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Abstract. We used the multi-temporal ten-day composite data from the
Advanced Very High Resolution Radiometer (AVHRR) for the years 1983 to 1986
to retrieve the Bidirectional Re� ectance Distribution Function (BRDF ) using
high performance computing techniques. Three diVerent models are used: a
simple linear model, a semi-empirical iterative model and a temporal model. The
objectives of this study were to compare the performance of diVerent BRDF
models at a global scale, assess the computational requirements and optimize the
algorithm implementation using high performance computational techniques, and
to determine if there is any coherent spatial structure in the coeYcients of diVerent
BRDF models corresponding to diVerent land cover types. The standard error
between model computed re� ectances and the input data was used to quantify
the performance of the models.Even though the iterative model is computationally
more expensive (158 minutes) than either the simple linear model (15 minutes) or
the temporal model (16 minutes), the results from all the three models were very
similar when the BRDF was estimated at discrete time periods. If the BRDF
models were applied without dividing the input data into discrete time intervals,
then the temporal model gave better results than the other two. All the models
were run on an IBM SP2 parallel machine with 16 CPUs. Most of the mountain-
ous and snow covered areas in high latitudes had null values since the cloud
screening algorithm used in the Path� nder processing performed poorly in distin-
guishing between snow and clouds. The BRDF coeYcients of the iterative model
and the Fourier coeYcients of the temporal model showed a strong spatial
structure corresponding to known variations in land cover.

1. Introduction
Since much of the land surfaces is anisotropic, it is important to understand

the dependency of land surface re� ectance measurements on the illumination and
observation geometry in remote sensing studies. Angular variations in surface
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re� ectance are generally described by the Bidirectional Re� ectance Distribution
Function (BRDF ) (Nicodemus et al. 1977):
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where fr is the BRDF (sr Õ 1), dL is the re� ected radiation for an incident beam of
intensity dE at wavelength l, h and Q are the zenith and azimuth angles respectively
and the subscripts s and v denote the angles of the Sun and view directions respect-
ively. The BRDF is often described by the bi-directional re� ectance factor, r f

r
p.

Surface BRDF variations can cause signi� cant variations in multi-temporal meas-
urements that are made at diVerent illumination and view angles, especially from a
wide � eld-of-view instrument such as the Advanced Very High Resolution
Radiometer (AVHRR) (Holben 1986, Goward et al. 1991, Gutman 1991, Cihlar et al.
1994, Burgess and Pairman 1997, Li et al. 1996). Thus, for most remote sensing
applications, it is desirable to accurately characterize surface BRDF and normalize
the measurements to a consistent geometry. Furthermore, the surface BRDF has
the potential to provide important information about the state variables such as the
leaf area index (LAI ) (M yneni et al. 1995). Knowledge of surface BRDF is also
important when deriving surface albedo, which is an important variable in energy
balance and radiative transfer modelling (see e.g. P inker and Laszlo 1990). Since our
current knowledge of the BRDF is limited, Earth Observing System (EOS) sensors
such as the Multi-angle Imaging Spectroradiometer (M ISR) have been speci� cally
designed to provide us with multiangluar measurements, so that we can better
understand the BRDF over diVerent land cover types at a global scale.

Current models to retrieve BRDFs can be categorized as empirical (e.g. Walthall
et al. 1985), semi-empirical (e.g. Rahman et al. 1993b) or physically based models
(e.g. Myneni et al. 1992). The empirical models derive a set of statistical coeYcients
by � tting a polynomial function to observed re� ectances at diVerent geometries.
Since the coeYcients are derived statistically, they have little direct physical meaning.
A number of surface parameters (such as the size, shape, and distribution of vegetation
canopy elements) are used to describe the shape of the BRDF in physical models.
From a set of observations, the parameters are derived by inverting the physical
model. The physical model is initialized using guesses of the values of the parameters,
and the model is iterated until the computed re� ectances best � t the observed data.
A merit function, such as a least-squares diVerence between the modelled values of
the re� ectance and the observed data, is used to determine the accuracy of the � t.
Thus, the physical models can be used to derive surface variables such as the LAI,
which can then be used to estimate other parameters that are important in modelling
biogeochemical cycles, such as surface roughness or fraction of photosynthetically
absorbed radiation. However, the physical models are computationally expensive
and the number of parameters required can be large. The accuracy of the derived
parameters depends upon the accuracy of the input data, and the robustness of the
model inversion. Semi-empirical models (e.g. Roujean et al. 1992, Rahman et al.
1993a, b) have a set of statistically derived coeYcients with physical meaning.
Compared with the physical models, fewer parameters are required and these models
are thus relatively easy to implement.

