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Abstract

Leaf area index (LAI) is an important variable needed by various land surface process models. It has been produced operationally from the

Moderate Resolution Imaging Spectroradiometer (MODIS) data using a look-up table (LUT) method, but the inversion accuracy still needs

significant improvements. We propose an alternative method in this study that integrates both the radiative transfer (RT) simulation and

nonparametric regression methods. Two nonparametric regression methods (i.e., the neural network [NN] and the projection pursuit

regression [PPR]) were examined. An integrated database was constructed from radiative transfer simulations tuned for two broad biome

categories (broadleaf and needleleaf vegetations). A new soil reflectance index (SRI) and analytically simulated leaf optical properties were

used in the parameterization process. This algorithm was tested in two sites, one at Maryland, USA, a middle latitude temperate agricultural

area, and the other at Canada, a boreal forest site, and LAI was accurately estimated. The derived LAI maps were also compared with those

from MODIS science team and ETM+ data. The MODIS standard LAI products were found consistent with our results for broadleaf crops,

needleleaf forest, and other cover types, but overestimated broadleaf forest by 2.0–3.0 due to the complex biome types.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Leaf area index (LAI), one-sided leaf area per unit of

ground area, defines an important structural property of

terrestrial vegetation canopies. It is a crucial variable in

canopy interception, evapotranspiration, and net photosyn-

thesis. Currently, there is considerable interest in developing

algorithms for the estimation of LAI to drive the ecosystem

productivity models (Running et al., 1989) and some

general circulation models (Chase et al., 1996).

Many efforts have been made to estimate LAI from

satellite measurements through LAI’s statistical relation-

ship with spectral vegetation indices, by physical model

inversion or by other nonparametric methods (Liang,

2003; Weiss & Baret, 1999). Using the empirical

vegetation indices is simple and easy. Its limits are also
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obvious, however, such as the limited amount of spectral

information, the diversified empirical equations used and

their sensitivity to nonvegetation factors. The model

inversion method is physically based and independent of

vegetation type, but the model inversion process is not

always unique and demands time. The nonparametric

methods (e.g. neural networks, NN), which provide a

direct relationship between the simulated reflectance and

the corresponding biophysical variables of interest, are

ideal for LAI extraction.

The Moderate Resolution Imaging Spectroradiometer

(MODIS) science team in the Earth Observing Program

(EOS) is producing an LAI product globally (Justice et al.,

1998; Myneni et al., 2002). The MODIS LAI product, a 1-

km global data product updated every 8 days, is available

for the general user community through the Earth

Resources Observation System (EROS) Data Active

Archive Center (DAAC). The operational MODIS LAI

algorithm uses vegetation maps as a priori information to
ent 94 (2005) 405–424



Fig. 1. Work flow of the new hybrid approach to estimate leaf area index

with remote sensing imagery.
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constrain the vegetation structural and optical parameter

space (Myneni et al., 1997). Six major biomes were used:

grasses and cereal crops (biome 1), shrubs (biome 2),

broadleaf crops (biome 3), savannas (biome 4), broadleaf

forests (biome 5), and needleleaf forests (biome 6). For

each land pixel, numerical solutions to a three-dimensional

radiative transfer (RT) equation are used to account for the

bi-directional reflectance factors (BRF) of the biomes for

varying sun-view geometry and canopy/soil patterns

(Knyazikhin et al., 1998a, 1998b). A look-up table (LUT)

is constructed including a suite of canopy structures and

soil characteristics of each biome. The present version of

the LUT contains 25 patterns of effective ground reflec-

tances evaluated from the soil reflectance model of

Jacquemoud et al. (1992). By comparing the observed

and modeled BRFs, LAI is retrieved. The solution is

usually not unique; therefore, the mean values of LAI

averaged over all acceptable values and their dispersions

are taken as the retrievals and their uncertainties (Knyazi-

khin et al., 1998a, 1998b). Should this main algorithm fail,

a back-up algorithm is triggered to estimate LAI using the

NDVI (normalized difference vegetation index). The backup

algorithm makes use of the pixel NDVI and the straightfor-

ward NDVI-LAI relationship for each biome. The LAI

product has a value between 0.0 and 8.0 assigned to each 1-

km cell of the global grid database.

One important aspect of the MODIS LUT method is

that some variables, such as soil reflectance and leaf

reflectance and transmittance, need to be fixed with a

priori constants. Soil and leaf optical properties are

allowed to vary only with biome types by MODIS

algorithms in order to facilitate its global application.

However, most of these variables vary dramatically. Fixing

them with constants carries large uncertainties (Walthall et

al., 2000)—we have released the restriction on soil and

leaf optical properties in our new approach. In addition,

land biome type is indispensable for this algorithm;

misclassification will lead to accumulated errors in the

final LAI products.

To overcome some of these limitations, we developed

a new hybrid LAI estimation approach based on intensive

RT model simulation and nonparametric regression

methods. Two nonparametric methods, an artificial NN

approach and the projection pursuit regression (PPR)

approach were explored in creating this hybrid. A similar

approach was applied to the fine resolution Landsat

ETM+ data (Fang & Liang, 2003) and EO1 ALI data

(Liang et al., 2003). However, its applicability to MODIS

and over other landscapes is still unknown, requiring

further experiments and validation work. In addition,

independent methods like ours are crucial for validation

of the MODIS standard LAI products (Privette et al.,

1998).

This paper starts with a description of the hybrid

approach in Section 2. The two test sites and the data used

to estimate LAI with the new approach are described in
Section 3. Section 4 presents the results. The experimental

design flow is illustrated in Fig. 1.
2. A hybrid LAI estimation approach

The hybrid approach begins with a radiative transfer

simulation with various input biophysical parameters (Fig. 1).

A new soil reflectance index (SRI) was developed to account

for the soil reflectance during the simulation process. Leaf

optical properties were simulated with different analytical

leaf models for different biome types. Since this new

algorithm fixes fewer parameters, the features of different

biomes have been implicitly incorporated into the algorithm.

The RT simulation processes were designed for two major

vegetation types, broadleaf and needleleaf canopies, respec-

tively. Both NN and PPR approaches were integrated with the

RT simulation results and used to predict LAI from MODIS

data. In this section, the soil reflectance index was first

introduced, followed by the RT simulation and LAI estima-

tion with nonparametric methods.

2.1. Determining SRI from MODIS data

The soil reflectance, especially for sparse canopies with

small LAIs, is one of the most sensitive parameters in the

radiative transfer models. When the LAI increases (N3), the

importance of the soil background decreases (Bicheron &

Leroy, 1999).

Conventionally, there are several different ways to deal

with the soil reflectance in RT model simulations:

(1) using field-measured soil reflectance data directly

(Abuelgasim et al., 1998; Qi et al., 2000; Smith, 1993);

(2) using soil reflectances from a soil spectral library

(Broge & Leblanc, 2001);
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(3) using randomly generated soil reflectance (Kimes et

al., 2002) based on the coefficients in green, red and

near infrared (NIR) bands; and

(4) using reflectances generated from the soil line (Baret et

al., 1995).

Generally, using the field-measured soil reflectance is the

most accurate approach, assuming good availability of data.

Reflectances from a soil spectral library may not represent

the real conditions in the field. Randomly generated or soil

line reflectances are appropriate when they are applied to a

particular soil background because they are derived from

empirical observations.

