
int. j. remote sensing, 2001, vol. 22, no. 8, 1479–1493

Land-cover classi� cation methods for multi-year AVHRR data

S. LIANG
Laboratory for Global Remote Sensing Studies, Department of Geography,
University of Maryland, College Park, Maryland 20742, USA;
e-mail: sliang@geog.umd.edu

(Received 28 April 1998; in � nal form 4 October 1999)

Abstract. Advanced Very High Resolution Radiometer (AVHRR) data have been
extensively used for global land-cover classi� cation, but few studies have taken
direct and full advantage of the multi-year properties of AVHRR data. This study
focused on generating eVective classi� cation features from multi-year AVHRR
data to improve classi� cation accuracy. Three types of features were derived from
12-year monthly composite normalized diVerence vegetation index (NDVI) and
channel 4 brightness temperature from the NOAA/NASA Path� nder AVHRR
Land data for land-cover classi� cation. The � rst is based on the shape of the
annual average NDVI or brightness-temperaturepro� le, which was then approxi-
mated by a Fourier series. The coeYcients estimated by the weighted least-squares
method were used for classi� cation. The second and third features were based on
the raw periodogram of the time series and the auto-regressive modelling. A
global land-cover training database created from Landsat Thematic Mapper and
Multi-spectral Scanner imagery was used for training and validation. Both quad-
rature discriminate analysis (QDA) and linear discriminate analysis (LDA) were
explored for classi� cation, and results indicate that QDA performs much better
than LDA. The � rst feature, based on the mean annual shape, produced much
better results than the other two features. It was also found that NDVI signals
worked better than brightness-temperaturesignals. That is probably because top-
of-atmosphere signals were used, and atmospheric contaminations signi� cantly
disturb the thermal signals and correlation structures of diVerent cover types.
Further validations are needed.

1. Introduction
Land-cover maps are needed for global climate and ecosystem process models,

as well as to characterize the distribution and status of major land surface types for
environmental and ecological applications. Because of the temporal dynamics and
changes in land surface, remote sensing is the only practical means for monitoring
land-cover changes.

DiVerent global, continental and regional land-cover datasets have been derived
from remotely sensed data, particularly from Advanced Very High Resolution
Radiometer (AVHRR) data, using various methods (Tucker et al. 1985, 1991,
Malingreau 1986,Malingreau et al. 1989,Loveland et al. 1991,Loveland and Belward
1997, Townshend et al. 1991, Townshend 1994, DeFries et al. 1995, Cihlar et al. 1996,
Nemani and Running 1997, Gopal et al. 1999). Because AVHRR has relatively coarse
spectral and spatial resolution, most studies have utilized its multi-temporal charac-
teristics to classify land cover. However, multi-year characteristics of AVHRR data
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have not been fully exploited. Data from AVHRR sensors have been acquired since
1981 and are expected to continue. The long temporal history is a very useful source
to characterize land surface cover types, but it also requires advanced techniques to
extract useful information. There exist numerous time series analysis techniques in
the literature (e.g. Brockwell and Davis 1987), and several techniques have been
explored to classify land-cover types using AVHRR data, such as Fourier analysis
(Andres et al. 1994), change-vector analysis (Malila 1980,Lambin and Strahler 1994),
principal component analysis (Anyamba and Eastman 1996) and others (e.g. Nemani
and Running 1997), but few studies have taken direct and full advantage of the
multi-year properties of AVHRR data.

Land-cover classi� cation accuracy depends on many diVerent factors, of which
the eVective features and the classi� cation method are critical. DiVerent land-cover
classi� cation algorithms have been explored in the literature, but the determination
of eVective features is still far from mature. Because of serious atmospheric contamina-
tion, the original two bands in the visible and near-infrared spectrum can not be
used for eVective features. Instead, vegetation indices such as normalized diVer-
ence vegetation index (NDVI) have been widely used for global land-cover monit-
oring. Determining characteristic features from multi-temporal NDVI analysis and
other AVHRR band combinations for global land-cover classi� cation is still a
challenging topic.

