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Recent developments in estimating land 
surface biogeophysical variables from 
optical remote sensing
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MD 20742, USA

Abstract: Earth system models and many other applications require biogeophysical variables, 
and remote sensing is the only means by which to estimate them at the appropriate spatial and 
temporal scales. Developing advanced inversion methods to solve ill-posed multidimensional 
nonlinear inversion problems is critical and very challenging. This article reviews state-of-the-art 
algorithms for estimating land surface biogeophysical variables in optical remote sensing (from the 
visible to the thermal infrared spectrum) to stimulate the development of new algorithms and to 
utilize existing ones.
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I Introduction
Timely, high-quality, long-term global infor-
mation from remote sensing benefi ts society 
in numerous ways. Geographers and scientists 
from other Earth science disciplines are 
developing various process-oriented models 
to characterize Earth system components. 
These models represent a consolidation of 
the scientifi c understanding of the range of 
physical processes driving the Earth system, 
that predict and relate knowledge useful 
in the policy and management decision-
making processes of federal agencies and 
international organizations. To advance 
global and regional models at various scales 
and to improve their predictive capabilities, 

a variety of biogeophysical variables must be 
estimated from remote sensing observations 
that are used to calibrate, validate and drive 
these models.

This article provides a comprehensive re-
view of the methodologies that were recently 
developed for estimating land surface bio-
geophysical variables from optical remote 
sensing – from the visible to the thermal 
infrared spectrum. The emphasis is on papers 
published in the last few years because the 
earlier literature has already been reviewed 
(Liang, 2004).

All inversion algorithms in the land remote 
sensing community are traditionally grouped 
into two categories: statistical and physical. 
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Statistical algorithms usually consist of 
regression (linear or nonlinear) equations 
based on the correlation between land surface 
variables and remote sensing observations. 
Physically-based algorithms follow the phy-
sical laws and establish cause-and-effect 
relationships. They make inferences about 
model parameters based on general know-
ledge, such as radiation transfer models, and 
a set of remote sensing measurements. In 
general, these inversion problems are multi-
dimensional and ill-posed (the number of 
unknowns is far greater than the number of 
observations), and they are often strongly 
affected by noise and measurement uncer-
tainty. Because both types of algorithms 
tend to rely increasingly on surface radiation 
models, we provide a brief overview of model 
development at the beginning of this paper.

Land surfaces are characterized by both 
continuous variables (eg, albedo) and cat-
egorical variables (eg, land cover). Because 
of the scope of this article, we only discuss 
methods for estimating continuous variables. 
Thus, a large group of algorithms for estimat-
ing category variables, such as land cover/use 
and change detection mapping, are excluded 
from this article. Fortunately, Richards (2005) 
recently reviewed some of these algorithms. 
Because inversion is a common theme in many 
disciplines, the inversion methods reviewed 
in this article are helpful for remote sensing 
specialists, geographers and scientists in 
other disciplines.

II Surface refl ectance modelling
To formulate inverse problems and interpret 
inversion estimates, the following questions 
often needed to be addressed:

(1) How accurately is the land surface 
modelled?

(2) Does the model include all the physical 
effects that contribute signifi cantly to the 
data?

(3) What is known about the model before 
the data are observed?

(4) What does it mean for a model to be 
reasonable?

Even after many years of efforts by the land 
remote sensing community, we still are not 
able to answer these questions completely. 
Most models are based on the detailed phy-
sical processes occurring on a point or plot 
scale, but remote sensing pixels cover a much 
larger area. More studies are needed to bridge 
this gap.

All land surface radiation models can be 
classifi ed into three groups: radiative transfer 
(RT), geometric-optical (GO), and computer 
simulations. RT models work better for dense 
vegetation canopies, while GO models are 
more accurate for sparse vegetation canopies. 
The distinction between RT and GO models 
is becoming fuzzy because hybrid models 
that integrate RT and GO models have been 
developed. Computer simulation models 
require extensive computer resources and 
processing time and are appropriate for sur-
face radiation simulations.

Developing new radiative transfer models 
has slowed signifi cantly in recent years. An 
exhaustive review of the literature produced 
only a few publications describing new radi-
ative transfer models, albeit in a wide variety 
of fi elds. For example, Pitman et al. (2005) ap-
plied the numerical RT algorithm to calculate 
quartz emissivity. Kokhanovsky et al. (2005) 
developed an approximate snow refl ectance 
model based on the asymptotic solution to 
the RT equation. Li and Zhou (2004) simulated 
the snow-surface bidirectional reflectance 
factor (BRF) and hemispherical directional 
refl ectance factor (HDRF) of snow-covered 
sea ice through a multilayered azimuth- and 
zenith-dependent plane-parallel RT model.