In this study, the soil reflectance was calculated from the

soil reflectance index based on the red–NIR reflectance

space. SRI is a simplification of a very complex situation

and can be directly derived from the satellite data. The SRI

performed very well for the fine resolution ETM+ data

(Fang & Liang, 2003), but its characteristics in MODIS

imagery still need to be investigated due to different soil line

properties. In general, soil pixels are located at the low-right

side of the red–NIR scatterplot (Fang & Liang, 2003).

Knowing this allows us to develop an automatic method for

soil line extraction. Fig. 2 clarifies this process:

(1) Starting from the minimum NIR reflectance qNIR

determine the pixels (e.g. pixels between points P1

and P2) at the higher end of the red reflectance (qR). For

example, we have a=(qR,P1�qR,P2)/(qR,Max�qR,Min),

and qR,P1, qR,P2, qR,Max, and qR,Min are the red band

reflectance at points P1, P2, maximum and minimum,

respectively. P1 is equal to the maximum in this case

and, typically, an a=10–15% works well for this

purpose.
Fig. 2. Automatic extraction of soil line from the red–NIR scatterplot.

Points P1 and P2 are determined by the upper percentile the red band

reflectance at a given NIR reflectance (qNIR). The soil line is the regression

line of soil pixels within boundary lines V1 and V2.
(2) The pixels whose red reflectances are within cross

points P1 and P2 are treated as soil pixels at the

specific qNIR.

(3) Repeat (1) for all {qNIR} until qR is equal to the

overall maximum red reflectance. All soil pixels are

located within the two boundary lines V1 and V2.

(4) Conduct a linear regression analysis to obtain the slope

(a) and intercept (b) of the soil line.

(5) SRI can be calculated with

SRI ¼ qs � q1

q2 � q1Þð ð1Þ
where q1 and q2 are the minimum and maximum band

reflectances derived from the soil line (Fang & Liang,

2003).
(6) The soil reflectance (qs) for a pixel is then calculated

with

qis ¼ qi1 þ qi2 � qi1ÞTSRIð ð2Þ
where qi1 and qi2 are the minimum and maximum soil

reflectance at band i.
The SRI was estimated successfully from MODIS for

one of the study areas (BOREAS SSA, see Section 3.2

below) with the method above. This is not unexpected since

its red–NIR scatterplot shows a typical vegetated surface.

However, calculating SRI from a degraded red–NIR space,

e.g. the USDA BARC area (Section 3.1), should be very

meticulous. Fig. 3 shows different spatial resolutions and

red–NIR spaces upscaling from 30-m (ETM+) to 1-km

resolution. The MODAGG red–NIR scatterplot are also

shown (Fig. 3e and j). The soil line rotates counter-

clockwise when the spatial resolution decreases. In fact,

those strips of pixels to the right are not pure soil pixels any

more—they simply have more dsoilT than other pixels—

which makes soil line identification range from difficult to

impossible. Without proper pixel unmixing, it is unrealistic

to determine the soil line automatically.

In this circumstance, we explored three methods to get SRI

and the soil reflectance (Table 1). The first method uses the

coherent high-resolution ETM+ red–NIR space and its soil

line parameters. The scaling of surface reflectance could be

treated as linear (Liang, 2000). The MODIS soil reflectances

are calculated using the spectral transformation formulae

between MODIS and ETM+ (Liang et al., 2002a). Soil line

parameters obtained this way are very accurate. However, this

method is limited since simultaneous ETM+ data are often

not obtainable and their processing is time-consuming. The

second method uses the soil line obtained from the 250-m

MODIS level 2 bands 1 and 2 surface reflectance data. In

principle, the SRI obtained in this way is more realistic than

from ETM+ and more practical for simulating canopy

reflectance. The 250-m MODIS is provided together with

the 1-km data. However, the 250-m red–NIR space is also

degraded compared with the ETM+ resolution (Table 1). The

first two methods assume the soil and vegetation’s reflectan-



Table 1

Soil line parameters from various sources

Slope (a) Intercept (b) Note

ETM+ image 1.1

(April 28, 2001)

0.04

(April 28, 2001)

1.05

(August 2, 2001)

0.04

(August 2, 2001)

250 m MODIS 1.55

(April 28, 2001)

0.008

(April 28, 2001)

1.4

(August 2, 2001)

0.04

(August 2, 2001)

Literature and

soil spectral

library

1.2 0.04 (Baret et al.,

1993)

1.253 0.03 (Baret et al.,

1995)

1.2 (Kimes et al.,

2002)

1.159 0.027 (Daughtry,

2001)

1.00 0.08 JHLa

a JHL: soil reflectance measurements by J. Salisbury at the John

Hopkins Univ.

Table 2

Relative mean and maximum canopy reflectance variations (%) calculated

for F10% soil line slope biases from the MCRM model

+10% �10%

Red NIR Red NIR

LAIb3

Mean 3.68 1.61 �3.68 �1.60

Max 9.68 9.35 �9.67 �9.34

3VLAIV8
Mean 2.66 1.24 �2.66 �1.22

Max 9.26 9.29 �9.65 �9.29

Fig. 3. The scatterplot of the red (abscissa) and near-infrared (ordinate)

reflectances for USDA BARC ETM+ and MODAGG imageries on April

28, 2001 (a–e) and August 2, 2001 (f–j). The ETM+ scatterplots are of

different resolutions (240, 510, 750, and 990 m). The strip within the

dashed lines shows the soil pixels.
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ces are constants; their fractions change relative to changing

resolutions. Both methods require ancillary reflectance data,

sometimes unobtainable, and thus impractical for global

application. The third method sets the soil line parameters

with the average values computed from literature and soil

spectral library. The soil line slope generally varies from 1.0

to 1.3 and intercepts from 0.02 to 0.08 (Table 1). If the

automatically calculated parameters are out of the normal
range, the empirical values will be used in the simulation. In

this study, a=1.2, b=0.04 were used for the USDA BARC

area. To test how this selection affects the canopy reflectance

and the LAI accuracy, two bias levels (F10%) were added to

the slope. The relative canopy reflectance differences were

calculated (see Section 2.2) (Table 2). Since we are using

MODIS bands 1 (red) and 2 (NIR), Table 2 lists the average

and maximum relative differences for the two bands. The

average reflectance varies less than 4% and its maximum

variation does not exceed 10%. The reflectance is more

stable for higher LAI (z3). Based on our previous finding

that the estimated LAI varies less than 0.5 under 10%

reflectance amplitude (Fang & Liang, 2003), we are

confident that the soil line parameters meet the accuracy

requirement for LAI.

2.2. Creating databases with canopy radiative transfer

models

The MODIS LUT method needs to fix many canopy

parameters. To account for the variations, the MODIS LUT

algorithm classifies all canopies into six categories. We
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aimed at developing an alternative method adaptable to their

variations. No universal canopy radiative transfer model for

all canopies exists. Two canopy radiative transfer models

were used in this study. The first one is the Markov chain

reflectance model (MCRM), which simulates two-layer

canopy reflectances for different solar zenith angles (SZA)

(Kuusk, 2001). This model has a demonstrable usefulness in

most canopies, except needleleaf forests (Fang & Liang,

2003; Kuusk, 1998). The second model is the GeoSAIL

model (Huemmrich, 2001), which validation results show is

suitable for needleleaf forest and works very well in the

boreal area (Huemmrich, 2001).

2.2.1. Simulation with the MCRM model

In MCRM, the canopy is assumed to be horizontally

uniform above a horizontal ground surface. This model has

been used for the LAI and chlorophyll content retrieval from

ETM+ (Kuusk, 1998). It has also been used to retrieve LAI

from the POLDER data with a spatial resolution of 7 km

(Bicheron & Leroy, 1999).

