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Mandelbrot’s fractal geometry has sparked considerable interest in the remote

sensing community since the publication of his highly influential book in 1977.

Fractal models have been used in several image processing and pattern

recognition applications such as texture analysis and classification.

Applications of fractal geometry in remote sensing rely heavily on estimation

of the fractal dimension. The fractal dimension (D) is a central construct

developed in fractal geometry to describe the geometric complexity of natural

phenomena as well as other complex forms. This paper provides a survey of

several commonly used methods for estimating the fractal dimension and their

applications to remote sensing problems. Methodological issues related to the use

of these methods are summarized. Results from empirical studies applying fractal

techniques are collected and discussed. Factors affecting the estimation of fractal

dimension are outlined. Important issues for future research are also identified

and discussed.

1. Introduction

Fractal geometry was introduced and popularized by Mandelbrot (1977, 1982) to

describe highly complex forms that are characteristic of natural phenomena such as

coastlines and landscapes. The main attraction of fractal geometry stems from its
ability to describe the irregular or fragmented shape of natural features as well as

other complex objects that traditional Euclidean geometry fails to analyse. In this

sense, fractal geometry provides a new language in which previously intractable

natural features can be described with more mathematical rigor (Barnsley 1989).

Clarke and Schweizer (1991:p.37) note that ‘Fractal geometry has been called one of

the four most significant scientific concepts of the 20th century, on a par with

quantum mechanics, the general theory of relativity, and the double-helix model of

the structure of DNA.’

Fractal geometry has sparked considerable interest in the remote sensing
community since the publication of Mandelbrot’s book, Fractals: Form, Chance

and Dimension, in 1977. The relevance and usefulness of fractal geometry to solving

remote sensing problems can be attributed to the fact that remotely sensed images
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are not only spectrally and spatially complex, but they often exhibit certain

similarities at different spatial scales (Lam and De Cola 1993a). This requires us to

examine spatially complex patterns with relatively simple indicators such as various

measures of texture. It has been recognized that remotely sensed data can be

analysed using five types of signature: spectral, spatial, temporal, angular, and

polarization (Liang 2004). As more and more high spatial resolution imagery

becomes available, utilization of spatial signatures plays an increasingly important

role in extracting land surface properties from remotely sensed data. How to extract

the complex and erratic textures in the image and use spatial information to improve

image understanding and classification has been a major research issue in remote

sensing for decades (Haralick et al. 1973, Weszka et al. 1976, Pratt et al. 1978, Gong

and Howarth 1990, Wang and He 1990, Gong et al. 1992, Tso and Mather 2001). In

this context, fractal geometry appears especially appealing because it offers

something important, that is, tools for characterizing complex objects and land

surface patterns in remotely sensed images.

Fractal models have been used in a variety of image processing and pattern

recognition applications. For example, several researchers have applied fractal

techniques to describe image textures and segment various types of images (Pentland

1984, Keller et al. 1989, De Jong and Burrough 1995, Myint 2003). Fractal

characterization of the ‘roughness’ of remotely sensed images has been considered

useful as part of the metadata of images or as a tool for data mining or change

detection (Lam 1990, Jaggi et al. 1993, Emerson et al. 2004). Fractal models have

also been used to study the scaling behaviour of geographic features and the

knowledge generated by this type of research may be valuable for determining the

optimum resolution of pixels and polygons used in remote sensing and GIS

applications (Goodchild 1980, Lovejoy 1982, Mark and Aronson 1984, Emerson

et al. 1999).

Applications of fractal techniques to image analysis rely heavily on the estimation

of fractal dimensions. The fractal dimension, often denoted D, is a key parameter

developed in fractal geometry to measure the irregularity of complex objects. A

variety of methods have been proposed to compute the D of features such as

topographic surfaces and image intensity surfaces. However, most computational

methods have their theoretical and/or practical limitations. Several studies (Roy

et al. 1987, Tate 1998, Lam et al. 2002, Sun 2006, Sun et al. 2006) have reported that

different methods often yield significantly different D values for the same feature. In

addition to method-induced errors, a number of other factors such as the choice of

input parameter values and image data used may also influence computed D values.

As such, there is considerable uncertainty regarding the nature and extent of

variations in computed D.

Despite these developments, there has been no review paper summarizing and

evaluating different methods and applications that are widely scattered in the

literature. The purpose of this paper is to provide a survey of commonly used

methods for estimating fractal dimension and their applications to the analysis of

remotely sensed images. The focus of our discussion is on the methodological issues

related to the practical measurement of D in the remote sensing context. Contrasting

or conflicting results from empirical studies are collected and discussed. Major

factors influencing the computed D are outlined. Important issues for future

research are also identified and discussed. The next section provides a brief

introduction to the basic concepts of fractal geometry, followed by a description of
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six computational methods. Examples illustrating applications of fractal techniques

in remote sensing are then presented. Major issues encountered in fractal analysis of

remotely sensed images are finally discussed. We conclude the paper with some

general remarks.

2. Fractals, self-similarity, and the fractal dimension

‘Clouds are not spheres, mountains are not cones, coastlines are not circles, and

bark is not smooth, nor does lightning travel in a straight line…’ (Mandelbrot

1982:p.1). Nature is complex. Many important features and patterns of nature are so

irregular that classical Euclidean geometry is hardly of any help in describing their

form. It was this inability of classical geometry to describe the real world that led

Mandelbrot (1977) to invent the concept of ‘fractal’ to fill the void caused by the

absence of suitable geometric representation for a family of shapes that are

continuous but not differentiable.

According to Mandelbrot (1977:p.4), the term fractal comes from the Latin

adjective fractus, which is also the root for fraction and fragment and means

‘irregular or fragmented’. Formally, a fractal is defined as a set for which the

Hausdorff-Besicovitch (or fractal) dimension strictly exceeds the topological

dimension (Mandelbrot 1977). A fundamental characteristic of fractal objects is

that their measured metric properties, such as length or area, are a function of the

scale of measurement. A classical example to illustrate this property is the ‘length’ of

a coastline (Richardson 1961, Mandelbrot 1967). When measured at a given spatial

scale d, the total length of a crooked coastline L(d) is estimated as a set of N straight-

line segments of length d. Because small details of the coastline (e.g. peninsulas) not

recognized at lower spatial resolutions become apparent at higher spatial

resolutions, the measured length L(d) increases as the scale of measurement d

increases. Thus, in fractal geometry, the Euclidean concept of ‘length’ becomes a

process rather than an event, and this process is found to be controlled by a constant

parameter (Richardson 1961). Mandelbrot (1967, 1977) generalized and expanded

on Richardson’s (1961) empirical findings and showed that the relationship between

length and measuring scale can be described by the power law:

L dð Þ~Kd 1{Dð Þ, ð1Þ

where the exponent D is called the fractal dimension, and K is a constant.

The scaling exponent D in equation (1), i.e. the fractal dimension, is a central

construct of fractal geometry. It is called fractal dimension because it is a fractional

(or non-integer) number (Mandelbrot 1977). The idea of using D to describe

irregular shapes is a powerful one because it captures what is lost in traditional

geometrical representation of form. In Euclidean geometry, dimensions are integers

or whole numbers (e.g. 1 for lines, 2 for areas, and 3 for volumes), and topological

dimensions remain constant no matter how irregular a line or an area may be. Thus,

a straight line and a crooked coastline have the same topological dimension 1, and a

smooth surface and a rugged topographic surface have the same topological

dimension 2. In other words, topology cannot discriminate between crooked lines

and straight lines (Mandelbrot 1982). As such, part of the information about the

form of irregular objects is necessarily lost in topological representations.

