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An Improved Atmospheric Correction Algorithm for
Hyperspectral Remotely Sensed Imagery
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Abstract—There is an increased trend toward quantitative
estimation of land surface variables from hyperspectral remote
sensing. One challenging issue is retrieving surface reflectance
spectra from observed radiance through atmospheric correction,
most methods for which are intended to correct water vapor and
other absorbing gases. In this letter, methods for correcting both
aerosols and water vapor are explored. We first apply the cluster
matching technique developed earlier for Landsat-7 ETM+
imagery to Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) data, then improve its aerosol estimation and incorpo-
rate a new method for estimating column water vapor content
using the neural network technique. The improved algorithm
is then used to correct Hyperion imagery. Case studies using
AVIRIS and Hyperion images demonstrate that both the original
and improved methods are very effective to remove heterogeneous
atmospheric effects and recover surface reflectance spectra.

Index Terms—Aerosol, Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS), atmospheric correction, Hyperion, hyperspec-
tral, imaging spectroscopy, remote sensing, water vapor.

I. INTRODUCTION

HYPERSPECTRAL remote sensing, or imaging spec-
troscopy, is a relatively new technology, beginning in

the mid-1980s. Multispectral datasets are usually composed
of about 5–10 bands of relatively large bandwidths ( nm),
whereas hyperspectral datasets are generally composed of
about 100–200 spectral bands of relatively narrow (5–10 nm)
bandwidth. The Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) [1] is a typical airborne hyperspectral system.
The first civilian spaceborne hyperspectral sensor, Hyperion
[2], on the National Aeronautics and Space Administration
(NASA) Earth Observing 1 (EO-1) satellite [3], has collected
considerable worldwide data.

Many applications can take advantage of the hyperspectral
remotely sensed signatures. Increasing number of quantitative
techniques have been used to estimate land-surface, bio-, and
geophysical variables from surface reflectance [4]. The pro-
cedure converting at-sensor radiance to surface reflectance is
termed atmospheric correction.

There is a relatively long history of quantitative atmospheric
correction of remotely sensed imagery [5], and many of the re-
cent algorithms are reviewed in the new book [4]. Besides many
statistical methods, most physically based atmospheric correc-
tion methods for heterogeneous aerosol effects rely heavily on
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these remote sensing signatures: spatial, spectral, angular, tem-
poral, and polarization.

• The spatial signatures include spatial contrast of re-
flectance [6], [7], e.g., matching histograms of hazy and
clear regions [8] and the cluster matching technique that
relies on individual clusters in both hazy and clear regions
[9], [10].

• Spectral signatures are based on multispectral bands and
used by most methods. For example, in cluster-matching
[9], the near-infrared (NIR) bands are used to identify
the clusters for correcting the visible bands. The widely
used “dark-object” methods (e.g., [11]–[13]) are based
on linear relationships of surface reflectance between one
shortwave-infrared band (around 2.1 m) and blue and red
visible bands.

• Angular signatures, derived from multiangular obser-
vations, have several methods for estimating aerosol
properties—such as the Multi-angle Imaging Spectro-
radiometer (MISR) [14], and Along Track Scanning
Radiometer (ATSR) [15].

• Temporal signatures have recently found use in estimating
aerosol properties from Geostationary Operational Exper-
imental Satellite (GOES) [16] and MODIS (Moderate-
Resolution Imaging Spectroradiometer) [17], and other
datasets based on a sequence of observations of the same
pixel.

• Polarization signatures are mainly from Polarization and
Directionality of the Earth’s Reflectance (POLDAR) data
[18].

If we know the atmospheric properties, correcting atmo-
spheric effects is relatively easy. However, obtaining accurate
ancillary information on atmospheric properties is often
difficult. The most practical way is to estimate directly from
imagery. There are at least two primary atmospheric variables
that need to be estimated: aerosol optical depth and water vapor
content. Most methods for hyperspectral imagery emphasize
the estimation of water vapor and other gases from images
themselves [1], [19]–[21] but require aerosol properties as sepa-
rate inputs. Our main objective is to develop a methodology for
estimation of heterogeneous aerosol and water vapor contents
and then to retrieve surface reflectance from hyperspectral
imagery (e.g., AVIRIS and Hyperion).