In the fi eld of vegetation canopy studies, 
recent efforts are mainly focused on deter-
mining the three-dimension (3D) structure of 
the canopy fi eld using one-dimensional (1D) 
models (Pinty, Gobron et al., 2004; Rautiainen 
and Stenberg, 2005; Smolander and Stenberg, 
2003; Widlowski et al., 2005) or stochastic 
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radiative transfer models (Kotchenova et al., 
2003; Shabanov et al., 2005). Liangrocapart and 
Petrou (2002) developed a two-layer model of 
the bidirectional refl ectance of homogeneous 
vegetation canopies, taking into account the 
anisotropic scattering of both the vegetation 
canopy and the background, such as bare soil 
or leaf litter. Community efforts to compare 
some vegetation radiative transfer models 
are ongoing (Pinty, Widlowski et al., 2004; 
Widlowski et al., 2007). Nilson et al. (2003) 
demonstrated the possible applications of a 
multipurpose forest refl ectance model.

The classic GO models essentially charac-
terize the interaction of direct solar radiation 
with land surfaces. Including diffuse radiation 
field into the GO model leads to a hybrid 
RT/GO models (Peddle et al., 2004). The GO 
models have been recently used for classifying 
forest types and estimating biophysical para-
meters (Peddle et al., 2004), and detecting 
forest structural change (Peddle et al., 2003) 
from TM imagery, modelling soil refl ectance 
(Cierniewski et al., 2004), determining the gap 
fraction of forest canopy (Liu et al., 2004), 
and estimating woody plant coverage of the 
grasslands (Chopping et al., 2006) and back-
ground refl ectance (Canisius and Chen, 2007) 
from multiangular observations. The same 
principle has also been used for topographic 
correction of remote sensing imagery in for-
ested terrain (Soenen et al., 2005).

There is not much progress in developing 
computer simulation models (eg, radiosity, 
Monte Carlo ray tracing), but several studies 
use this approach. For example, Casa and 
Jones (2005) estimated potato crop bio-
physical parameters using a look-up table 
created from a ray tracer. Borner et al. (2001) 
developed an end-to-end multispectral and 
hyperspectral simulation tool based on the 
ray tracing principle. Ray-tracing methods 
are used to simulate both optical and micro-
wave signatures (Disney et al., 2006) and to 
estimate forest structural parameters 
(Kobayashi et al., 2007).

AIII Statistical algorithms
Statistical algorithms are very useful in 
various remote sensing applications. All 
statistical algorithms are developed using 
either experimental data collected in the 
fi eld or model simulations. Algorithms based 
on experimental data perform best for the 
conditions under which data are collected. 
Other conditions require interpolation and 
extrapolation. Ideally, experimental data 
is collected for a wide range of conditions, 
but fi nancial and human resources and time 
constraints always limit data collection. As 
a result, the statistical algorithm ability to 
estimate and predict are usually associated 
with large uncertainties. Alternatively, 
physical-based models are used to simulate 
those ‘experimental’ data and empirical 
statistical algorithms are then established. 
This approach works, of course, only if 
physical models represent reality suffi ciently 
well.

1 Algorithms based on indices
Numerous indices-based b iophys ica l 
algorithms have been proposed. A brief 
description of some of these algorithms 
follows. Gitelson et al. (2003) compared a 
series of indices and found the following three 
perform very well ((R800 – R700)/(R800 + R700), 
R860/(R708 *R550) and R750–800/R695–740 – 1). The 
last index is linearly related to chlorophyll 
concentrations. In a recent study estimating 
LAI and crown volume (VOL), Schlerf et al. 
(2005) demonstrated that linear regression 
models quantify LAI and VOL accurately 
for hyperspectral image data. Harris et al. 
(2005) used the fl oating-position water band 
index to estimate leaf water moisture. To 
assess the water content of vegetation, they 
also compared leaf water moisture to the 
normalized difference water index (NDWI) 
and the moisture stress index (MSI). The  
normalized difference snow index (NDSI) is 
an indicator of the snow cover (Salomonson 
and Appel, 2004). Chen, Zhang et al. (2005) 
developed a biological soil crust index (BSCI) 
that exaggerates the difference between 
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biological soil crusts and bare sand, dry plant 
material  or green plant backgrounds. 
Chikhaoui et al. (2005) recently proposed 
a ‘land degradation’ index to characterize 
land degradation in a small Mediterranean 
watershed using Advanced Spaceborne 
Thermal Emission and Reflection Radio-
meter (ASTER) data and ground-based 
spectroradiometric measurements.

