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Abstract. This paper suggests approaches to simulate scaling effects of thermal
emission from non-isothermal pixels with a typical three-dimensional structure.
We simulate effective emissivities of various V-shaped valleys by using our
Monte Carlo method under the isothermal assumption. An analytical formula of
the effective emissivities is derived based on photon rebounding between surfaces
in the valleys. The comparison between the simulated and the analytically
modelled effective emissivities shows that the analytical formula is highly
accurate. After simulating effective emissivities of the V-shaped valley under
several non-isothermal conditions, we find that the structure and component
temperature difference of a pixel cause the scaling effects of thermal emission of
the pixel. The results, therefore, prove that Planck’s law has to be corrected for
remote sensing to estimate land surface temperature with high accuracy.

1. Introduction

Scale is not something new, nor is concerned just by geography, cartography or

geographic information science. Scale refers generally to the level of details with

which information can be observed, represented, analysed and communicated.

However, digital techniques and remote sensing present some fundamental new

challenges to this old concept. The importance of scale has been well recognized by

the international community of remote sensing and geographic information system

(Woodcock and Strahler 1987, Raffy 1994, Quattrochi 1995, Friedl et al. 1995,

Quatrochi and Goodchild 1997, Li et al. 1999a, b, Marceau and Hay 2000). Planck’s

Law is one of the greatest scientific achievements in human history, but its

application requires an isothermal blackbody surface. At the scales of the thermal

bands of AVHRR (Advanced Very High Resolution Radiometer), Landsat or

International Journal of Remote Sensing
ISSN 0143-1161 print/ISSN 1366-5901 online # 2003 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/0143116021000023871

*e-mail: lihongsu@xinhuanet.com

INT. J. REMOTE SENSING, 2003, VOL. 24, NO. 19, 3743–3753



MODIS (Moderate Resolution Imaging Spectrometer), land surface is usually

heterogeneous in component material, component temperature and three-dimensional

structure. These three factors contribute to the scale effects of Planck’s Law, result-

ing in a very confusing problem. Only recently efforts have been made to examine

the scale effects of Planck’s Law (Becker and Li 1995, Norman and Becker 1995,

Wan and Doizer 1996, Li et al. 1999a), where both definitions of temperature and

emissivity are evaluated at the pixel scale. Li et al. (1999a) proposed a conceptual

model (Li–Strahler–Friedl conceptual model) formally describing the directional

emission of heterogeneous, non-isothermal surfaces:

Ll(m)~eeffective(m) Bl(T0) (1)

This model yields an effective land surface temperature T0 independent of viewing

angle and wavelength, and an effective emissivity eeffective(m) composed of two parts.

The first part is a directional emissivity related to the emissivities of individual

surface elements present within the sensor’s field of view. The second part is an

apparent change in emissivity that arises from the temperature frequency

distribution of individual surface elements. The conceptual model is then improved

by geometric-optical modelling (Li et al. 2000) in a sense that the new model needs

only statistic parameters at the pixel scale, without subpixel scale parameters as the

Li–Strahler–Friedl conceptual model does. With this improvement, the effective

emissivity eeffective(m) is expressed by geometric-optical scaling-up factor g(m). For

detailed information about the definitions of the effective land surface temperature

T0, the effective directional emissivity g(m) and derivation of the conceptual model

for effective emissivity and scaling-up by the geometric-optical modelling approach,

the reader is referred to Li et al. (1999a, 2000).

2. Simulation on scale effects of thermal emission from isothermal V-shaped

valleys

Under the isothermal condition, the effective emissivity of a three-dimensional

pixel depends on its three-dimensional structure (Becker and Li 1995, Norman and

Becker 1995, Wan and Doizer 1996; Li et al. 1999a). Su et al. (2000) examined

effective emissivity of some cavities by the Monte Carlo method. But their work

focused on the hemispherical emissivity, so the directional emissivity has not been

studied. Here we investigate how directional variation of effective emissivity

depends on the geometry of three-dimensional surfaces by Monte Carlo simulation

with one of the simplest cases, the V-shaped valley. The V-shaped valley pixel is a

long symmetrical valley perpendicular to the paper, which is the principal plane,