Re� ectance measurements from EOS sensors such as the Moderate Resolution
Imaging Spectroradiometer (M ODIS) and MISR are expected to provide the
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capability to retrieve surface BRDF operationally through a combination of well
tested algorithms (Diner et al. 1996, Strahler et al. 1999). However, these algorithms
have not been previously applied at a global scale and there remain several issues
that need to be addressed:

d How do these algorithms perform at a global scale?
d What are the computational requirements and how do we optimize the compu-

tational performance?
d Is there a spatial structure in the model coeYcients corresponding to diVerent

land cover types?

Our objective is to answer these questions by applying some of the BRDF algorithms
chosen for MODIS and MISR to global AVHRR data.

Several studies aimed at deriving BRDF from AVHRR data have been reported
in the literature (e.g. Cihlar et al. 1994, Braswell et al. 1996, P rivette et al. 1996).
However, these studies used samples of pixels from imagery at varying spatial and
temporal resolutions and application of these algorithms at a global scale has never
been performed. We have implemented three BRDF algorithms in this study using
the Path� nder AVHRR Land (PAL ) dataset (James and Kalluri 1994). From the
suite of BRDF algorithms proposed for implementation for MODIS and MISR
instruments, we chose the modi� ed Walthall model (Walthall et al. 1985, Nilson and
Kuusk 1989) and the Coupled Surface Atmosphere Re� ectance (CSAR) model
(Rahman et al. 1993a, b) for deriving the BRDF from AVHRR data. We believe that
these two algorithms are good candidates for addressing the above mentioned issues,
since they have been shown to work well over diVerent cover types (e.g. Rahman
et al. 1993a, Lewis et al. 1995, Russell et al. 1995, Diner et al. 1996, O’Neill et al.
1997). Besides these two models, we also used the temporal model of Liang and
Townshend (1997), which uses an additional temporal function besides the geometry
of observations to describe the BRDF. We used high performance computer techno-
logy to optimize the input/output (I/O) and computation time on a multiprocessor
system. The following sections describe the algorithms implemented in our study,
the input dataset, results from the algorithms and, � nally, the computational
performance of the algorithms.

2. BRDF algorithms implemented in this study
The Walthall model describes the surface BRDF as a quadratic function of view,

solar and relative azimuth angles (Walthall et al. 1985). This model has been widely
tested using data from diVerent land cover types and the model coeYcients are
derived empirically (e.g. Ranson et al. 1991, Russel et al. 1995, Walthall 1997).
Nilson and Kuusk (1989) modi� ed the Walthall model to satisfy the principle of
reciprocity:
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where r(hs ,hv ,Q ,l) is the surface BRDF and h, Q and l are the zenith and azimuth
angles, and wavelength respectively. The subscripts v and s denote the angles of the
sensor and the Sun respectively. Q is the relative azimuth angle (Q Qv Qs) and a0–3
are the model coeYcients. The coeYcients in equation (2) are derived from a set of
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directional re� ectances for each solar zenith angle by curve � tting using a least-
squares routine.

The second model we implemented is the CSAR model of Rahman et al. (1993a),
which can be written as:

r(hv ,Qv ,hs,Qs ,l) r0
cos Õ h

v cos Õ h
s

(cos hv cos hs)
Õ

F (g){1 R(G)} (3)

The � rst term on the right-hand side of equation (3) is a modi� ed Minnaert (1941)
function, and describes the variations in nadir re� ectance (r0) with view and illumina-
tion angles. k is an empirical parameter that ranges from 0 to 1 and indicates the
level of surface anisotropy. The general shape of the BRDF is described by k, and a
surface with lower value of k is more anisotropic than a surface with higher values
of the same. A one-parameter Henyey and Greenstein (1941) function is used to
characterize the phase function:

F (g)
1 H2

{1 H2 2Hcos (p g)}1.5
(3a)

where cosg coshs coshv sinhs sinhv cosQ and H is an empirical value that
determines the relative amount of forward and backward scattering.