The present study focused on deriving the eVective features for classifying global
land-cover types using the monthly composite NOAA/NASA Path� nder AVHRR
Land data. Three types of features were explored. The � rst was based on the shape
of the annual mean pro� le of the multi-year signals (NDVI or brightness temper-
ature), which was approximated by a truncated third-order Fourier series. The
coeYcients estimated by the weighted least-squares method constituted the � rst type
of feature. The second was the subset of the raw periodogram of the multi-year
signals. The last was based on the auto-regressive (AR) model whose coeYcients
were used for classi� cation.

A training database of 13 cover types for global land-cover classi� cation has
been created (DeFries et al. 1998). These pixels were extracted from the monthly
composite dataset. One-half of these pixels were used for training and the other half
for validation. Both quadrature discriminate analysis (QDA) and linear discriminate
analysis (LDA) were used.

2. Datasets
The AVHRR sensor has � ve bands, one in red, one in near-infrared, one in mid-

infrared and two in thermal-infrared. Its spatial resolution varies from 1.1 km at sub-
nadir to more than 10 km oV-nadir. More detailed characterizations can be found
in many textbooks (e.g. Cracknell 1997).

NOAA/NASA-sponsored AVHRR Land Path� nder dataset has been created to
act as a precursor for the international Earth Observing Systems (EOS). In the
Path� nder AVHRR Land data, attempts have been made to eliminate some factors
(James and Kalluri 1994). For example, Rayleigh scattering and ozone absorption
have been corrected. All � ve original channels have been calibrated using the post-
launch calibration algorithms. All pixels are accurately navigated and solar and scan
angles are provided. The spatial resolution of all pixels have been normalized to be
8 km. The 12-year corrected, monthly composite dataset from 1982 to 1993 were
used in this study.
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A training database of global land cover has been compiled based on high-spatial
resolution remotely sensed imagery and ancillary data (DeFries et al. 1998). A total
of 169 Landsat scenes, mostly from the Multispectral Scanner system (MSS) was
used to identify over 9000 pixels in the Path� nder 8 km resolution data where there
is high con� dence that the labelled cover type occurs. A total of 13 cover types
(table 1) from the original database (DeFries et al. 1998) were considered in this study.

3. Algorithm descriptions
The algorithms for extracting three types of features are discussed below. The

coeYcients of these models were input to classi� ers for discriminating diVerent
cover types.

3.1. Weighted least-squares method
This approach consisted of two major steps. The � rst was to generate a mean

annual pro� le. Because of the presence of noisy pixels, the median value over 12
years was used as the average. Mathematically,

LM
j

=median (L
j1

,L
j2

, ...L
j12

) (1)

where LM
j

denotes the monthly averaged observations from January (j=1) to
December (j=12).

The second step was to approximate the annual mean pro� le by a truncated
low-order Fourier series:
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are Fourier coeYcients. The phase term is de� ned as

w
j
=2p( j 1)/n

where n=12 represents 12 months and j ranges from 1 to n. After some initial
experiments, it was found that I=3 is a good choice; thus, there were seven
coeYcients to be estimated.

An ordinary least-squares procedure can be used to estimate these Fourier
coeYcients. However, the � tted function may not represent the real seasonal trend

Table 1. Land-cover types and the training pixels.

Cover types Number of pixels

Cover 1 Evergreen needleleaf forests 386
Cover 2 Evergreen broadleaf forests 1181
Cover 3 Deciduous needleleaf forests 42
Cover 4 Deciduous broadleaf forests 353
Cover 5 Mixed forests 464
Cover 6 Woodlands 362
Cover 7 Wooded grasslands-shrubland 117
Cover 8 Closed bushlands or shrubland 237
Cover 9 Open shrubland 548
Cover 10 Grasslands 1098
Cover 11 Croplands 1379
Cover 12 Barelands 1196
Cover 13 Mosses and lichens 102
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of the signals (NDVI and brightness temperature) very well. The reason is that the
� tting considers all high and low values and the low NDVI or brightness-temperature
values may result from atmospheric disturbance and other factors (Holben 1986).
Instead, a weighted least-squares technique is applied. This is a two-step procedure.
First, an ordinary least squares was implemented. Each point that deviates either
positively or negatively from the � tted trend was assigned with a diVerent weight.
Negative deviations receive low weights, whereas positive deviations obtain high
weights. In the second step, a weighted least-squares procedure was carried out. The
weights were determined form the following formula (Sellers et al. 1996):

w
i
= G0 U

i
å  2

[ 1+(U
i
+r)/2] 4  2<U

i
< r

1  r<U
i
<r

[ 1+(U
i
 r)/2] 2 U

i
>r

(3)

where U=(LM  LM )/A, LM is the � tted LM values based on the ordinary least-squares
method (in step one); A is the median of the absolute diVerence of LM and LM,
i.e. A=median {|LM

i
 LM

i
|}; and r=A/20.