With the existing LUT method, the ideal way to create

large databases is to discreterize more input values and run

the RT model for all cases. Since current remote sensing

satellites provide the capability of viewing the ground from

different directions, it is worthwhile to test the hybrid

approach with off-nadir simulations. Multiple viewing

angles (MVA) may also improve the retrieval accuracy of

land surface parameters.

The MCRM was run with variable solar zenith angles

(h0: 208, 308, 358, 408, 458, 508, 558, 608, 658, 708, 758),
view zenith angles hv=0–908 by 108, relative azimuth angles

/=0–1808 by 158, LAI (0.1–10 by 0.1), and different SRI

values (0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8,

1.0). Note that the SRI was derived from the empirical soil

line. The PROSPECT model (Jacquemoud & Baret, 1990)

was used to simulate leaf optical properties. Leaf biophys-

ical parameters were specified by leaf chlorophyll A+B

concentration (Cab: 10–90 by 10 ug/cm2), the Markov

parameter (Sz: 0.4–0.9 by 0.1), and the effective number of

elementary layers (N: 1.0–3.0 by 0.5). The leaf orientation

was assumed spherical. An example of the output MODIS

nadir red and NIR reflectances for different LAI and SRI is

shown in Fig. 4. This figure is typical of the red–NIR

scatterplot of a vegetation canopy. Fig. 4a and b exhibits

similar regularities with different input settings. One major

difference is the location of the convergence point, which is

determined mostly by leaf optical properties and canopy

structural features (Shabanov et al., 2002).

An example of the simulation in the principal plane is

shown in Fig. 5. When the solar zenith angle is low (308),
the red reflectance is very low and insensitive to LAI

change. When LAI increases, the red reflectance decreases

very little but the NIR reflectance increases. The red

reflectance decreases and NIR reflectance increases related

to LAI increase when h0=508. The hotspot effect is obvious
for both solar zenith angles.
2.2.2. Simulation with the GeoSAIL model

The GeoSAIL model combined a turbid medium RT

model (SAIL) with the Jasinski geometric model to simulate

canopy spectral reflectance for discontinuous canopies

(Huemmrich, 2001). In the simulation, two canopy compo-

nents were selected, the leaves (or needles) and twigs. The

leaf inclination angle was assumed spherical and twigs

planophile. The optical properties of each component,

parameterized with the Leaf Incorporating Biochemistry

Exhibiting Reflectance (LIBERTY) (Dawson et al., 1998)

modeled results, were integrated into the MODIS bands 1

and 2, respectively, with the spectral response function. The

twig transmittance was assumed zero. Aspen tree crowns

were modeled as cylinders and black spruce crowns use

cones. The maximum plant area index was set to 5.0 and 7.0

for aspen and spruce, respectively. Canopy height/width

ratios were calculated as 3.5 for aspen and 7.0 for spruce

(personal communication with K.F. Huemmrich).

Leaf optical properties for aspen and spruce, simulated

from the LIBERTY, were modeled with various leaf cell

diameter (m�6) (20–80 by 10), intercellular air space (0.01–

0.05 by 0.01), (1, 2, 3, 4, 5, 7, 10), baseline absorptions of

(0.0004, 0.0006, 0.0008, 0.001), albino absorptions set at (1,

3, 5, 7, and 9), chlorophyll contents of (100, 200, 300, 400,

and 500 mg/m2), and lignin and four cellulose contents: (10,

30, 50, and 80 g/m2) (Dawson et al., 1998). Fig. 6 shows an

example of leaf reflectance (6a) and transmittance (6b)

when the leaf cell diameter is fixed at 20 Am. The view

angle is fixed at nadir but GeoSAIL provides a framework

for simulating angular reflectances. There are three other

free variables: the solar zenith angle, the canopy coverage,

and the background reflectance. The soil reflectance index

was derived from the MODIS surface reflectance data

(MOD09) and was used to calculate the background

reflectance for each wavelength. A number of different

background fractions (0–1.0 by 0.1) were simulated for

spruce and aspen. An example of the simulated red and NIR

reflectances for both spruce and aspen is plotted in Fig. 6c

and d. Generally, the red reflectance increases with

increasing SRI and NIR increases with LAI. The spruce’s

NIR variation is comparatively smaller than that of aspen.

2.3. Nonparametric training and prediction

Two nonparametric methods were applied in the training

process and to predict the LAI. The general idea is that, if

we can distinguish needle leaf forest from other canopies,

we can apply these two nonparametric regression equations

to predict LAI from all canopies. Both the neural network

method and the projection pursuit regression method are

briefly outlined below.

2.3.1. The neural network method

Basically, the neural network method establishes a

mapping function between the simulated reflectance field

and the corresponding biophysical variable of interest



Fig. 4. Examples of the simulated databases (MODIS red and NIR nadir reflectances) for the USDA BARC study site. The two examples are simulated with

varying LAI and SRI, fixing (a) h0 (308), Cab (40), Sz (0.4), and N (2.5), and (b) h0 (508), Cab (50), Sz (0.8), and N (1.5). SRI={0.01, 0.05, 0.1, 0.15, 0.2, 0.25,

0.3, 0.4, 0.5, 0.6, 0.8, 1}. LAI=0.1–10.0 by 0.1.
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(Kimes et al., 2000). Some previous studies have applied

neural network methods to invert physically based RT

models. Most of these works (Gong et al., 1999; Qi et al.,

2000; Smith, 1993) use the simulated database from an RT

model in the training and checking processes (part of the

simulated data were used for the training and the other

testing). The disadvantage of incorporating simulated data

is obvious since the simulated databases may not fully
Fig. 5. Simulation of MODIS red and NIR reflectances for various viewing dir

viewing zenith angles and LAI. (a) and (b) are red and NIR reflectances for h0 (30

LAI={0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, and 5.0}.
represent real environments. It is desirable to apply the

training results to reflectance data derived from satellite

sensors and calibrate the results with field-measured data.

The training process is usually computationally inten-

sive. Since some of the satellite bands are closely related,

only the most information-rich bands are ordinarily applied

in the training iteration. Commonly used bands include

green, red, NIR and the NDVI, either as single bands or in
ections. The figure shows reflectances in the principal plane with varying

8), SRI (0.1), and Cab (40). (c) and (d) for h0 (508), SRI (0.4), and Cab (60).



Fig. 6. Leaf optics and canopy reflectances for the BOREAS SSA study site. (a) Leaf reflectance and (b) transmittance (leaf cell diameter=20 m�6). (c) and (d)

are the nadir red–NIR reflectances for spruce and aspen, respectively.
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combinations (Baret et al., 1995; Kimes et al., 2002; Qi et

al., 2000; Smith, 1993). Obviously, different MODIS band

combinations can be used to invert LAI from simulated

databases. In another similar study, different band combi-

nations were tested to determine their effect on the final LAI

accuracy estimated from EO1 ALI data (Liang et al., 2003).

In this study, only the MODIS red (band 1) and NIR (band

2) bands were used in the training and prediction process.

This selection is similar to the strategy applied in the

MODIS LAI algorithm. In addition, our tests have shown

that using red and NIR bands can produce accuracy

equivalent to using all bands.