In fractal geometry, on the other hand, dimension is treated as a continuum. A

curve’s dimension, for example, can take on any non-integer value between 1 and 2,
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depending on the degree of irregularity of its form. The more contorted a line is, the

higher its dimension. Similarly, a surface’s dimension may be a non-integer value

between 2 and 3. The use of a fractional power in the description of complex shapes

compensates, in effect, for the length or area lost because of details smaller than the

measurement scale (d). With D it becomes possible to obtain consistent estimates of

an object’s metric properties at different measurement scales (Pentland 1984).

Fractal dimension can be thought of as a measure of an object’s ability to ‘fill’ the

space in which it resides. A smooth line of D51 will approach D52 when it becomes

so complex that it effectively takes up the whole plane. Similarly, as a surface’s D

approaches the upper value 3, it will appear increasingly rugged and display a rapid

succession of peaks and valleys. More generally, the more irregular an object

becomes, the more space it fills, and the higher its D value. In this way, the value of

D is intimately linked to our notion of ‘complexity’ or ‘roughness’ (Pentland 1984).

Self-similarity is another key property of fractals. Formally, self-similarity is

defined as a property where a subset, when magnified to the size of the whole, is

indistinguishable from the whole (Mandelbrot 1977, Voss 1988). The property of

self-similarity implies that the form of an object is invariant with respect to scale. In

other words, a strictly self-similar object can be thought of as being constructed of

an infinite number of copies of itself. In the geosciences, the property of self-

similarity may be better termed scale-independence (Clarke 1986). The forms of

natural phenomena are often erratic as ‘chances’ or random factors often play an

important role in their generating processes (Mandelbrot 1977). As such, unlike

mathematical fractals, natural objects generally do not display exact self-similarity.

Instead, they may exhibit a certain degree of statistical self-similarity over a limited

range of scales. Statistical self-similarity refers to scale-related repetitions of overall

complexity, but not of the exact pattern (Voss 1988).

Self-similar objects are isotropic (or rotation invariant) upon rescaling. If

rescaling of an object is anisotropic, then the object is said to be self-affine.

Formally, with self-affine fractals the variation in one direction scales differently

than the variation in another direction (Mandelbrot 1985). Thus, the trail of

particulate Brownian motion in two-dimensional space is self-similar, whereas a plot

of the x-coordinate of the particle as a function of time is self-affine (Brown 1995).

Similar to the concept of statistical self-similarity, an object is said to be statistically

self-affine if it displays self-affinity only in a statistical sense.

Fractals, self-similarity, and fractal dimension are the key concepts of fractal

geometry upon which most remote sensing applications seem to have drawn. The

relevance of these concepts to the analysis of remotely sensed images will be

discussed in greater detail in the following sections. The reader is referred to

Mandelbrot (1977, 1982) for a more complete discussion of fractal geometry. For an

introduction to fractal analysis of images, the reader is directed to Peitgen and

Saupe (1988). An excellent introduction to fractals in geography can be found in

Lam and De Cola (1993a). The review of fractals in physical geography presented by

Gao and Xia (1996) is also informative.

It should be noted that, although this paper focuses on the current state of fractal

analysis techniques in Earth imaging, fractal geometry has found application in a

wide range of scientific fields (Dyson 1978). For example, fractal models have been

used extensively in pattern recognition (e.g., Peleg et al. 1984, Dennis and Dessipris

1989, Chaudhuri et al. 1993, Blacher et al. 1993). Fractal geometry has contributed

much to computer science (e.g. Peitgen and Richter 1986, Devaney and Keen 1989).
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In computer graphics, fractal techniques have been used, for example, to simulate

realistic landscapes such as rugged terrains, which can be used in motion pictures

and flight simulators (Fournier et al. 1982). Fractal geometry has also been applied

to such diverse fields as meteorology (Lovejoy and Schertzer 1985, 1990), ecology

(Loehle 1983, Wiens 1989), material science (Lu and Hellawell 1995), urban

landscapes (Batty & Longley 1986), economics and finance (Calvet and Fisher 2002,

Mandelbrot and Hudson 2004), soil sciences (Burrough 1981, Armstrong 1986,

Green and Erskine 2004), and medical imaging (Chen et al. 1989, Wu et al. 1992,

Lee et al. 2003). Readers interested in the works done outside the Earth imaging

realm should consult major journals in fields of interest.

3. Methods to compute the fractal dimension of image intensity surfaces

The fractal dimension of strictly self-similar objects can be derived mathematically

and is given by (Mandelbrot 1977):

D~
log Nrð Þ
log 1=rð Þ , ð2Þ

where Nr represents an object of Nr parts scaled down by a ratio of r. The D derived

from equation (2) is called the shape’s similarity dimension (Mandelbrot 1977).

For non-mathematical objects, however, the fractal dimension cannot be derived

analytically. Instead, it must be empirically estimated. A large number of methods

have been proposed to compute the fractal (monofractal) dimension of natural

objects. These methods differ in the ways they approximate the quantity Nr in

equation (2), but they are similar in spirit in that they use some version of the

statistical relationship between the measured quantities of an object and step sizes to

derive the estimates of D. The ‘quantity’ of an object is expressed in terms of, for

example, length, area, or number of boxes (cells) needed to cover the object. ‘Step

size’ refers to the scale or resolution of measuring units used. The procedure

common to most of the methods discussed in this paper consists of three steps:

N First, measure the quantities of the object under consideration using various

step sizes.

N Second, plot log (measured quantities) versus log (step sizes) and fit a least-

squares regression line through the data points. The log–log plot is often

referred to as the Richardson plot.

N Third, use the slope of the regression line to derive the D of the object.

A remotely sensed image can be viewed as a hilly terrain surface whose ‘elevation’

is proportional to the grey level or digital number (DN) value. As such, all methods

developed to compute the D of surface features can, in principle, be readily applied

to remotely sensed images. Broadly, there are two basic approaches for computing

the D of surfaces. The first is to directly estimate D from the surfaces being analysed.

The second approach involves the so-called dimensionality-reduction technique

(Klinkenberg 1994). In this approach, the D of a surface is estimated by first

calculating the D of contours or profiles extracted from the surface and, then, simply

adding 1 to account for the different Euclidean dimension. In this section, we

describe six methods for computing the D of surface features such as remotely

sensed images. For a review of the methods used to calculate the D of linear features,

the reader is directed to Klinkenberg (1994).
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3.1 The triangular prism method

The triangular prism method was developed by Clarke (1986) primarily to calculate

the D of topographic surfaces, but it has been applied extensively to remotely sensed

images. The method makes use of a raster representation of the elevations of the

Earth’s surface such as in a digital elevation model (DEM) (see figure 1 (a and b)).

Based on this data structure, the method takes elevation values (or the equivalent of

DN value in an image) at the corners of squares (i.e. analysis windows) (a, b, c and d

in figure 1a), interpolates a centre value (e in figure 1(a)), divides the square into four

triangles (abe, bce, cde and dae in figure 1(b)), and then computes the top surface

areas of the prisms which result from raising the triangles to their given elevations

(A, B, C, and D in figure 1(a)). By repeating this calculation for geometrically

increasing square sizes (d), the relationship between the total upper surface area of

the prisms (i.e. the sum of areas A, B, C, and D in figure 1(a)) and the spacing of the

squares (i.e. step size d) can be established, and used to estimate D (table 1). The only

input parameter required by this method is the number of step sizes. Generally, the

method is less computationally intensive than other methods such as the variogram

or Fourier power spectrum methods (Clarke 1986).