2 Machine learning techniques
Although the conventional multivariate re-
gression analyses are widely used in land 
remote sensing, different machine learning 
methods and other advanced statistical 
analysis techniques are also used, such as 
artifi cial neural network (ANN) methods for 
estimating various biophysical variables 
(Fang and Liang, 2003; 2005); genetic 
algorithms for estimating LAI (Fang et al., 
2003), regression tree methods for estimating 
fractional vegetation coverage (Hansen et al., 
2002); Bayesian networks for estimating 
LAI (Kalacska et al., 2005), and support vector 
machines for estimating LAI from multiangular 
observations (Durbha et al., 2007). Most 
machine learning techniques (eg, ANN) are 
‘black-box’ methods. The term ‘black box’ 
reflects an important drawback of these 
techniques, the lack of understanding of how 
the technique works. The full potential of 
machine learning techniques is unlikely to 
be realized without development of explan-
ation capability.

IV Physically-based inversion 
algorithms

1 Atmospheric correction
Because the observed radiance recorded by 
a spaceborne or airborne sensor contains 
both atmospheric and surface information, 
atmospheric effects must be removed to 
estimate land surface biogeophysical vari-
ables. Atmospheric correction consists of 
two major steps: atmospheric parameter 
estimation and surface refl ectance retrieval. 

Atmospheric correction is easier if all atmos-
pheric parameters are known. The most chal-
lenging aspect of atmospheric correction is to 
estimate atmospheric properties (particularly 
water vapour content and aerosol optical 
depths) from the imagery.

The differential absorption technique 
is widely used to estimate the total water 
vapour content of the atmosphere directly 
from multispectral or hyperspectral imaging 
systems. The general idea is to utilize one 
spectral band in the water absorption region 
(eg, 0.94 µm) and one or more bands outside 
of the absorption region. In a recent study, 
Liang and Fang (2004) applied an ANN to esti-
mate water vapour from hyperspectral data. 
Miesch et al. (2005) developed a water vapour 
correction algorithm for hyperspectral data 
using Monte Carlo simulations. Two thermal 
bands are used to estimate the precipitable 
water content by means of the split-window 
algorithm or simple ratio (Jimenez-Munoz 
and Sobrino, 2005; Li et al., 2003), although 
some evidence suggests that these formulae 
may not be stable under different conditions.

A relatively long history exists for estimating 
aerosol loadings from remotely sensed imagery. 
Besides various statistical methods, the phy-
sically-based methods recently developed 
include those using spectral signatures, such as 
the blue-band based method (eg, Hsu et al., 
2004) and the hyperspectral method (Liang 
and Fang, 2004); angular signatures (Grey 
et al., 2006); and temporal signatures (Liang, 
Zhong et al., 2006; Tang et al., 2005; Zhong 
et al., 2007).

2 Optimization algorithms
The optimization algorithms estimate the 
parameters (ψ) of the surface radiation model 
by minimizing the cost function defined as 
follows:

F R fi i i
i

n
2

1

2= −
=
∑ϖ ψ[ ( )]

where , Ri,i = 1,2,…n denote the remotely 
sensed signals (radiance, reflectance or 
brightness temperature), ωi are the weighting 
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coefficients, and fi(ψ ) are the predicted 
values of the surface radiation model. After 
being provided with the initial values, a 
searching algorithm determines the parameter 
set Ψ iteratively.

This approach is widely used by the land 
remote sensing community. For example, 
Gascon et al. (2004) estimated LAI, crown 
coverage, and leaf chlorophyll concentration 
from SPOT and IKONOS imagery, using a 3D 
canopy radiative transfer model. To reduce 
computational requirements, some parametric 
functions are determined using LUTs created 
by the 3D refl ectance model. Meroni et al. 
(2004) applied this algorithm to invert LAI 
from hyperspectral data. Schaepman et al. 
(2005) inverted biophysical and biochemical 
variables from multiangular and hyperspectral 
remote sensing data using a coupled leaf-
canopy-atmosphere radiative-transfer model. 
The multi-angle imaging spectroradiometer 
(MISR) science team also used this method 
to produce land surface products (Diner et 
al., 2005). 