2.3.2. PPR training and prediction

Projection pursuit regression is another nonparametric

multiple regression method. Its mathematical form is

(Friedman & Stuetzle, 1981):

Y ¼ aþ
XM

j¼1

Wja
TX ð3Þ

where X and Y are the independent (e.g. LAI) and dependent

variables (reflectance) respectively. a is the transformation

vector. The dimension (or term) M is to be chosen by the

user. Wj is the weights for different terms. Eq. (3) uses an

additive model on predictor variables, which are formed by

projecting X in M carefully chosen directions.
Many statistical software producers provide the NN and

the PPR packages (e.g. Splus, Venables & Ripley, 1994). The

PPR process proceeds with the same database used in the NN

training process. The database was segregated into different

angular bins based on their SZA and VZA (view zenith

angle) ranges. For example, the angular bin used for USDA

BARC is 20–308 for SZA and 0–308 for VZA. The training
procedure was executed for each angular bin to create an

input–output relationship between reflectance and LAI for

each angular bin. In practice, all angular bins are trained and

the results from a specific bin are used to estimate LAI from

images with the specific angular setting. In this study, the

aggregated ETM+, the MODAGG, and MOD09 red (band 1)

and NIR (band 2) reflectances were used to map the LAI

based on the trained input–output relationship.

In practice, training with only the simulated databases

can lead to aberrant results in the final LAI map because the

database may not represent the real environment. To

overcome this problem, real image pixels were added to

the database before training. The bare ground points are

especially necessary because they have zero LAI (or at least

very low) and are easily over fitted. Note that we did not

include LAI=0.0 in the simulation process (Section 2.2). In

this study, the nonvegetated pixels (bare soils, constructed

areas, seashores, etc.) were extracted from MODIS imagery

using NDVI (b0.3), and bands 6 (b0.1) and 7 (b0.09) as the

thresholds. Bare ground reflectances and LAI (=0.0) were
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added to the database and in the training procedure to

represent actual natural conditions.
Fig. 7. MODIS LAI biome types at (a) the USDA BARC study site and (b)

BOREAS SSA site. Color numbers: 0=water or unclassified, 1=grasses/

cereal crops, 2=shrubs, 3=broadleaf crops, 4=savannah, 5=broadleaf forest,

6=needleleaf forest.
3. Study area and data preparation

Two study sites were chosen to test the new approach.

The first one is centered at the U.S. Department Agriculture

(USDA) Beltsville Agricultural Research Center (BARC),

Maryland, which is typical middle latitude temperate

climate with mixed agricultural land, deciduous broadleaf

forest, pasture, and developed areas. The other one is the

Boreal Ecosystem–Atmosphere Study (BOREAS) Southern

Study Area (SSA), Canada, an area dominated by evergreen

needle forests (56.9%) and grasslands (33.6%). The major

biome types used by the MODIS LAI algorithms for these

two areas appear in Fig. 7.

3.1. USDA BARC

The USDA BARC, listed as one of the initial 24 NASA

EOS land validation core sites (Morisette et al., 2002), is

adjacent to the NASA Goddard Space Flight Center

(GSFC) (39.038N, 76.858W). The MODIS image of this

area ranges over the Baltimore–Washington metropolitan

region and the Chesapeake Bay region. This area is

fortunately under the center of a Landsat ETM+ scene

(path 15/row 33). In the site, a series of field campaigns

were conducted over recent years to measure surface

reflectance and LAI data (Fang et al., 2003).

MODIS LAI collection 4 products were downloaded

through the EOS data gateway. In the MODIS land data

production sequence, the level 2G (MOD09) and level 3 data

are accumulated to create the LAI products as well as other

land data products (Justice et al., 2002). The MODIS Level

2G (MOD09) data are daily, cloud-cleared, and atmospheri-

cally corrected surface reflectances. The level 3 MODIS

aggregated (MODAGG) data are 1-km intermediate products

aggregated and binned daily from the MOD09 1–7 channels.

The MODAGG data are used as the primary input for the

MOD43B BRDF/Albedo product (MOD43B), the nadir

BRDF adjusted reflectance (NBAR or MOD43B4), and the

16-day enhanced vegetation index product (MOD13A2).

MODAGG is directly used to produce the MODIS LAI

products because it has the required projections and spatial

resolution. These constitute very sound reasons to utilize

MODAGG data to test the new approach.

Over the study area, two clear Landsat ETM+ imageries

were obtained on April 28 and August 2, 2001, respectively

(path 15/row 33). They represent two different vegetation

growing states. In late April, the vegetation and crops are in

typical early-spring growth. In early August, crops are in the

middle-late growing season. ETM+ and MODIS are in the

same orbit, about 45 min apart, on Landsat 7 and Terra,

respectively. The MODIS imagery over the test site was

acquired on the same day as ETM+. The MODIS imagery
had a very small viewing angle (b18 for both images at the

10�10-km core site or b88 over the ETM+ coverage).

Hence, both ETM+ and MODAGG reflectance were treated

as nadir view. The SZA were 31.418 and 30.198 for the two
ETM+ images, respectively, and 27.228 and 25.558 for the
MODIS images.

3.1.1. Companion ETM+ data processing

The companion ETM+ imagery in BARC was atmos-

pherically corrected using the measured aerosol optical

depths and water vapor content from Sunphotometers

(Holben et al., 1998). For heterogeneous haze, a cluster

match algorithm was used to estimate the aerosol optical

depth and retrieve surface reflectance (Liang et al., 2001).

After the ETM+ reflectance data were calibrated with field-

measured reflectance, they were aggregated into the MODIS

resolutions (Liang et al., 2002b).
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The ETM+ data from band 3 and band 4 in the study area

were spatially averaged using commercial image software to

generate data of 240-, 510-, and 990-m resolutions (Fig. 3),

close to the MODIS 250-, 500-, and 1000-m resolutions.

This aggregation was accomplished by simply averaging

every 8�8, 17�17, and 33�33 ETM+ pixels. The spatial

averaging was just a simplification of the complicated

spatial convolution and resampling process to aggregate

ETM+ imagery to MODIS sensor (Barker et al., 1992). The

aggregated 510-m resolution ETM+ imagery was then

registered with the 1-km MODIS imagery by manually

selecting the common ground control points (GCP), such as

rivers, coastal lines, and other distinct features. It is clear

that the accuracy of validation depends to a large extent on

the accuracy of the spatial registration. In this study, an

average registration error of less than one pixel was

achieved for both months’ images.

To further validate the ETM+ image processing, the 510-

m ETM+ reflectances were aggregated to MODIS bands

and compared with the actual MODIS data. Fig. 8 compares

the red and NIR reflectances for both broadleaf crops and

broadleaf forest for April 28 and August 2, 2001. Their

mean red/NIR differences are less than 0.005/0.02 for

broadleaf crops and less than 0.013/0.015 for broadleaf

forests (Fig. 8). Similar accuracy was reported in one of our

earlier studies to validate MOD09 surface reflectance with

ETM+ data (Liang et al., 2002a). In that paper, the standard

deviation of the differences between the retrieved ETM+

surface reflectance and MOD09 products are 0.015 and

0.035 for bands 1 and 2, respectively.

3.2. BOREAS SSA

Selection of the BOREAS SSA (53.6568N, 105.3238W)

is particularly for investigating the performance of the

hybrid approach for the needleleaf forest. The SSA top-

ography is gentle, with a relief from 550 to 730 m. The

western part of SSA is in the Prince Albert National Park

(PANP) and the eastern region falls within and around the

Narrow Hills Provincial Forest (Newcomer et al., 2000).
Fig. 8. Comparison of the aggregated ETM+ mean reflectances with the

actual MODIS bands for both broadleaf crops and broadleaf forest for April

28, 2001 and August 2, 2001. The error bar shows the standard deviation.
The Southern Study Area has six main sites in and around

the PANP and Narrow Hills Provincial Forest. They are fen

(FEN), old aspen (OA), old black spruce (OBS), old jack

pine (OJP), young aspen (YA), and young jack pine (YJP).