and its IFOV (Instantaneous Field of View) just covers the top of the valley. As

shown in figure 2, l is the top width of the V-shaped valley and h its depth. We

assume that l and h are far longer than the wavelength used by earth observing

sensors from the visible to the thermal infrared spectrum. In other words, the

lengths are from centimetre to kilometre so that the computer simulation

experiments are scale independent in optical remote sensing. Moreover, we

derive an analytical formula of the effective emissivity for the V-shaped valley,

review directional pattern of the effective emissivity relative to the valley, and

explain the reasons for the directional pattern.
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2.1. Monte Carlo algorithm

Suppose that the width of the V-shaped valley l is one unit (e.g. 1 m), its depth is

h unit and its material emissivity is 0.96. Our simulation is based on Kirchhoff’s

law. In other words, the directional emissivity e(h) of the valley is obtained through

computing its directional-hemispherical reflectance r(h) (e(h)~12r(h)).

The simulation is on the principal plane. The transfer of a photon is described

as follows:

1. The photon goes down into the V-shaped valley along the zenith from 0 to

85‡ with an increment of 1‡. The incidence photon traverses openness of the

valley randomly according to the incidence direction. Given one point and

one direction in the three-dimensional space, the equation of the line, which

is the trajectory of the flying photon, can be formed.

2. The photon has to hit one of two slopes in the V-shaped valley. The cross-

point is the solution to the line and slopes equations.

3. If the photon is reflected, its flying direction is determined according to the

Lambertian distribution in the slope local coordinate. A new photon line

equation is established by the hitting point and the flying direction.

4. If the cross-point falls out of the V-shaped valley, the photon escapes the

valley. Otherwise, the photon hits one of two slopes of the valley. Then the

simulation goes to step 2. The photon will move according to steps 2 and 4

continuously until it is absorbed or escapes (figure 1).

For N photons we launched in a direction, if n photons escape out of the V-shaped

valley, the effective emissivity of the valley at the direction is 12n/N. The simulated

effective emissivities are shown in figure 2 for the depth h at 1.866, 0.866, 0.5, 0.287

and 0.134 unit, respectively. In figure 2, the thick black line is for the simulated

Figure 1. Workflow of tracing a photon.
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effective emissivities of the V-shaped valleys, five groups correspond to the bottom

angles of 30‡, 60‡, 90‡, 120‡ and 150‡, and the thin grey one for the modelled.

The effective emissivities of the V-shaped valleys always are greater than their

material emissivity. The deeper the valley, the bigger the difference. Moreover, the

effective emissivity does not keep constant. When the zenith angle decreases by a

few degrees, the effective emissivity increases accordingly. The effective emissivity

reaches the maxima as the viewing direction is parallel to the slope. Then effect-

ive emissivity holds constant even when the viewing zenith angle increases

continuously.

2.2. Analytically computing effective emissivity

Figure 3 shows the structure of the V-shaped valley. Its material emissivity is e,
and aVshape is half of the bottom angle. It is assumed that the parallel incident light

goes into the V-shaped valley along the zenith angle hviewing viewing on the principle

plane. hviewing varies from 0 to 80‡. While photons hit one of the slopes of the valley,

most of them are absorbed, only the (12e) portion is reflected. The reflected

photons obey the Lambertian distribution in the local coordinate of the bevel edge.

Here we define an escape plane, which is determined by the hitting point on one

slope and the top edge of the opposite slope in the valley, and an intercepting angle

hstop between the escape plane and the hit slope (see figure 3). The photons reflected

over the escape plane will escape the V-shaped valley, displayed by the agency of

the big grey arrowhead. The photons under the escape plane will hit the opposite

slope of the valley, represented by the small grey arrowhead. It is evident that the

probability of photon escaping the valley should be only the function of hstop. The

probability is called escape probability Pescape(hstop). hstop is fixed by the shape of the

valley and the hitting position on the slope together. When the hitting position

Figure 2. The effective emissivities for various V-shaped valleys.
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changes from the top edge to the bottom edge of the valley, hstop increases

monotonously from p/22aVshape to p22aVshape, the valid range of hstop is changed

along with the configuration of the V-shaped valley. It is difficult to derive an

analytical expression for Pescape(hstop) directly, but relatively easy to compute the

probability using the Monte Carlo method. Given that the normal of the escape

plane is outward from the mouth of the V-shaped valley, if the dot-product of a

flying direction and the normal is equal to or greater than zero, the photon escapes

out of the valley, otherwise, it falls into the hitting range. The curve of Pescape(hstop)

is shown in figure 3. Apparently, the function is nonlinear. When aVshape of the

valley equals 15‡, 30‡, 45‡, 60‡ and 75‡, the valid range of the corresponding hstop is