This letter includes two parts: first, we apply the cluster
matching technique [9], [10] to correct AVIRIS data. The
outline and case study are given in the next section. Second,
we improve the cluster matching algorithm particularly for
hyperspectral imagery with an enhanced aerosol estimation
component and a new water vapor estimation algorithm. The
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improved algorithm and the case studies are presented in
Section III. A short section of summary and conclusions is
presented at the end.

II. CLUSTER MATCHING ALGORITHM FOR AVIRIS

AVIRIS, which delivers calibrated images of upwelling
spectral radiance in 224 contiguous spectral bands with wave-
lengths from 400–2500 nm, has been flown on two aircraft
platforms: a NASA ER-2 jet and the Twin Otter turboprop.
The ER-2 flies at 20 km above sea level and produces imagery
at a 20-m spatial resolution. The Twin Otter flies at 4-km
above-ground level and produces imagery at a spatial resolu-
tion of meters. AVIRIS has overflown North America, South
America, and Europe. Refer to the literature for a detailed
description of the AVIRIS instrument [1].

A. Extended Algorithm

In this experiment, we extended the cluster matching tech-
nique developed for multispectral remotely sensed data [9], [10]
to correct AVIRIS data. This algorithm is based on the following
assumptions: 1) NIR bands have less aerosol contamination and
can classify all ground types into clusters and 2) there are clear
regions over the study area whose aerosol optical depths can
be easily determined by assuming an aerosol type and loading,
and the same cluster in hazy or clear regions has similar surface
reflectance values. Clusters represent surface cover types with
unique spectral signatures (soil, vegetation canopy, and water.)
Algorithm details are available in the original papers and we
outline the basic procedures in conjunction with AVIRIS data
here, which basically include the following six steps.

Step 1) Determining hazy regions from shortwave bands
with unsupervised clustering analysis. In this
spectral region, signals received by the sensor are
dominated by atmospheric scattering. If surface el-
evation is semi-homogenous, variations are caused
by aerosols. A visual examination of distribution
generates a mask of hazy regions; an improvement
is needed to automate this process.

Step 2) Reconducting the clustering analysis for distin-
guishing different surface types from a subset of
NIR bands. Because most aerosols are smaller than
the NIR wavelengths, scattering in these bands is
very weak. Also, avoid bands which are highly sen-
sitive to absorbed atmospheric gases (water vapor).

Step 3) Assigning the mean value of each cluster in the clear
region to the same cluster in the hazy region. As-
suming that the same cluster in the clear hazy regions
has similar reflectance values, the aerosol properties
over the clear regions are assumed to be known (a
visibility value of 30 km was used in this letter).

Step 4) Retrieving aerosol optical depths on a pixel basis
using the lookup table method from at-sensor radi-
ance and the assigned surface reflectance in a hazy
region.

Step 5) Smoothing the aerosol optical depths spatially. This
can reduce errors resultant from earlier assumptions
(each cluster has the same reflectance in both hazy

Fig. 1. (Left) Before and (right) after atmospheric correction of the AVIRIS
imagery over Parana, Brazil, acquired on August 23, 1995 at two bands with the
central wavelengths of 549 and 627 nm.

and clear regions) and also reflects the fact that
aerosols vary spatially much larger than the image
pixel size.

Step 6) Determining the surface reflectance from at-sensor
radiance and the smoothed aerosol optical depths
using the lookup table method.

Because of AVIRIS’ high spatial resolution, the surface adja-
cency effect also needs to be accounted for. The same analytic
formulas from the original paper [9] also apply here. The lookup
tables for atmospheric quantities are created from MODTRAN
version 4 [22].

B. Case Study

Although an airborne system, AVIRIS images are often con-
taminated by horizontally inhomogeneous aerosols. The cluster
matching technique was developed for ETM imagery [9] and
tested over MODIS and SeaWiFS imagery [10], but has not been
applied to hyperspectral imagery. Theoretically, it should work
better with hyperspectral imagery since this algorithm relies, to
a great extent, on spectral signatures. Use of shorter wavebands
can be more effective in distinguishing hazy regions from clear,
and the NIR bands can help distinguish different land cover
types (clusters).

