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he second generation of optical networks with wavelength division multiplexing (WDM) is based on the

notion of two layer networks, where the first layer represents a logical topology defined over the physical
topology of optical fibers and the second layer represents multiple traffic requests combined (multiplexed) over
the paths established in the logical topology. Because the design of both of these layers is challenging by itself,
researchers have mainly focused on solving these problems either independently or in a sequential fashion. In
this paper, we look at the WDM optical network design problem with nonbifurcated traffic flows and propose
an exact branch-and-price procedure that simultaneously solves logical topology design and traffic routing over
the established logical topology. The unique feature of the proposed algorithm is that it works with a row-
incomplete mathematical formulation and two types of variables that exponentially grow in number with the
problem size. We discuss computational issues related to the use of this procedure and propose two approximate
branch-and-price procedures that can be used to obtain lower and upper bounds for this problem. Finally, we
present the results of our computational experiments for two design objectives and alternative optical network
settings.
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1. Introduction
The wavelength division multiplexing (WDM) opti-
cal network design problem with no bifurcation of
flow is a two-layer version of a well-known origin—
destination integer multicommodity flow (ODIMCEF)
problem. In this problem, we are given a graph G =
(V, A, Q), with a set of vertices V with a limited in-
degree and out-degree, a set of arcs A with a limited
capacity, and a set of pairwise demands (). We need
to construct a virtual network and route the set of
demands Q) over the virtual network so that the indi-
vidual demands are not bifurcated and one or more
network design objectives are optimized. The vertex
set of the virtual network is identical to the set V,
and its arc set (which we refer to as virtual paths) is
denoted by A*. Each arc in the virtual network (i.e.,
each virtual path) represents a directed path over the
set of arcs A. The virtual network must be constructed
so that the number of virtual paths originating and
terminating at any given vertex does not exceed the
out- and in-degree (respectively) of that vertex, and
the number of virtual paths using any given arc a € A
does not exceed the total number of virtual paths that
can be supported by that arc.

This problem arises in WDM optical networks,
where the graph G represents the physical layer with
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arcs A corresponding to optical fibers, and virtual
paths A* corresponding to lightpaths generated over
the optical fibers. The arc capacity constraints corre-
spond to the number of lightpaths that can be sup-
ported on each optical fiber. The degree constraints
represent the number of transmitters and receivers
available at each node, where a single transmitter
and receiver is needed for each lightpath established
over the physical layer. Finally, the entire collection of
lightpaths established in the physical layer represents
the logical topology A* and is used to route the traffic
(commodities) in the network.

The network design objectives considered for WDM
optical networks vary and include minimization of
the network-wide average packet delay (Mukherjee
et al. 1996), maximization of the capacity reserved for
network expansion (Mukherjee et al. 1996), minimiza-
tion of congestion (Ramaswami and Sivarajan 1996),
minimization of the number of transponders (Hu and
Leida 2004), minimization of the total lost traffic (Zhu
and Mukherjee 2002), and minimization of the total
weighted lost traffic (Zhu and Mukherjee 2002).
In this paper, we focus on the minimization of lost
traffic in a network. This objective applies to WDM
optical networks that allow the loss of traffic (for
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example, when it is possible to route traffic via alter-
nate means if it cannot be routed over the WDM net-
work) but require a design that provides service for as
much traffic as possible. We also discuss how to apply
our procedures to alternative network design objec-
tives and present results of a computational study that
focuses on minimization of the number of transmit-
ters and receivers in a network. Our study indicates
that the proposed procedures are more efficient when
applied to networks where the objective is minimiza-
tion of lost traffic.

In this paper, we assume that all transmitters
and receivers are tunable to all wavelengths and
that all nodes in the network are equipped with
the wavelength changers. From the design perspec-
tive, wavelength changers are of great help because
they eliminate the need to maintain the same wave-
length (wavelength continuity constraint) from the ori-
gin to the destination of each commodity (instead,
different wavelengths can be used for different light-
paths used by a single commodity). The assumption
of wavelength conversion is driven by the results of
previous studies, which indicate that wavelength con-
version may be desirable in WDM networks as a way
of resolving equipment compatibility issues (Banerjee
and Mukherjee 2000). More details on the trade-offs
between optical cross-connects with and without
wavelength conversion capability can be found in
Ramaswami and Sivarajan (2002). For more informa-
tion of WDM optical networks without wavelength
conversion, see Koster (2005), Koster and Zymolka
(2005), Hu and Leida (2004), Lee et al. (2003), and
Mukherjee et al. (1996).

We refer to the problem of routing the lightpaths
over the physical topology as the logical topology design
(LTD) problem, and we use the term traffic routing
for the problem of routing of commodities over the
logical topology.

The LTD problem and the traffic routing prob-
lem have been extensively studied in the litera-
ture, but only as independent problems or as a
part of iterative sequential solution procedures. For
example, Ramaswami and Sivarajan (1996) proposed
several heuristic procedures for the LTD problem.
The logical topology determined by a heuristic was
then used as input for a mixed-integer program (MIP)
that solves the traffic routing problem over the fixed
logical topology.

Haque et al. (2002) used a column generation-based
approach for the traffic routing problem over a fixed
logical topology. Prathombutr et al. (2005) used a
heuristic approach for solving the WDM optical net-
work design problem by prespecifying a small num-
ber of lightpaths that can be used for LTD. Similarly,
Banerjee and Mukherjee (2000) proposed an MIP for

WDM optical network design problems where only a
small subset of all possible lightpaths can be used.