75‡–150‡, 60‡–120‡, 45‡–190‡, 30‡–60‡ and 15‡–30‡, respectively (figure 4).

The parallel incidence light goes through a V-shaped valley along with hviewing

uniformly, and hits one of the slopes in the valley. When hviewing is greater than

aVshape, the valid range of hstop is from p/22aVshape to (p/22aVshape)z(p/22hviewing).

The photons hit any position of the slope within the valid range of hstop with an

Figure 4. The curve showing Pescape(hstop) changing with hstop.

Figure 3. The movement of photons in the V-shaped valley.
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equal probability, due to the uniform incidence light. Thus, the openness of the

V-shaped valley for the slope when it is partially lit, called K
hviewing
open , is defined as the

mean of the escape probabilities of all hitting points for the incidence direction

hviewing:

K
hviewing
open ~

ð(p=2{aVshape)z(p=2{hviewing)

p=2{aVshape

Pescape(h)dh

,
(p=2{hviewing) (2)

When hviewing is equal to aVshape, one slope is fully lit. The openness of the slope,

called KV
open, can also be calculated by (2).

When hviewing is less than aVshape, two slopes of the V-shaped valley are lit. But

the openness of the valley does not increase. The reason is that since the valley is

symmetrical, the openness of one slope is equal to each other, i.e. KV
open. As a result

of uniform incidence of the parallel light, without loss of generality, we may assume

that 1/m part photons hit one slope, 121/m part photons hit another, here m is a

random number. So the openness of the valley is 1/m KV
openz(1{1=m)KV

open~KV
open in

this case. So far, we have obtained the openness of the valley for all cases.

The analytical formula for the effective emissivity of the V-shaped valley can be

derived based on K
hviewing
open and KV

open. Generally, it is assumed that the parallel light

goes into the V-shaped valley in the direction hviewing. Given material emissivity e of

the valley, its material reflectance is a~12e. In other words, the incidence energy

will be absorbed by (12a), and reflected by a by the valley. K
hviewing
open a will escape the

valley, and (1{Khviewing

open ) a will hit the valley again. Now we assume approximately

that the (1{K
hviewing
open ) a reflected photons are projected on the whole opposite slope

of the valley with equal probability. Because the openness of the reflected light is

KV
open, when the incidence photons are rebounded secondly, (1{K

hviewing
open ) a (1{a) is

absorbed, (1{K
hviewing
open ) a a reflected, (1{K

hviewing
open ) a2 KV

open escapes from the valley,

(1{K
hviewing
open ) a2 (1{KV

open) hits the valley again. Analogically, when the incidence

photons are rebounded for three times, (1{K
hviewing
open ) a2 (1{KV

open) (1{a) is absorbed,

etc. For the photons multiply rebounding in the V-shaped valley, those absorbed

can be calculated by the geometric progression:

fabsorption~(1{a)z(1{K
hviewing
open ) a (1{a)

z(1{K
hviewing
open ) a2 (1{KV

open) (1{a)z . . .
(3)

Its sum is:

fabsorption~(1{a)z
1za (KV

open{K
hviewing
open )

1{(1{KV
open) a

(4)

When hviewing is less than aVshape, (4) degenerates as follows:

fabsorption~
1{a

1{(1{KV
open) a

(5)

In fact, it is the same formula for photons multiply rebounding between surfaces

developed by Li et al. (1996).