3.2. Periodogram
Given a time series X

t
where t=1, ...144 in this study, the auto-covariance C

t
can be estimated (Venables and Ripley 1994):
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The periodogram I (v) at frequency v is the Fourier transformation of the auto-
covariance:
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It can be estimated by the following formula:
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3.3. Auto-regressive model
An AR process of order p is de� ned by
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(7)

where e
t

is the error term and a
i

are coeYcients. It is the special case of a more
general model—the auto-regressive integrated moving average (ARIMA) model. An
ARIMA(p,d,q) model de� nes a process whose dth diVerence is a combination of the
AR(p) and a qth order moving average (MA) model MA(q). Since the NDVI or
brightness-temperature values of most cover types have signi� cant seasonal vari-
ations, a seasonal version of the ARIMA(p,d,q) model was used in this study to
de� ne AR models of both seasonal and non-seasonal components (Venables and
Ripley 1994). After some experiments, it was found that an ARIMA ((2,0,0)×
(4,0,0)12) provided reasonably good summaries of the NDVI or brightness-temper-
ature signals, where the seasonal term was modelled as AR(4), the non-seasonal
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term was modelled as AR(2) and the number 12 indicates the period of 12 months
for the diVerencing process.

4. Land-cover classi� cation results and analysis
4.1. Weighted least-squares method

The average annual pro� les of NDVI and channel 4 brightness temperature of
all 13 cover types are displayed in � gure 1. The NOAA/NASA Path� nder data keep
only observations with the solar zenith angle smaller than 70°. Some cover types
distributed in the high-latitude regions may have many missing pixels in the winter
seasons, which corresponds to the channel 4 brightness temperature as low as 160°
in this � gure. In the winter of 1988, NOAA9 reached the end of its lifetime. Because
of satellite orbital drifts (McGregor and Gorman 1994, Privette et al. 1995, Roderick
et al. 1996), the solar zenith angle is very low in the winter so that many cover types
do not have any observations during that period of time.

It is also noticed that the NDVI values increased in general from the 1980s to
the 1990s, but the channel 4 brightness temperatures of NOAA7, 9 or 11 decreased.
It was found that this is primarily the result of satellite orbital drifts. It may be a
serious problem for studies on surface change detection, but it does not signi� cantly
aVect land-cover classi� cation.

Figure 1. Twelve-year (1982–1993) average pro� les of NDVI and band 4 brightness temper-
atures of 13 cover types. The � rst column represents the NDVI pro� les, and the second
represents the pro� les of AVHRR band 4 brightness temperature. The 13 rows corre-
spond to 13 cover types, which are de� ned in table 1.
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In spite of the problems discussed above, it can still clearly be seen that diVerent
cover types have unique NDVI or brightness temperature pro� les. This forms the
basis for distinguishing them and using them as classi� cation inputs.

Land-cover classi� cation based on the NDVI annual ‘shape’ has been reported
in the literature (e.g. DeFries et al. 1995). Because the surface NDVI or temperature
pro� les are so easily contaminated by sub-pixel clouds or other factors, it is advanta-
geous to classify them based on the mean annual pro� les from multi-year signals.

Figure 2. Illustration of the third-order Fourier series approximations to these two NDVI
average annual pro� les using both the ordinary least-squares method (solid lines) and
the weighted least-squares method (dashed lines).

Table 2. CoeYcients of the weighted least-squares � tting that is shown in � gure 2.