The high computational demands of 
the optimization approach have led to use of 
simpler surface reflectance models, rather 
than forcing optimization algorithm effici-
encies. One of the general trends in optical 
remote sensing is to use simpler empirical 
or semi-empirical models. The optimization 
algorithms are used to estimate the para-
meters in these simple models. The parameters 
are then related to surface properties. For 
example, Widlowski et al. (2004) fi tted a simple 
BRDF model to multiangular observations 
and then linked the surface structural proper-
ties to one of the parameters. Chen, Menges 
et al. (2005) used this approach to map the 
global clumping index from multiangular 
observations.

3 Look-up table algorithms
Optimization algorithms are computation-
ally expensive and very slow when inverting 
large amounts of remotely-sensed data. The 
look-up table (LUT) approach is used exten-
sively to speed up the inversion process. It 

pre-computes the model refl ectance for a large 
range of combinations of parameter values. 
In this manner, the most computationally 
expensive aspect can be completed before 
the inversion is attempted, and the problem is 
reduced to searching a LUT for the modelled 
reflectance set that most resembles the 
measured set.

This method is used for a variety of re-
mote sensing inversion issues, such as atmos-
pheric correction (Liang, Zhong et al., 2006), 
estimating LAI (Koetza et al., 2005) and 
incident solar radiation (Liang, Zheng et al., 
2006). In an ordinary LUT approach, the di-
mensions of the table must be large enough to 
achieve high accuracy, which leads to much 
slower on-line searching. Moreover, many 
parameters must be fi xed in the LUT method. 
To reduce the dimensions of the LUTs for 
rapid table searching, Gastellu-Etchegorry et 
al. (2003) developed empirical functions to 
fi t the LUT values so that a table searching 
procedure becomes a simple calculation of 
the local functions. Alternatively, Liang et al. 
(2005) developed a simple linear regression 
instead of table searching for each angular bin 
in the solar illumination and sensor viewing 
geometry.

4 Data assimilation method
Various published methods for estimating 
land surface variables have been described 
in previous sections. The values of these 
variables, estimated from different sources, 
may not be physically consistent. Most tech-
niques cannot process observations acquired 
at different times and spatial resolutions. 
Most importantly, the techniques described 
thus far only estimate variables that strongly 
affect radiance received by the sensors. 
However, the estimation of some variables 
not directly related to radiance is desirable in 
many cases.

Given the ill-posed nature of remote sens-
ing inversion (the number of unknowns is 
far greater than the number of observations) 
and the vast expansion of the amount of ob-
servation data, a challenge emerges: how best 
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can observations derived from many different 
sources be combined and integrated? How 
will observations specifi c to location, time, 
and setting be connected to understanding 
that comes from a diverse body of nonspecifi c 
theory? Data fusion techniques that simply 
register and combine data sets from multiple 
sources may not be adequate to solve these 
pressing problems. The data assimilation 
method allows use of all available information 
within a time window to estimate various 
unknowns of land surface models (Liang 
and Qin, 2007). The information that can 
be incorporated includes observational data, 
existing pertinent a priori information, and, 
importantly, a dynamic model that describes 
the system of interest and encapsulates 
theoretical understanding. Data assimilation 
has been widely used in meteorology and 
oceanography, but more effort is needed to 
explore its potential for characterizing land 
surface environments in the land remote 
sensing community.

The meteorology and oceanography com-
munities are at the forefront in developing and 
using data assimilation methods. In recent 
years, meteorologists and oceanographers 
have tended to view data assimilation as a 
model state estimation problem. The land 
community is aggressively trying to catch up 
and is now applying data assimilation 
methods. Examples of data assimilation in 
hydrology and water cycle research include 
the global land data assimilation system 
(Rodell et al., 2004) and the North American 
Land data assimilation system (Mitchell et al., 
2004). Wang and Barrett (2003) developed a 
modelling framework that synthesizes vari-
ous types of fi eld measurements at different 
spatial and temporal scales to estimate mon-
thly means and standard deviations of gross 
photosynthesis, total ecosystem production, 
net primary production and net ecosystem 
production for eight regions of the Australian 
continent between 1990 and 1998. Williams 
et al. (2005) developed a data assimilation 
approach that combines stock and fl ux ob-
servations with a dynamic model to improve 

estimates of, and provide insights into, eco-
system carbon exchanges. Rayner et al. (2005) 
developed a terrestrial carbon cycle data 
assimilation system for determining the 
space-time distribution of terrestrial carbon 
fluxes for the period 1979–1999. Hazarika 
et al. (2005) integrated the MODIS LAI pro-
duct with an ecosystem model for accurate 
estimation of NPP. Validations of results 
in Australia and the USA show that NPP 
estimated using the data assimilation method 
is more accurate than estimates derived from 
the data ‘forcing’ method. Their research 
demonstrates the utility of combining satellite 
observations with an ecosystem process model 
to achieve improved accuracy in estimates 
and monitoring global NPP. Fang et al. (forth-
coming) assimilated MODIS LAI product into 
a crop growth model for estimation of crop 
yield by determining some critical parameters 
of the crop model.

