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Abstract. A simulation experiment was carried out to analyse the e� ects of the
modulation transfer function on our ability to estimate the proportions of land
cover within a pixel by linear mixture modelling. In the simulated landscape the
proportion of each land cover type in every pixel was known exactly. The standard
error of the estimate (SEE) between percentages derived from mixture modelling
and the actual land cover percentages was 11%. Substantial improvements in
estimating the percentages can be obtained simply by deriving estimates for pixels
of twice the original dimensions, the SEE dropping to 4.16%, though this is with
the obvious consequence of a � nal product with a coarser spatial resolution.
Alternatively by deconvolving the input bands using a linear approximation of
the point spread function the SEE can be reduced by almost as much, namely to
5.11%. If we combine the two approaches, by � rst doconvolving the bands,
estimating the percentages and then aggregating resultant pixels to twice their
original linear dimensions, the SEE drops to 2.24%.

1. Introduction
Attempts have been made recently to characterize land cover carried out by

estimating the proportions of cover types present within each pixel using techniques
such as linear mixture modelling (Gong et al. 1991, Asner et al. 1997, DeFries
et al. 1999).

A signi� cant, but usually ignored problem with per-pixel characterization of land
cover is that a substantial proportion of the signal apparently coming from the land
area represented by a pixel comes from the surrounding pixels (Townshend 1981).
This is a consequence of many factors including the optics of the instrument, the
detector and electronics, as well as atmospheric e� ects. These e� ects are described
by the Modulation Transfer Function (MTF), which describes how the true contrast
between high contrast bars is progressively reduced in the image as their width
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decreases (Markham 1985). Its inverse Fourier transform, the Point Spread Function
(PSF) depicts how a point of light will be represented spatially and in terms of
intensity on the images.

In this letter we use a simulated landscape to examine the e� ects of the MTF on
our ability to extract land cover proportions from remotely sensed data using linear
mixture modelling. We then suggest two approaches to reduce the impacts.

2. Mixture modelling
In mixture modelling the radiance (R) of a pixel is regarded as the areally weighted

linear sum of the radiances (r) of the c pure cover types present occupying area a

(Adams and Adams 1984). The spectral values of each of the component cover types
is represented by an end-member, which is the value of a pixel if occupied solely by
one cover type, e is an error term.

R= � c

i=1

r
i
a
i
+e (1)

Knowing R and assuming we can estimate r
i
, equation (1) can be inverted to

obtain estimates of the areas a. Estimating the values of end-members can be di� cult,
but in our simulation the values are known exactly since we allocated the mean
value to each of the pixels at the 30 m spatial resolution. A previous analysis indicated
that the type of unmixing algorithm had little impact on the results (Kalluri et al.
1997).

3. Derivation of simulated data sets
There are major practical problems in measuring accurately land cover propor-

tions in the � eld, complicated by the fact that there are always inherent uncertainties
in knowing exactly where the nominal pixel boundaries occur. Moreover if we use
real data, atmospheric e� ects will add ‘noise’. Additionally the inherent spectral
variability of cover types will add a further element of uncertainty. To avoid these
problems, a simulated landscape was generated.

We derived the simulated data as follows. The boundaries of the land cover
parcels were taken from an actual landscape in Montgomery County, Maryland,
USA on the left bank of the Potomac River. Field observations were used to label
each of these parcels into simple cover types. The classes used consisted of water,
forest, and herbaceous cover, the latter including both grassland and crops. Near
contemporaneous Thematic Mapper (TM) data were obtained and the mean values
for the cover types for each of the six re� ective bands were calculated. We then
allocated each pixel with the mean value of its cover type and thus created an
arti� cial landscape of pure pixels. The TM bands of the subscene were then degraded
to 250m spatial resolution therefore creating mixed pixels whose composition was
known exactly. The values of the pixels were solely a result of the mixing of di� erent
proportions of 30 m pure pixels. 250m corresponds to the � nest spatial resolution
of the Moderate Resolution Imaging Spectrometre (MODIS) and the Japanese
Global Land Imager (GLI). To ensure a realistic spatial degradation we applied a
kernel derived from the MTF of MODIS. We also prepared a set of images created
solely by averaging the values. In the present analysis we used estimated values
based on the instrument characteristics (Barker et al. 1992). Subsequently we
obtained actual values from the instrument but these were little di� erent. The
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resultant images do not simulate MODIS spectrally since the latter has only two
bands at this spatial resolution.

4. Results
To test that our mixture modelling procedures were operating properly we

unmixed the set of images produced by simple averaging. As expected the estimates
corresponded exactly with the known mixtures (row 1 of table 1).