Several modifications have been proposed since Clarke (1986) presented his

method. In Clarke’s original algorithm, ‘spacing of the square’ was interpreted as

‘area of the square.’ In other words, Clarke used step size squared (d2) in the

Figure 1. (a) 3D view of the triangular prism method (after Clarke, 1986); (b) Top view of
the corner pixels (a, b, c, and d ) and the centre point (e) used in Clarke’s (1986) method (an
example with step size 5 4).
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Table 1. Methods for computing the fractal dimension (D) of surface features{.

Method Relation used Basic formula Estimate of D

Triangular prism Total area of the tops of
prisms vs. side length of analysis
windows

S(d)jd22D Plot log S(d) versus log (d),
S(d)5area slope is (22D)
d5side length of analysis windows D522slope

Differential box counting Number of boxes needed to cover
an image vs. box size

Nrj(1/r)2D Plot log Nr versus log (1/r),
Nr5number of boxes Slope is 2D
r5s/M,
s5side length of boxes, D52slope
M5side length of the image

Variogram Mean squared elevation (or DN)
difference vs. distance

E[(Zp2Zq)2]j(dpq)2H Plot log {E[…]} versus log dpq

Zp, Zq5elevations or DNs at points p
and q

slope is 2H

dpq5distance between p and q D532H532slope/2
Isarithm Length of contour line vs.

step size
L(d)jd12Dcontour For each contour line, plot log L(d)

versus log (d),
L(d)5length of contour line (i.e., number
of boundary cells)

slope is (12Dcontour)

d5step size D5average of all Dcontour + 1
Robust fractal estimator Length of profile vs. step size L(d)jd12Dprofile For each cell, take the average of Dprofile

in both EW and NS directions
L(d)5length of profile D obtained by combining fractal dimen-

sions of each cell using a weighted
average and adding 1

d5step size
Power spectrum Fourier power spectral

density vs. the frequency
P(f)jf2(522Dprofile) Plot log P(f) versus log (f),
P(f)5power, slope is – (522Dprofile)
f5frequency D5Dprofile + 1

{Dcontour5fractal dimension of a contour line; Dprofile5fractal dimension of a profile. For references see §3 of the text.
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regression. Lam et al. (2002) have shown that step size (d) instead of step size

squared (d2) should be used to derive the correct D. Sun (2006) has recently

proposed three new procedures to implement the triangular prism method. Sun’s

methods differ from Clarke’s method in that, in constructing the prisms, they take

into account the actual DN values of all the pixels at the edges of an analysis

window. Sun (2006) reported that her methods perform better than Clarke’s (1986)

original method when applied to images with complex textures.

Clarke (1986) reported that the triangular prism method provided good results for

the test data used in his work. Clarke and Schweizer (1991) found that subsequent

tests of the method on terrain data have yielded rather low D values. In a systematic

study comparing the performance of several methods, Lam et al. (2002) showed that

the triangular prism method was the best estimator for rougher surfaces with

generated D52.9 and 2.7, although it was less accurate where generated D52.5 and

2.3. They also found that the triangular prism method was sensitive to contrast

stretching and recommended that, to ensure comparability and accuracy of

measurement, the range of DN values of an image be normalized before using the

method. The triangular prism method was also found to be sensitive to ‘noise’ or

extreme grey level values (Qiu et al. 1999). To obtain reliable results, it is important

first to assess whether the image to be measured has any noisy pixels before applying

the method.

3.2 The differential box-counting (DBC) method

The differential box-counting (DBC) method was proposed by Sarkar and

Chaudhuri (1992) to compute the D of digital images. This method can be thought

of as a variant of the well-known box-counting approach (Goodchild 1980, Voss

1988). In the differential box-counting method, Nr in equation (2) is counted in the

following manner. If an image of size M6M pixels is scaled down to a size s6s

where M/2>s.1 and s is an integer, then we have a ratio of r5s/M. Consider the

image as a 3D space with (x, y) denoting the image plane and (z) denoting the grey

level. The (x, y) space is partitioned into grids of size s6s. On each grid there is a

column of boxes of size s6s6s9. If G denotes the grey level range of the image (e.g.

256), s9 is calculated by [G/s9]5[M/s]. Let the minimum and maximum grey level

of the image in (i, j)th grid fall in box number zmin and zmax, respectively. Then

nr(i, j)5zmax2zmin + 1 is the contribution of Nr in (i, j)th grid. Taking contributions

from all grids, we have:

Nr~
X

i,j

nr i, jð Þ ð3Þ

For different values of r, that is, different values of s or step sizes, the quantity Nr is

counted. D then is computed from the least-squares linear fit of log (Nr) versus log

(1/r) (table 1).

Sarkar and Chaudhuri (1992) have shown that the DBC method is both accurate

and computationally efficient. Despite this, the method does not seem to have been

widely applied to remote sensing problems (Tso and Mather 2001). One possible

explanation for the lack of interest in this method among remote sensing researchers

is that the method was developed outside the geosciences domain. It remains to see

how effective the DBC method is when applied to remotely sensed images.
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3.3 The variogram method

The variogram method is a widely used technique for computing D of surfaces. In

this method, the mean of the squared elevation (or DN) difference (i.e. variance) is

calculated for different distances, and D is estimated from the slope (b) of the

regression between the logarithms of variance and distance (see figure 2) so that

D532b/2 (Mark and Aronson 1984; see also table 1). Variations of the variogram

method exist. Roy et al. (1987), for example, calculated D using four different

implementations of the variogram method.

Because of its ease of use, the variogram method has been used in numerous

studies (Goodchild 1980, Burrough 1981, Mark and Aronson 1984, Roy et al. 1987,

Carr and Benzer 1991, Klinkenberg and Goodchild 1992). Lam and De Cola

(1993b) noted that three other properties of the variogram method may have also

contributed to its popularity. First, the method can be applied to both regular and

irregular data. Second, for irregular polygonal data, the variogram function can be

determined by centroids representing the polygons. Third, when compared with the

isarithm method (discussed in §3.4), the variogram method is generally more

reliable.

The variogram method is based on the assumption that the surface being analysed

is a fractional Brownian surface. Studies of natural terrain surfaces (Mark and

Aronson 1984, Roy et al. 1987) have shown, however, that variograms often do not

behave linearly at all scales, suggesting that natural phenomena are not truly fractal

(discussed in §5.1). Another issue that requires attention in variogram analysis is the

sampling strategy used to determine the point pairs. Klinkenberg (1994) suggested

that, for statistical reasons, the sample of point pairs uniformly span the distance

range of a given dataset and the distance classes be constructed so that they are

evenly spaced in the log–log space used in the regression. Furthermore, while the

shortest point-pair distance will depend on the resolution of the data used, attention

should be given to the choice of the maximum point-pair distance. The common

practice is to use one-half of the absolute maximum distance between points of a

given dataset as the maximum point-pair distance. Roy et al. (1987) have suggested

using even shorter maximums, such as one quarter the maximum distance.

Klinkenberg (1994) argued, however, that the rule of using one-half or one quarter

of the maximum distance as the maximum point-pair distance appears more

restrictive than necessary.

