
Abstract
Accurate, objective, reliable, and timely predictions of crop
yield over large areas are critical to helping ensure the
adequacy of a nation’s food supply and aiding policy
makers on import/export plans and prices. Development of
objective mathematical models of crop yield prediction
using remote sensing is highly desirable. In this study, we
develop a new methodology using an artificial neural
network (ANN) to estimate and predict corn and soybean
yields on a county-by-county basis, in the “corn belt” area
in the Midwestern and Great Plains regions of the United
States. The historical yield data and long time-series NDVI
derived from AVHRR and MODIS are used to develop the
models. A new procedure is developed to train the ANN
model using the SCE-UA optimization algorithm. The per-
formance of ANN models is compared with multivariate
linear regression (MLR) models and validation is made
on the model’s stability and forecasting ability. The new
algorithms can effectively train ANN models, and the
prediction accuracy can be as high as 85 percent.

Introduction
Crop yield is a key element for rural development and an
indicator for national food security. Accurate, objective,
reliable, and timely predictions of crop yield over large
areas are critical for national food security through policy
making on import/export plans and prices. In recent years,
a variety of mathematical models relating to crop yield have
been proposed (Dan, 1998; Landan et al., 2000; Wheeler
et al., 2000; Hansen et al., 2004). Remote sensing techniques
have the potential to provide quantitative and timely
information on agricultural crops over large areas, and many
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different methods have been developed to estimate crop
yields (Guérif and Duke, 2000; Liang et al., 2004; Walthall
et al., 2004; Doraiswamy et al., 2004; Wu, 2004; Xiao et al.,
2005; Tao et al., 2005).

One practical approach using satellite data is the
development of empirical relationships between the inte-
grated Normalized Difference Vegetation Index (NDVI) and
crop yield. NDVI responds to changes in the amount of green
biomass, chlorophyll content, and canopy water stress. It is
simple and easy to implement, and can be effective in
predicting surface properties when the vegetation canopy is
not too dense or too sparse (Liang, 2004). The relationship
between NDVI and production has been confirmed by various
field experiments (Prince and Justice, 1991). Rasmussen
(1992) showed that yield could be estimated directly from
the regression with NDVI. However, the general drawback of
most methods using statistical relationships between NDVI
and crop yield is that they have a strong empirical character
and that the correlation coefficients are moderate to low
(e.g., Groten, 1993; Sharma et al., 1993). Therefore, although
many studies have been conducted to estimate and predict
crop yield using remote sensing data, the operational
systems are mainly based on the anomalies of vegetation
indices in a subjective fashion. Development of objective
mathematical models using remote sensing is still highly
desirable.

In this study, we develop a methodology using Artificial
Neural Networks (ANN) to simulate and predict corn
and soybean yields on a county-by-county basis. NDVI
values derived from multi-temporal remote sensing image
(such as AVHRR and MODIS) within the crop growth season
are used to characterize the whole growing process instead
of simply extracting some specified values or using the
integrated value. The performance of the ANN model is
compared with the multivariate linear regression (MLR)
model, and validation is made on the model’s stability.
The model’s predictive power for yield as well as its
management and update on time and space are discussed
in the context of evaluating the feasibility of developing
a yield forecasting system. Crop production estimation and
forecasts have two components: acres to be harvested and
expected yield per acre. We mainly focus on estimating the
crop yield per area in this paper.
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Material and Methods
Study Area
The study area is the “corn belt,” a major agricultural region
in the American Midwest and Great Plains that include the
states of North Dakota, South Dakota, Nebraska, Kansas,
Minnesota, Iowa, Missouri, Michigan, Wisconsin, Illinois,
Indiana, and Ohio with 1,059 counties, as shown in Figure 1.
Large-scale commercial and mechanized farming prevails in
this region of deep, fertile, well-drained soils and long, hot,
humid summers. This region produces much of the American
corn crop, but agriculture is diversified, and soybeans are an
important crop as well. Planting dates for corn and soybeans
are available at state level from reports published by the U.S.
Department of Agriculture (USDA), National Agricultural
Statistical Service (NASS). In general, crop planting in the
region is completed by mid-May, with corn planted about
two weeks earlier than soybeans. Crop maturity occurs by
late-September.