The BOREAS CD-ROM set (Newcomer et al., 2000) is

very useful in this study. It includes high spectral resolution

reflectance and transmittance factors of individual leaves,

needles, twigs (reflectance only), and substrate at the SSA

FEN, YJP, YA, and OBS sites (Walter-Shea, 2000). There

are also spectral reflectance data for aspen bark and leaves

from OA, YA, and ASP sites (Kharouk & Rock, 2000).

MODIS LAI collection 4 products were obtained through

the EOS Data Gateway (EDG). For comparison, collection 3

LAI data were also downloaded. MODIS surface reflectance

data (MOD09A1, 500 m) on August 5, 2002 were obtained

from the MODLAND-BOREAS SSA site (Morisette et al.,

2002). Different from the MODAGG used for BARC

region, MOD09 data were used directly to estimate LAI

for BOREAS SSA.

The BOREAS CD-ROM set also contains ground

measurements of LAI made from August 9, 1993 to

September 19, 1994 (Chen & Geng, 2000). LAI maps have

been calculated from Landsat TM images on August 9, 1991

through the empirical relationship between the field LAI

values and the Reduced Simple Ratio (RSR) vegetation

index (Brown et al., 2000). Other data sets in the CD-ROM

include daily green fraction of absorbed photosynthetically

active radiation (FPAR), needle-to-shoot area ratio, clump-

ing index, plant area index, and foliage-to-total area index.

These ancillary information sets were used in the database

simulation and LAI estimation processes.
4. Results

4.1. USDA BARC area

Fig. 9 shows a color composite image of the LAI derived

from the MODIS standard products, the aggregated ETM+

and the MODAGG in the Baltimore–Washington region.

This figure also depicts the registration results between the

aggregated ETM+ and the MODIS data. The ETM+ image

is diamond-shaped and covers the center of the rectangle.

MODIS and MODAGG LAI values are displayed in red and

blue, respectively, within the rectangle. There are three

major vegetation types in the area (Fig. 7): broadleaf forest

(50.3%), broadleaf crops (26.9%), and needleleaf forest

(10.2%). There are some grasses and cereal crops but they

only account for 3.5% of the vegetation. Besides, there are

some shrubs, savanna pixels, and unvegetated pixels.

Fig. 10 shows the MODIS standard LAI product from

both the main RT method and the empirical backup method

on May 1, 2001 and August 5, 2001, respectively. The

MODIS LAI quality control (QC) mask was employed-only

those pixels whose QC are labeled bmain methodQ, bmain

method with saturationQ, or bempirical methodQ were used.



Fig. 9. Presentation of the registration of the MODIS LAI product (red), the

aggregated ETM+ LAI (green) and the MODAGG LAI (blue) of the USDA

BARC site. The ETM+ (the smaller lozenge region) and MODAGG data

are of August 28, 2001. The MODIS LAI product is of May 1, 2001.

Fig. 10. MODIS LAI products for the USDA BARC study area on (a) May 1, 200

the two dates. Red, yellow, and green color represent the main radiative transfe

method, respectively.
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In this figure, all water, barren, permanent wetlands/

marshes, and built-up areas are filled with zero values.

Moreover, all clouds and shadows were excluded in the

subsequent comparison work. Table 3 compares the mini-

mum (min), mean, and maximum (max) LAI estimated by

different approaches. At the beginning of the growing

season (Fig. 10a), the first (0.25) and third (0.75) quantiles

of LAI are located at 1.8 and 5.9, respectively. In the middle

of the growing season (Fig. 10c), nearly all areas had a

larger LAI (more green areas in the figure). The first and

third quantiles increased to 3.1 and 6.1, respectively. The

mean LAI increased from 3.9 to 4.9 from May 1 to August

5, 2001; maximum LAI reached for both dates was 6.8.

Table 4 compares the mean and standard deviation of LAI

estimated with different QC masks. LAI values derived

from the main method (RT), the main method with

saturation (RTs), and the empirical backup method (VI)
1 and (c) August 5, 2001. (b) and (d) depict the MODIS LAI algorithms for

r method, the main RT method with saturation, and the empirical backup



Table 3

Statistics of the MODIS LAI products, and LAI estimated from the

aggregated ETM+ data and from the MODAGG data in the BARC study

site

April 28, 2001 August 2, 2001

Min Mean Max Min Mean Max

MODIS LAIa 0.2 3.9 6.8 0.1 4.9 6.8

ETM+ LAI NN 0.0 1.8 7.5 0.0 2.4 9.2

PPR 0.0 1.6 7.6 0.0 2.3 7.3

MODAGG NN 0.0 1.9 4.9 0.0 2.6 9.1

LAI PPR 0.0 1.6 4.5 0.0 2.5 7.3

The minimum (Min), mean and maximum (Max) values of the neural

network (NN) and the projection pursuit regression (PPR) methods are

shown for two dates.
a The MODIS LAI data were of May 1 and August 5, 2001,

respectively.
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were compared separately. The RT method was mainly used

for the broadleaf crops. On April 28, 2001, nearly two thirds

of the LAI was produced with the main RT method. The

RTs and VI masks produced abnormally higher results

(nearly double) than the main RT pixels.

LAI maps for April 28 and August 2, 2001 were generated

from MODAGG data using the neural network and the

projection pursuit regression methods (Fig. 11). The esti-

mated LAI values ranged from 0.1 to 4.9 on April 28 and

from 0.1 to 9.1 on August 2 with the NN method (zero values

were masked). The mean LAI values increased from 1.9 to

2.6 from April 28 to August 2, 2001 (Table 3). The PPR

method produced very similar results to the NN approach and

both results agree very well, spatially. The regional biome

map (Fig. 7) shows those high LAI values corresponding to

broadleaf forests. Temporal dynamics of the LAI distribution

are visually distinct in Fig. 11. On April 28, most of the green

patches were located in the central and southwest portions of

the image; interestingly, on August 2, the green patches

shifted toward the northwest mountain areas.
Table 4

Mean and standard deviation (in brackets) values of the MODIS LAI products, an

data in the BARC study site for April 28, 2001 and August 2, 2001, respectively

April 28, 2001

VI (18.59%) RTs (16.35%) RT

MODIS LAIa 5.1 (1.5) 6.4 (0.34) 3.0

Nadir view simulation

ETM+ LAI NN 2.2 (0.92) 2.2 (0.87) 1.7

PPR 1.9 (0.83) 1.9 (0.77) 1.5

MODAGG NN 2.3 (0.67) 2.2 (0.44) 1.7

LAI PPR 1.8 (0.53) 1.8 (0.42) 1.5

MVA simulation

ETM+ LAI NN 2.1 (0.81) 2.0 (0.74) 1.7

PPR 2.2 (0.83) 2.1 (0.74) 1.7

MODAGG NN 2.2 (0.64) 2.1 (0.35) 1.5

LAI PPR 2.4 (0.62) 2.2 (0.36) 1.7

LAI were derived with the NN and the PPR method from both the nadir view (hv=

with collection 4 QC mask (the main RT method, the RT method with saturation
a The MODIS LAI data were of May 1 and August 5, 2001, respectively.
The LAI maps from the aggregated ETM+ imagery are

shown in Fig. 12 with a spatial resolution of 510 m. The

neural network-generated spatial pattern of the LAI maps

(Fig. 12a and c) is consistent with those generated by the

PPR approach (Fig. 12b and d). The color gradient of the

ETM+ LAI maps differs from that of the MODAGG

results. More regions become greener from April 28 to

August 2, which means that the LAI has increased. This

trend is also shown statistically. Table 3 shows that the

estimated mean LAI increased from 1.8 to 2.4 with the NN

and from 1.6 to 2.3 with the PPR. The statistical results of

Table 3 represent slightly different areas for ETM+ and

MODAGG because of their different resolutions and

spatial coverage. For example, the maximum LAI on

April 28, 2001, estimated from ETM+ (7.5/7.6 for NN/

PPR) were larger than MODAG1G (4.9/4.5). Note that the

SZA has a five (5) degree difference between the ETM+

and MODIS images.

