coan, B. C. Stewart, D. R. Lepine, L. A. Corn-
wall, D. R. Corney, M. J. Ricketts, D. Drummond, D. Smart, R. Cutler,
S. Dewitte, N. Clerbaux, L. Gonzalez, A. Ipe, C. Bertrand, A. Joukoff,
D. Crommelynck, N. Nelms, D. T. Llewellyn-Jones, G. Butcher, G. L.
Smith, Z. P. Szewczyk, P. E. Mlynczak, A. Slingo, R. P. Allan, and M.
A. Ringer, “The geostationary Earth Radiation Budget Project,” Bull.
Amer. Meteorol. Soc., vol. 86, pp. 945–960, Jul. 2005.

[18] J. Schmetz, P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A.
Ratier, “An introduction to Meteosat Second Generation (MSG),” Bull.
Amer. Meteorol. Soc., vol. 83, p. 977, Jul. 2002.

[19] R. T. Pinker, X. Li, W. Meng, and E. A. Yegorova, “Toward improved
satellite estimates of short-wave radiative fluxes—Focus on cloud de-
tection over snow: 2. Results,” J. Geophys. Res.–Atmospheres, vol. 112,
May 2007.

[20] I. Laszlo, P. Ciren, H. Q. Liu, S. Kondragunta, J. D. Tarpley, and M. D.
Goldberg, “Remote sensing of aerosol and radiation from geostationary
satellites,” Adv. Space Res., vol. 41, pp. 1882–1893, 2008.

[21] S. Liang, T. Zheng, R. Liu, H. Fang, S. C. Tsay, and S. Running,
“Mapping incident Photosynthetically Active Radiation (PAR) from
MODIS Data,” J. Geophys. Res.–Atmospheres, vol. 111, 2006,
10.1029/2005JD006730, Art. No. D15208.

[22] J. Schmetz, “Towards a surface radiation climatology: Retrieval of
downward irradiances from satellites,” Atmospher. Res., vol. 23, pp.
287–321, 1989.

[23] R. T. Pinker, R. Frouin, and Z. Li, “A review of satellite methods to
derive surface shortwave irradiance,” Remote Sens. Environ., vol. 51,
pp. 108–124, 1995.

[24] S. Gui, S. Liang, K. Wang, and L. Li, “Validation of three satellite-
estimated land surface downward shortwave radiation datasets,” IEEE
Geosci. Remote Sens. Lett., 2010, in press.

[25] C. Whitlock, T. Charlock, W. Staylor, R. Pinker, I. Laszlo, A. Ohmura,
G. H. , T. Konzelman, R. C. DiPasquale, C. D. Moats, S. R. LeCroy, and
N. A. Ritchey, “First global WCRP shortwave surface radiation budget
dataset,” Bull. Amer. Meteorol. Soc., vol. 76, pp. 905–922, 1995.

[26] Y. C. Zhang, W. B. Rossow, A. A. Lacis, V. Oinas, and M. I.
Mishchenko, “Calculation of radiative fluxes from the surface to top
of atmosphere based on ISCCP and other global data sets: Refine-
ments of the radiative transfer model and the input data,” J. Geophys.
Res.–Atmospheres, vol. 109, Oct. 6, 2004, Art. No. D19105.

[27] E. Raschke, S. Bakan, and S. Kinne, “An assessment of radiation
budget data provided by the ISCCP and GEWEX-SRB,” Geophys.
Res. Lett., vol. 33, Apr. 12, 2006.

[28] H. M. Deneke, A. J. Feijt, and R. A. Roebeling, “Estimating surface
solar irradiance from METEOSAT SEVIRI-derived cloud properties,”
Remote Sens. Environ., vol. 112, pp. 3131–3141, Jun. 2008.

[29] Z. Li and H. G. Leighton, “Global climatology of solar radiation bud-
gets at the surface and in the atmosphere from 5 years of ERBE data,”
J. Geophys. Res., vol. 98, 1993.

[30] Z. Li, H. G. Leighton, K. Masuda, and T. Takashima, “Estimation of
SW flux absorbed at the surface from TOA reflected flux,” J. Climate,
vol. 6, pp. 317–330, 1993.

[31] R. Liu, S. Liang, H. He, J. Liu, and T. Zheng, “Mapping photosyn-
thetically active radiation from MODIS data in China,” Remote Sens.
Environ., vol. 112, pp. 998–1009, 2008.

[32] T. Zheng, S. Liang, and K. C. Wang, “Estimation of incident PAR from
GOES imagery,” J. Appl. Meteorol. Climatol., vol. 47, pp. 853–868,
2008.

[33] S. Liang, T. Zheng, D. D. Wang, K. C. Wang, R. G. Liu, S. C. Tsay, S.
Running, and J. Townshend, “Mapping high-resolution incident pho-
tosynthetically active radiation over land from polar-orbiting and geo-
stationary satellite data,” Photogramm. Eng. Remote Sens., vol. 73, pp.
1085–1089, Oct. 2007.

[34] R. T. Pinker, J. D. Tarpley, I. Laszlo, K. E. Mitchell, P. R. Houser, E.
F. Wood, J. C. Schaake, A. Robock, D. Lohmann, B. A. Cosgrove,
J. Sheffield, Q. Y. Duan, L. F. Luo, and R. W. Higgins, “Surface
radiation budgets in support of the GEWEX Continental-Scale Inter-
national Project (GCIP) and the GEWEX Americas Prediction Project
(GAPP), including the North American Land Data Assimilation
System (NLDAS) Project,” J. Geophys. Res., vol. 108, Nov. 19, 2003,
Art. N. 8844.

[35] G. R. Diak and C. Gautier, “Improvements to a simple physical model
for estimating insolation from GOES data,” J. Climate Appl. Meteorol.,
vol. 22, pp. 505–508, 1983.

[36] J. A. Otkin, M. C. Anderson, J. R. Mecikalski, and G. R. Diak, “Val-
idation of GOES-based insolation estimates using data from the US
Climate Reference Network,” J. Hydrometeorol., vol. 6, pp. 460–475,
Aug. 2005.