Fig. 1, AVIRIS imagery over Parana, was acquired on August
23, 1995. The central location is 11 13 24 S by 61 17 27 W.
The image is 512 614 with a 20-m resolution. The left images,
the originals, are heavily contaminated by smoke; the right im-
ages are corrected. The vertical lines in the image are due to
AVIRIS instrument problems, and we did not attempt elimina-
tion. In this experiment, we predefined ten clusters using three
visible bands (10, 14, and 18) and 80 clusters using 15 NIR
bands, every four bands from bands 42–98. More experiments
may be needed to determine these bands optimally. If a cluster
in the hazy regions does not have a correspondent in the clear
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region, no aerosol retrieval occurs, and its value is interpolated
from the smoothing process. The water vapor contents are esti-
mated using (3) and (4), which is discussed later. This extended
algorithm works very well: most land features have been recov-
ered on the upper left with smoke being removed.

III. IMPROVED ALGORITHM FOR HYPERION

The previous section demonstrated that cluster matching
works quite well on AVIRIS imagery. However, it assumes
that the same cluster between the test regions has the same
visible reflectances; while required for multispectral imagery,
this may not be necessary for hyperspectral imagery with the
increased spectral information. The original algorithm water
vapor content is not estimated from the imagery.

In this letter, we have provided two improvements over the
original cluster matching technique: to revise Step 3) in the al-
gorithm described in Section II-A; and to develop a new algo-
rithm for estimating column water vapor content.

Hyperion, one of the three sensors on the NASA EO-1 plat-
form [3], launched on November 24, 2000, now orbits 1 min be-
hind Landsat 7. As a pushbroom imaging instrument, Hyperion
provides high resolution hyperspectral images capable of re-
solving 220 spectral bands (from 0.4–2.5 m) with a 10-nm
spectral resolution and a 30-m spatial resolution. The instrument
covers 7.5 100 km per image. Hyperion has a single telescope
and two spectrometers: one for the visible and NIR region and
another for the shortwave infrared region. The detail is available
elsewhere [2].

A. Improvement of Aerosol Estimation

One major assumption in Section II-A is that a given cluster
has the same reflectance in hazy and clear regions. It was appro-
priate for multispectral data (e.g., ETM ) because of the limited
spectral information available. To recover the reflectance vari-
ability, we need to explore whether this assumption can be re-
leased with the rich spectral signatures of hyperspectral remote
sensing. In this letter, the NIR band reflectances from the clear
region are used to predict deviations from the mean value. The
established relations are then applied to the hazy region to adjust
the mean visible reflectance. Therefore, the improved procedure
is identical to the old, except that the third step is replaced by the
regression analysis for the reflectance deviation at visible
band using NIR bands IR IR

IR IR IR (1)

Thus, the reflectance of each pixel in the hazy region is the mean
value of each cluster from the clear region plus the weighted
reflectance deviation predicted above

(2)

where is the weighing factor between 0 and 1. The purpose
is to control the uncertainty of the prediction (1). If the fitting
residual is very small, it is close to 1; otherwise, it is close to
0. If , the improved method is equivalent to the original
cluster matching algorithm.

The prediction function may be linear or nonlinear, de-
pending on the number of NIR bands used and the fitting resid-

uals. Our experiments with Hyperion data showed that the linear
relationships are sufficient with multiple NIR bands.

B. Estimation of Column Water Vapor Content

A number of algorithms, basically evaluating the 940-nm
water absorption and relating that to the total column water
content, have been developed to derive the column water vapor
content of the atmosphere [1]. They include the narrowband
and wideband ratio technique [23], continuum interpolated
band ratio (CIBR) [24], [25], curve fitting method [26], the
atmospheric precorrected differential absorption technique
(APDA) [27], and the “smoothness test” approach in High
Accuracy Atmospheric Correction for Hyperspectral Data
(HATCH) [19], [20]. The widely used CIBR method has
been adapted for deriving the water vapor content product
from MODIS [25], [28], POLDER [29], [30], and the Modular
Optoelectronic Scanner (MOS) [31]. Most algorithms, sensitive
to variations in surface reflectance, particularly low-reflectance
surfaces, require a precorrection of aerosol effects when the
atmosphere is unclear.

Accurate estimation of water vapor content should take
advantage of the large number of hyperspectral bands—most
existing methods rely on only a few bands. These methods are
certainly compact and easy to implement, but cannot consider
factors such as variations in aerosol loading and surface re-
flectance. Most methods suggest that aerosol correction should
occur before water vapor estimation. However, estimating
aerosol loadings often requires a priori knowledge of water
vapor content (e.g., the “dark-object” method). When more
bands are used, the computational requirement increases. The
algorithm we developed using multiple hyperspectral bands is
very efficient in the operational process and does not require a
precorrection of aerosol effects.