V Algorithms for estimating specifi c 
biogeophysical variables
Section IV provides an overview of several 
inversion algorithms. This section shows 
how these algorithms are used for estimating 
a group of biogeophysical variables from 
various remote sensing data.

1 Mapping LAI and FPAR
LAI characterizes vegetation canopy func-
tion and energy absorption capacity. For 
these reasons, LAI is used as a variable in 
most land surface process models. A common 
procedure to estimate LAI is to establish an 
empirical relationship between vegetation 
indices (VI) and LAI by statistically fi tting ob-
served LAI values to the corresponding VI.

Besides the VI-based statistical model, 
all other inversion methods mentioned in 
Section IV are used to map LAI. Several 
instrument science teams provide global LAI 
maps. MODIS, MISR, Advanced Very High 
Resolution Radiometer (AVHRR), MERIS, 
Polarization and Directionality of the Earth’s 
Refl ectances (POLDER) and VEGETATION 
are among the notable satellite instruments 
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that provide the LAI product with various 
spatial and temporal resolutions (Bacour et 
al., 2006; Deng et al., 2006; Fang and Liang, 
2005; Kalacska et al., 2005; Koetz et al., 2007; 
Plummer and Fierens, 2006).

Foliage clumping, a parameter related to 
LAI, is an important forest structural canopy 
attribute. It affects both the gap fraction for 
LAI, radiation interception and distribution 
within the canopy, which in turn affect photo-
synthesis. Chen, Menges et al. (2005) mapped 
the global clumping index from multiangular 
POLDER data.

The fraction of the absorbed PAR by 
green vegetation (FPAR) is recognized as 
one of the fundamental terrestrial variables in 
the context of global change science. Many 
production effi ciency models for calculating 
gross primary productivity (GPP) and net 
primary productivity (NPP) are based on the 
following formulation: GPP/NPP ∝ FPAR · 
PAR. Multiple satellite sensors and a variety 
of methods are used to generate FPAR pro-
ducts (Bacour et al., 2006; Gobron, Pinty 
et al., 2006; Plummer and Fierens, 2006).

2 Mapping fractional vegetation coverage
Fractional green vegetation coverage is a 
critical variable that is used for parameter-
ization in biogeochemical modelling and 
various other applications. Generating an 
accurate global product is a challenge. Various 
methods are used to estimate this parameter 
from numerous sensors, such as AVHRR 
(Zeng et al., 2003), MODIS (Hansen et al., 
2002), MERIS (Bacour et al., 2006), MISR
(Chopping et al., 2006; forthcoming), and 
other sensors (Danson et al., 2007; Garcia-
Haro et al., 2006; Koetz et al., 2007; Morsdorf 
et al., 2006; North, 2002).

3 Mapping broadband albedo
Land surface broadband albedo is a critical 
variable affecting the Earth’s climate and is 
still among the main radiative uncertainties 
of current climate modelling (Dickinson, 
forthcoming; Wang et al., 2006). The surface 
of the Earth absorbs roughly twice as much 

solar radiation as the atmosphere, and land 
surface albedos largely modulate the surface 
absorptance. It is well recognized that sur-
face albedo is among the main radiative 
uncertainties of current climate modelling.

A typical albedo mapping algorithm, 
such as that used for generating the MODIS 
albedo product, includes three components 
(Schaaf et al., 2002): (1) an atmospheric 
correction that converts top-of-atmosphere 
(TOA) radiance to surface directional re-
fl ectance, (2) BRDF modelling that converts 
directional reflectance to spectral albedos, 
and (3) a narrowband to broadband conver-
sion that converts spectral albedos to broad-
band albedos. Atmospheric correction al-
gorithms are discussed in Section IV.1, and 
surface BRDF modelling is also briefl y covered 
in Section II. Various statistical formulae exist 
that convert narrowband albedo to broad-
band albedo (Liang, 2004). Using a physical 
approach, albedo product depends on the 
performance of all the procedures that char-
acterize the known processes, such as per-
formance of the atmospheric correction and 
the accuracy of the angular model used to 
describe the directional distribution of the 
reflectance. It is unknown whether errors 
associated with each procedure cancel or 
enhance each other.