[37] J. Schulz, P. Albert, H. D. Behr, D. Caprion, H. Deneke, S. Dewitte,
B. Durr, P. Fuchs, A. Gratzki, P. Hechler, R. Hollmann, S. Johnston,
K. G. Karlsson, T. Manninen, R. Muller, M. Reuter, A. Riihela, R.
Roebeling, N. Selbach, A. Tetzlaff, W. Thomas, M. Werscheck, E.
Wolters, and A. Zelenka, “Operational climate monitoring from space:
The EUMETSAT Satellite Application Facility on Climate Monitoring
(CM-SAF),” Atmospher. Chem. Phys., vol. 9, pp. 1687–1709, 2009.

[38] R. W. Mueller, C. Matsoukas, A. Gratzki, H. D. Behr, and R. Hollmann,
“The CM-SAF operational scheme for the satellite based retrieval of
solar surface irradiance—A LUT based eigenvector hybrid approach,”
Remote Sens. Environ., vol. 113, pp. 1012–1024, May 2009.

[39] M. Wild, “Short-wave and long-wave surface radiation budgets in
GCMs: A review based on the IPCC-AR4/CMIP3 models,” Tellus
Series a–Dynamic Meteorology and Oceanography, vol. 60, pp.
932–945, Oct. 2008.

[40] M. Wild, “How well do IPCC-AR4/CMIP3 climate models simulate
global dimming/brightening and twentieth-century daytime and night-
time warming?,” J. Geophys. Res.–Atmospheres, vol. 114, May 2009.

[41] A. Bodas-Salcedo, M. A. Ringer, and A. Jones, “Evaluation of the
surface radiation budget in the atmospheric component of the Hadley
Centre Global Environmental Model (HadGEM1),” J. Climate, vol. 21,
pp. 4723–4748, Sep. 2008.

[42] X. A. Xia, P. C. Wang, H. B. Chen, and F. Liang, “Analysis of down-
welling surface solar radiation in China from National Centers for
Environmental Prediction reanalysis, satellite estimates, and surface
observations,” J. Geophys. Res.–Atmospheres, vol. 111, p. 9, May
2006.

[43] F. Babst, R. W. Mueller, and R. Hollmarm, “Verification of NCEP
reanalysis shortwave radiation with mesoscale remote sensing data,”
IEEE Geosci. Remote Sens. Lett., vol. 5, pp. 34–37, Jan. 2008.

[44] M. Zhao, S. Running, and R. Nemani, “Sensitivity of Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) terrestrial primary produc-
tion to the accuracy of meteorological reanalyses,” J. Geophys. Res.,
vol. 111, p. G01002, 2006, 10.1029/2004JG000004.

[45] A. Ohmura, “Observed decadal variations in surface solar radiation and
their causes,” J. Geophys. Res.–Atmospheres, vol. 114, Apr. 2009.

[46] M. Wild, H. Gilgen, A. Roesch, A. Ohmura, C. N. Long, E. G. Dutton,
B. Forgan, A. Kallis, V. Russak, and A. Tsvetkov, “From dimming
to brightening: Decadal changes in solar radiation at Earth’s surface,”
Science, vol. 308, pp. 847–850, May 6, 2005.

[47] M. Wild, B. Truessel, A. Ohmura, C. N. Long, G. Konig-Langlo, E.
G. Dutton, and A. Tsvetkov, “Global dimming and brightening: An
update beyond 2000,” J. Geophys. Res.–Atmospheres, vol. 114, p. 14,
May 2009.

[48] V. Ramanathan and Y. Feng, “Air pollution, greenhouse gases and cli-
mate change: Global and regional perspectives,” Atmospher. Environ.,
vol. 43, pp. 37–50, Jan. 2009.

[49] A. T. Evan, A. K. Heidinger, and D. J. Vimont, “Arguments against a
physical long-term trend in global ISCCP cloud amounts,” Geophys.
Res. Lett., vol. 34, p. 5, Feb. 2007.



LIANG et al.: REVIEW ON ESTIMATION OF LAND SURFACE RADIATION AND ENERGY BUDGETS 237

[50] T. Hayasaka, K. Kawamoto, G. Y. Shi, and A. Ohmura, “Importance of
aerosols in satellite-derived estimates of surface shortwave irradiance
over China,” Geophys. Res. Lett., vol. 33, p. 4, Mar. 2006.

[51] K. Makowski, M. Wild, and A. Ohmura, “Diurnal temperature range
over Europe between 1950 and 2005,” Atmospher. Chem. Phys., vol. 8,
pp. 6483–6498, 2008.

[52] K. Makowski, E. B. Jaeger, M. Chiacchio, M. Wild, T. Ewen, and A.
Ohmura, “On the relationship between diurnal temperature range and
surface solar radiation in Europe,” J. Geophys. Res.–Atmospheres, vol.
114, p. 16, Apr. 2009.

[53] M. Wild, “Global dimming and brightening: A review,” J. Geophys.
Res.–Atmospheres, vol. 114, p. 31, Jun. 2009.

[54] M. Wild, A. Ohmura, and K. Makowski, “Impact of global dimming
and brightening on global warming,” Geophys. Res. Lett., vol. 34, p. 4,
Feb. 2007.

[55] M. Wild, J. Grieser, and C. Schaer, “Combined surface solar bright-
ening and increasing greenhouse effect support recent intensification
of the global land-based hydrological cycle,” Geophys. Res. Lett., vol.
35, p. 5, Sep. 2008.

[56] R. A. Betts, “Offset of the potential carbon sink from boreal forestation
by decreases in surface albedo,” Nature, vol. 408, pp. 187–190, Nov.
2000.

[57] K. Dethloff, A. Rinke, A. Benkel, M. Koltzow, E. Sokolova, S. K. Saha,
D. Handorf, W. Dorn, B. Rockel, H. von Storch, J. E. Haugen, L. P.
Roed, E. Roeckner, J. H. Christensen, and M. Stendel, “A dynamical
link between the Arctic and the global climate system,” Geophys. Res.
Lett., vol. 33, Feb. 1, 2006.