The factor 1 R(G) accounts for the hot spot in the backscatter direction and is
formulated as:
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Thus, the CSAR model has three unknown parameters—r0 , k and H—which have
to be determined by model inversion and numerical iteration. Both the modi� ed
Walthall model and the CSAR model have been adopted to generate BRDF and
albedo products from MODIS and MISR instruments on the EOS-AM (Terra)
platform (Diner et al. 1996, Strahler et al. 1999). To minimize the computational
complexity of the CSAR model in the operational retrieval of BRDF from MISR
data, a modi� ed version of equation (3) is used to allow a nearly linearizable least-
squares solution in the derivation of model parameters. Nevertheless, the CSAR
model is still computationally more intensive than the modi� ed Walthall model. In
our analysis, we implemented the original CSAR algorithm as given by equation (3).

The modi� ed Walthall model and the CSAR model assume that variations in
surface re� ectance are caused by changes in viewing and illumination geometry only.
It is supposed that the target does not change signi� cantly over the period of
measurement. However, land cover types such as grasslands and deciduous forests
exhibit seasonality, and a temporal BRDF model is thus required to account for
phenological variations of the land surface. The temporal BRDF model of Liang
and Townshend (1997) uses Fourier techniques to account for variations in surface
phenology, and this is the third model that we used in this study. This model is an
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extension of the modi� ed Walthall model and has eight coeYcients: four for the
modi� ed Walthall model and four for the temporal function:
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The coeYcients a0–7 are derived by a statistical least-squares method as in the
modi� ed Walthall model. N is the number of measurements in a year and t varies
from 0 to N 1.

3. Input data
We used the PAL dataset (James and Kalluri 1994) from 1983 to 1986 to retrieve

global BRDF. The PAL dataset is a consistently calibrated and processed global
AVHRR dataset and has a spatial resolution of 8 km. Although PAL data are
available as daily and ten-day maximum value Normalized DiVerence Vegetation
Index (NDVI ) composites, only the composites were used in our study in order to
minimize the eVects of cloud and atmospheric contamination (Holben 1986). There
are twelve data layers for each compositing period, which consist of the following
variables: consistently calibrated re� ectances and brightness temperatures from the
� ve bands of the AVHRR, NDVI, scan and Sun geometry for each pixel, Earth
location, cloud and quality � ags, and date of observation. The visible and near-
infrared (NIR) re� ectances have been corrected for Rayleigh scattering and ozone
absorption. Each ten-day composite image is about 225 Mbytes, and there are 36
composites in an year. PAL data are available for the time period 1981 to 1999.
However, several processing errors have been subsequently detected in the dataset
(Smith and Kalluri 1997); we only used data from 1983 to 1986, since at the time of
our analysis, only data for this time period had been corrected for processing errors.
In spite of its limitations, the PAL data is the only global data set that is available
which is suitable for this study.

4. Algorithm implementation
As previously mentioned, the modi� ed Walthall model and the CSAR model

assume that the land surface is invariant during the time of observations. Because
we used multi-temporal observations in our analysis, we had to characterize surface
anisotropy at discrete time intervals. To minimize the eVects of changing surface
phenology on BRDF retrieval from these two algorithms, the PAL data from 1983
to 1986 were divided into four quarters: January–March, April–June, July–September
and October–December. Each quarter contains data grouped from all the four years.
Increasing the temporal resolution by more than three months introduced phenolo-
gical eVects in the BRDF signal, while at the same time decreasing the time period
by less than three months did not provide enough observations to determine the
BRDF accurately. Cloud-free pixels were selected from each quarter using the
CLAVR (Clouds from AVHRR) � ags (Stowe et al. 1991) in the PAL dataset, and
only these pixels were used in determining the BRDF coeYcients for each quarter.