LAI was estimated successfully from either the nadir-

view or the MVA simulations (Table 4). The absolute LAI

difference brought by angular simulation is within �0.5 to

+0.5. The maximum difference is for MODAGG LAI with

the PPR approach (difference=0.6). Both NN and PPR

provided similar LAI. This illustrates that our approach is

very useful for estimating LAI from multiple viewing

satellites. The simulated database can be applied to

MODIS images with large viewing angles. Since the

MODIS images here are close to nadir view, more studies

are needed when the method is extended to other

situations.

4.1.1. Comparison of LAI distribution

To further compare the results from our approach with

those from the MODIS standard products, the histograms of

the coherent MODIS LAI, ETM+ LAI, and MODAGG LAI

are compared in Fig. 13. In Fig. 13, the MODIS QC mask
d LAI estimated from the aggregated ETM+ data and from the MODAGG

August 2, 2001

(65.06%) VI (47.78%) RTs (18.84%) RT (33.38%)

(1.62) 5.7 (1.0) 6.3 (0.5) 2.9 (1.4)

(0.95) 2.7 (0.7) 2.3 (0.7) 2.1 (0.7)

(0.83) 2.7 (0.9) 2.2 (0.8) 1.9 (0.8)

(0.63) 2.9 (0.6) 2.4 (0.4) 2.1 (0.6)

(0.56) 2.9 (0.7) 2.4 (0.7) 2.1 (0.7)

(0.82) 2.9 (0.8) 2.5 (0.7) 2.1 (0.7)

(0.83) 3.1 (0.8) 2.6 (0.8) 2.3 (0.8)

(0.59) 3.2 (0.6) 2.6 (0.5) 2.2 (0.7)

(0.57) 3.4 (0.6) 2.9 (0.5) 2.4 (0.8)

08) and MVA simulations. RT, RTs, and VI correspond to pixels controlled

, and the backup method, respectively).



Fig. 12. LAI estimated from aggregated ETM+ reflectance (510 m) for April 28, 2001 (a–b) and August 2, 2001 (c–d). (a) and (c) are from the neural network

algorithm; (b) and (d) are with the projection pursuit regression method. LAI legend same as Fig. 10.

Fig. 11. LAI estimated from the USDA BARC MODAGG data (1 km). The top two are for August 28, 2001 and the bottom two August 2, 2001. (a) and (c) are

from the neural network algorithm; (b) and (d) are with the projection pursuit regression method, respectively. LAI legend same as Fig. 10.
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Fig. 13. Histogram comparison of the MODIS LAI products and LAI derived from ETM+ and MODAGG data. The two columns represent the results of two

dates (April 28 and August 2, 2001, respectively). (a–b) MODIS LAI products, (c–d) from ETM+ with NN method, (e–f) from ETM+ with PPR method, (g–h)

from MODAGG with NN method, and (i–j) from MODAGG with PPR method.
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has been applied to exclude the filled values (z249). The

same mask was used to delineate each unique geographic

region for all three datasets. The MODAGG LAI (Fig. 13g–

j) agreed well with ETM+ LAI (Fig. 13c–f). Their histo-

grams closely resemble one another although the absolute

LAI values may differ. The NN and the PPR produce nearly
identical results as shown by their LAI distributions.

However, MODIS LAI products have significantly more

pixels peaked at the high end and less pixels in the middle

range of LAI in comparison to the ETM+ and MODAGG

LAI outputs. This led to very high MODIS LAI mean

values (3.9 and 4.9 in Table 3)—however, their LAI ranges
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were reasonable in view of the field LAI and literature

report (Asner et al., 2003). The percent tree cover of this

study area (15–45%) is about half of other typical temperate

forests (DeFries et al., 2000) at the 1-km scale. Extensive

ground measurements demonstrate that typical LAI of this

study area are about 1.2–3.5 for corns, 2.5–5.5 for

soybeans, 2.0–5.0 for grasses, and 2.1–3.6 for mixed

forests. It is noted that there are several dense wheat fields

having high LAI values (above 6.0). The LAI derived from

both ETM+ and MODAGG are representative of the mean

and seasonal LAI characteristics of this study area. Some of

the maximum ETM+ and MODAGG LAI are larger than

8.0, which are treated as outliers in this study. A close
Fig. 14. Mean (bar) and standard deviation (line segment) of the MODIS LAI (fir

LAI-NN (fourth) and LAI-PPR (fifth) estimated from MODAGG data for differen

2001. Numbers in brackets are area fractions.
examination of these pixels is needed in the future to

identify the causes.

To further compare the LAI results from different

schemes, the MODIS biome type information was used in

the comparison (Fig. 14). This was to demonstrate the

discrepancies caused by different classes. On April 28, 2001

(Fig. 14a), the MODIS LAI for broadleaf crops are nearly

the same as those estimated from our hybrid approach. In

this study area, about one third of the pixels are broadleaf

crops. The disagreement for grasses (b0.2) and shrubs

(b0.8) is very small. Large discrepancies are observed for

savannah (2.5), broadleaf forests (3.7), and needleleaf

forests (3.5). On August 2, 2001 (Fig. 14b), very similar
st bar), LAI-NN (second), and LAI-PPR (third) estimated from ETM+ and

t biomes of the USDA BARC region. (a) April 28, 2001 and (b) August 2,
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phenomena are seen. The bias for grasses, shrubs and

broadleaf crops are very small. There are some biases for

shrubs (1.3); however, the fraction of shrubs (0.5%) is

negligible. For savannah, broadleaf forests, and needleleaf

forests, the biases are as large as 2.3, 3.3, and 3.5,

respectively. In general, the MODIS LAI products over-

estimated the forests by about 2.0–3.0 in this site, but are

consistent with our outputs for grasses and broadleaf crops.

4.2. BOREAS SSA

Two major vegetation zones are distinct in the BOREAS

SSA site, mixed grass in the south, and boreal forest in the

north (Fig. 7b). Two different simulation databases were
Fig. 15. MODIS LAI products (a) and LAI estimated from MOD09 with the neura

SSA site. (b), (d), and (f) are the histograms of the retrieved pixels (for areas, re
applied for the two vegetation canopies. The LIBERTY+-

GeoSAIL database was used for the boreal forest and the

MCRM for the grassland. MODIS LAI products for

BOREAS SSA are shown in Fig. 15, together with the

LAI estimated from MOD09 with both NN and PPR

approaches. Table 5 compares the LAI for both grasses

and needleleaf forests estimated with different approaches.