The analytical model does a better job for a sallow V-shaped valley than that of

a deep valley, as shown in figure 2. The main reason is that the shallower a

V-shaped valley the smaller errors introduced by integrating K
hviewing
open and KV

open
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because Pescape(hstop) becomes smaller in the valid range of hstop. Thus, our

approximation will enjoy higher accuracy in the shallow valley. The same

conclusion can be reached as we examine the directional pattern of the effective

emissivity of a deep V-shaped valley, such as the one when the bottom angle is 30‡.
When hviewing increases gradually, the valid range of hstop for K

hviewing
open decreased

accordingly, and the changing scope of Pescape(hstop) also decreases accordingly. As

a result, we compute the escaping part of photons by using the average value

(K
hviewing
open ) of whole light instead of Pescape(hstop) of single photon with smaller errors.
The calculated emissivity is bigger than the simulated one for the V-shaped

valley with 30‡ bottom angle, however, the calculated emissivity is smaller than the

simulated one for the V-shaped valley with 150‡ bottom angle. That may be explained

by the fact that the photons rebounded by one slope of the valley are not scattered

equally on the opposite slope. In other words, the scattering position depends on both

the photon hitting position and the configuration of the V-shaped valley. Firstly, the

photons whose hitting positions near to the bottom of the valley have a smaller

probability of escaping the valley. Secondly, the more rebounded photons will

encounter the lower part of the opposite slope for a deep valley, and the more

rebounded photons will encounter the upper part of the opposite slope for a shallow

valley. So the assumption that the rebounded photons are equally scattered on space

will overestimate the absorption of a deep valley, and underestimate the absorption of a

shallow valley. After all, the calculated emissivity is close to the simulated one. The

maximum error of emissivity is less than 0.003, which causes the error of the

temperature estimation by about 0.2 K under most realistic conditions.

3. Simulation on scaling effects of thermal emission from non-isothermal

V-shaped valleys

The effective emissivities of non-isothermal surfaces depend on pixel structure,

component emissivities and component temperatures. Here is a case study also on

the V-shaped valley. The computer simulation approach is used to investigate the

contributions of pixel structure, component emissivities and component tempera-

tures on the directional patterns of emissivities.

3.1. Monte Carlo algorithm

We assume that the V-shaped valley is open with l metres, unlimited length, and

deepness with h metres, and symmetrical configuration. The principal plane is the

cross-section of the V-shaped valley, the azimuth at right slope is 0‡, and the one at

left slope is 180‡. The material emissivities of both slopes are Tleft and Tright,

respectively. Their temperatures are Tleft and Tright, respectively. In order to

maintain generality, the thermal radiance is calculated at the wavelength of 10 mm.

1. Compute the number of photons eradiated by the right slope and left slope of

the valley, and the proportion from the left slope, pleft. The energy of one photon is

Q0~hn~hc/l J, here h is the Planck’s constant (6.626610234 J s), n is the

frequency (1/s), l is the wavelength (m), c is the velocity of light (36108 m s21).

Given a wavelength l (m), a temperature T (K) and an emissivity e, we can get the

energy M (J) from the unit surface area (m2), unit time interval (s), unit wavelength

interval (m) at wavelength l in upper hemisphere from any body. If Q0 is known,

the number of photons Nphoton can be calculated. The pleft is the proportion of

photons emitted by the left slope in total photons emitted by both slopes.
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2. Generate an even random number r, if rvpleft, the left slope of the valley

emits one photon, otherwise, the right slope emits one photon. Generate an even

random number again, which is used to find a point on the slope as the sending

point of the photon. Flying direction of the photon can be calculated in the local

coordinate of the slope according to Lambert’s law, and the direction is

transformed into the global coordinate of the V-shaped valley. Given one point

and one direction, the line equation of the flying photon can be generated.

3. Calculate the crosspoint of the line equation of the photon and the plane

equation of the slope. If the crosspoint falls out of the range of the slope, it escapes

from the V-shaped valley, otherwise, hitting happens. Record the zenith and

azimuth angles of the escaping photon.