Data and Processing
Data are organized and focused on the county as a unit.
The remote sensing data contain a 16-day NDVI composite
from Moderate-Resolution Imagine Spectroradiometer (MODIS)
data with a five-year span (2000 to 2004) and a resolution of
1 km, downloaded from http://redhook.gsfc.nasa.gov/, and
half-of-a-month composite NDVI from Advanced Very High
Resolution Radiometer (AVHRR) data during a 22-year span
(1982 to 2003) with a resolution of 8 km, downloaded from
ftp://ftp.glcf.umiacs.umd.edu/. This dataset is improved with
more accurate radiometric calibration and correction of view
geometry, volcanic aerosols, and other effects not related to
actual vegetation change. The cropland classification data
(30 m � 30 m) derived from Thematic Mapper (TM) data are
gained from Research and Development Division of USDA-
NASS, with a resolution of 30 m. The crop yield data also
come from USDA-NASS. According to crop growing season,
12 MODIS scenes taken Day 129 to 305, and 12 AVHRR scenes
taken Day 135 to 300 were chosen as remote sensing data,
because the original data are composite data, which can be
applied directly to compute average NDVI values on a county
basis. Meanwhile, to eliminate the effect of non-vegetation

canopy surface (e.g., bare soil and water) and atmospheric
contamination, only data with NDVI > 0.1 were computed.
Illinois State was selected to explore the relationship between
yield and NDVI. To eliminate the influence of non-crop pixels,
a cropland classification map was used to compute a percent
crop map with a resolution of 1 km (Figure 2). It can be
assumed that, when 75 percent of a pixel is covered with
a crop, the radiation value of this pixel is considered to
represent the crop’s canopy radiation value. Thus, those
pixels with a value more than 0.75 on the percent crop map
and NDVI > 0.1 on the NDVI map were selected as the masking
condition, by which the NDVI mean value of each county at
each period was computed.

Model Development
Multivariate Linear Regression (MLR) Model
In this study, the MLR model and the ANN model are used
to simulate yield using NDVI. The difference of simulating
precision using AVHRR and MODIS datasets is explored by
MLR analysis. Before developing the model, the input and
target value of the model should be fixed first. Based on
the growing season of corn and soybean crops in the area,
we chose 12 NDVI scene’s values within a year to act as
input variables and the corresponding yield of corn and
soybeans as the target variable. Initially, in the sample
state (Illinois), the method of MLR was adopted to explore
the relation between NDVI and yield, and to study the
precision difference presented between AVHRR and MODIS
data.

MLR is one of the most commonly used methods to
develop empirical models for large datasets, as has been
done for a number of canopy-level crop condition parame-
ters (Shibayama and Akiyama, 1991). However, in some
cases, the model tends to over-fit data thus reducing its
applicability to unseen data. The model was described by
the basic linear relationship
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Figure 1. A sketch of study area: Midwestern and Great
Plains States showing the sample states and the
sample counties.

Figure 2. Crop percentage
map (1 km) calculated from
crop classification map (30 m
� 30 m) from USDA data.
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(1)

where Yi, i � 1, . . . n denotes the ith year yield observation,
Xij is the respective value of the j th explanatory variable 
Xj as selected NDVI value and �i, �ij, j � 1 . . . 12 denote
the linear parameters, the error term �i reflects factors not
accounted for in the model, for example management factors
or mere random (intrinsic) variability.

A New Artificial Neural Networks (ANN) Model
Simulating yield using NDVI should represent non-linear
relationships between input variables and desired vari-
ables. The ability of ANN models to associate complicated
spectral information with target attributes without any
constraints of sample distribution (Mather, 2000) makes
them ideal for describing the complex non-linear relation-
ships between canopy-level spectral signatures and various
crop conditions (Kimes et al., 1998). Successful applica-
tions already have been reported for yield prediction (Liu
et al., 2001; Drummond et al., 2003; Uno et al., 2005).
Taking a county as unit and applying the long time-series
NDVI value derived from AVHRR, yield was simulated and
predicted by the ANN model.

In this study, all the models were developed using
Matlab 6.5 software (The MathWorks, Inc.), except for the
regression analysis, which was done with Microsoft® Excel.
The feed-forward multi-layer perceptron (MLP) neural network
(NN) is built for learning. This NN can be abstracted as:

(2)

where Y denotes the output of NN, X the input, and W the
synaptic weights. In standard training processes, both input
X vector and output vector Y are known and prepared.
The synaptic weights in W are adjusted in order to obtain
appropriate functional mapping from input X to output Y.
The adjustment process can be performed by minimizing the
network error function:

(3)

where D1, D2, and D3 represent the dimensions of input
vector, output vector, and weight vector, respectively.