Figure 2. The log (variance) versus log (distance) plot used in the variogram method.
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Different studies reached different conclusions regarding the performance of the

variogram method. Klinkenberg and Goodchild (1992), for example, found that the

variogram method was able to produce consistent estimates of D when applied to

topographic data. Clarke and Schweizer (1991), on the other hand, reported that for

the same dataset, the variogram method appears to yield consistently higher D

values than those obtained from the triangular prism method and the robust fractal

estimator (discussed in §3.5). The work of Lam et al. (2002) suggests that the

variogram method was a comparatively poor estimator for all the simulated surfaces

used in their study. One major limitation of the variogram method is that remotely

sensed images are data rich and exhaustive. In order to make the variogram method

computationally tractable, studies applying the variogram method to image analysis

use random sampling of a subset of pixels. This makes the computed D a random

variable that changes from one analysis to the next.

3.4 The isarithm method

The isarithm method (Shelberg et al. 1983) is based on the premise that the

complexity of isarithm or contour lines may be used to approximate the complexity

of a surface. Briefly, the method works in the following way. Starting with a matrix

of z-elevations (or DN values), an isarithm interval is selected and isarithm lines are

constructed on the surface. For each isarithm line, its lengths are calculated in terms

of the number of boundary cells over a number of step sizes, log (number of

boundary cells) is regressed against log (step sizes), and the slope of the regression

line is used to derive the D of the isarithm line. This process is repeated for every

isarithm line. The surface’s D is obtained by averaging the D values of all the

isarithm lines that have R2>0.9 and adding 1 (table 1).

To implement the isarithm method, a data matrix of a given number of rows and

columns must be specified, with the following parameter input by the user: (1) the

number of step sizes, (2) the isarithm interval, and (3) the direction in which the

computation is implemented (row, column or both). It is possible that for a given

step size, there are no boundary cells. In this case, the isarithm line is excluded from

the analysis to avoid regression using fewer points than the given number of steps

(Shelberg et al. 1983). Lam (1990) pointed out that this feature appears especially

useful for the analysis of remotely sensed images as it ensures that random noise in

the image will not be taken into account in the estimation process.

Lam and De Cola (1993b) have discussed several factors that may influence the

computed D values using the isarithm method. They noted that real data are

generally anisotropic and, therefore, the computed D will vary depending on

whether it is measured along rows, columns, or in a non-cardinal direction. The

maximum step size used may also affect the reliability of estimation results.

Furthermore, the practice of using the average of the D values of those isarithm lines

that have R2>0.9 to represent the surface D is somewhat arbitrary.

Shelberg et al. (1983) pointed out that an advantage of the isarithm method is that, by

using a number of isarithm lines, the method can be used to estimate the D for non-self-

similar surfaces. Furthermore, the method was found to be robust to random noise in

the image (Qiu et al. 1999). Clarke (1986), however, seemed quite critical of the isarithm

method and commented that, ‘This method is rather crude, however, and really is an

empirical estimate of an empirical estimate’ (p.714). Despite this, the isarithm method

appears to be one of the most often used methods for computing the D of remotely

sensed images (Lam 1990, Lam and De Cola 1993b, Qiu et al. 1999, Emerson et al. 1999,
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Lam et al. 2002). Applications of the isarithm method have shown that the method

returned good results for images with medium-ranged complexity, but it overestimated

D when applied to rougher surfaces while it underestimated D for smooth images

(Emerson et al. 1999, Lam et al. 2002).

3.5 The robust fractal estimator

The robust fractal estimator was proposed by Clarke and Schweizer (1991) in an

attempt to provide stability in the computation of D. Using the walking-dividers

method, the robust fractal estimator computes for each cell the D of each profile in

both the east–west and north–south directions and places the average of the two in a

new array. The D of the entire surface is obtained by combining the D values of each

cell using a weighted average and adding one (Clarke and Schweizer 1991).

Clarke and Schweizer (1991) noted that the robust fractal estimator is primarily

designed to calculate D for natural surfaces using data from USGS DEMs, but it

should work equally well on any gridded surface data. Applications of this estimator

to image analysis seem limited, however. As such, little is known about its

performance. In their paper, Clarke and Schweizer reported that for the same

datasets used in their study, the robust fractal estimator appeared to consistently

yield a lower D value than those obtained from the triangular prism and variogram

methods. In a discussion of how to select the largest step size when using the divider

method on self-affine curves, Klinkenberg (1994) pointed out that the low estimated

D values (close to one) reported in Clarke and Schweizer (1991) may be due to the

fact that they used steps sizes that spanned the crossover length. Note that the

crossover length refers to the range of scale within which the computed D is

representative of the local fractal dimension of a self-affine feature. Discussion of

the crossover length concept can be found in Mandelbrot (1985).

3.6 The Fourier power spectrum method

Another technique for computing the D of surface features is the use of Fourier

analysis. The Fourier method uses the power spectrum derived from the surface

(Pentland 1984, Burrough 1981). It can be shown that the Fourier power spectrum

P(f) of a fractional Brownian function (f) is proportional to f(22h21), where

h522Dprofile (Pentland 1984). The fractal dimension of the profile (Dprofile) is

obtained from the slope of the regression line of the log-log plot of P(f) versus f. The

D of the surface is computed as D5Dprofile + 1 (table 1). Detailed descriptions of the

steps required to perform a spectral analysis for fractal applications can be found in

Peitgen and Saupe (1988) and Turcotte (1992).

Spectral methods should only be applied to self-affine curves (i.e. profiles) since

they will always return a D51 for self-similar curves (Peitgen and Saupe 1988).

Several researchers (Fox and Hayes 1985, Clarke 1986, Carr and Benzer 1991) have

pointed out that, although a rigorous method, the power spectrum method involves

sophisticated data preprocessing and is computationally complex, a fact that

appears to have limited its applications. The inherent complexity of spectral

methods requires that they be carefully implemented (Klinkenberg 1994).

4. Applications of fractal techniques to remote sensing image analysis

There is a large amount of literature on the applications of fractal techniques to the

analysis of remotely sensed images. A main thrust in this application literature is the
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use of D to measure the roughness or textural complexity of land surface features. In

this paper, we focus on four major application areas: that is, the use of computed D

(1) to characterize the overall spatial complexity of an image, (2) to supply image

classification with textual information, (3) to describe the geometric complexity of

the shape of feature classes in a classified image, and (4) to examine the scaling

behaviour of environmental phenomena. We provide below a review of

representative works published in each of these four application areas.

4.1 Using D to characterize the overall spatial complexity of remotely sensed images

Perhaps the most obvious utility of fractal models in image analysis is the use of D

to characterize the overall textural complexity of remotely sensed imagery (Lam

1990, Qiu et al. 1999, Read and Lam 2002, Weng 2003). In these applications, only a

single D for the entire image is computed. Such a global D can be calculated for

remotely sensed data of different land cover types, sensors, and bands. Lam (1990),

for example, used the isarithm method to measure the spatial complexity of three

Landsat TM images representing three different land cover types in coastal

Louisiana. She found that the estimated D values of these TM surfaces were

generally higher than those of most real-world terrain surfaces. Among the three

land cover types, the highest D occurred in an urban area, followed by a complex

coastal area and a rural area. She also compared the D values of the three land cover

types across seven spectral bands and found that the D values of the same land cover

type turned out to be quite different in different bands. The urban landscape has its

highest D values occurring in bands 2 and 3, whereas the coastal and rural areas

both exhibit high D values in band 1. Lam (1990) noted that, although the three land

cover types examined in her study appeared to have different D values, the

difference in the average D values among the three land cover types was small

compared to the differences in overall D values among bands.