This algorithm is based on extensive MODTRAN simulations
and the neural network method. Different atmospheric profiles
from the Large Scale Biosphere—Atmosphere Experiment in
Amazonia ( LBA) study, representing the tropical regions, from
the Boreal Ecosystems Atmosphere Study (BOREAS) study,
representing the middle-latitude regions and high-latitude U.S.
Navy standard profiles, are input to MODTRAN 4; the inte-
grated column water vapor content varies from 0.4–6.9 cm. The
MODTRAN simulations also incorporate surface reflectance
spectra from the USGS spectra library [32], six aerosol visibility
values (5, 10, 15, 20, 35, and 50 km), and eight solar zenith
angles. Simulated at-sensor radiance curves (around 0.94 and
1.13 m) integrated over AVIRIS bands are displayed in Fig. 2.
Lines at the bottom, middle, and top represent the results from
LBA, BOREAS, and U.S. Navy profiles, respectively. The at-
mospheric visibility is 15 km, and the surface is assumed grassy.
AVIRIS band 62, a central wavelength of 0.943 m, corresponds
to the maximum absorption valley. Higher water vapor content
corresponds to deeper valleys.

We first applied the CIBR method to estimation of the
water vapor contents. Three AVIRIS bands, including band 56
(885.83 nm), band 62 (943.42 nm), and band 72 (1039.48 nm),
were used to calculate the CIBR index

CIBR (3)
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Fig. 2. Simulated top-of-atmosphere radiance spectra at AVIRIS bands
(in wavelength, micrometers) with different water vapor contents of the
atmosphere. Band 62 is close to the water vapor absorption region at about
940 nm.

(a) (b)

Fig. 3. Comparisons of the original integrated water vapor contents with the
predicted water vapor contents from the simulated database as illustrated in
Fig. 2 using (a) the CIBR algorithm and (b) the neural network algorithm.

is the at-sensor radiance of band X; the coefficients 0.628
and 0.372 are determined based on the relative distances of two
bands from the central water absorption band (62). Bands 56
and 72 were selected because they do not seem to be signifi-
cantly affected by water vapor absorption. Based on the sim-
ulation datasets with four aerosol loadings with the horizontal
visibility values of 5, 10, 15, and 20 km and eight surface re-
flectance spectra of different soils and canopies, we came out
the following equation:

CIBR (4)

where is water vapor content in centimeters [predicted and
original water vapor contents are compared in Fig. 3(a)]. The
resulting correlation coefficient and the residual standard error
(RSE) are and RSE , respectively. It is quite
clear that aerosol loadings and surface reflectances significantly
affect the prediction.

Alternately, use the nonparametric regression technique. The
artificial neural network algorithm [33] finds the best projec-
tion directions so that the primary variable will be enhanced and
unwanted variables will be compressed. Use of the neural net-
work is composed of two stages: training and prediction. The

(a) (b)

(c) (d)

Fig. 4. (a) and (b) Water vapor content estimated from the Hyperion imagery
acquired on May 18, 2001 over Bucharest, Romania using the CIBR algorithm
(left) and the neural network (right) algorithm. (c) and (d) Band 12 Hyperion
imagery (left) before and (right) after atmospheric correction.

results from the extensive MODTRAN simulations are used for
training. Although very slow, training can be performed offline.
The feed-forward neural network used in this letter is available
from S-Plus software [34] and has only one hidden layer, but we
can adjust the number of units in the hidden layer and another
free parameter, the decay parameter. The fitted and the original
water vapor content are shown in Fig. 3(b). The fitting is much
better than the CIBR algorithm with a much higher correlation
coefficient and smaller RSE . Note that the
prediction errors for low water vapor values are actually larger
than those by the CIBR algorithm.

C. Case Studies

Two experiments were conducted using the Hyperion im-
agery acquired on May 18, 2001, near Bucharest, Romania,
where the Fundulea Agricultural Station is located. The first ten
bands contain no data (or the signal-to-noise ratios are too small)
and were excluded. Bands 11 and 20 were used to identify the
hazy regions out of ten clusters. The first image is 256 (pixels)
by 320 (lines). The radiance values at the same spectral range
observed by two spectrometers were calculated from their aver-
ages. The estimated water vapor contents using CIBR method
and the neural network (with five units in the hidden layer) al-
gorithm are shown in Fig. 4(a) and (b). The CIBR method was
based on the fitted relationship with four Hyperion bands from
the MODTRAN simulated dataset

CIBR (5)
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where

CIBR (6)

Bands 52, 79, 80, and 86 have central wavelengths of 875.9,
932.7, 942.8, and 1003.4 nm. It is assumed that the central
wavelengths are constant over all imagery. For the neural
network algorithm, we first conducted tests using bands 56–62
and 77–83. Unfortunately, bands 56–62 are too noisy and only
77–83 were used. Because of the noisy data, all these bands
were first smoothed using a 9 9 moving window determined
from a series of experiments.