[58] F. S. Chapin, M. Sturm, M. C. Serreze, J. P. McFadden, J. R. Key,
A. H. Lloyd, A. D. McGuire, T. S. Rupp, A. H. Lynch, J. P. Schimel,
J. Beringer, W. L. Chapman, H. E. Epstein, E. S. Euskirchen, L. D.
Hinzman, G. Jia, C. L. Ping, K. D. Tape, C. D. C. Thompson, D. A.
Walker, and J. M. Welker, “Role of land-surface changes in Arctic
summer warming,” Science, vol. 310, pp. 657–660, Oct. 2005.

[59] S. Wang, A. P. Trishchenko, and X. M. Sun, “Simulation of canopy
radiation transfer and surface albedo in the EALCO model,” Climate
Dynamics, vol. 29, pp. 615–632, Nov. 2007.

[60] J. V. Martonchik, D. J. Diner, B. Pinty, M. M. Verstraete, R. B. My-
neni, Y. Knyazikhin, and H. R. Gordon, “Determination of land and
ocean reflective, radiative, and biophysical properties using multiangle
imaging,” IEEE Trans. Geosci. Remote Sens., vol. 36, pp. 1266–1281,
1998.

[61] D. J. Diner, J. V. Martonchik, R. A. Kahn, B. Pinty, N. Gobron, D. L.
Nelson, and B. N. Holben, “Using angular and spectral shape similarity
constraints to improve MISR aerosol and surface retrievals over land,”
Remote Sens. Environ., vol. 94, pp. 155–171, Jan. 30, 2005.

[62] M. Leroy, J. L. Deuze, F. M. Breon, O. Hautecoeur, M. Herman, J.
C. Buriez, D. Tanre, S. Bouffies, P. Chazette, and J. L. Roujean, “Re-
trieval of atmospheric properties and surface bidirectional reflectances
over land from POLDER/ADEOS,” J. Geophys. Res., vol. 102, pp.
17023–17037, 1997.

[63] C. Schaaf, F. Gao, A. Strahler, W. Lucht, X. Li, T. Tsung, N. Strugll,
X. Zhang, Y. Jin, P. Muller, P. Lewis, M. Barnsley, P. Hobson, M.
Disney, G. Roberts, M. Dunderdale, C. Doll, R. d’Entremont, B. Hu,
S. Liang, J. Privette, and D. Roy, “First operational BRDF, albedo nadir
reflectance products from MODIS,” Remote Sens. Environ., vol. 83, pp.
135–148, 2002.

[64] S. Liang, J. Stroeve, and J. E. Box, “Mapping daily snow/ice short-
wave broadband albedo from Moderate Resolution Imaging Spectro-
radiometer (MODIS): The improved direct retrieval algorithm and val-
idation with Greenland in situ measurement,” J. Geophys. Res.–Atmo-
spheres, vol. 110, May 26, 2005, Art. No. D10109.

[65] S. Miller, Surface Albedo: Visible/Infrared Imager/Radiometer Suite
Algorithm Theoretical Basis Document, Version 5 Ratheon Systems
Company, SBRS Document # Y2398, 2002.

[66] S. Liang, Y. Yu, and T. P. Defelice, “VIIRS narrowband to broadband
land surface albedo conversion: Formula and validation,” Int. J. Remote
Sens., vol. 26, pp. 1019–1025, Mar. 10, 2005.

[67] S. Liang, H. Fang, M. Kaul, T. G. Van Niel, T. R. McVicar, J. Pearlman,
C. L. Walthall, C. Daughtry, and K. F. Huemmrich, “Estimation of land
surface broadband albedos and leaf area index from EO-1 ALI data and
validation,” IEEE Trans. Geosci. Remote Sens., vol. 41, pp. 1260–1268,
2003.

[68] S. Liang, Quantitative Remote Sensing of Land Surfaces. New York:
John Wiley & Sons, Inc., 2004.

[69] B. Pinty, F. Roveda, M. M. Verstraete, N. Gobron, Y. Govaerts,
J. V. Martonchik, D. J. Diner, and R. A. Kahn, “Surface albedo
retrieval from Metrosat. I. Theory,” J. Geophys. Res., vol. 105, pp.
18099–18112, 2000.

[70] B. Pinty, F. Roveda, M. M. Verstraete, N. Gobron, Y. Govaerts, J. V.
Martonchik, D. J. Diner, and R. A. Kahn, “Surface albedo retrieval
from Metrosat. II. Applications,” J. Geophys. Res., vol. 105, pp.
18113–18134, 2000.

[71] Y. M. Govaerts, A. Lattanzio, M. Taberner, and B. Pinty, “Generating
global surface albedo products from multiple geostationary satellites,”
Remote Sens. Environ., vol. 112, pp. 2804–2816, Jun. 2008.

[72] B. Geiger, D. Carrer, L. Franchistéguy, J. L. Roujean, and C. Meurey,
“Land surface albedo derived on a daily basis from Meteosat Second
Generation observations,” IEEE Trans. Geosci. Remote Sens., vol. 46,
pp. 3841–3856, 2008.

[73] C. Schaaf, J. Martonchik, B. Pinty, Y. Govaerts, F. Gao, A. Lattanzio,
J. Liu, A. Strahler, and M. Taberner, “Retrieval of surface albedo from
satellite sensors,” in Advances in Land Remote Sensing: System, Mod-
eling, Inversion and Application, S. Liang, Ed. New York: Springer,
2008, ch. 9, pp. 219–243.

[74] Y. M. Govaerts, B. Pinty, M. Taberner, and A. Lattanzio, “Spectral
conversion of surface albedo derived from meteosat first generation
observations,” IEEE Geosci. Remote Sens. Lett., vol. 3, pp. 23–27, Jan.
2006.

[75] W. J. D. van Leeuwen and J. L. Roujean, “Land surface albedo from
the synergistic use of polar (EPS) and geo-stationary (MSG) observing
systems—An assessment of physical uncertainties,” Remote Sens. En-
viron., vol. 81, pp. 273–289, Aug. 2002.

[76] S. Liang, “A direct algorithm for estimating land surface broadband
albedos from MODIS imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 41, pp. 136–145, 2003.

[77] P. C. D. Milly and A. B. Shmakin, “Global modeling of land water and
energy balances. Part I: The land dynamics (LaD) model,” J. Hydrom-
eteorol., vol. 3, pp. 283–299, Jun. 2002.