In an analysis of two AVIRIS (Airborne Visible Infra-Red Imaging Spectrometer)

images of the Los Angeles area, Qiu et al. (1999) found that the computed D values

for urban landscapes were higher than those for rural landscapes. A novel part of

this study was the systematic comparison of the computed D values of the two study

areas across the full spectral range of the hyperspectral images (224 bands). They

confirmed Lam’s (1990) finding that the textural complexity of the same land cover

type, expressed as D values, varied significantly across bands. They found that

higher contrast in D values between the urban and rural landscapes occurred in the

visible bands. They also reported unusually high D values (D.2.9) detected in the

spectral bands where signal-to-noise ratios were low. An important finding of Lam

(1990) and Qiu et al. (1999) studies is that the texture of a land cover type may be

better characterized by certain band(s) than by others. As such, identifying the

bands in which the contrast in computed D between different land cover types is

most distinct may be a necessary step in dealing with multispectral images.

Fractal techniques have also been used to describe spatial variations of

environmental phenomena along certain transects extracted from remotely sensed

images. In a study of the urban heat island effect in a Chinese city, Weng (2003)

applied fractal techniques to analyse the spatial variability of surface radiant

temperature along three profiles constructed from Landsat TM images. His results

suggest that variations in estimated D values along a profile can be linked to

underlying land cover types. He also compared D values across several years

and between different seasons of the year. His results show that information about

4974 W. Sun et al.



inter-temporal changes in D values was useful in understanding the increased

textural complexity of the thermal surfaces as well as the seasonal dynamics of

urban heat island effect.

Fractal characterization of the overall complexity of remotely sensed images has

been considered useful as part of metadata or as a tool for data mining and change

detection (Jaggi et al. 1993, Lam et al. 2002, Emerson et al. 2004). An advantage of

the fractal technique in these applications is that global D values can be computed

without the need to first classify the image. Given the rapidly increasing types and

volumes of remotely sensed data available today, quantitative assessment of the

spatial characteristics of various images may become a useful exercise in selecting

the right data for a particular application. Another potential utility of fractal

characterization of remotely sensed data is the use of D as an initial screening tool

for examining information content contained within different spectral bands.

Variations in D values across bands may be used as a guideline for identifying noisy

bands or for the selection of bands for image display, classification, and analysis

(Lam 1990, Qiu et al. 1999). Such information may be particularly valuable for

applications where texture is important.

4.2 Use of D as a texture measure to segment and classify images

The use of only spectral signatures to distinguish land cover types has proved

inadequate. Numerous studies have shown that classification results may improve if

additional information about spatial variations in pixel values is incorporated in the

classification procedure. Many techniques, such as co-occurrence matrices (Haralick

et al. 1973), local variance (Woodcock and Strahler 1987), wavelets (Mallat 1989)

and spatial autocorrelation statistics (Cliff and Ord 1973), have been proposed to

extract textural information from remotely sensed images.

Fractal techniques appear well suited to the analysis of textural features in

remotely sensed images, as the environmental features captured in the image are

often complex and fragmented (Burrough 1981, Lorimer et al. 1994). It has been

suggested that local variations in computed D can be used as texture measures to

segment images (Pentland 1984, Keller et al. 1987). The idea is that different land

cover types may have characteristic textures or roughness that could be described by

different D values. Ideally, if there were a one-to-one relation between the texture of

a land cover type and a unique D value, then the D could be viewed as the ‘fractal

signature’ of that land cover type and used to extract it from the image.

Pentland (1984) pioneered the use of fractal geometry in image texture analysis

and segmentation. In his 1984 paper, Pentland considered the image intensity

surface as a fractal Brownian function (fBf) and estimated D from Fourier power

spectrum of fBf. He segmented several types of images using computed D values and

achieved good results. He also found that the computed D was always stable over at

least 4 : 1 variations in scale, and most segmentations were stable over a range of

8 : 1. He concluded that fractal-based image segmentation appeared to be a powerful

technique (Pentland 1984).

Perhaps the best example illustrating the utility of fractal techniques in image

classification was presented by De Jong and Burrough (1995). In their study, De

Jong and Burrough proposed a so-called ‘local D algorithm,’ a method that can be

thought of as a local implementation of the triangular prism concept (Clarke 1986).

In the ‘local D algorithm,’ a kernel of 9 by 9 pixels is moved over the image and, at

each position of the kernel, a D is computed within the kernel, resulting in a new
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image file containing the estimated local D values. This new layer of D values was

then used as texture measures in the classification procedure. De Jong and Burrough

applied their method to the classification of six Mediterranean vegetation types in

two remotely sensed images. The results from the analysis of these two images seem

somewhat mixed. While the ‘local D algorithm’ appeared effective in separating five

of the six land cover types in a Landsat TM image, the method could not sharply

distinguish between any of the six land cover types when applied to an airborne

GER (Geophysical Environmental Research Imaging Spectrometer) image. This

poor result was explained by the poor quality of the GER image. They concluded

that, although local D values for TM imagery seemed to reflect the different land

cover types examined in their study, D values by themselves were insufficient for the

classification of TM images.

Other studies attempting to gauge the usefulness of fractal techniques for image

classification purposes include Jones et al. (1989), Keller et al. (1989), LaGro (1991),

De Jong (1993), Myint (2003) and Sun (2006), among others. In a comprehensive

study comparing the discriminatory power of several texture analysis methods, Myint

(2003) found that the spatial autocorrelation approach (Moran’s I and Geary’s C) was

superior to fractal approaches (isarithm, triangular prism, and variogram) and, in

some cases, simple standard deviation and mean value of the samples gave better

classification accuracies than all or some of the fractal techniques. His results also

show that the computed D values for the same image vary with the computational

method and spectral band used. He concluded that fractal-based textural discrimina-

tion methods are applicable but these methods alone may be ineffective in identifying

different land cover types in remotely sensed images.

It should be noted that, when used to analyse local tonal variations in the image

(i.e. local D values), fractal techniques provide meaningful results only for image

portions larger than the smallest step size used. In other words, texture variations at

scales smaller than the smallest step size will be overlooked in fractal analysis. This is

often referred to as the blurring effect. How to choose an ‘appropriate’ window size

and how to deal with the boundary effect, as well as the blurring effect, are two

important issues that deserve attention in computing local D values. These issues

will be discussed in greater detail in §5.5.

4.3 Fractal characterization of classified image features

Fractal analysis has been shown to be of descriptive value in the analysis of spatial

complexity of classified image features. Lovejoy (1982), for example, analysed the

perimeter–area relationship of rain and cloud areas identified from satellite and radar

images. He found that the degree of contortion of the perimeter of cloud regions could

be described by D51.35 over a range of cloud sizes from less than 1 km2 to over

106 km2. A more comprehensive example of fractal description of classified image

features was presented by De Cola (1989). In his study, De Cola used the perimeter–

area relationship to describe the shape of regions of eight land cover classes extracted

from a Landsat TM image of north-west Vermont. He showed that it was possible to

associate land cover types with D values. For example, the forests examined in his

study were characterized by high D and large regions, while agricultural activities had

large regions with D inversely related to the intensity of cultivation, and urban land-

use yielded small regions with relatively high D.