The entire training process is an optimization process to
determine the optimal weights W for minimization of error
function J. Thus, many optimization algorithms are applied
to NN training, including both deterministic and stochastic
methods. However, these methods all have their own short-
comings. Deterministic ones, such as Quasi-Newton (QN) and
Levenberg-Marquadt (LM), are easy to be trapped into local
optima. Stochastic ones such as Differential-Evolution (DE)
may require more times than deterministic ones and may
have lower efficiency, although they can find the global
optima. If there is an optimization algorithm, which has
deterministic and stochastic properties at the same time,
and it is used to train NN, the two shortcomings mentioned
above will be effectively overcome.

Recently, a global optimization approach, shuffled
complex evolution algorithm (SCE), has been developed and
successfully applied to the calibration of hydrological
models (Duan et al., 1994). The use of deterministic strate-
gies permits SCE to make effective use of response surface
information to guide the search and the simultaneous inclu-
sion of stochastic elements helps make SCE both flexible and
robust. The implementation of an implicit clustering strategy
helps to concentrate the search in the most promising of
the regions identified by the initial complex. The use of a
systematic complex evolution strategy helps ensure that the

J(Y, f (X,W)) : (XD1, YD2, WD3, f ) :  R

Y � f (X, W )

Yi � bi � �
N

j�1
aij Xij � �i

search is relatively robust and is guided by the structure
of the cost function. The use of a competitive evolution
scheme is useful for improving global convergence efficiency.
Based on advantages mentioned above, SCE-UA (shuffled
complex evolution method developed at The University of
Arizona) is used to train NN in this study; the flowchart is
shown in Figure 3.

One of the problems that occur during neural network
training is called over-fitting. The risk of over-fitting arises
when large numbers of independent variables are handled
with a small number of samples. One of the solutions is
testing the reliability or robustness of the developed models
by using a validation data set. This study selected the regu-
larization method for preventing over-fitting, which was
desirable to determine the optimal regularization parameters
in an automated fashion. It is possible to improve generaliza-
tion if we modify the performance function by adding a term
that consists of the mean of the sum of squares of the net-
work weights and biases (Foresee and Hagan, 1997). Using
this performance function will cause the network to have
smaller weights and biases, and this will force the network
response to be smoother and less likely to over-fit. In addi-
tion, a seven-fold cross-validation procedure was carried out
to evaluate the generalization ability of the ANN model with
12 input variables. In this procedure, the original data set of
22 samples was first randomly divided into seven subgroups,
and six out of seven subgroups were used for model develop-
ment, while the remaining subgroup was used for model
testing. This process was repeated seven times with different
combinations. It should be noted that different data sets were
used for model development and model validation for a given
run was done with unseen data.
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Figure 3. Flowchart of using SCE-UA for
training NN.
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Performance Analysis
Three statistical parameters were used for performance
analysis: correlation coefficient (r), root mean square error
(RMSE), and average difference (AVDIF). RMSE is one of the
most commonly used statistical parameters, which represents
the average difference between estimated and observed value.
The RMSE was calculated as a better evaluation method
for yield prediction at the farm level but can also explain
whether the model under- or over-predicted. The values were
evaluated by plotting the simulated value against the meas-
ured value and by testing the statistical significance of
regression parameters.

Results and Analysis
Changes of NDVI

According to the above data processing method, the
average NDVI value of each county in each composite period
during 22 years can be obtained. Figure 4 shows that NDVI

changed regularly over time in Illinois. The crop slowly
turned green on Day 129. On Day 209, NDVI reached the
highest value and remained there until Day 225, when it
begins to fall rapidly. By Day 289, the crop had already grown
yellow, represented by the low NDVI value. Figure 5 shows
that corn in zone 1, soybeans in zone 2, and trees in zone 3
accounted for a large proportion. Differences in the phonologi-
cal cycles of each target were observed (Figure 5). Corn turned
green two weeks earlier than soybeans, yet matured later;
other crops (cotton, oats, sorghum, potato, etc) had a later
growing season; trees had the longest growth season and
always had high NDVI values. Therefore, although there were
differences in planting date for different crops, the growth
season generally was covered from Day 129 to 305.