[78] R. E. Dickinson, B. Pinty, and M. M. Verstraete, “Relating surface
albedos in GCM to remotely sensed data,” Agricultur. Forest Meteorol.,
vol. 52, pp. 109–131, 1990.

[79] G. B. Bonan, K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai,
R. E. Dickinson, and Z. L. Yang, “The land surface climatology of
the community land model coupled to the NCAR community climate
model,” J. Climate, vol. 15, pp. 3123–3149, 2002.

[80] P. Sellers, “Canopy reflectance, photosynthesis and transpiration,” Int.
J. Remote Sens., vol. 6, pp. 1335–1372, 1985.

[81] L. Zhou, R. E. Dickinson, Y. Tian, X. Zeng, Y. Dai, Z. L. Yang, C. B.
Schaaf, F. Gao, Y. Jin, A. Strahler, R. B. Myneni, H. Yu, W. Wu, and
M. Shaikh, “Comparison of seasonal and spatial variations of albedos
from Moderate-Resolution Imaging Spectroradiometer (MODIS) and
common land model,” J. Geophys. Res., vol. 108, p. 4488, 2003,
10.1029/2002JD003326.

[82] K. W. Oleson, G. B. Bonan, C. Schaaf, F. Gao, Y. F. Jin, and A.
Strahler, “Assessment of global climate model land surface albedo
using MODIS data,” Geophys. Res. Lett., vol. 30, p. 4, Apr. 2003.

[83] T. Matsui, A. Beltran-Przekurat, R. A. Pielke, D. Niyogi, and M. B.
Coughenour, “Continental-scale multiobservation calibration and as-
sessment of Colorado State University Unified Land Model by appli-
cation of Moderate Resolution Imaging Spectroradiometer (MODIS)
surface albedo,” J. Geophys. Res.-Biogeosci., vol. 112, p. 19, Jun.
2007.

[84] S. Wang, A. P. Trishchenko, K. V. Khlopenkov, and A. Davidson,
“Comparison of International Panel on Climate Change Fourth Assess-
ment Report climate model simulations of surface albedo with satellite
products over northern latitudes,” J. Geophys. Res., vol. 111, 2006, Art.
No. D21108.

[85] X. Zhang, S. Liang, K. Wang, L. Li, and S. Gui, “Analysis of global
land surface shortwave broadband albedo from multiple data sources,”
IEEE J. Special Topics Appl. Earth Observations Remote Sens., 2010,
this issue.

[86] C. J. Houldcroft, W. M. F. Grey, M. Barnsley, C. M. Taylor, S. O. Los,
and P. R. J. North, “New vegetation albedo parameters and global fields
of soil background albedo derived from MODIS for use in a climate
model,” J. Hydrometeorol., vol. 10, pp. 183–198, Feb. 2009.

[87] Z. Wang, X. Zeng, and M. Barlage, “Moderate resolution imaging
spectroradiometer bidirectional reflectance distribution function-based
albedo parameterization for weather and climate models,” J. Geophys.
Res.–Atmospheres, vol. 112, p. 16, Jan. 2007.

[88] X. Z. Liang, M. Xu, W. Gao, K. Kunkel, J. Slusser, Y. J. Dai, Q. L.
Min, P. R. Houser, M. Rodell, C. B. Schaaf, and F. Gao, “Development
of land surface albedo parameterization based on Moderate Resolution
Imaging Spectroradiometer (MODIS) data,” J. Geophys. Res.–Atmo-
spheres, vol. 110, p. 22, Jun. 2005.



238 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 3, NO. 3, SEPTEMBER 2010

[89] D. Rechid, T. Raddatz, and D. Jacob, “Parameterization of snow-free
land surface albedo as a function of vegetation phenology based on
MODIS data and applied in climate modelling,” Theoret. Appl. Cli-
matol., vol. 95, pp. 245–255, Mar. 2009.

[90] R. E. Dickinson, L. M. Zhou, Y. H. Tian, Q. Liu, T. Lavergne, B. Pinty,
C. B. Schaaf, and Y. Knyazikhin, “A three-dimensional analytic model
for the scattering of a spherical bush,” J. Geophys. Res.–Atmospheres,
vol. 113, p. 8, Oct. 2008.

[91] G. R. Diak, J. R. Mecikalski, M. C. Anderson, J. M. Norman, W. P.
Kustas, R. D. Torn, and R. L. DeWolf, “Estimating land surface energy
budgets from space—Review and current efforts at the University of
Wisconsin-Madison and USDA-ARS,” Bull. Amer. Meteorol. Soc., vol.
85, pp. 65–78, Jan. 2004.

[92] R. G. Ellingson, “Surface longwave fluxes from satellite observations:
A critical review,” Remote Sens. Environ., vol. 51, pp. 89–97, 1995.

[93] J. H. Kjaersgaard, F. L. Plauborg, and S. Hansen, “Comparison of
models for calculating daytime long-wave irradiance using long term
data set,” Agricultur. Forest Meteorol., vol. 143, pp. 49–63, Mar. 2007.

[94] G. N. Flerchinger, W. Xaio, D. Marks, T. J. Sauer, and Q. Yu, “Com-
parison of algorithms for incoming atmospheric long-wave radiation,”
Water Resources Res., vol. 45, p. 13, Mar. 2009.

[95] S. W. Seemann, J. Li, W. P. Menzel, and L. E. Gumley, “Oper-
ational retrieval of atmospheric temperature, moisture, and ozone
from MODIS infrared radiances,” J. Appl. Meteorol., vol. 42, pp.
1072–1091, Aug. 2003.

[96] W. Wang and S. Liang, “Estimating high-spatial resolution clear-sky
land surface downwelling and net longwave radiation from MODIS
data,” Remote Sens. Environ., vol. 113, pp. 745–754, 2009.

[97] H. T. Lee and R. G. Ellingson, “Development of a nonlinear statistical
method for estimating the downward longwave radiation at the surface
from satellite observations,” J. Atmospher. Ocean. Technol., vol. 19,
pp. 1500–1515, Oct. 2002.

[98] W. Wang and S. Liang, “A method for estimating clear-sky in-
stantaneous land surface longwave radiation from GOES sounder
and GOES-R ABI data,” IEEE Geosci. Remote Sens. Lett., 2010,
in press.