Fractal description of classified image features can provide useful descriptive

statistics for characterization of the aggregate feature classes. Knowledge about the
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characteristic D values of different feature classes may be valuable in understanding

the processes that generate the phenomena under consideration (Lovejoy 1982).

Another utility of fractal description of classified image features is the use of such

data as input to GIS. De Cola (1989) demonstrated how the analysis of individual

land cover regions, such as the urban regions in his study, can provide a raster-based

GIS data structure and be used to investigate the location and description of

individual regions and to check the reliability of classification and labelling

processes.

4.4 Scaling characteristics of remotely sensed images

Most research published to date has suggested that real remotely sensed images are

not true fractals (discussed in §5.1). This finding is clearly in violation with the

assumption underlying the fractal model, i.e. the objects under consideration are

self-similar, at least statistically. Some researchers (e.g. Lam et al. 2002) have

argued, however, that lack of self-similarity in real remotely sensed data could be

used positively. Given that the estimated D is stable only over limited ranges of

scale, the behaviour of D can be used to study the effects of scale changes on image

properties. Several studies have examined the scaling properties of digital images

(Lovejoy 1982, Pentland 1984, Emerson et al. 1999, Lam et al. 2002, He et al. 2002).

A good example of the research in this direction was provided by Emerson et al.

(1999). In their study, Emerson et al. examined the effect of changing pixel size on

the computed D values of NDVI (Normalized Difference Vegetation Index) images

of two study areas. In the example of Huntsville Alabama, they found that the

estimated D values of NDVI images of agriculture, forest, and urban areas

responded differently to aggregation. The image of the agricultural area grew more

complex as the pixel size was increased from 10 to 80 m, while the forested area grew

slightly smoother and the complexity of the urban area remained approximately the

same. The analysis of the image data of the East Humboldt Range in Nevada

showed a more complex relation between pixel size and D and this relation changes

between seasons.

Emerson et al. (1999) pointed out that information about the scaling behaviour of

environmental phenomena may be valuable for the selection of an optimal

resolution for characterizing the phenomena under investigation. For example,

environmental phenomena that are more scale independent may require fewer data

or lower resolutions than those that are highly scale dependent. They also argued

that the response of D values to scale changes may be used as a guide to identify the

scale at which the processes that produced certain phenomena operate.

In addition to the four major application areas discussed above, there are other

applications that are not reviewed here. For example, fractal techniques have been

applied to image simulation (Pachepsky et al. 1997, Ricotta and Avena 1998,

Ricotta et al. 1998), image compression (Belloulata and Konrad 2002), image

denoising (Ghazel et al. 2003), image filtering (Germain et al. 2003), characterization

of the structures of hydrological basins (Maitre and Pinciroli 1999), and so forth.

5. Discussion and research need

Remotely sensed images with different textural characteristics are expected to have

different D values. However, differences in image texture are not the only factor

influencing the computed D (figure 3). This raises the question of what is actually
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captured in the computed D. In this section, we discuss the major sources of

limitations and uncertainty in the application of fractal techniques in remote

sensing. The focus of our discussion will be on several issues common to the

methods and applications discussed above. Following a brief discussion of each of

these issues, we offer our thoughts on the research potential for fractals in remote

sensing.

5.1 Are remotely sensed images fractal?

The self-similarity property underlying the fractal model predicts that for truly

fractal surfaces, the computed D should be constant at all scales, at all locations, and

in all directions. Numerous studies have shown that the estimated D values of most

natural phenomena are unstable with respect to scale, location, and/or orientation

(Mark and Aronson 1984, Roy et al. 1987, Klinkenberg and Goodchild 1992,

Burrough 1993). The consensus that has emerged from the research published to

date is that, as far as natural phenomena are concerned, self-similarity is exhibited

only in a statistical sense and such statistical self-similarity, when present, is

exhibited only in limited regions and over limited ranges of scale (Goodchild and

Mark 1987, Milne 1991).

Are remotely sensed images fractal? Studies directly addressing this issue appear

scarce. Nevertheless, a number of studies have found that the estimated D of real

remotely sensed images vary with the resolution of the image used and the region

and direction in which D was computed (Lam 1990, Emerson et al. 1999, De Jong

and Burrough 1995, Lam et al. 2002, Sun et al. 2006). De Jong and Burrough (1995)

Figure 3. Factors influencing the computed fractal dimension of remotely sensed images.
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have further noted that the log–log plots constructed in their study were nonlinear

beyond a certain range, indicating breaks in the slope of the regression lines and

hence the D. These results suggest that most remotely sensed images are not strictly

self-similar; instead, they may be at most only statistically self-similar over a limited

range of pixel sizes.

The observation that most remotely sensed images may not be even statistically

self-similar brings up an important issue, i.e. does it make sense to use D to describe

image textures? At the theoretical level, lack of self-similarity does violate the

assumptions underlying most of the methods discussed in §3. For example, the

variogram method assumes that the surfaces being analysed have statistical

properties similar to those of fractal Brownian surfaces. If this were not the case,

then the method would not necessarily yield a correct D (Piech and Piech 1990).

However, some researchers have suggested that lack of self-similarity is not a

limitation to the fractal technique and it could be simply seen as a method for

extracting information from the Richardson plot (Orford and Whalley 1983,

Kennedy and Lin 1986, Normant and Tricot 1993).

The above discussion suggests that there is still considerable uncertainty regarding

to what extent remotely sensed images are (statistically) self-similar and whether

self-similarity is a prerequisite to applying fractal techniques. More research is

clearly needed in this area. For example, if one accepts that the fractal technique

could be used simply as a method to extract textural information, then it may be

argued that the structures under consideration do not have to be self-similar. But, do

existing computational methods, which operate on the assumption that the object

being measured is self-similar/affine, react differently to image textures than to

structural self-similarity/affinity in any significant ways? Very little has been written

about this issue in the remote sensing literature. Furthermore, if one accepts that

statistical self-similarity, when present at all, is exhibited only over limited ranges of

scale in real images, then one needs to consider if characterization of image textures

using a single (i.e. monofractal) dimension is adequate (discussed in §5.6).

Another issue worth exploring is the use of fractal models to detect edge points in

remotely sensed images. Given that breaks in D appears to be the norm rather than

exception in most real images, it should be possible to extract edge points by

identifying breakpoints in estimated D. Conceptually, such breakpoints could be

considered as the boundaries between homogenous regions with different textural

features (Pentland 1984). Research is needed to test such a fractal-based edge

detection method using a variety of images and compare it with other existing edge

detection algorithms to establish its performance.

5.2 Method-induced errors

The utility of D as a texture measure depends to a large extent on the reliability of

computational methods. A major difficulty in establishing the reliability of various

fractal computational methods is that the D values computed in different ways are

not necessarily related, unless there is a mathematical relationship among the

various D values. In fact, many studies have shown that different computational

methods often yield different results for the same data set (Lam 1990, Clarke and

Schweizer 1991, Klinkenberg and Goodchild 1992, De Jong and Burrough 1995,

Myint 2003, Sun 2006). The differences among different methods are often so

significant that comparisons between computed D values obtained using different

methods are meaningless. Klinkenberg and Goodchild (1992) have even argued that
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the variability in computed D is more a function of the methods used than it is a

reflection of any theoretical inadequacy of the fractal model.