From the profile of Figure 6a, the growing cycle of crop
can be observed in a county with apparent differences in
different years. Meanwhile, the difference forward of Day
209 is more remarkable than after that day. Figure 6b shows
the difference in profiles of the five sample counties in
Illinois State because of their different geographical position.
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Figure 4. NDVI change derived from MODIS data during crop growing season in Illinois
State in 2003 by number of days: (a) 81, (b) 97, (c) 113, (d) 129, (e) 145, (f) 161,
(g) 177, (h) 193, (i) 209, (j) 225, (k) 241, (l) 257, (m) 273, (n) 289, and (o) 305.
A color version of this figure is available on the ASPRS website: www.asprs.org.
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It indicates that the NDVI values ahead of Day 209 contribute
much more for final crop yield; both the different geographical
position and environmental changes in crop growth season
can cause the difference in the NDVI profile. This study held
the hypothesis that such differences denoted a crop’s growing
process and was finally reflected in crop yield.

The Linear Simulation Precision for Yield Using avhrr and modis Data
MLR analysis was made using AVHRR and MODIS data, respec-
tively. There was only five-year MODIS data which was not
sufficient to make such analysis on a county scale. This study
made use of statistics from USDA-NASS to divide Illinois into
nine districts according to such conditions as agricultural
meteorology and soil, labeled 10, 20, 30, 40, 50, 60, 70, 80,
and 90, thus assuring enough samples for MLR analysis using
MODIS data. Yet, there were 22-years of AVHRR data, which
is enough for MLR analysis on a county scale. This study
randomly selected a county in each district as a sample,
correspondingly labeled a, b, c, d, e, f, g, h, and i shown in
Figure 7. It should be mentioned that although the scale
of two datasets is different, the result of analysis is still
comparable since the background of crop growing is similar.
Moreover, such a sampling approach can ensure that the
sample numbers are approximately equal.

A MLR analysis was performed between the measured
and simulated yield for both training and validation data
sets. The MLR performance parameters are given in Table 1.
The results are as follows:

1. The simulation precision of MODIS data is commonly better
than that of AVHRR, and the simulation of MODIS for corn and
soybeans both can achieve a comparatively ideal precision of
about 10 percent;

2. In Illinois, the simulation precision for the north crop plain is
higher than the south areas, which are more heavily forested;

3. The simulation precision of AVHRR data for yield can also
achieve reasonably good accuracy of about 15 percent;

4. The simulation ability of NDVI for corn is better than for
soybeans, represented by comparatively stable simulation
precision for corn while fluctuating for soybeans, shown in
Figure 8.
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Figure 5. The classification
of cropland deriving from
USDA-NASA with a resolution
of 30 m � 30 m. A color
version of this figure is
available on the ASPRS
website: www.asprs.org.

Figure 6. (a) NDVI profile in Sample 4 from 2000 to
2004, and (b) NDVI profile in 2003 for Samples 1
through 5.

Figure 7. Samples for
simulating precision
difference analysis
using MODIS and AVHRR,
respectively.
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TABLE 1. PERFORMANCE PARAMETERS OF MLR MODEL FOR OBSERVED AND SIMULATED YIELD DATA, RESPECTIVELY, USING MODIS AND AVHRR NDVI (P≤0.05)

MODIS AVHRR

Corn Soybeans Corn Soybeans

ID r RMSE AVDIF r RMSE AVDIF ID r RMSE AVDIF r RMSE AVDIF

10 0.95 6.04 3.74% 0.96 2.62 5.80% a 0.91 14.97 11.06% 0.80 5.41 12.54%
20 0.95 8.36 5.86% 0.71 6.08 15.26% b 0.95 14.97 11.59% 0.96 2.78 6.95%
30 0.94 6.45 3.85% 0.87 2.73 5.86% c 0.90 18.66 13.34% 0.88 4.73 10.59%
40 0.84 11.98 7.31% 0.56 6.16 13.51% d 0.86 21.69 15.65% 0.76 5.53 12.72%
50 0.93 7.57 4.79% 0.92 3.34 7.32% e 0.87 18.48 13.90% 0.88 4.37 10.57%
60 0.94 8.57 5.38% 0.67 4.61 10.25% f 0.87 19.47 14.46% 0.93 3.58 9.12%
70 0.95 8.71 6.01% 0.80 4.07 9.36% g 0.77 27.04 23.63% 0.81 5.49 15.44%
80 0.90 15.47 12.17% 0.85 4.23 11.34% h 0.95 10.17 10.64% 0.89 2.99 9.62%
90 0.92 13.54 11.30% 0.91 3.44 9.66% i 0.94 10.80 8.96% 0.86 4.26 12.30%