When we used the data degraded with the MODIS MTF, the SEE increased to
11.00%, representing a considerable degree of uncertainty in the estimates of the
percentage of cover types. Note that in a real situation the accuracy would be lower
because of atmospheric e� ects, spectral variability of cover types and di� culties in
identifying spectral end-members.

One simple way to improve the estimates of the proportions is by aggregating
the 250m pixels to produce larger ones. This should produce more accurate estimates
since the impacts of neighbouring pixels are reduced. We could approach this by
conducting the mixture modelling on averaged pixel values, or as done here, where
we simply derived the proportions for the larger pixels by averaging the proportions
from the smaller pixels. If we aggregate 250m pixels to form 500m pixels, the SEE
is reduced to just over 4% (row 3 of table 1). This approach has the consequence of
substantially reducing the spatial resolution of the � nal output.

As an alternative approach we attempted to deconvolve the recorded spectral
values (Forster and Best 1994) using our knowledge of the PSF for MODIS, which
is the same in both scan and track directions (Barker et al. 1992):

PSF (d )= expA Õ
d 2

2s2B (2)

where d is the distance from pixel centre, and s de� nes a detector’s IFOV. In this
model only the impacts of immediately neighbouring pixels are signi� cant. Thus in
one dimension the above equation can be rewritten in discrete format:

PSF= [ a 1 Õ 2a a] (3)

where a is the proportional contribution of an immediately neighbouring pixel. In

Table 1. Standard errors of the estimate (SEE)* between the original 30 m pixels and the
derived 250m pixels (at the 90% con� dence limit) for the re� ective bands, namely
bands 1 to 5 and 7 (B1–B5 and B7) of the Thematic Mapper. The � nal column shows
the SEE for the estimated vs. the actual percentages of land cover.

Pixel size (m) and Land
procedure for generating B1 B2 B3 B4 B5 B7 cover %
images (DN) (DN) (DN) (DN) (DN) (DN) error

1. 250m, derived by simple 0 0 0 0 0 0 0
averaging

2. 250m, MTF simulation 3.19 2.99 5.08 2.97 4.58 2.13 11.00
3. 500m, aggregated from 2 1.19 1.14 1.93 1.03 1.68 0.80 4.16
4. 250m, MTF deconvolved 1.44 1.40 2.38 1.20 2.01 0.97 5.11
5. 500m, aggregated from 4 0.62 0.63 1.06 0.44 0.85 0.42 2.24

*The SEE measures the dispersion of estimated values relative to the actual value.
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the two dimensional space, the PSF can be written as

C a

1 Õ 2a

a D (a 1 Õ 2a a)= C a2 a(1 Õ 2a) a2

a(1 Õ 2a) (1 Õ 2a)2 a(1 Õ 2a)

a2 a(1 Õ 2a) a2 D = {PSF
i,j

(a)} (4)

Let x
p,l

be the radiance from the footprint of pixel (p, l), R
p,l

the recorded radiance
of that pixel, then the following relationship exists for all inner pixels of an image
of M pixels and N lines:

R
p,l

= � 1

i= Õ 1
� 1

j= Õ 1

PSF
i+2,j+2

(a)x
p+ i,l+j

, for p=2,..., M Õ 1 and l= 2, ..., N Õ 1

(5)

With appropriate treatments of boundary pixels, we have M Ö N equations and
M Ö N unknown variables. Thus the impact of the PSF can be deconvolved by
solving this equation group. According to the PSF model, a should be 0.1464.
However, the optimal performance of the deconvolution method was achieved when
a equals 0.11. Explanation for this is still being sought: however this lower value
gives the best deconvolution results for a wide range of landscapes in Bolivia, eastern
USA, Egypt and Canada.

Using the resultant images leads to a substantial reduction in error, the SEE
falling to just over 5% (row 4 of table 1) and is comparable with that obtained when
aggregating the data. As a � nal experiment, we aggregated the estimates derived
from the partly deconvolved images into 500m pixels. This resulted in an SEE of
just over 2%.

5. Conclusions
The results of our simulation experiment indicate that extracting useful informa-

tion from individual pixels can be substantively inhibited by the contribution of
signals from surrounding pixels, the MTF e� ect. Much more work is needed to
establish the size of these e� ects for di� erent landscapes and sensor types. The results
indicate the di� culties of attempting to characterize land cover based solely on the
spectral response of individual pixels. This implies that land cover properties should
be reported at spatial resolutions coarser than the individual pixel or that the signal
from individual pixels should be deconvolved. An alternative is to use contextual
procedures in which observations from surrounding pixels are used to assist the
characterization. These conclusions are probably relevant not only to the estimate
of proportions through mixture modelling but also to other procedures such as
conventional classi� cation because the spectral signatures of the pixels are a� ected
strongly by the surrounding cover types. Only in those situations where pixel size is
small relative to the area of land cover units will these e� ects be unimportant.
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