[99] M. Wild, A. Ohmura, H. Gilgen, and E. Roeckner, “Validation of gen-
eral-circulation model radiative fluxes using surface observations,” J.
Climate, vol. 8, pp. 1309–1324, May 1995.

[100] J. R. Garratt and A. J. Prata, “Downwelling longwave fluxes at conti-
nental surfaces—A comparison of observations with GCM simulations
and implications for the global land surface radiation budget,” J. Cli-
mate, vol. 9, pp. 646–655, Mar. 1996.

[101] J. J. Morcrette, “The surface downward longwave radiation in the
ECMWF forecast system,” J. Climate, vol. 15, pp. 1875–1892, Jul.
2002.

[102] M. Markovic, C. G. Jones, P. A. Vaillancourt, D. Paquin, K. Winger,
and D. Paquin-Ricard, “An evaluation of the surface radiation budget
over North America for a suite of regional climate models against sur-
face station observations,” Climate Dynamics, vol. 31, pp. 779–794,
Dec. 2008.

[103] M. J. Iacono, E. J. Mlawer, S. A. Clough, and J. J. Morcrette, “Im-
pact of an improved longwave radiation model, RRTM, on the en-
ergy budget and thermodynamic properties of the NCAR community
climate model, CCM3,” J. Geophys. Res.–Atmospheres, vol. 105, pp.
14873–14890, Jun. 2000.

[104] M. Wild, A. Ohmura, H. Gilgen, J. J. Morcrette, and A. Slingo, “Evalu-
ation of downward longwave radiation in general circulation models,”
J. Climate, vol. 14, pp. 3227–3239, 2001.

[105] F. Prata, “The Climatological Record of Clear-Sky Longwave Radi-
ation at the Earth’s Surface: Evidence for Water Vapour Feedback?”
2008, pp. 5247–5263.

[106] M. Jin and S. Liang, “Improve land surface emissivity parameter for
land surface models using global remote sensing observations,” J. Cli-
mate, vol. 19, pp. 2867–2881, 2006.

[107] K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of
broadband land surface emissivity from multispectral thermal infrared
remote sensing,” Agronomie, vol. 22, pp. 695–696, 2002.

[108] K. Wang, Z. Wan, P. Wang, M. Sparrow, and J. Liu, “Estimation of
land surface upwelling long wave radiation and broadband emissivity
using MODIS LST products,” J. Geophys. Res.–Atmospheres, vol. 110,
p. D11109, 2005, 10.1029/2004JD005566.

[109] A. R. Gillespie, S. Rokugawa, T. Matsunaga, J. Cothern, S. Hook,
and A. Kahle, “A temperature and emissivity separation algorithm for
Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) images,” IEEE Trans. Geosci. Remote Sens., vol. 36, pp.
1113–1126, 1998.

[110] Z. M. Wan, “New refinements and validation of the MODIS land-sur-
face temperature/emissivity products,” Remote Sens. Environ., vol.
112, pp. 59–74, Jan. 2008.

[111] S. Liang, “Recent developments in estimating land surface biogeophys-
ical variables from optical remote sensing,” Progr. Phys. Geography,
vol. 31, pp. 501–516, Oct. 2007.

[112] W. Wang, S. Liang, and T. Meyer, “Validating MODIS land surface
temperature products,” Remote Sens. Environ., vol. 112, pp. 623–635,
2008.

[113] G. C. Hulley and S. J. Hook, “Intercomparison of versions 4, 4.1 and
5 of the MODIS land surface temperature and emissivity products
and validation with laboratory measurements of sand samples from
the Namib desert, Namibia,” Remote Sens. Environ., vol. 113, pp.
1313–1318, Jun. 2009.

[114] K. Wang and S. Liang, “Evaluation of ASTER and MODIS land surface
temperature and emissivity products using surface longwave radiation
observations at SURFRAD sites,” Remote Sens. Environ., vol. 113, pp.
1156–1165, 2009.

[115] J. Cheng, S. Liang, J. Wang, and X. Li, “A stepwise refining al-
gorithm of temperature and emissivity separation for hyperspectral
thermal infrared data,” IEEE Trans. Geosci. Remote Sens., vol. 48, pp.
1588–1597, 2010.

[116] F. Karbou, E. Gerard, and F. Rabier, “Microwave land emissivity and
skin temperature for AMSU-A and -B assimilation over land,” Quar-
terly J. Royal Meteorol. Soc., vol. 132, pp. 2333–2355, Oct. 2006.

[117] W. Wang, S. Liang, and J. A. Augustine, “Estimating clear-sky land
surface longwave upwelling radiation from MODIS data,” IEEE Trans.
Geosci. Remote Sens., vol. 47, pp. 1555–1570, 2009.

[118] Y. C. Zhang, W. B. Rossow, and P. W. Stackhouse, “Comparison of
different global information sources used in surface radiative flux cal-
culation: Radiative properties of the surface,” J. Geophys. Res.–Atmo-
spheres, vol. 112, p. 20, Jan. 2007.

[119] S. K. Gupta, A. C. Wilber, W. L. Darnell, and J. T. Suttles, “Longwave
surface radiation over the globe from satellite data—An error analysis,”
Int. J. Remote Sens., vol. 14, pp. 95–114, Jan. 1993.

[120] G. R. Diak, J. R. Mecikalski, M. C. Anderson, J. M. Norman, W. P.
Kustas, R. D. Torn, and R. L. DeWolf, “Estimating land surface energy
budgets from space—Review and current efforts at the University of
Wisconsin-Madison and USDA-ARS,” Bull. Amer. Meteorol. Soc., vol.
85, p. 65, Jan. 2004.

[121] J. P. Lhomme, J. J. Vacher, and A. Rocheteau, “Estimating downward
long-wave radiation on the Andean Altiplano,” Agricultur. Forest Me-
teorol., vol. 145, pp. 139–148, Aug. 2007.

[122] M. G. Iziomon, H. Mayer, and A. Matzarakis, “Downward atmospheric
longwave irradiance under clear and cloudy skies: Measurement and
parameterization,” J. Atmospher. Solar-Terrestr. Phys., vol. 65, pp.
1107–1116, Jul. 2003.