CoeYcients

Cover type a
0

a
1

b
1

a
2

b
2

a
3

b
3

Closed bushlands or 0.2130  0.0042 0.0246  0.0191  0.0329 0.0045 0.0084
shrubland

Grasslands 0.1873  0.1699 0.0190  0.0336  0.0358  0.0031 0.0195
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Two examples are shown in � gure 2. The monthly NDVI values are the median
values of the corresponding methods in the period of 12 years. Both the ordinary
least-squares method and the weighted least-squares method produce similar � ttings.
The coeYcients using the weighted least-squares method are presented in table 2.
Both � ttings are good, indicating that the third-order Fourier series is suYcient to
summarize the variations. It is also obvious that the weighted least-squares method
generated the higher r2 values. The major diVerence is that the curves � tted by the
weighted least-squares method constitute the upper bounds of these NDVI points.

The classi� cation results based on the weighted least-squares method are summar-
ized in table 3. It is clear that QDA is much better than LDA and that the NDVI
features are better than the channel 4 brightness temperature. The best result was
achieved when both NDVI and channel 4 coeYcients were combined into classi� ers
in which both surface re� ective and emitted properties were utilized. This result is
consistent with the earlier reports (e.g. Nemani and Running 1997). When all 14
coeYcients were input into the classi� ers, cover type 3 did not have enough samples
necessary for training. Therefore, this cover type was excluded when using all 14
coeYcients. The detailed misclassi� cation matrices are presented in table 4. Notice
that these matrices are not symmetrical. When the classi� cation is based on the
channel 4 brightness temperature (table 4(b)), cover type 6 (woodlands) is the poorest
classi� ed, with a classi� cation accuracy of 40.1% , followed by cover type 1 (evergreen
needleleaf forests) with 60.1% . If the feature is based on NDVI (table 4(a)), cover
type 7 (wooded grasslands-shrubland) has the lowest classi� cation accuracy of 71.8% ,
followed by cover type 1 with 77.2% and cover type 6 with 82.3% . If both NDVI
and channel 4 brightness temperature are used as features (table 4(c)), cover type 8
(closed bushlands or shrubland) has the lowest classi� cation accuracy of 88.6% ,
followed by cover type 7 of 88.9% and cover type 6 of 90.1% . These cover types
(e.g. 6 and 7) are more diYcult to distinguish from grasslands and croplands.

4.2. Periodogram
The raw periodogram of all 13 cover types is shown in � gure 3. The plots are on

a log scale, in units of decibels, i.e. the plot is of 10log10I (v). DiVerent cover types
obviously display diVerent patterns of the raw periodogram. Particularly noticeable
is the peak at the frequency 1 (lag 12) when the signal has a regular seasonal pattern.

It is necessary to determine the feature from the raw periodogram for classi� ca-
tion. To select the same number of inputs from the raw periodogram as in the
weighted least-squares method, periodogram values were arbitrarily selected at lags

Table 3. Overall classi� cation accuracy (% ) based on the weighted least-squares method
with two classi� ers and three classi� cation features (T4 represents band 4 brightness
temperature).

Feature

Classi� er NDVI T4 NDVI+T4

LDA 75.58 64.59 81.07
QDA 91.17 84.15 95.89
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Table 4. Classi� cation matrix using the weighted least-squares method with (a) the NDVI
feature, (b) band 4 brightness temperature feature and (c) the combined NDVI and
band 4 brightness temperature feature.

(a) Cover types

Cover types 1 2 3 4 5 6 7 8 9 10 11 12 13

1 149 23 0 3 7 8 0 0 0 0 3 0 0
2 1 566 0 3 8 5 0 0 0 0 7 0 0
3 0 0 21 0 0 0 0 0 0 0 0 0 0
4 3 7 0 161 5 1 0 0 0 0 0 0 0
5 13 4 0 1 208 2 0 0 0 0 4 0 0
6 17 4 0 3 1 149 0 0 0 0 7 0 0
7 0 0 0 0 0 3 42 1 0 3 9 0 0
8 0 0 0 0 0 0 7 98 2 11 1 0 0
9 0 0 0 0 0 0 0 2 258 14 0 0 0

10 0 0 0 1 0 9 2 0 31 477 29 0 0
11 0 19 0 3 4 20 2 0 0 9 632 0 0
12 0 0 0 0 0 0 0 0 0 1 0 597 0
13 0 0 0 0 0 0 0 0 0 0 6 0 45