From the MODIS LAI products (collection 4), the LAI for

this area ranges from 0.1 to 6.8 and the average LAI for

grassland is 1.0 and forest 3.7.

Surface LAI was estimated with the NN and PPR

approaches. From the LAI-NN (Fig. 15c and d), the mean

LAI for grass is 1.6 and forest 3.4. From the LAI-PPR (Fig.

15e and f), the mean LAI for grass and forest are 1.9 and
l network (c) and projection pursuit regression method (e) for the BOREAS

fer to Fig. 16a).



Fig. 16. MODIS LAI algorithms used for the BOREAS SSA site on August

5, 2002. Red, yellow, and green color represents the main RT method, the

RT method with saturation, and the empirical backup method, respectively.

(a) collection 4 and (b) collection 3. QC control with both collections 3 and

4 was applied.

Table 5

Mean and standard deviation (in brackets) of MODIS LAI products, and

LAI estimated from MOD09 data with the neural network (LAI-NN) and

projection pursuit regression (LAI-PPR) method, respectively, for grasses

and needleleaf forests on August 5, 2001 in the BOREAS SSA site

MODIS LAI LAI-NN LAI-PPR

Grasses (C4:RT) 0.9 (0.32) 1.7 (0.58) 2.0 (0.64)

(C4:VI) 1.9 (0.70) 2.6 (0.71) 2.9 (0.57)

(C3:RT) 1.6 (1.04) 1.6 (0.51) 1.9 (0.58)

(C3:VI) 2.9 (1.49) 2.1 (0.63) 2.5 (0.57)

Forests (C4:RT) 3.6 (1.09) 3.4 (0.72) 3.5 (0.83)

(C4:RTs) 6.3 (0.41) 3.1 (0.38) 3.1 (0.33)

(C4:VI) 4.4 (2.09) 3.1 (1.13) 3.1 (1.09)

(C3:RT) 4.6 (1.33) 3.3 (0.62) 3.4 (0.71)

(C3:VI) 5.1 (1.41) 3.6 (0.83) 3.6 (0.88)

LAI from both collection 4 (C4) and collection 3 (C3) are divided into the

main (RT) method, the main method with saturation (RTs), and the

empirical vegetation index (VI) method based on their QC, respectively.
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3.5, respectively. For the forest, the LAI-PPR is nearly

identical to LAI-NN, but for grass, the LAI-PPR is a little

higher than the LAI-NN. For forest, both LAI-NN and LAI-

PPR mean values are similar to the MODIS LAI products,

but for grass, they are marginally higher than the latter.

Fig. 15 also displays the histograms of MODIS LAI and

LAI derived from MOD09. In the histograms, the filled

values and the QC mask in MODIS LAI product have been

applied to exclude nonvegetation pixels and a common

mask was used to get the same comparison region for all the

three datasets. Two LAI peaks, corresponding to grasses and

forests, respectively, are obvious in the MODIS LAI

histogram. The LAI-NN has two local maximums. LAI-

PPR is analogous to a normal distribution and there are no

observable grass and forest peaks. More pixels in MODIS

LAI are positioned on the high LAI side, a similar

phenomenon as the BARC site.

Fig. 16 illustrates the QC mask used for both collection 4

and collection 3 LAI products. Table 5 presents the LAI

values from different approaches for both grasses and

forests. The main (RT) method was used to produce the

MODIS LAI products for most pixels (80.05%). Only a

small portion of pixels (16.72%) was processed with the

empirical backup (VI) method in collection 4. The VI-

processed pixels mainly belong to forest (15.35%). In

collection 3, 26.52% of processed pixels used the backup

method for both grasses and forests (Table 5). The retrieval

index (RI), which indicates the success of the main RT

method and the reliability of the retrieval, was calculated

(Wang et al., 2001). The RI increased from 0.61 to 0.80 in

collection 4, an increase seen also in the number of

processed pixels (Fig. 16).

The main RTmethod and the backup VI method produced

different LAI values (Table 5). For example, the mean LAI of

grass is 0.9 when obtained with the RT method and 1.9 via

the VI method. This phenomenon is also distinct for the

forest pixels. The VI method generally produced higher LAI

than the RT method. The standard deviation of VI method is

also higher and unacceptable in some cases (e.g. forest). Our
NN and PPR approach produced similar LAI results with

each other. The LAI-NN and LAI-PPR are higher (about 1.0)

for grasses but are concomitant with the MODIS LAI

products for forests (C4:RT). The LAI difference for grasses

may be attributed to the background reflectance and the SRI

applicability in this area. Forest LAI estimated with RTs and

VI is problematic and needs further refinement.

The collection 3 LAI data were also compared in Table 5.

A common mask was applied for both collection 3 and

collection 4. Similar to collection 4, in collection 3, the VI

method produces higher LAI values than the RT method
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for either biome type. In collection 3, the main RT

approach produced fairly good LAI. Overestimation

mainly occurs in the VI approach. For example, for the

forest, MODIS LAI overestimated both LAI-NN and LAI-

PPR by about 1.5 with the VI approach. The LAI results

were significantly improved in the new collection even

with the backup algorithm, especially for grasses (Table 5).

In general, collection 4 MODIS LAI products have been

substantially improved and are in a better consistency with

our results.

4.2.1. Forest reflectance and LAI sensitivity test

In this study, the LIBERTY leaf optics model was used to

simulate the leaf reflectance and transmittance required in

the GeoSAIL canopy reflectance model. To test the

sensitivity of the canopy reflectance to leaf optical

parameters, two bias levels (F10% and F20%) were added

to the reference leaf reflectance and transmittance values

obtained from the field measurements (Walter-Shea, 2000).

The spruce forest result is shown in Table 6. In this table, the

first line represents canopy reflectances calculated from the

reference leaf optics with the GeoSAIL model. Other lines

are absolute differences to the first line. For the red band, the

maximum relative difference is �13.5% when both q and s
increase by 20%. For the NIR band, the maximum relative

difference is 37.12% in the same condition. Comparatively,

the NIR band is more sensitive to the leaf optics change. For

a 10% leaf optics variation, the NIR reflectance could

undulate as high as 30%. Higher errors occur when both q
and s shift in the same direction. The canopy reflectance

errors decrease when q and s change inversely. For

example, the relative NIR difference is as low as �0.21%

when the leaf reflectance increases 20% but the trans-
Table 6

Canopy reflectance and LAI variation to different leaf optical biases for the spru

Leaf optics Canopy reflectance

Red NIR

Mean Relative Mean Rela

q0,s0 0.0391 0.1541

q0,s�0.1 �0.0001 �0.0026 �0.0192 �0.1

q0,s+0.1 0.0001 0.0026 0.0296 0.1

q�0.1,s0 �0.001 �0.0264 �0.0201 �0.1

q�0.1,s�0.1 �0.0011 �0.0288 �0.0343 �0.2

q�0.1,s+0.1 �0.0009 �0.0238 0.0003 0.0

q+0.1,s0 0.001 0.0266 0.0273 0.1

q+0.1,s�0.1 0.0009 0.0238 �0.0002 �0.0

q+0.1,s+0.1 0.0011 0.0293 0.0474 0.3

q0,s�0.2 �0.0002 �0.012 �0.0327 �0.2

q0,s+0.2 0.0002 0.0127 0.0421 0.2

q�0.2,s0 �0.0021 �0.1195 �0.0358 �0.2

q�0.2,s�0.2 �0.0022 �0.1303 �0.0551 �0.3

q�0.2,s+0.2 �0.0019 �0.1083 0.0008 0.0

q+0.2,s0 0.0021 0.1211 0.0527 0.3

q+0.2,s�0.2 0.0019 0.1075 �0.0003 �0.0

q+0.2,s+0.2 0.0023 0.135 0.0527 0.3

The bold line represents canopy reflectances and LAI from the reference leaf opti

uses relative difference. The subscripts denote leaf reflectance (q) and transmitta
mittance decreases 20% (q+0.2,s�0.2). However, the relative

NIR difference increases to 35.25% when the two leaf

optical parameters change the same way (q+0.2,s+0.2). These
indicate leaf reflectance and transmittance are counter-

balancing each other.