[123] G. R. Diak, W. L. Bland, J. R. Mecikalski, and M. C. Anderson,
“Satellite-based estimates of longwave radiation for agricultural
applications,” Agricultur. Forest Meteorol., vol. 103, pp. 349–355, Jul.
1, 2000.

[124] K. Wang and S. Liang, “Estimation of surface net radiation from solar
shortwave radiation measurements,” J. Appl. Meteorol. Climatol., vol.
48, pp. 634–643, 2009.

[125] T. T. Shi, D. X. Guan, J. B. Wu, A. Z. Wang, C. J. Jin, and S. J.
Han, “Comparison of methods for estimating evapotranspiration rate
of dry forest canopy: Eddy covariance, Bowen ratio energy balance,
and Penman-Monteith equation,” J. Geophys. Res.–Atmospheres, vol.
113, p. 15, Oct. 2008.

[126] V. R. N. Pauwels and R. Samson, “Comparison of different methods
to measure and model actual evapotranspiration rates for a wet sloping
grassland,” Agricultur. Water Manage., vol. 82, pp. 1–24, Apr. 2006.

[127] K. Wilson, A. Goldstein, E. Falge, M. Aubinet, D. Baldocchi, P.
Berbigier, C. Bernhofer, R. Ceulemans, H. Dolman, C. Field, A.
Grelle, A. Ibrom, B. E. Law, A. Kowalski, T. Meyers, J. Moncrieff, R.
Monson, W. Oechel, J. Tenhunen, R. Valentini, and S. Verma, “Energy
Balance Closure at FLUXNET Sites,” 2002, pp. 223–243.

[128] T. E. Twine, W. P. Kustas, J. M. Norman, D. R. Cook, P. R. Houser,
T. P. Meyers, J. H. Prueger, P. J. Starks, and M. L. Wesely, “Cor-
recting eddy-covariance flux underestimates over a grassland,” Agri-
cultur. Forest Meteorol., vol. 103, pp. 279–300, Jun. 2000.

[129] T. Foken, “The energy balance closure problem: An overview,” Ecol.
Applicat., vol. 18, pp. 1351–1367, Sep. 2008.

[130] A. G. Barr, A. K. Betts, R. L. Desjardins, and J. I. MacPherson, “Com-
parison of regional surface fluxes from boundary-layer budgets and
aircraft measurements above boreal forest,” J. Geophys. Res.–Atmo-
spheres, vol. 102, pp. 29213–29218, Dec. 1997.



LIANG et al.: REVIEW ON ESTIMATION OF LAND SURFACE RADIATION AND ENERGY BUDGETS 239

[131] R. G. Anderson and M. L. Goulden, “A mobile platform to constrain
regional estimates of evapotranspiration,” Agricultur. Forest Meteorol.,
vol. 149, pp. 771–782, May 2009.

[132] J. Kleissl, S. H. Hong, and J. M. H. Hendrickx, “New Mexico scintil-
lometer network supporting remote sensing and hydrologic and mete-
orological models,” Bull. Amer. Meteorol. Soc., vol. 90, p. 207, Feb.
2009.

[133] E. P. Glenn, A. R. Huete, P. L. Nagler, K. K. Hirschboeck, and P.
Brown, “Integrating remote sensing and ground methods to estimate
evapotranspiration,” Critical Rev. Plant Sci., vol. 26, pp. 139–168,
2007.

[134] J. D. Kalma, T. R. McVicar, and M. F. McCabe, “Estimating land sur-
face evaporation: A review of methods using remotely sensed surface
temperature data,” Surveys Geophys., vol. 29, pp. 421–469, Oct. 2008.

[135] Z. L. Li, R. L. Tang, Z. M. Wan, Y. Y. Bi, C. H. Zhou, B. H. Tang, G.
J. Yan, and X. Y. Zhang, “A review of current methodologies for re-
gional evapotranspiration estimation from remotely sensed data,” Sen-
sors, vol. 9, pp. 3801–3853, May 2009.

[136] H. J. Farahani, T. A. Howell, W. J. Shuttleworth, and W. C. Bausch,
“Evapotranspiration: Progress in measurement and modeling in agri-
culture,” Trans. Asabe, vol. 50, pp. 1627–1638, Sep.–Oct. 2007.

[137] P. L. Nagler, E. P. Glenn, H. Kim, W. Emmerich, R. L. Scott, T. E.
Huxman, and A. R. Huete, “Relationship between evapotranspiration
and precipitation pulses in a semiarid rangeland estimated by moisture
flux towers and MODIS vegetation indices,” J. Arid Environ., vol. 70,
pp. 443–462, Aug. 2007.

[138] T. Carlson, “An overview of the “triangle method” for estimating sur-
face evapotranspiration and soil moisture from satellite imagery,” Sen-
sors, vol. 7, pp. 1612–1629, Aug. 2007.

[139] F. H. Yang, M. A. White, A. R. Michaelis, K. Ichii, H. Hashimoto, P.
Votava, A. X. Zhu, and R. R. Nemani, “Prediction of continental-scale
evapotranspiration by combining MODIS and AmeriFlux data through
support vector machine,” IEEE Trans. Geosci. Remote Sens., vol. 44,
pp. 3452–3461, Nov. 2006.

[140] J. B. Fisher, K. P. Tu, and D. D. Baldocchi, “Global estimates of the
land-atmosphere water flux based on monthly AVHRR and ISLSCP-II
data, validated at 16 FLUXNET sites,” Remote Sens. Environ., vol. 112,
pp. 901–919, Mar. 2008.

[141] Q. Mu, F. A. Heinsch, M. Zhao, and S. W. Running, “Development
of a global evapotranspiration algorithm based on MODIS and global
meteorology data,” Remote Sens. Environ., vol. 111, pp. 519–536, Dec.
2007.

[142] H. A. Cleugh, R. Leuning, Q. Z. Mu, and S. W. Running, “Regional
evaporation estimates from flux tower and MODIS satellite data,” Re-
mote Sens. Environ., vol. 106, pp. 285–304, Feb. 2007.

[143] W. P. Kustas, A. N. French, J. L. Hatfield, T. J. Jackson, M. S. Moran,
A. Rango, J. C. Ritchie, and T. J. Schmugge, “Remote sensing research
in hydrometeorology,” Photogramm. Eng. Remote Sens., vol. 69, pp.
631–646, Jun. 2003.