4. The reflected photon gets its flying direction in the local coordinate of the

slope according to Lambertian law. The direction then is transformed into the

global coordinate of the V-shaped valley. The photon moves continuously

according to steps 3 and 4 until it escapes from the V-shaped valley or is absorbed

by the valley (figure 5). Then the next photon begins to run from step 2 until all

photons are processed. After one simulation is finished, count the number of

photons at every zenith and azimuth angle to obtain the energy distribution on the

2p upper hemisphere. So we can compute directional brightness temperature

Tpixelbright(m) at every direction m on the upper hemisphere.

5. Average directional brightness temperature from 85‡ to 95‡ on azimuth and

from 175‡ to 185‡ on azimuth at the principal plane as the temperature of the

principal plane of the valley, Tpixelbright(m). Given Tpixelbright(m) and the pixel

reference temperature T0, p(m) can be computed by the following formula

Figure 5. Workflow of launching and tracing a photon.
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p(m)~
Bl (Tpixelbright(m))

Bl(T0)
(6)

In fact, p(m) is the effective emissivity of the V-shaped valley obtained by the Monte

Carlo simulation.
6. We also calculate the scale effect factor g(m) (Li et al. 2000) and compare it

with g(m).

3.2. Experiments

We simulate four thermal emissions from the V-shaped valley with 0.5 m depth

(since the open is 1 m, the bevel of the valley is 45‡) by four combinations of

different material emissivities (Snyder et al. 1998) (eleft, eright) and temperatures

(Tleft, Tright).

1. The two slopes with the same emissivity but different temperatures:

eleft~0.96; eright~0.96; Tleft~290 K; Tright~310 K
2. The two slopes with different emissivities and the same temperature:

eleft~0.85; eright~0.96; Tleft~300 K; Tright~300 K

3. The emissivities and temperatures change with a positive correlation in the

two slopes:

eleft~0.85; eright~0.96; Tleft~290 K; Tright~310 K

4. The emissivities and temperatures change with a negative correlation in the

two slopes:

eleft~0.85; eright~0.96; Tleft~310 K; Tright~290 K

Figure 6. Comparison of the simulated and the modelled effective emissivities. (a) Case 1—
the two slopes with same emissivities and different temperatures. (b) Case 2—the two
slopes with different emissivities and same temperatures. (c) Case 3—the emissivities
and temperatures change with positive correlation in the two slopes. (d ) Case 4—the
emissivities and temperatures change with negative correlation in the two slopes.
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The pixel reference temperature T0 is defined as 300 K for computing p(m) and

g(m) in the four simulations. The results of comparing p(m) with g(m) are shown in

figure 6. Assuming that the principal plane is across the plane of the V-shaped

valley and the zenith angle for the left wing of the principal plane is positive. The

thick grey line represents the simulated values p(m), the thin black line represents

the modelled values g(m). It is very clear that both are matched very well for all

cases.

4. Conclusion and discussion
In this article, we have first developed the Monte Carlo approach for simulating

thermal emission from the pixels of non-isothermal three-dimensional structures,

and then deduced an analytical expression of the effective emissivity of the

V-shaped valley. The error limit of the analytical expression has also been given.

The V-shaped valley may not represent natural surfaces very well. Due to its

simplicity, it is helpful for us to understand how scale effect and directional pattern

of thermal emission of non-isothermal heterogeneous surfaces depend on material

emissivity, component temperature and the geometry of the surfaces. In reality, the

furrows of ploughed soil and the open space of the row crop usually can be treated

as approximately V surfaces. Our simulations show that scaling effects of thermal

emission from non-isothermal surfaces does exist. So Planck’s law should be

corrected so that land surface temperatures can be correctly obtained in a remote

sensing context, due to the heterogeneous non-isothermal property of remote

sensing pixels. Li’s model explains the mechanism that gives rise to directional

dependence in thermal emissions from non-isothermal surfaces. It is helpful to

develop application-specific models to obtain accurate land surface temperature.
The Monte Carlo approach is based on photon transport in pixels. Because

Kirchhoff’s law is valid only under isothermal conditions, for the sake of simulating

thermal emission of the non-isothermal surfaces, photons are transmitted and

scattered by these surfaces in this approach. Hence effective directional emissivity

of the pixel can be calculated by counting the number of escaped photons in various

directions. The Monte Carlo approach may also be used under other non-

isothermal conditions.
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