LAI values from different noise simulations were

compared with those from the reference database (Table 6).

For the neural network method, the R2 of the LAI-NN

changed little for all manner of leaf optical uncertainties.

Nevertheless, this higher R2 might be misleading consider-

ing the RMSE change. Similar results were observed for the

PPR method. If q and s do not change the same way, a good

LAI accuracy can be obtained for even 20% leaf optical

noise. Otherwise, a 10% error for both q and s or 20% error

for one parameter will bring unacceptable errors. Good LAI

accuracy can be obtained for a 10% one-parameter bias.

In our method, the requirement for the number of land

cover classes is not as strong as other algorithms. Generally,

two types of vegetation, broadleaf and needleleaf, are

sufficient for this purpose. However, in global land cover

mapping contexts, confusion still exists between problem-

atic classes. For example, needleleaf forest pixels can be

misclassified as broadleaf forest, or vice versa. To address

this issue, some experiments were carried out. For the

BOREAS SSA site, a database created from a broadleaf

simulation (MCRM) was applied intentionally. The esti-

mated mean LAI for needleleaf forests decreased from 3.29

to 1.64. Similarly, for the USDA BARC site, a database

from the needleleaf simulation (GeoSAIL) was used to

estimate LAI. The estimated mean LAI increased from 1.31

to 1.94 for April 28, 2001 and from 2.2 to 2.54 for August

2, 2001. This shows how misclassification of needleleaf

forest will lead to an underestimation and broadleaf forest
ce forest in the BOREAS SSA site

LAI

LAI-NN LAI-PPR

tive R2 RMSE R2 RMSE

0.9851 0.2455 0.9889 0.212

247 �0.0005 0.8791 �0.041 0.6595

918 �0.0008 0.8107 �0.0078 0.8599

301 �0.0005 0.8376 �0.0385 0.615

223 �0.0016 1.9404 �0.1142 1.244

023 0 0.0219 �0.0029 0.0448

771 �0.0005 0.7011 �0.0061 0.7564

015 0 0.0181 �0.0031 0.0361

075 �0.0025 1.1643 �0.0074 1.1972

204 �0.0016 1.9084 �0.1031 1.2638

811 �0.0012 1.0865 �0.0085 1.1805

411 �0.0018 1.9956 �0.1051 1.2278

712 �0.01 4.0633 �0.306 2.1

053 �0.0002 0.0825 �0.0051 0.1002

525 �0.0025 1.2296 �0.0091 1.257

021 �0.0001 0.0662 �0.0037 0.0653

525 �0.0013 1.2229 �0.007 1.323

cs. Other lines are absolute differences to the first line. The relative column

nce (s) change.
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overestimation of LAI. In addition, needleleaf forest

misclassification will cause higher LAI errors (about 1.5)

than would broadleaf misclassification. The quantitative

LAI difference seems very small for broadleaf misclassifi-

cation, but their spatial distribution is unacceptable (not

shown here). This demonstrates the importance of land

cover classification. The LAI errors caused by misclassifi-

cation may vary by time and forest type. Since this is not

the focus of this paper, detailed comparisons will be

discussed in subsequent papers.

4.3. NN and PPR comparison

Comparing the LAI results derived from both the NN

and PPR methods is of great value. Following the

simulated databases in Section 2.2, 80% of data were

randomly generated for training and the other 20% for

testing. The comparison for the two study sites is shown in

Fig. 17. The results from the two nonparametric methods are

very similar to each other (R2=0.988 for the BARC site and

0.977 for the SSA site). Their RMSEs are less than 0.28,

very small compared with the measurement and model

uncertainties. Note that there are some outlying points for

the BOREAS SSA site, especially for higher LAI (N3).

These differences may come from some different sources,

such as the application of the SRI for the area, leaf and

canopy reflectance model uncertainties, and algorithm

approximations.
5. Summary and discussion

In this paper, a hybrid approach integrating both radiative

transfer simulations and nonparametric regression methods

was proposed to estimate LAI from MODIS data. Two

radiative transfer models, MCRM and GeoSAIL, were used

for broadleaf canopy (crop, grass, and broadleaf forest) and

needleleaf canopy (needleleaf forest), respectively. Two
Fig. 17. Comparison of LAI derived from the neural network method (LAI-NN) an

(a) and the BOREAS SSA (b) study sites.
nonparametric methods, the neural network and the projec-

tion pursuit regression methods, were used. To adapt the

impacts of underlying soil reflectance, an innovative SRI

was devised.

The new approach was tested at two study sites, the USDA

BARC site with broadleaf forest and crops, and the BOREAS

SSA site with needleleaf forest and grasses. In the USDA

BARC, SRI calculated from empirical soil line parameters

was used to compute the MODIS soil reflectance. In

BOREAS SSA, the background reflectances were calculated

via SRI from the MODIS reflectance. MODIS standard LAI

products were compared. For the USDA BARC site, the

mean LAI values increased from 1.7 to 2.4 from April 28 to

August 2, 2001. LAI maps generated with the MODAGG

data were very similar to these with the aggregated ETM+

data. The MODIS LAI products agreed excellently with our

results for broadleaf crops and grasses but overestimated

broadleaf forests by 2.0–3.0. For the BOREAS SSA site,

MODIS LAI products were consistent with our results from

MOD09 data for both grasses and needleleaf forest. The weak

performance of the MODIS algorithm at BARC is attributed

to the complicated biome types of this area.

The NN and PPR produced very similar results because of

their similar statistical mechanism. Both results agree very

well, spatially. It is clear that NN and PPR provide two

practical approaches to estimate LAI from MODIS images.

The advantage of this hybrid method is that it requires little a

priori information as opposed to the MODIS LUT method,

which requires many different fixed parameters, although the

training process may take a while. The hybrid designates

vegetated pixels into two broad categories, much less

challenging than the MODIS algorithm that requires six

classes, and performs better on mixed landscapes. To make

full use of the advantages of different radiative transfer

models, different models were used for the two broad biome

types, respectively. Further, the hybrid can be used at least as

an independent validation method for the MODIS LAI

product.
d the projection pursuit regression (LAI-PPR) method for the USDA BARC
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More validation studies are needed to evaluate the

usefulness and limitations of this hybrid method for other

landscapes, especially in sparsely vegetated sites (Fang et

al., in press). More tests are also needed to evaluate how this

algorithm might be used for other sensors, like the Multi-

angle Imaging SpectroRadiometer (MISR). The initial

results presented in this paper provide strong evidence

supporting the method for MVA application.

To the best of our knowledge, manual determination of

the slope and intercept of soil line was used in most studies

referenced in the literature. In this study, an automatic soil

line identification method was developed based on the

pixels’ red–NIR reflectance shape. However, automatic soil

line identification is complicated and needs more refine-

ments in degraded red–NIR spaces due to low spatial

resolution and pixel mixing.
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