Instead of retrieving most of the variables 
explicitly from remote sensing data, an alter-
native method to physically-based retrieval 
is to combine all procedures together in one 
step through regression analysis aiming only 
to make a best-estimate broadband albedo. 
The direct retrieval method primarily consists 
of two steps (Liang, 2003; Liang et al., 2005). 
The fi rst step is to produce a large database 
of TOA directional refl ectance and surface 
albedo for a variety of surface and atmospheric 
conditions using radiative transfer model 
simulations. The second step is to link the 
simulated TOA reflectance with surface 
broadband albedo using nonparametric 
regression algorithms (eg, neural networks 
and projection pursuit regression) or linear 
regression analysis. This method will be used 
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for producing the albedo product from VIIRS 
in the future. Land surface albedo can also be 
mapped from multiangular sensors, such as 
MISR (Diner et al., 2005), and geostationary 
satellite data (Govaerts and Lattanzio, 2007; 
Govaerts, Lattanzio et al., 2004). Samain et 
al. (2006) created a consistent albedo product 
by integrating multiple satellite data from 
MODIS, VEGETATION and MERIS. Jacob 
and Olioso (2005) estimated the albedo diurnal 
cycle from airborne POLDER data.

4 Mapping incident solar radiation
Incident solar radiation, either PAR in the 
visible spectrum (400–700 nm) or insolation 
in the total shortwave (300–4000 nm), is 
a key variable required by almost all land 
surface models. Many ecosystem models 
calculate biomass accumulation linearly 
proportional to incident PAR. Information 
on the spatial and temporal distribution of 
PAR, by control of the evapotranspiration 
process, is required for modelling the hydro-
logical cycle and for estimating global oceanic 
and terrestrial NPP.

The only practical means of obtaining 
incident PAR at spatial and temporal reso-
lutions appropriate for most modelling appli-
cations is through remote sensing. Methods 
to calculate incident solar radiation fall into 
roughly two types. The fi rst approach is to 
use the retrieved cloud and atmosphere para-
meters from other sources, with the measured 
TOA radiance/fl ux acting as a constraint. The 
Clouds and Earth’s Radiant Energy System 
(CERES) algorithm (Wielicki et al., 1998) 
employs the cloud and aerosol information 
from MODIS, and TOA broadband fl uxes as 
a constraint, to produce both insolation and 
PAR at the spatial resolution of 25 km with the 
instantaneous sensor footprint. The ISCCP 
has produced a new 18-year (1983–2000) global 
radiative flux data product called ISCCP 
FD, constructed for a repeating three-hour 
period on a 280 km equal-area global grid 
(Zhang, Rossow et al., 2004). ISCCP FD is 
calculated using a radiative transfer model 
from the Goddard Institute for Space Studies 

General Circulation Model (GCM) using the 
atmosphere and surface properties obtained 
primarily from TIROS Operational Vertical 
Sounding data.

The second approach to calculating in-
cident solar radiation is to establish the rela-
tionship between the TOA radiance and 
surface incident insolation or PAR based on 
extensive radiative transfer simulations. This 
method was first applied to analyze Earth 
Radiation Budget Experiment (ERBE) data. 
Liang, Zheng et al. (2006) generated the PAR 
and insolation products at 1 km from MODIS 
data directly using a similar approach. Liu 
et al., (2007) revised this approach to map 
incident PAR and insolation over China. This 
algorithm has also been extended to GOES 
data (Zheng et al., forthcoming) and is being 
revised for other satellite data (eg, AVHRR, 
SeaWiFS) as well.

5 Mapping downward thermal radiation
Downward longwave radiation is a crucial 
component in energy balance calculations. 
Total downward radiation must include long-
wave thermal radiation in addition to the 
insolation discussed in the previous section. 
Downward thermal radiation is normally 
taken from the atmospheric forcing data 
that are usually calculated from the GCM 
models resulting in large errors at fi ne spatial 
resolution. The accurate product has to be 
estimated from satellite observations directly.