(b) Cover types

Cover types 1 2 3 4 5 6 7 8 9 10 11 12 13

1 116 0 0 5 33 10 0 0 0 2 27 0 0
2 0 565 0 1 0 2 0 0 11 0 11 0 0
3 0 0 21 0 0 0 0 0 0 0 0 0 0
4 0 24 0 135 5 0 0 0 0 0 13 0 0
5 1 0 0 2 190 2 0 0 4 0 33 0 0
6 4 12 3 10 0 74 2 15 13 18 25 0 5
7 0 0 0 0 0 2 41 1 4 8 2 0 0
8 0 0 0 0 0 0 9 86 18 3 3 0 0
9 0 0 0 0 0 0 7 6 237 17 7 0 0

10 5 3 0 1 12 4 6 0 3 427 88 0 0
11 1 8 0 5 7 7 4 4 28 21 604 0 0
12 0 0 0 0 0 0 0 0 1 3 0 594 0
13 0 0 0 0 0 0 0 0 0 0 0 0 51

(c) Cover types

Cover types 1 2 4 5 6 7 8 9 10 11 12 13

1 180 4 0 5 2 0 0 0 0 2 0 0
2 0 577 4 0 2 0 0 0 0 0 7 0
4 0 11 164 1 0 0 0 0 0 1 0 0
5 8 0 1 217 0 0 0 0 0 6 0 0
6 5 1 3 0 163 3 0 0 0 6 0 0
7 0 0 0 0 1 52 0 0 2 3 0 0
8 0 0 0 0 0 7 105 0 6 1 0 0
9 0 0 0 0 0 0 1 263 8 2 0 0

10 0 0 1 0 3 1 0 2 525 17 0 0
11 1 0 0 2 3 0 0 0 15 668 0 0
12 0 0 0 0 0 0 0 0 4 0 594 0
13 0 0 0 0 0 0 0 0 0 0 0 51
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Figure 3. Raw periodogram of NDVI and channel 4 brightness temperatures of 13 cover
types. The plots are on a log scale, in units of decibels, i.e. 10 log10

I (v). The � rst
column represents NDVI, and the second represents band 4 brightness temperature.
The 13 rows correspond to 13 cover types, which are de� ned in table 1.

of 6, 8, 10, 12, 14 and 26, corresponding to frequencies of 0.5, 0.67, 0.83, 1 and 2.17
and the median value of the signal for classi� cation.

Since it has been demonstrated above that QDA works better than LDA, only
QDA was used in the rest of this study. The total of seven inputs of the NDVI raw
periodogram generated an overall classi� cation accuracy of 83.34% . When the same
procedure was applied to the channel 4 brightness temperature, the overall classi� ca-
tion accuracy was 76.97% . If both features (14 inputs) were combined without cover
type 3, the overall classi� cation accuracy was 91.96% .

To � nd out whether the optimal choice of the subset of the raw periodogram
will produce the better classi� cation results, both the within-group variance and the
between-group variance were calculated. To maximize the cover type discrimination,
it was necessary to select the features so that the within-group variance should be
as small as possible and the between-group variance as large as possible. Instead of
using the individual variance, the common practice is to use the ratio of the between-
group variance to the within-group variance. The larger the ratio, the better for
cover-type discrimination. These two types of variances, and their ratio of the NDVI
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raw periodogram at lags smaller than 50, are displayed in � gure 4. It seems the mean
NDVI is the most useful feature, since the ratio of the between-group variance to
the within-group variance is the largest. Another remarkable peak of the variance
ratio is at lags around 12. The raw periodogram at lags around 12 characterizes the
annual shape of the NDVI pro� le. It explains why the weighted least-squares method,
based on the annual shape of the NDVI pro� le, can produce very good classi� cation
results, as demonstrated in the previous section.

According to the magnitude of the ratio, the � rst seven best raw periodograms
at lags of 1, 13, 12, 19, 25, 37 and 14 were selected. The classi� cation accuracy was
83% , which was not signi� cantly better than the previous classi� cation results. When
the � rst 14 best features were chosen at lags of 1, 13, 12, 19, 25, 37, 14, 18, 7, 31, 44,
4, 6, 43, the classi� cation accuracy became 87.46% . It seems that the better choice
of the subset of the raw periodogram does not improve the classi� cation results
signi� cantly.

4.3. Auto-regressive model
The auto-correlation coeYcients of the diVerent cover types are shown in � gure 5.

Dashed lines indicate the approximate 95% con� dence limits. It can be seen that
the NDVI and brightness temperature of covers 8, 9 and 12 did not show any
signi� cant correlation ‘structures’.