Using the clear pixels from each quarter, the coeYcients of the modi� ed Walthall
model and the CSAR model were determined by inversion of equations (2) and (3).
Simply stated, the inversion algorithm determines the coeYcients of the model so
that the estimated re� ectances best � t the observed values. The derived coeYcients
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should minimize the merit function, which is the cumulative squared diVerence
between the observed values and model predicted values, that is

e2
=

(r r̂ )2 (5)

where r is the observed re� ectance from the input dataset, r̂ is the modelled
re� ectance and n is the total number of observations over a given target. Because of
the linear relationship between the independent parameters and the re� ectances in
the modi� ed Walthall model, this model can be solved using a linear least-squares
regression analysis. However, due to the nonlinear nature of the CSAR model, we
used Powell’s (1964) method to minimize the merit function. Powell’s method has
been previously used in inversion of BRDF models (e.g. Kuusk 1991, Liang and
Strahler 1993, 1994). Starting with some initial guess values of the model coeYcients,
Powell’s method iterates until the error term is minimized. The number of iterations
needed to � nd the minima depends on how close the initial guesses are to the � nal
solution. The closer the initial guesses are to the � nal solution, the fewer iterations
are needed. The � nal solution is not aVected by the initial guess values, but the time
to � nd the solution is aVected. For a detailed description of implementing Powell’s
method on this dataset, the interested reader is referred to Zhang et al. (1998). Using
samples of pixels from diVerent land cover classes (DeFries et al. 1998) an initial
average estimate of the model coeYcients was derived, and these estimated values
were then used as starting guess values for all the pixels within that land cover type
throughout the globe. Since the temporal model (4) describes the variations in surface
re� ectance as a continuous function of time, the input data are not divided into
discrete time intervals, and all the cloud-free data are used to derive coeYcients that
are valid for all the twelve months.

The following global images are generated as output from each model: model
coeYcients, standard errors of model predicted re� ectances in channels 1 and 2 and
NDVI, the correlation coeYcients (R2) from the least-squares regression equations
that were used to derive the model coeYcients, and the number of points used to
derive the model coeYcients.

The input data consist of nine global images per composite, including the
re� ectance and geometry layers, where each image is a two-dimensional array of
5004 2168 pixels. There are thirty six composites in a year, and the total data
volume for the four-year time period is 27 Gbytes consisting of 1296 images. All the
three algorithms were implemented on an IBM SP2 computer with 16 processors.
Each node on the SP2 machine has six 2.2 GB SCSI disks, and all the nodes are
connected by a high performance switch. The algorithms were designed in the Single
P rogram Multiple Data (SP MD) model, where each processor executes the same
code on diVerent parts of the image. Optimum computational performance was
achieved by minimizing the total I/O time of data transfer between disks and memory,
balancing the computational loads among diVerent nodes, and � nally minimizing
the communication among the nodes This was achieved by partitioning the input
data equally among the 16 processors of the machine. We eYciently laid out the
1296 input images on the available disks, accessed them once, extracted the land
data and redistributed them among the nodes. Thus, the I/O and communication
between the nodes were minimized (Zhang et al. 1998).
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5. Results and discussion
In this section we � rst discuss the performance of the three BRDF models at a

global scale by comparing the standard errors between predicted re� ectances from
each model with re� ectances measured by AVHRR in channels 1 and 2. We then
present the benchmark results of the three models on single and multiprocessor
computer environments. F inally, we examine the spatial distribution of model
coeYcients to see if there is any correlation between the land cover and BRDF
coeYcients.

We compare the model’s performance at a global scale using histograms of
standard errors. At the global scale there are no known BRDF datasets available at
8 km spatial resolution in order to compare and validate our results. Standard errors,
root mean square errors and relative errors are the commonly used statistics to
measure a model’s performance and have been used by several authors to test BRDF
models (see, for example, Kimes et al. 1987, Liang and Strahler 1994, P rivette et al.
1996). A model’s performance is gauged by testing its ability to match measured
re� ectances (P rivette et al. 1997). The standard error between measured (r ) and
modelled (r̂ ) re� ectances is expressed as:

Standard error =

(r r̂ )2

N
(6)

where N is the total number of measurements used to derive the coeYcients for any
location.

A comparison of the standard errors between the predicted re� ectances from the
three BRDF models and re� ectances measured by the AVHRR in channels 1 and 2
is shown in � gure 1 for the third quarter (July–September). For the modi� ed Walthall
and the CSAR models, the re� ectances were modelled using the coeYcients derived
for the third quarter. However, for the temporal model, a single set of coeYcients
applicable for the entire duration of the dataset was derived, and these coeYcients
were used to model the re� ectances for the third quarter. The histograms of the
standard errors show that all the models perform very similarly at a global scale for
the dataset we analysed.