TABLE 2. PERFORMANCE PARAMETERS FOR OBSERVED AND SIMULATED CORN YIELD DATA, RESPECTIVELY, 
FOR MLR MODELS AND ANN MODELS (P ≤ 0.05), AND AVERAGE VALUE OF VALIDATION DATA SET FOR SEVEN-FOLD

CROSS VALIDATION OF THE ANN MODEL (UNIT OF RMSE: BUSHAL/ACRE)

Multivariable Regression Artificial Neural Network Cross Validation
Analysis Analysis for ANN

State Name Sample r RMSE AVDIF r RMSE AVDIF RMSE AVDIF

1 0.86 14.94 10.70% 0.89 13.51 9.67% 14.60 10.86%
2 0.90 18.66 13.34% 0.90 18.49 13.23% 16.42 12.33%

Illinois 3 0.86 21.69 15.65% 0.92 18.32 13.22% 20.17 15.58%
4 0.87 18.48 13.90% 0.90 15.89 11.95% 17.12 13.81%
5 0.86 21.09 19.45% 0.97 10.58 9.76% 12.54 11.06%

Indiana 6 0.93 14.91 12.09% 0.93 14.60 11.83% 14.72 12.24%
Iowa 7 0.85 16.33 12.98% 0.85 14.74 11.71% 16.82 13.21%
Kansas 8 0.70 24.99 25.40% 0.83 16.20 16.47% 18.41 17.62%
Michigan 9 0.74 18.07 17.80% 0.84 14.88 14.66% 17.83 17.01%
Minnesota 10 0.90 19.03 14.39% 0.90 19.06 14.41% 19.10 14.44%
Missouri 11 0.86 22.45 23.44% 0.92 17.23 17.99% 18.36 18.22%
Nebraska 12 0.58 17.85 12.45% 0.74 17.23 12.02% 17.66 12.21%
Ohio 13 0.58 21.03 20.28% 0.73 17.11 16.50% 18.91 18.01%
South Dakota 14 0.88 12.90 19.94% 0.89 7.71 11.92% 9.37 14.78%
Wisconsin 15 0.75 18.96 17.15% 0.83 14.28 12.92% 15.11 13.04%

As is proven by the results, there exists an apparent link
between NDVI and yield, with r commonly more than 0.85.
Meanwhile, simulated precision also show considerable
errors, partly due to the data precision itself as it is easy to
introduce errors when using mixed pixel values to replace
pure crop pixel values. This can also explain why NDVI has
a stable simulation precision for corn since it has a much
bigger planting proportion than soybeans. The other reason is
that the relationship between NDVI and yield is not strongly
linear, and applying a linear method to simulate yield can
also lead to more errors.

Evaluation on the ANN Model
The simulating result of the ANN model was evaluated by
MLR analysis. According to the above ANN method, corn
yield was chosen as desired data to practice the simulated
computation on all samples (shown in Figure 1), and ran
regularization method to prevent over-fitting. Meanwhile,
the MLR model was conducted using the same samples as
the ANN model. The results are presented in Table 2. The
analysis shows:

Figure 8. Simulating precision for corn and soybean yield
using MODIS and AVHRR, respectively, by MLR models.
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1. When using MLR model to simulate corn yield, simulation
accuracy in the whole study area is not very stable, with the
AVDIF of several samples above 20 percent such as sample
8, 11, and 13. In contrast, when using the ANN method,
accuracy is improved with errors smaller than 20 percent;

2. The ANN method has a different effect on each sample. For
those samples, such as 8, 9, 12, 13, and 15, when MLR
models do not perform well, the result is improved very
obviously after using ANN models. Otherwise, the improve-
ment is not significant. In general, our ANN model is superior
to the MLR model developed using NDVI.

Cross-validation is one of the methods that test perform-
ance supervised learning from samples. The summary of the
seven-fold cross-validation results for the validation data
is also given in Table 2. The mean RMSE for samples from
the seven-fold cross-validation for the ANN model was not
more than 20 bushels/acre. Meanwhile, the AVDIF also was
not more than 20 percent, and most of them were around
15 percent. It indicated a good model performance. The range
of RMSE for all samples was from 9.37 to 20.17, and the
span of AVDIF was from 10.86 percent to 18.22 percent, which
indicated a consistent performance by the model. The average
RMSE with standard deviation for cross-validation boundaries
is presented in Figure 9. These results indicated that the
ANN model in which we developed a new training algorithm
did a good job, without any over- or under-predictions, and a
markedly improved capability of the model for yield prediction.