Several factors may be responsible for the observed differences in estimated D

obtained using different methods (Klinkenberg 1994). First, some of the differences

in computed D may arise from the fact that fractal computational methods are not

all measuring the same fractal quantity. For example, while a stochastic relation is

used in the triangular prism method (Clarke 1986) to derive the estimates of D, the

relation used in those methods based on the walking-dividers approach, such as the

isarithm method (Shelberg et al. 1983) and the robust fractal estimator (Clarke and

Schweizer 1991) discussed above, is a geometric one. Second, part of the differences

in computed D may result from inappropriately applied methods. For example, the

robust fractal estimator (Clarke and Schweizer 1991) can only be applied to self-

affine data. Violation of this requirement could lead to erroneous results.

Furthermore, even when an appropriate method is chosen, whether the method is

executed properly may also affect the results. When working with self-affine data,

for example, computation would always return a D close to 1 if step sizes exceeded

the crossover length. Third, even when an appropriate method is used and properly

executed, the details of the estimation process such as the choice of input parameter

values may also affect the resultant D (discussed below).

Several researchers (Gallant et al. 1994, Tate 1998, Lam et al. 2002, Sun 2006)

have attempted to gauge the direction and magnitude of errors introduced by

existing computational methods. Their results show that no single method appears

able to produce accurate estimates of D over the entire range of D. For example,

Lam et al. (2002) found that the triangular prism method was most accurate for

images having higher spatial complexity, for images where generated D52.5 the

isarithm returned best results, and the variogram method was a comparatively poor

estimator for all surfaces. These results suggest that a particular fractal

computational method may be better suited to certain images than others,

depending largely on the roughness of the image to be analysed. Practical use of

such research findings may be challenged by the fact that relatively little is known

about the actual ranges of D of different types of remotely sensed images.

Furthermore, determination of the degree of ‘roughness’ of an image would

represent a priori knowledge about the textural complexity of the image. Can other

existing texture analysis techniques, such as co-occurrence matrices (Haralick et al.

1973), wavelets (Mallat 1989), and local variance (Woodcock and Strahler 1987), be

used for this purpose? What kind of relationship exists between other measures of

texture and the D? The existing literature does not seem to provide satisfactory

answers to these questions. As such, they constitute a fertile field for future research.

5.3 Parameter specifications and the computed D

Implementation of fractal computational methods requires the user to define a

certain number of input parameters, such as beginning and ending step sizes,

interval spacing (step size), direction of computation, and so forth. The choice of

such parameter values is an important issue as these decisions can greatly influence

the computed D. In the methods discussed above (table 1), the estimate of D is

derived as some function of the slope of the regression lines and the slope is

determined using the least-squares method. This means that the selection of the

smallest and largest step sizes and the interval spacing is a critical decision as these

parameter values may affect the slope of the regression line and hence the computed
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D. However, there are no established guidelines for choosing the beginning or
ending step size. Shelberg et al. (1982) proposed to use one-half of the average

distance between every pair of adjacent points as the smallest step size. Andrle

(1992), on the other hand, suggested that the smallest step size be twice the shortest

distance between any two points. In practice, the smallest step size is often chosen to

be close to the limiting resolution of the datasets used (Clarke and Schweizer 1991).

As for the largest step size, several authors have suggested using a reduced largest

step size for two reasons. First, use of a smaller largest step size may help minimize

the effects of partial steps (Andrle 1992). Second, when working with self-affine
profiles, it is critical to ensure that the largest step size remains smaller than the

crossover length (Mandelbrot 1985).

It is widely accepted that for statistical reasons, step size should increase as a

power of two (i.e. doubling the step size) so that data points on the log–log plot are

equally spaced in their independent variable. Doubling the step size will, however,

rapidly cover the data and may result in too few data points available for regression

analysis if the image being analysed is not sufficiently large. The number of step sizes

(or step size increments) is another parameter that needs to be selected with care as
this parameter determines the number of data points available for the regression

analysis. To obtain reliable results, it is necessary to use a sufficiently large number

of step sizes. However, there is no established guideline for choosing an

‘appropriate’ number of step sizes either. Shelberg et al. (1982) suggested that five

to eight step size increments be used. It should be noted that the need to use a large

number of data points in regression analysis is in conflict with the sampling strategy

of doubling the step size, since doubling the step size means that fewer step size

increments can be made (Klinkenberg 1994). As such, careful consideration is
needed in selecting the beginning and ending step size and the interval spacing.

5.4 Input data and the computed D

Several factors related to the remote sensing data used in an analysis may also affect

the computed D. We outline below some of the factors that require attention in

computing the D of remotely sensed images.

N To the extent that the image being measured is not strictly self-similar, the

spatial resolutions, regions, directions, and sampling process selected as input

data may all affect the computed D. It may be desirable that in reporting

research findings, the researcher gives sufficient details about the input data

used. Without such information, comparison of results from different studies

would be meaningless.

N Textures of the same land cover feature in different spectral bands are often

different in terms of contrast, smoothness, spatial variation, and so forth.
Therefore, it is most likely that computed D values will vary greatly with the

bands chosen. Selecting bands with the ‘right’ spectral information content will

be an important task in fractal analysis of remotely sensed images, if the

technique is to be effective in capturing the textural characteristics of the

phenomena under consideration.

N The way in which an image is represented, such as the range of pixel values

used, may also have an effect on the computed D when using certain

computational methods. Lam et al. (2002), for example, found that the
triangular prism method was particularly sensitive to changes in image contrast

and recommended that images be normalized before computing D.
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N The quality of the image used may also affect the estimated D as the

‘contribution’ of noise to the spatial variations in pixel values could be

significant. An assessment of image quality using such techniques as the signal-

to-noise ratios may be useful (De Jong and Burrough 1995, Emerson et al.

1999).

5.5 Computing local D values

A major contribution of De Jong and Burrough’s (1995) work reviewed above is

that they demonstrated how to locally compute the D of real remotely sensed

images. This is an important step as most existing methods only yield a lumped D

value for the entire image. While such global D values may be useful for certain

purposes, they cannot be used to segment images. Surprisingly few studies have

attempted to systematically calculate local D values and use such information to

classify real images. How to develop efficient algorithms to compute local D values

from real images and use local D values as textural information to improve image

classification is an area that holds great potential for future research.

As De Jong and Burrough (1995) have shown, local D values can be computed

using moving window techniques. As with all other techniques involving kernels,

computation of local D values must deal with two undesirable effects, i.e. the

blurring effect and the boundary effect. In their study, De Jong and Burrough (1995)

found that the blurring effects resulted from a 9 by 9 analysis window were visible.

Using local windows to compute D also means that local D values will not be

available for certain rows and columns, whose number equals to one half of the local

window size used, around the edge of the image being analysed.

A potentially more challenging issue in computing local D values is the choice of

window size. On one hand, minimization of local window size is required to capture

details of local variations in land covers. On the other hand, the regression technique

used in the estimation of D requires a sufficiently large number of step sizes to be

available within an analysis window. This, coupled with the sampling strategy of

doubling the step size, means that the window size will be quite large. For example,

if the number of step sizes is chosen to be five, this will translate into a local window

size of 17 by 17 pixels. Use of large window size may, however, lead to several

problems. First, a large window will include more land covers and it can lead to

mixed pixel problems. Second, using a large window means that land cover features

smaller than the window size will not be identified in classification. Third, using a

large window will also lead to loss of more pixels on the edges (i.e. boundary effects).