The water vapor map shows larger values in the diagonal di-
rection from the upper right to the lower left. The predicted
values at these corners, from both methods, are similar. The
measured value from the nearby Sunphotometer is 1.534 cm
and the average values of the retrieved map are 1.204 and 1.009
from the new method and the CIBR method, respectively. Both
are very close. Since there is no ground measurement in more
locations, it is hard to conclude whether the new algorithm is
better just based on this experiment. More validation is needed.
Fig. 4(c) and (d) shows the original Hyperion image and the cor-
rected one. The differences are considerably significant. Since
the water vapor mainly affects reflectance at the longer wave-
lengths, there are no significant impacts on the visible imagery.

in (1) are linear and the details are omitted here. Similar to
the AVIRIS problem in Fig. 1, there are also vertical patterns;
due to HYPERION sensor problems we did not attempt to elim-
inate them.

We have neglected the “smile” effect of the Hyperion sensor,
an up-to–2.5-nm shift from the central pixel to the edge pixels
[2]. A primary analysis indicates our approximation may result
in an error of approximately 10% at the edge of the image for
the water vapor retrieval. An ideal solution considers the “smile”
effect on the pixel level. A practical approach to correcting this
error divides the image into several regions and uses the aver-
aged central wavelengths for each. Though the lookup tables are
slightly different for each region, the basic approach is exactly
the same.

Fig. 5 shows another example of the Hyperion imagery be-
fore and after atmospheric correction. The purpose is to demon-
strate that this improved atmospheric correction method can
work under different conditions. The image size is 256 450,
extracted from the same Hyperion scene from which Fig. 4
was extracted. There are significant visual differences on the
right side of the image, primarily due to aerosol removal. Most
ground features have been recovered, but ground measurements
are needed to quantify the correction accuracy.

IV. SUMMARY AND CONCLUSION

Atmospheric correction is one key step for quantitatively
estimating land surface variables from hyperspectral imagery.
It is very challenging, especially when aerosol distribution is
heterogeneous. In previous studies, we developed the cluster
matching algorithm for ETM imagery and validated it using
ground measurements. In this letter, we successfully adapted it
to correct AVIRIS imagery and then improved this algorithm
by releasing one primary assumption for aerosol estimation

(a) (b)

Fig. 5. Band 12 Hyperion imagery extracted from the same Hyperion scene as
Fig. 4 (a) before and (b) after atmospheric correction.

and incorporated a new algorithm for column water vapor
estimation. The improved algorithm performed very well over
two Hyperion images.

This method is designed to correct heterogeneous aerosols,
assuming there are one or more clear regions available, locally.
It does not work where the horizontal distribution of aerosols
is homogeneous. Another assumption is that the same clusters
over the hazy regions can be found over the clear. The algorithm
will fail if the cover types are completely different over both
regions. These limitations, under most conditions, do not appear
serious as long as the scene is sufficiently large.

There are still two other assumptions in the aerosol estima-
tion algorithm: the known-aerosol model and the Lambertian
surface. Further studies are needed to release these assump-
tions. For example, we may be able to identify the aerosol types
by executing this algorithm for different aerosol models and
then examining the spectral dependence of the retrieved aerosol
optical depths. It might be feasible to couple this atmospheric
correction algorithm with a set of simplified surface reflectance
models (i.e., canopy, soil, snow, and water) [35]. Instead of
estimating Lambertian surface reflectance, we may invert cer-
tain key parameters (e.g., leaf area index and spherical albedo)
of the surface reflectance models that can eventually predict
directional surface reflectances.

The newly developed neural network algorithm for estimating
water vapor content is very promising since it is not sensitive
to the variations in aerosol loadings and surface reflectance.
The case studies using Hyperion data have indicated it works
very well.

Note that these methods have not been validated using
ground measurements. Further quantitative validation activities
are needed before they can be implemented operationally.
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