Discussion
We have developed a new ANN model for estimating and
predicting corn and soybean yield respectively using NDVI
derived from satellite data. In general, NDVI can more accu-
rately represent the yield when using higher spatial and
temporal resolution satellite data. However, a dataset with a
high spatial resolution, such as Landsat Thematic Mapper
(TM), is often characterized by a low temporal resolution. This
means that NDVI cannot capture the crop growth accurately.
MODIS and AVHRR data are selected to develop the model
in this study. The spatial resolution of MODIS is better than
that of AVHRR, and both have comparatively good temporal
resolution so that they can eliminate cloud influence and
acquire time-series generalized NDVI over many years, in
which technologies such as cloud identification and compos-
ite multi-temporal data are used, e.g., NDVI from MODIS is a

16-day composite data and NDVI from AVHRR is half-a-month
composite data. As a result, the MODIS data presentation of
crop growth condition is superior to AVHRR data. And in
theory, if MODIS data is applied to simulate and predict crop
yield, its precision should be better. But, the time series of
MODIS data was not long enough (just a five-year span); it
presents limitations when reflecting the factors affecting crop
yield such as meteorological condition, technology and
management. Even if the model possesses a strong simulated
ability, it still lacks the learning ability on prediction for
unseen data outside the time series. That makes the model
unstable and its predicted results unreliable. Moreover, a
previous study (Michael et al., 2003) showed there was an
apparent link between MODIS and AVHRR data, which the data
of this study also illustrate as shown in Figure 10. So, in a
large-scale area, this study adopted a longer time-series AVHRR
data (22-year span) to develop the model.

From the results mentioned above, the utilization of the
model developed in this study can predict corn and soybean
yields on a county basis with a precision of around 85 percent.
It should be pointed out that input values used by the model
were all NDVI values within the crop growth season, that is,
yield is predicted only after the crop was harvested. However,
yield prediction in fact needs to be made some time ahead
of the harvesting date. Therefore, whether the method in
this study can make such prediction depends on the relation
between NDVI and yield. Using NDVI and yield to make
stepwise multivariate linear regression analysis and r and
RMSE were computed (Figure 11). From the figure, it can be
seen that the correlation coefficient reached was comparatively
stable between NDVI and corn yield for almost all samples
some time before maturity, i.e., before this date NDVI value
functions decisively on final yield. Yet this date for each
sample was different, which quite explained the differences
on a crop’s growing season between samples because of
different agricultural meteorological and soil conditions.
Prediction of corn and soybean yields can be made before its
maturity by applying real-time monitoring satellite data. For
monitoring the growing cycle, the method applied on a county
scale results in a large number of models featured by extend-
ing time and spatial distribution, which will cause a certain
difficulty for model’s updating and management. Yet the
integrating of GIS technology and ANN models can easily solve
these problems (Tappeiner et al., 2001; Ermini et al., 2005).
The remote sensing prediction model in the county level is
characterized of high accuracy as well as easy implementation.
Such information can be used directly in decision support
systems and provide an effective prediction within the grow-
ing season to assist farm managers to make better-informed
decisions.

Figure 9. NDVI relationship between MODIS
and AVHRR for Sample 4 in 2003.

Figure 10. Average RMSE with standard deviation for
cross validation boundaries.
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Conclusions
This study explored the potentials of the ANN model for
developing the corn and soybean yield prediction systems
using multi-temporal satellite data at the county level. The
results showed that the ANN models were quite efficient in
capturing the complex relationship between crop yield and
spectral reflectance values, and the application of the ANN
model can efficiently improve the prediction for crop yield.
The developed SCE-UA algorithms can effectively train ANN
models to be more flexible and robust. The expected predic-
tion errors of approximately 15 percent (EMSE for validation)
appear to be high for creation of yield maps for precision
agriculture, which would also be suitable on crop yield
prediction. At the same time, the ability of the model to
reasonably forecast the final crop yield some time ahead of
the harvesting date provide some opportunities for a farm
manager to make decisions before harvest. Although the
analysis focuses on some samples, the approach taken is
generally applicable. A large number of models in the county
scale can be updated and managed by a combination of GIS
and ANN technologies.
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