[144] J. Overgaard, D. Rosbjerg, and M. B. Butts, “Land-surface modelling
in hydrological perspective—A review,” Biogeosciences, vol. 3, pp.
229–241, 2006.

[145] R. G. Allen, M. Tasumi, and R. Trezza, “Satellite-based energy
balance for mapping evapotranspiration with internalized calibration
(METRIC)—Model,” J. Irrigat. Drain. Eng.–ASCE, vol. 133, pp.
380–394, Jul.–Aug. 2007.

[146] W. G. M. Bastiaanssen, E. J. M. Noordman, H. Pelgrum, G. Davids,
B. P. Thoreson, and R. G. Allen, “SEBAL model with remotely sensed
data to improve water-resources management under actual field con-
ditions,” J. Irrigat. Drain. Eng.–ASCE, vol. 131, pp. 85–93, Jan.–Feb.
2005.

[147] K. Nishida, R. R. Nemani, S. W. Running, and J. M. Glassy, “An oper-
ational remote sensing algorithm of land surface evaporation,” J. Geo-
phys. Res., vol. 108, 2003, Art. #4270.

[148] M. Pan, E. F. Wood, R. Wojcik, and M. F. McCabe, “Estimation of
regional terrestrial water cycle using multi-sensor remote sensing ob-
servations and data assimilation,” Remote Sens. Environ., vol. 112, pp.
1282–1294, Apr. 2008.

[149] J. Qin, S. Liang, R. Liu, H. Zhang, and B. Hu, “A weak-constraint based
data assimilation scheme for estimating surface turbulent fluxes,” IEEE
Geosci. Remote Sens. Lett., vol. 4, pp. 649–653, 2007.

[150] M. F. McCabe, E. F. Wood, R. Wojcik, M. Pan, J. Sheffield, H. Gao, and
H. Su, “Hydrological consistency using multi-sensor remote sensing
data for water and energy cycle studies,” Remote Sens. Environ., vol.
112, pp. 430–444, Feb. 2008.

[151] J. Sheffield, C. R. Ferguson, T. J. Troy, E. F. Wood, and M. F. McCabe,
“Closing the terrestrial water budget from satellite remote sensing,”
Geophys. Res. Lett., vol. 36, p. 5, Apr. 2009.

[152] S. Swenson and J. Wahr, “Monitoring the water balance of Lake Vic-
toria, East Africa, from space,” J. Hydrol., vol. 370, pp. 163–176, May
2009.

[153] T. H. Syed, J. S. Famiglietti, and D. P. Chambers, “GRACE-based
estimates of terrestrial freshwater discharge from basin to continental
scales,” J. Hydrometeorol., vol. 10, pp. 22–40, Feb. 2009.

[154] G. Ramillien, J. S. Famiglietti, and J. Wahr, “Detection of continental
hydrology and glaciology signals from GRACE: A review,” Surveys
Geophys., vol. 29, pp. 361–374, Oct. 2008.

[155] G. J. Huffman, R. F. Adler, D. T. Bolvin, G. J. Gu, E. J. Nelkin, K.
P. Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff, “The TRMM
multisatellite precipitation analysis (TMPA): Quasi-global, multiyear,
combined-sensor precipitation estimates at fine scales,” J. Hydromete-
orol., vol. 8, pp. 38–55, Feb. 2007.

[156] R. J. Joyce, J. E. Janowiak, P. A. Arkin, and P. P. Xie, “CMORPH:
A method that produces global precipitation estimates from passive
microwave and infrared data at high spatial and temporal resolution,”
J. Hydrometeorol., vol. 5, pp. 487–503, Jun. 2004.

[157] D. E. Alsdorf and D. P. Lettenmaier, “Tracking fresh water from
space,” Science, vol. 301, p. 1491, Sep. 2003.

[158] W. J. Shuttleworth, “Putting the ‘vap’ into evaporation,” Hydrol. Earth
Syst. Sci., vol. 11, pp. 210–244, 2007.

[159] A. Robock, L. F. Luo, E. F. Wood, F. H. Wen, K. E. Mitchell, P. R.
Houser, J. C. Schaake, D. Lohmann, B. Cosgrove, J. Sheffield, Q. Y.
Duan, R. W. Higgins, R. T. Pinker, J. D. Tarpley, J. B. Basara, and K.
C. Crawford, “Evaluation of the North American Land Data Assimila-
tion System over the southern Great Plains during the warm season,”
J. Geophys. Res.–Atmospheres, vol. 108, p. 21, Nov. 2003.

[160] D. Waliser, K. W. Seo, S. Schubert, and E. Njoku, “Global water cycle
agreement in the climate models assessed in the IPCC AR4,” Geophys.
Res. Lett., vol. 34, p. 6, Aug. 2007.

[161] C. A. Schlosser and P. R. Houser, “Assessing a satellite-era perspective
of the global water cycle,” J. Climate, vol. 20, pp. 1316–1338, Apr.
2007.

[162] R. Grotjahn, “Different data, different general circulations? A com-
parison of selected fields in NCEP/DOE AMIP-II and ECMWF
ERA-40 reanalyses,” Dynamics of Atmospheres and Oceans, vol. 44,
pp. 108–142, Mar. 2008.

[163] K. E. Trenberth, J. T. Fasullo, and J. Kiehl, “Earth’s global energy
budget,” Bull. Amer. Meteorol. Soc., vol. 90, p. 311, Mar. 2009.

[164] P. A. Dirmeyer, C. A. Schlosser, and K. L. Brubaker, “Precipitation, re-
cycling, and land memory: An integrated analysis,” J. Hydrometeorol.,
vol. 10, pp. 278–288, Feb. 2009.

[165] P. A. Dirmeyer, X. A. Gao, M. Zhao, Z. C. Guo, T. K. Oki, and N.
Hanasaki, “GSWP-2—Multimodel anlysis and implications for our
perception of the land surface,” Bull. Amer. Meteorol. Soc., vol. 87, p.
1381, Oct. 2006.