In the initial analysis, AR(7) and AR(14) models were � tted to the NDVI values
of each pixel. The overall classi� cation accuracy was 62.18% and 73.72% ,
respectively.

In the attempt to improve classi� cation results, an ARIMA ((2,0,0)×(4,0,0)12)
was � tted to the NDVI signal, the classi� cation accuracy using these six coeYcients
and the median NDVI value was 68.83% . It was an improvement when compared
to the AR(7) model, but it was still not as good as the classi� cation results using
the weighted least-squares method or the raw periodogram. Very similar results were
achieved from the channel 4 brightness temperature.

These results indicate that the correlation structures of the multi-year signals
(NDVI or channel 4 brightness temperature) are not very eVective for land-cover
classi� cation. One of the main reasons is probably that the monthly composite data
still contain a great deal of cloudy or sub-cloudy pixels, which greatly impact the
correlation ‘structure’ of the remotely sensed data of diVerent cover types.

5. Conclusions
Multi-temporal AVHRR data have been used for characterizing land surface

cover types in many studies, but multi-year characteristics of AVHRR data have not
been fully exploited. One of the challenging issues is to derive eVective features as
inputs to classi� ers.

To achieve higher classi� cation accuracy of global land cover using the multi-
year NOAA/NASA Path� nder AVHRR Land data, techniques were explored to
extract three types of features and input them into two classi� ers. The � rst feature
was based on the shape of the annual average NDVI and channel 4 brightness
temperature pro� les. A weighted least-squares method was then used to approximate
the average annual pro� le, and the estimated coeYcients were used for classi� cation.
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The second feature was based on the raw periodogram of the multi-year signals. The
subset of the raw periodogram for each pixel was then used for classi� cation. The
third feature was based on the correlation structure of the temporal signal. An AR
model and the seasonal ARIMA model were � tted to the temporal signals, and the
coeYcients were used for classi� cation.

Based on training data that were created from Landsat TM and MSS imagery,
the weighted least-squares method, using the annual average temporal pro� les,
generated the best classi� cation results. Additionally, the NDVI features were better
than the channel 4 brightness temperature features. It is consistent with the earlier
studies that NDVI was less sensitive to atmosphere contamination than a single
thermal band. If land surface temperature, that may be estimated from the split-
window algorithms or other techniques, were input into classi� ers, the conclusion
may have been diVerent. However, since land surface temperature estimation algo-
rithms from AVHRR data are still in the research stage, no attempts were made to
integrate them in this study. When two sets of coeYcients from both NDVI and
band 4 brightness temperature were combined, the best overall classi� cation accuracy
of 95.9% was obtained. The classi� cation results based on the raw periodogram and
the correlation structure were not as good as those based on the annual average
pro� le. One of the reasons is probably because these two types of features are highly
sensitive to contaminated pixels. Cloudy or sub-pixel cloudy pixels signi� cantly
disturb the unique periodogram and correlation structure of each cover type. In this
study, every individual observation was used, no matter whether it was labelled as
a cloudy pixel, mixed pixel or bad-quality pixel. If satellite data can be eVectively
corrected atmospherically, these two approaches, based on the raw periodogram
and the correlation structure, will probably be a very powerful way to classify
land-cover types.

Two classi� ers (QDA and LDA) were used in this study. QDA consistently
produced the better classi� cation results, indicating that the boundaries of diVerent
cover types in the feature space are not linear in general. It showed that the
determination of classi� cation features is critical, but the choice of a classi� er is also
important.

This study focused on the NOAA/NASA Path� nder AVHRR data, but the basic
procedures can be used for any temporal pro� les of remotely sensed data. In particu-
lar, these methods might be helpful to analyse Moderate Resolution Imaging
Spectroradiometer (MODIS) data in the EOS era.
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Figure 5. Auto-correlation plots of NDVI and channel 4 brightness temperatures of 13 cover
types de� ned in table 1. Dashed lines indicate the approximate 95% con� dence limits.
The � rst column represents NDVI, and the second represents band 4 brightness
temperature; (a) represents the � rst six cover types, and (b) represents the last seven
cover types.
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