Comparison of standard errors in re� ectances from the modi� ed Walthall model
and the CSAR model for the third quarter (July–September) are shown in � gures
2(a)–2(d) for thirteen global land cover classes (table 1). In this analysis, the global
land cover classi� cation map of DeFries et al. (1998) was used. The box plots in
� gure 2 show the statistical distribution of the standard errors. The lower boundary
of the box closest to zero indicates the 25th percentile, and the upper boundary of
the box farthest from zero indicates the 75th percentile. The thin line within the box
shows the median of the data, while the thick line shows the mean. Whiskers above
and below the box indicate the 90th and 10th percentile respectively. Both the
modi� ed Walthall model and the CSAR model had the lowest mean standard error
of derived re� ectances over wooded grasslands and shrublands (Class 7) in channel
1 as well as in channel 2. When we compare the statistical distribution of the standard
errors within each land cover class, in general, the variation in the standard errors
of re� ectances derived by the CSAR model was more than those derived by the
modi� ed Walthall model; that is, for each land cover type, both the box and the
whiskers on the plots for the CSAR model are longer than those for the modi� ed
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Figure 1. Comparison of standard errors in channel 1 and 2 re� ectances from all the three
models for the third quarter (July–September) during 1983–1986 for the whole globe.
For the temporal model, we used data from all four years to derive the model
coeYcients and applied them to compute the re� ectances and standard errors for the
third quarter.

F igure 2. Comparison of standard errors in channel 1 and 2 re� ectances for 13 land cover
classes. (a) Standard errors in Channel 1 re� ectances from the modi� ed Walthall
model. (b) Standard errors in Channel 2 re� ectances from the modi� ed Walthall model.
(c) Standard errors in Channel 1 re� ectances from the CSAR model. (d) Standard
errors in Channel 2 re� ectances from the CSAR model. Data shown here is for the
third quarter (July–September) during 1983–1986. The land cover types are given
in table 1.
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Table 1. De� nition of global land cover classes from DeFries et al. (1998).

1 Evergreen needleleaf forests
2 Evergreen broadleaf forests
3 Deciduous needleleaf forests
4 Deciduous broadleaf forests
5 Mixed forests
6 Woodlands
7 Wooded grasslands/shrublands
8 Closed bushlands or shrublands
9 Open shrublands

10 Grasses
11 Croplands
12 Bare
13 Mosses and lichens

Walthall model. For all the land cover classes, standard errors in re� ectances were
higher in channel 2 than in channel 1. Among diVerent land covers, crop lands
(Class 11) and mixed forests (Class 5) had high mean standard errors in channel 2
re� ectances from both the CSAR and modi� ed Walthall models. Open shrub lands
(Class 9) had the highest mean error in channel 1 re� ectances from both the models.

F igure 3 shows the standard errors between predicted re� ectances from all the
three models and measured re� ectances in AVHRR bands 1 and 2 over Asia and
parts of the Sahara when the data from the four years are used together in deriving
the BRDF, i.e. the input data are not divided into quarters. F igure 3 shows that
over seasonally invariant land cover types such as deserts, all the models perform
equally well, whereas in higher latitude areas with deciduous vegetation that has a
strong seasonal variation, the temporal model performs better as shown by the
substantially smaller standard errors. Seasonal variations in surface conditions intro-
duced errors in characterizing the BRDF by the modi� ed Walthall model and the
CSAR model. Thus, the temporal model has a distinct advantage over the other two
models since it does not require the division of data into discrete time intervals, and
a single set of coeYcients from this model can be applied to estimate the BRDF at
any given time.

For the modi� ed Walthall model, 3600 F loating Point Operations (FLOPs) are
required per pixel to derive the coeYcients. In comparison, the CSAR model is
computationally more expensive because of its iterative nature, and requires 3.9
MFLOPs per pixel. Thus, for the 2.5 million land pixels in the PAL dataset, 9
GFLOPs are required to solve the modi� ed Walthall model, 9750 GFLOPs for the
CSAR model, and 40 GFLOPs to solve the temporal model. Given the peak perform-
ance of 266 MFLOPs per second of a single RS6000 processor, our estimates indicate
that 3 h 16 min processing time is required to determine the coeYcients of the
modi� ed Walthall model using a single CPU. Using a single CPU requires about
42 h to solve the BRDF for the CSAR model and 3 h 28 min to solve the temporal
model.