[166] Y. Yao, S. Liang, Q. Qin, K. Wang, and S. Zhao, “Mmodelonitoring
global land surface drought based on an improved evapotranspiration,”
IEEE J. Special Topics Appl. Earth Observations Remote Sens., 2010,
submitted.

[167] T. C. Peterson, V. S. Golubev, and P. Y. Groisman, “Evaporation losing
its strength,” Nature, vol. 377, pp. 687–688, Oct. 1995.

[168] M. T. Hobbins, J. A. Ramirez, and T. C. Brown, “Trends in pan evapo-
ration and actual evapotranspiration across the conterminous US: Para-
doxical or complementary?,” Geophys. Res. Lett., vol. 31, p. 5, Jul.
2004.

[169] M. L. Roderick and G. D. Farquhar, “The cause of decreased pan evap-
oration over the past 50 years,” Science, vol. 298, pp. 1410–1411, Nov.
2002.

[170] M. L. Roderick, L. D. Rotstayn, G. D. Farquhar, and M. T. Hobbins,
“On the attribution of changing pan evaporation,” Geophys. Res. Lett.,
vol. 34, p. 6, Sep. 2007.

[171] Z. T. Cong, D. W. Yang, and G. H. Ni, “Does evaporation paradox exist
in China?,” Hydrol. Earth Syst. Sci., vol. 13, pp. 357–366, 2009.

[172] L. J. Gordon, W. Steffen, B. F. Jonsson, C. Folke, M. Falkenmark,
and A. Johannessen, “Human modification of global water vapor
flows from the land surface,” Proc. Nat. Acad. Sci. USA, vol. 102, pp.
7612–7617, May 2005.

[173] G. Gao, D. L. Chen, C. Y. Xu, and E. Simelton, “Trend of estimated
actual evapotranspiration over China during 1960–2002,” J. Geophys.
Res.–Atmospheres, vol. 112, p. 8, Jun. 2007.

[174] M. J. Czikowsky and D. R. Fitzjarrald, “Evidence of seasonal changes
in evapotranspiration in eastern US hydrological records,” J. Hydrom-
eteorol., vol. 5, pp. 974–988, Oct. 2004.

[175] M. T. Walter, D. S. Wilks, J. Y. Parlange, and R. L. Schneider, “In-
creasing evapotranspiration from the conterminous United States,” J.
Hydrometeorol., vol. 5, pp. 405–408, Jun. 2004.



240 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 3, NO. 3, SEPTEMBER 2010

[176] W. Brutsaert, “Indications of increasing land surface evaporation
during the second half of the 20th century,” Geophys. Res. Lett., vol.
33, p. 4, Oct. 2006.

[177] A. J. Teuling, M. Hirschi, A. Ohmura, M. Wild, M. Reichstein, P.
Ciais, N. Buchmann, C. Ammann, L. Montagnani, A. D. Richardson,
G. Wohlfahrt, and S. I. Seneviratne, “A regional perspective on trends
in continental evaporation,” Geophys. Res. Lett., vol. 36, p. 5, Jan. 2009.

[178] M. Wild, “Solar radiation budgets in atmospheric model intercompar-
isons from a surface perspective,” Geophys. Res. Lett., vol. 32, p. 4,
Apr. 2005.

Shunlin Liang (M’94–SM’01) received the Ph.D.
degree in remote sensing and GIS from Boston
University, Boston, MA.

He was a Postdoctoral Research Associate with
Boston University from 1992 to 1993 and a Vali-
dation Scientist with the NOAA/NASA Pathfinder
AVHRR Land Project from 1993 to 1994. He is
currently a Professor with the University of Mary-
land, College Park. His main research interests focus
on spatio-temporal analysis of remotely sensed
data, integration of data from different sources and

numerical models, and linkage of remote sensing with global environmental
changes. He authored the book Quantitative Remote Sensing of Land Surfaces
(Wiley, 2004) and edited the book Advances in Land Remote Sensing: System,
Modeling, Inversion and Application (Springer, 2008).

Dr. Liang is a member of NASA ASTER and MODIS science teams and
NOAA GOES-R Land science team. He is a co-chairman of the International
Society for Photogrammetry and Remote Sensing Commission VII/I Working
Group on Fundamental Physics and Modeling. He is an Associate Editor of the
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, subject editor of
the Annals of GIS, and also a guest editor of several remote sensing journals.

Kaicun Wang received the Ph.D. degree in atmo-
spheric sciences from Peking University, China, in
2004.

He is a Research Scientist Associate V in the De-
partment of Geological Science, University of Texas
at Austin. He held an assistant researcher position at
the Institute of Atmospheric Physics, from 2004 to
2006. From July 2006 to November 2009, he worked
at the Department of Geography, University of Mary-
land as a Research Associate to Research Assistant
Professor. His research interests focus on surface net

radiation, global evapotranspiration, air pollution and global climate change. He
created reliable estimates of global aerosol optical depth, incident solar radia-
tion and evapotranspiration over the land during past several decades. He is the
leading author of more than 30 peer-reviewed journal papers, in such journals
as Science. He serves as a peer reviewer for more than 15 international journals
in climate and remote sensing.

Xiaotong Zhang is currently pursuing the Ph.D. de-
gree at Wuhan University, China.

He was a Faculty Research Assistant with the Uni-
versity of Maryland from 2008 to 2010. He received
a Masters degree in cartography and geographic in-
formation science from Wuhan University, China in
2006. His present research interests focus on the algo-
rithms for retrieving surface radiation products from
multiple satellites data.

Martin Wild is a Senior Scientist at the Swiss
Federal Institute of Technology (ETH Zurich),
Switzerland. His expertise lies in working with both
global climate models (GCMs) and comprehensive
observational datasets, as documented in more
than 80 peer-reviewed publications and two IPCC
reports. His major research interests are related to
the global energy and water cycles, with emphasis
on the radiation, energy and water fluxes at the
Earth’s surface. A particular focus is on the decadal
variations of these components (e.g., global dimming

and brightening) and related consequences for the climate system and climate
change, as well as their representation in climate models. Recently he acted
as guest editor for a special issue on global dimming and brightening in the
Journal of Geophysical Research, and is now an associate editor with the same
journal. He also chairs the working group on the global energy balance of the
International Radiation Commission (IRC).