There have been several comprehensive 
reviews of methods for estimating surface 
thermal radiation from satellite data (eg, 
Diak et al., 2004). The downward longwave 
radiation algorithms include three types. 
The fi rst type consists of empirical functions 
using satellite-derived meteorological para-
meters, for example, the near-surface tem-
peratures and water vapour burden. The 
second type calculates the radiation quan-
tities with radiative transfer models using 
satellite-derived soundings. An important 
feature of this approach is the validity of the 
physics. The third type uses satellite-observed 
radiances directly to avoid the propagation 
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of retrieval errors of meteorological para-
meters into the final radiation estimate 
(Lee and Ellingson, 2002). It embeds the 
physical merits of radiative transfer within 
the parameterization of nonlinear functions 
of observed radiance.

6 Mapping emissivity and skin temperature
Upwelling thermal radiation mainly depends 
on the land surface temperature (LST, T) 
and emissivity (ε):

F F Tu d= − +( )1 4ε εσ

where Fd is downward thermal radiation and 
σ is a constant. For dense vegetation and 
water surfaces, broadband emissivity is almost 
one (0.96–1). For non-vegetated surfaces, 
ε is much less than one. Unfortunately, most 
GCMs and land surface models assume a 
constant emissivity, which can lead to large 
errors in net radiation and other quantities 
(Jin and Liang, 2006).

Estimating both emissivity and land 
surface temperature simultaneously from 
thermal infrared remotely-sensed data is very 
challenging. Radiance received by the sensor 
contains information about the atmosphere 
(eg, temperature and water vapour profi les) 
and surface properties (emissivity and LST). 
Therefore, the fi rst step for retrieving surface 
emissivity and LST is to perform an atmos-
pheric correction. The second step is to sep-
arate emissivity and temperature from the 
retrieved surface leaving radiance.

For two-thermal-band sensors, such as 
AVHRR and GOES, a known emissivity is 
assumed (or inferred from land cover maps 
or vegetation indices) to estimate LST using 
a split-window algorithm. Fortunately, the 
new generation of sensors, such as ASTER 
and MODIS, has multiple thermal bands that 
allow estimation of spectral emissivities and 
LST simultaneously. The MODIS land team 
developed two approaches for retrieving LST 
and emissivity (MOD11). The MODIS atmos-
pheric temperature profi le product (MOD07) 
(Seemann et al., 2006) also includes LST. In 

our recent validation study, Wang et al. (2007) 
found that the MOD07 and MOD11 products 
have comparable accuracy.

LST can also be estimated from other sen-
sors, such as TM (Sobrino, Jimenez-Munoz 
et al., 2004), SEVIRI (Sobrino and Romaguera, 
2004), AVHRR (Jin, 2004; Pinheiro et al., 
2006), ATSR (Jimenez-Munoz and Sobrino, 
2007; Sobrino, Soria et al., 2004), AATSR 
(Coll et al., 2006), GOES (Sun et al., 2004), 
GMS (Oku and Ishikawa, 2004) and VIIRS 
(Yu et al., 2005).

Because the land surface is not homo-
geneous at the resolution of about 1 km, the 
subpixel temperature and emissivity must be 
considered. Most land surface process models 
(eg, Bonan et al., 2002; Dai et al., 2003) that 
calculate surface energy balance, use several 
component temperatures, such as soil skin 
temperature, sunlit canopy temperature, and 
shadow temperature. No practical algorithms 
are developed to effectively estimate these 
component temperatures from remote sensing 
data at this time (Jia et al., 2003), but some 
modelling studies on mixed emissivities are 
reported (Chen et al., 2004; Su et al., 2003; 
Zhang, Li et al., 2004).

Another issue is the directional properties 
of LST and emissivity. Effects caused by shad-
ing and differential heating are understood 
well at fi ne spatial scales (Guillevic et al., 2003; 
Lagouarde et al., 2004; Soux et al., 2004; Yu 
et al., 2004), but are usually overlooked or 
ignored at coarser scales. Good models exist 
for understanding shading and differential 
heating effects in structured scenes, such as 
orchards and urban environments. There is 
a considerable body of evidence supporting 
the notion of angular variation in the emissive 
properties of many natural materials and 
surfaces.