On the IBM SP2 computer con� guration described in §4, about 159min are
needed to run the CSAR model for the global dataset, while only 16 min are required
to determine the BRDF coeYcients for the modi� ed Walthall model for each quarter
(table 2). We achieved a performance rate of 0.9 GFLOPS for the modi� ed Walthall
model, and 1.2 GFLOPS for the CSAR model on the SP2, when all the 16 processors
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Figure 3. Spatial distribution of standard errors in AVHRR channels 1 and 2 re� ectances
from all the three models when the input data from 1983–1986 were used together,
i.e. the input data were not divided into quarters for retrieving the BRDF. Parts of
North Africa and Asia are shown in this image.

are used. The time taken to solve the temporal model using all the 16 nodes is
18 min. Table 2 lists the benchmark results of running time for the three BRDF
models in single and multiprocessor computational environments and shows that
the time spent in data I/O is similar for all the models. However, the computational
time is signi� cantly diVerent.

F igures 4 and 5 show the BRDF coeYcients for AVHRR channels 1 and 2
respectively for the modi� ed Walthall model. These coeYcients are for the third
quarter (July–September) during 1983–1986. For the � rst time to our knowledge,
these images show the coeYcients of a BRDF model at a global scale. In general,
the spatial structure of coeYcients a0–2 is less coherent among diVerent land cover
types, and their images are more ‘noisy’ compared to the coeYcient a

3 which
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Table 2. Running time (minutes) for the three BRDF models in single and multiprocessor
computational environments. Each CPU is an IBM RS6000 processor with a peak
performance of 266 MFLOPS.

Modi� ed Walthall
model CSAR model Temporal model

1 16 1 16 1 16
processor processors processor processors processor processors

I/O 190 15 190 14 193 16
Computation 2.0 0.5 2300.00 144 11 1
Communication 4 0.5 4 0.5 4 1
Total 196 16 2494 158.5 208 18

represents the nadir re� ectance value for an overhead Sun in the individual AVHRR
bands for this model. CoeYcients a

0–2 cannot be linked to any particular physical
attribute of the land cover. The spatial patterns of a3 shown here are consistent with
diVerent land cover classes (e.g. DeFries and Townshend 1994). Densely vegetated
areas (e.g. central Africa, Brazil, temperate and boreal forests in Asia and Europe)
and agricultural regions (e.g. central USA) show high re� ectances in channel 2 and
very low re� ectances in channel 1. Deserts, on the other hand, show high re� ectances
in both the bands (e.g. Sahara, central Australia, Kalahari). The polar ice caps, and
the mountainous regions of the Himalayas, Andes and the Rockies have null values
due to insuYcient data.

F igure 6 shows a global image of the total number of ‘cloud-free’ observations
used to derive the BRDF for each pixel in the modi� ed Walthall model and the
CSAR model for the third quarter. From this image it is apparent that the CLAVR
algorithm is a poor discriminator of clouds in areas covered by snow and ice (such
as the higher latitudes and the mountainous regions) because of the similarity in the
spectral signatures of snow and clouds in the re� ective and thermal wavelengths. In
spite of using composite data, there are only a few cloud-free observations in the
tropics. The number of cloud-free points shown in � gure 6 is consistent with the
global cloud climatology data produced by the International Satellite Cloud
Climatology Project (ISCCP) (http://ingrid.ldeo.columbia.edu/SOURCES/.ISCCP /).

Parameters r0 , k and H for channels 1 and 2 in the CSAR model are shown in
� gures 7 and 8 respectively. Although these parameters are empirically derived and
do not have a physical meaning associated with them, each parameter controls a
particular mathematical function that describes the shape of the BRDF under a
range of view and illumination conditions. F igures 7 and 8 show that these coeYcients
are more closely related to the land cover type and exhibit a strong spatial structure
compared to the coeYcients of the modi� ed Walthall model since the mathematical
functions in the CSAR model are based on a conceptual understanding of the
physical nature of interaction between the radiation regime and the surface. r0
represents the intensity of the surface re� ectance, but cannot be considered as either
a single scattering albedo or a normalized re� ectance (Rahman et al. 1993a), though
pixels with a larger value of r0 can be considered to be more re� ective than those
with lower values of r0 at a particular wavelength. The degree of surface anisotropy
is described in the CSAR model by the parameter k. Surfaces with lower values of
k are relatively more anisotropic than those with higher values of k. As expected,

http://ingrid.ldeo.columbia.edu/SOURCES/.ISCCP/
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Figure 7. Parameters r0 , k and H for AVHRR channel 1 of the CSAR model for the third
quarter (July–September) during 1983–1986.