As such, how to choose an ‘appropriate’ window size for computing local D values is

an issue that deserves further research.

5.6 How to better describe image texture using fractal geometry?

A major finding from the research published to date is that, while fractal dimension

appears able to capture certain aspects of the surface properties of remotely sensed

images, use of D alone cannot sufficiently describe image textures and achieve

satisfactory classification results. Several approaches have been suggested to address

this problem. Below we briefly discuss three such approaches.

5.6.1 Multi-parameter fractal description of image texture. Most existing studies

applying fractal techniques to image texture analysis have concentrated on a single
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fractal parameter, i.e. the fractal dimension. Certain computational methods, such

as the variogram and the Fourier power spectral methods, produce more than just

one parameter. Variogram analysis, for example, generates not only the estimate of

the slope but estimates for the range and the intercept of a variogram (Chen and

Gong 2004). Studies in other fields such as geomorphology have shown that the log–

log plot ordinate intercept of a variogram seems to capture certain information that

is not captured by D (Klinkenberg 1992). Therefore, it seems desirable to use more

fractal parameters to characterize image textures instead of using only D. A

disadvantage of this multi-parameter fractal approach is that not all methods can

provide parameters other than D.

5.6.2 Multifractal models. All the methods reviewed in this paper are based on a

mono-fractal approach, which assumes that the object under consideration can be

characterized by a single fractal dimension. Evidence from the geosciences suggests,

however, that the various natural processes (geological, geomorphological,

ecological, etc) operating at different scales do not have the same influence on the

structures in nature (Mark and Aronson 1984, Roy et al. 1987, Klinkenberg and

Goodchild 1992). As a result, most natural phenomena are characterized by

different dominant structures at different scales (Goodchild and Mark 1987, Feder

1988, Mandelbrot 1989, Milne 1991, Meakin 1991). Analysis of real remotely sensed

data has also shown that the scaling behaviour of image properties deviates greatly

from the ideal mono-fractal dimension assumption (De Cola 1993). This suggests

that multifractal models appear to be more suited to characterization of image

textures. There is a growing body of literature on the application of multifractal

models in image analysis (e.g. Peitgen and Saupe 1988, Arduini et al. 1992, De Cola

1993, Fioravanti 1994, Cheng 1999, Parrinello and Vaughan 2002, Posadas et al.

2005). A detailed discussion of this literature is beyond the scope of this paper.

5.6.3 Lacunarity and image texture analysis. Fractal dimension is a parameter that

measures the geometric complexity of the shape of an object. Obviously, shape is not

the only property of image texture. Other factors such as the size and distribution of

a textural feature and its spatial relations to other features may also play an

important part in differentiating one type of texture from another. This means that

use of D alone may not be sufficient in characterization of image textures.

Mandelbrot (1982) pointed out that different fractal sets may share the same D and

yet have strikingly different appearances or textures. This seems to have been borne

out in several empirical studies in which the estimated D values of different land

cover types were found to be overlapping or even the same (Keller et al. 1989, De

Jong and Burrough 1995, Myint 2003). Lacunarity analysis is a technique

introduced by Mandelbrot (1982) to deal with fractal objects of the same dimension

with different textural appearances. Lacunarity is related to the distribution of gap

sizes: low lacunarity objects are characterized by similar or same gap sizes and

therefore appear homogeneous, whereas high lacunarity objects are heterogeneous

(Mandelbrot 1982, Allain and Cloitre 1991, Dong 2000a). Although originally

developed for fractal objects, lacunarity analysis has been proposed to be a general

technique for the analysis of nonfractal and multifractal patterns (Plotnick et al.

1996). Image segmentation using lacunarity or a combination of D and lacunarity

seem to have obtained good results (e.g., Keller et al. 1989, Dong 2000b). It appears

that incorporating lacunarity measures into the classification procedure is another

promising approach to enhancing classification results. Readers interested in the
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methods for computing lacunarity are directed to Mandelbrot (1982), Allain and
Cloitre (1991) and Dong (2000b).

6. Conclusions

Fractal geometry appears to provide a useful tool for characterizing textural

features in remotely sensed images because most of what we measure in remote
sensing—boundaries of land covers, patches of landscapes, rivers and water bodies,

tree crowns, etc—is discontinuous, complex, and fragmented. Fractal techniques

have been applied to measure the ‘roughness’ or geometric complexity of land

surface features in unclassified and classified images. Quantitative information

about local variations in estimated D values has been used as a texture measure to

segment remotely sensed images. Fractal techniques have also been used to

investigate the scaling behaviour of environmental phenomena and the results from

this stream of research may prove valuable for choosing ‘optimal’ resolutions for
studying environmental phenomena at different scales in remote sensing and GIS.

Despite the potential utility of fractal techniques, several methodological and

practical measurement problems have been encountered in fractal analysis of

remotely sensed images. For example, the computed D is supposed to capture the

differences in the characteristics of image textures. However, a host of factors other

than image texture, such as the computational method used, the choice of input

parameter values, input images, and so forth, may all have an effect on the

computed D. As a result, it seems extremely difficult, if possible at all, to determine
whether the observed differences in computed D values is a result of true differences

in image texture or a result of certain arbitrary decisions made during the estimation

process. As such, the question what actually is measured in the computed D remains

unanswered.

For D to be a useful parameter, the methods of computing D must be robust,

consistent, and have the ability to distinguish visually different textures. Research

published to date has shown, however, that significant variations in computed D can

be introduced by computational methods. Therefore, the choice of method is an
important issue in the computation of D for remotely sensed data. Researchers need

to be aware of the comparative performance of different methods proposed in the

literature and the biases that are associated with a particular method. Blind use of a

method without knowing its applicable D ranges and potential errors may lead to

poor or even erroneous results. Given the uncertainty surrounding the nature and

extent of method-induced errors, more systematic evaluation of existing computa-

tional methods is needed.

A major drawback in using fractal techniques for analysing remotely sensed

images is that they can be applied only to single bands{. Since real remotely sensed
images are generally multispectral ones, it appears desirable to develop what may be

called ‘multivariate fractal methods.’ Such multivariate fractal methods should

enable the analysis of all bands together and, therefore, would represent a

tremendous improvement to the existing methods in fractal analysis of remotely

sensed data.

For the most part, existing research applying fractal techniques to remote sensing

problems rests on the assumption that image textures can be described by a single

(mono-fractal) dimension. Evidence from remote sensing applications as well as

{ We thank an anonymous reviewer for bringing this issue to our attention.
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other fields of the geosciences suggests that the structures underlying most natural
phenomena are most likely multifractals. This implies that fractal analysis of

remotely sensed images without checking their dimensionalities may be problematic.

More important, further research is needed to determine whether multifractal

models could do a better job in characterizing image textures.

The fractal dimension can be thought of as a summary statistic measuring the

overall geometric complexity of image textures. Like many summary statistics, the

fractal dimension is obtained by ‘averaging’ local tonal variations and it only

captures one aspect of the spatial variations of grey levels in the image. The
estimated D of a textural feature, for example, tells us nothing about its actual size

or its spatial distribution, nor can we infer its spatial relations to other textural

features from its D alone. This may explain why many studies have found that,

despite its usefulness, use of D alone is insufficient to accurately describe image

textures and achieve satisfactory classification results. It appears that the utility of D

may be explored to a fuller extent when it is used in conjunction with other texture

measures and perhaps spectral classification approaches as well.
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