7 Mapping all-sky all-wave net radiation
For all land surface and hydrological models 
that are based on surface energy balance, 
net radiation is a required quantity, but users 
have to calculate it from multiple satellite 
products. It is easy to compute surface net 
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radiation (shortwave, longwave and total) 
by combining products using the previously 
described algorithms. Surface shortwave 
net radiation can be calculated from insolation 
(F s

d) and upwelling radiation (F s
u) or the total 

shortwave broadband albedo (α):

∆F F F Fs s
u
s

d
s

d= − = −( )1 α

Longwave thermal net radiation can be cal-
culated based on the methods in Sections V.5 
and V.6. Both methods are suitable only for 
clear-sky conditions. Cloudy-sky thermal net 
radiation can be determined from shortwave 
net radiation. A number of scientists have 
tested estimation methods, and the most 
successful ones are simple linear regressions 
(Offerle et al., 2003) using either insolation or 
shortwave net radiation. Although coeffi ci-
ents vary slightly from one site to another, 
the overall fi ts are excellent (Alados et al., 
2003). Thus, these components calculate 
all-sky, all-wave net radiation well.

VI Discussion
This review is incomplete if we fail to discuss 
calibration, geometric processing, and valid-
ation. Quantitative remote sensing requires 
accurate radiometric calibration. Pre-launch 
instrument characterization, onboard (in-
fl ight) calibration, vicarious calibration, and 
inter-instrument cross-calibration (Chander 
et al., 2004; Pan et al., 2004; Thome et al., 
2003) are all critical components of a calib-
ration system. Recent publications on this 
subject include vicarious calibrations for 
many different satellite sensors (eg, Barsi 
et al., 2003; Biggar et al., 2003; Govaerts, 
Clerici et al., 2004; Martiny et al., 2005; 
Murakami et al., 2005; Ohde et al., 2004; 
Thome et al., 2004).

Validation of the model, inversion algo-
rithm, and product is also critical in quantitative 
remote sensing. Although the model may be 
developed at the local scale and validated 
using limited measurements, its application 
to regional or global scales from local studies 
is essentially an extrapolation problem. 

Extensive validation ensures the success of 
extrapolation. The inversion algorithms, based 
on ‘training’ data under certain conditions, 
may not work well for other conditions. Char-
acterizing the uncertainties of land surface 
high-level products is important not only for 
their applications but also to evaluate dif-
ferent algorithms. A special issue of the IEEE 
Transactions on Geosciences and Remote Sensing 
was devoted to validation of remote sensing 
land products (Morisette et al., 2006). A 
novel method is needed to generate high-level 
products by taking advantage of the strengths 
of different algorithms without introducing 
their weaknesses.

Geometrical registration of multiple data 
sources is another critical issue because many 
algorithms must deal with remote sensing data 
with different spectral, spatial, and angular 
characteristics. No details are provided here, 
because there are several review articles on 
this subject (Toutin, 2004; Zitova and Flusser, 
2003).

VII Concluding remarks
The immense amount of data available from 
satellite observations offers promise yet also 
presents great challenges. Considerable time 
and effort is invested into developing physical 
models to understand surface radiation re-
gimes. State-of-the-art remote sensing mod-
elling and inversion are well advanced. Some 
of these models have been incorporated into 
useful algorithms for estimating land surface 
variables from satellite observations.

Developing realistic and computationally 
simplifi ed surface radiation models suitable 
for inversion of land surface variables from 
satellite data is urgently required. Experi-
mental data that represent the actual values 
of the land surface biogeophysical variables 
are usually limited and noisy, thus, adequate 
error characterization, although diffi cult, is 
imperative. Choosing a forward modelling 
procedure is crucial to adequately describe 
observations. It is also important to know how 
many model parameters are required and 
which parameters are the most signifi cant. 

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF MARYLAND on April 15, 2008 http://ppg.sagepub.comDownloaded from 

http://ppg.sagepub.com


Shunlin Liang: Estimating land surface biogeophysical variables 511

Another issue is model error. We are uncertain 
not only about values of the numerous model 
parameters, but also about the model para-
meterizations and the model errors.

Inversion of land surface parameters is 
generally a nonlinear, ill-posed problem, and 
solving a multidimensional, ill-posed inver-
sion problem is very challenging. Use of regu-
larization methods by incorporating a 
priori knowledge and integrating multiple-
source data from different instruments with 
different spatial, spectral, temporal, and 
angular signatures deserves further research. 
One emerging area is the data assimilation 
method that synthesizes diverse, tempor-
ally inconsistent, and spatially incomplete 
remotely-sensed data products into a coherent 
representation of an evolving dynamic system. 
Data assimilation methods incorporate a 
prior knowledge into the inversion process 
objectively, and account for errors in both data 
products and the physical models. Although 
studies on error incorporation in land optical 
remote sensing are in at early stage, they 
appear very promising.
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