� gures 7 and 8 show that vegetated areas are more anisotropic than deserts, and
re� ectances from vegetation are more directional in the visible wavelength than in
the NIR wavelength. The parameter H controls the relative amount of forward
(0 H 1) and backward ( 1 H 0) scattering of re� ected radiation. Most
pixels in � gures 7 and 8 have a narrow range of H (from 0.4 to 0.2), indicating
that the azimuthal dependence of the BRDF is small. Results from the dataset we
used show that deserts predominantly have positive values (forward scattering)
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Figure 8. Parameters r0 , k and H for AVHRR channel 2 of the CSAR model for the third
quarter (July–September) during 1983–1986.

whereas vegetated areas mostly have negative values of H (backward scattering).
Verstraete and F lasse (1996) observed similar spatial patterns of the CSAR model
coeYcients over Africa derived from a series of twenty AVHRR images.

The Fourier coeYcients (a4–7) for channel 1 of the temporal model are shown
in � gure 9. These coeYcients of the Fourier transform can be used to generate
the amplitude and phase images of the time series satellite data that describe the
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phenological variations in land cover, and can thus be used to discriminate between
diVerent land cover classes (e.g. Menenti et al. 1993, Verhoef et al. 1996). It can be
seen from � gure 9 that the Fourier coeYcients exhibit a strong spatial pattern
corresponding to variations in vegetated and non vegetated areas, and the coeYcients
have higher values over areas covered by deciduous vegetation which has pronounced
phenology compared with evergreen vegetation.

6. Summary and conclusions
Using high performance computing, we have demonstrated the feasibility of

implementing complex as well as simple BRDF models at a global scale. The results
from our study can be summarized as follows.

d All the three BRDF models tested here performed similarly well as measured
by the standard error of re� ectances with AVHRR data when applied at
discrete time intervals. However, when the input data were not divided into
discrete time intervals, the temporal model gave better results.

d In spite of using composite data, several pixels were � agged as cloudy by
CLAVR, especially over mountainous or snow covered areas.

d Standard errors from the modi� ed Walthall model and the CSAR model were
generally higher in channel 2 compared to channel 1 for all land cover types.

d The CSAR model was computationally complex, and took roughly ten times
longer than the other two models to execute on a 16 node parallel processor.
However, the results from the CSAR model were not signi� cantly better than
those of the other two.

d For the modi� ed Walthall model, coeYcient a
3 showed a stronger association

with land cover compared to the other three coeYcients of the same model
whose spatial structure was more noisy. The three coeYcients of the CSAR
model and the Fourier coeYcients of the temporal model showed a well de� ned
spatial structure corresponding to variations in land cover.

The implementation of complex BRDF algorithms using frequent high-resolution
satellite data generating many variables and statistics for each pixel will lead to greater
data processing demands which can only be handled by high performance computing
power. Our results demonstrate that a signi� cant reduction in run time can be achieved
in solving the BRDF algorithms by using high performance computer technology.

Although the empirically derived coeYcients for the CSAR and temporal models
show a strong association with land cover, further investigation is necessary to fully
interpret their physical meaning at a global scale. If the objective of deriving BRDF
data is to correct multiangular measurements and to estimate albedo, then our
analysis shows that a simple model such as the modi� ed Walthall model will suYce.
However, if we wish to characterize land cover based on the BRDF coeYcients, then
we need a more complex model where the coeYcients are related to the physical
state of the target. The availability of a suYcient number of cloud-free observations
to derive the BRDF coeYcients within a time frame during which the phenology
does not change signi� cantly is a problem in several parts of the world. Our results
show that this problem could be overcome by using a temporal model. The results
from this study are unique, and are expected to provide valuable inputs into BRDF
retrieval algorithms proposed for EOS instruments such as MODIS and MISR.
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