Recently, Belotti and Malucelli (2005) proposed a
column generation algorithm for a two-layer telecom-
munications network design problem, where the
traffic can be routed over a combination of individ-
ual physical edges and virtual paths (referred to as
semipaths in Belotti and Malucelli 2005). The only
constraints considered in this problem are the capac-
ities of the semipaths and the individual physical
edges (if used instead of semipaths). The proposed
column generation starts with a subset of lower and
higher layer paths and progressively solves the prob-
lem. If the solution found by the column generation is
fractional, a heuristic rounding algorithm is applied in
search for a feasible integer solution. The column gen-
eration is then repeated using the modified reduced
costs that favor the use of physical edges not close to
their capacity.

Current literature suggests that there has not been
much work in terms of exact procedures for simul-
taneous logical topology design and traffic routing.
One such procedure was proposed by Sung and Song
(2003). However, in their setting there are no restric-
tions at the network nodes in terms of equipment
available, and the capacity of lightpaths is not consid-
ered to be a constraint. It is also assumed that at most
one logical path can be established between any two
nodes in the network. With these assumptions, Sung
and Song develop a simple branching procedure that
they report had no impact on the pricing problem
solved with column generation. However, the branch-
and-price procedure developed in Sung and Song is
based on an assertion that the unit integer multicom-
modity flow problem is polynomially solvable. This
assertion is not true, as it can be shown that this prob-
lem is NP-hard (see Garg et al. 1997 for a special case
of the unit integer multicommodity flow problem in
tree networks).

Raghavan and Stanojevi¢ (2006) proposed an exact
branch-and-price procedure for the design of more
general WDM optical networks where bifurcation of
flow is allowed and where the number of lightpaths
that can be established between any two nodes in the
network is not prespecified. In this paper, we address
WDM optical networks that require the traffic flows to
be routed without bifurcation and propose one exact
and two approximate branch-and-price procedures
for this problem. We show that the requirement for no
bifurcation of flow significantly changes the complex-
ity of the mathematical formulation used in Raghavan
and Stanojevi¢ (2006) and further complicates the
development of the branch-and-price techniques for
WDM optical network design.

The rest of this paper is organized as follows. In the
next section, we present a mathematical formulation
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for WDM optical networks with no bifurcation of
flow. In §3, we propose an exact branch-and-price
algorithm for this problem and discuss computa-
tional issues related to this procedure. We also pro-
pose a branch-and-price algorithm that can be used
to obtain upper bounds for this problem and dis-
cuss how the proposed procedures can be applied to
optical network design problems with alternative net-
work design objectives. In §4, we propose a modi-
fication of the branch-and-price algorithm proposed
in Raghavan and Stanojevi¢ (2006) that can be used
to obtain lower bounds for the design of WDM opti-
cal networks without bifurcation of flow. The results
of our computational experiments are provided in §5.
They indicate that the combined use of our lower
bound and upper bound approximate branch-and-
price procedures provides better results than our
exact branch-and-price procedure alone. Section 6
provides concluding remarks.

2. Path-Based Mathematical
Formulation for the WDM Optical

Network Design Problem

One way to formulate the WDM optical network
design problem is to use arc-based variables both for
the definition of the logical topology and for the rout-
ing of traffic demands. (The arc-based variables used
for the definition of the logical topology represent a
set of multicommodity flow variables that determine
the routing of the logical topology variables, or light-
paths, on the physical network, whereas the arc-based
variables used for the routing of traffic demands rep-
resent a set of multicommodity flow variables that
determine routing of traffic over the logical topol-
ogy variables.) One such formulation was proposed
by Banerjee and Mukherjee (2000). However, to main-
tain the tractability of the formulation size, they sim-
plified the formulation in the sense that only a small
subset of all possible lightpaths was considered. Even
with this simplification, they found that the formu-
lation with nonbifurcated flows required very long
solution times, and they only reported computational
results for networks with bifurcated flows.

Given that the arc-based formulation for the WDM
optical network design problem quickly becomes
computationally intractable as the size of the network
increases, we develop a column generation-based pro-
cedure using the path-based mathematical formula-
tion that we describe next.

We will use the following notation.

Physical Topology

G = (V, A)—The physical topology defined over a
set of nodes V, and connected by a set of arcs (optical
fibers) A.

L;—Number of wavelengths available between
nodes i and j that are directly connected by opti-
cal fibers (that is, (7, ) € A). When multiple fibers
are available, this number represents a product of
the number of fibers and the number of wavelengths
available on each fiber.

Aj—Number of transmitters available at node i.

Al—Number of receivers available at node j.

Demand

O—Set of demands between nodes of the network.

T¢9—Total demand between nodes s and d
((s,d) € Q), expressed as a portion of fiber capacity.
(We assume that demand between any two nodes is
always less than the capacity of a single fiber. This
assumption is not restrictive. If demand is greater
than that of a single fiber it can be split up into mul-
tiple demands between s and d.)

Lightpaths

A—Set of all possible lightpath origin—destination
pairs. (When it is possible to set up lightpaths
between all pairs of nodes in the network, we have
A=V xV)

Z—Set of all possible lightpaths.

Flow Paths

P9 —Get of all possible flow paths p for com-
modity (s, d). (The flow paths for a commodity (s, )
are the paths used for routing of the corresponding
demand for that commodity over the network defined
by the lightpaths.)

Variables

We define two types of path variables, one for each
of the two layers of WDM optical networks. The
local lightpath variables provide information about the
lightpath propagation path in the physical topology
(we refer to these variables as local because, for each
lightpath, we know the set of arcs, or fibers, used by
the lightpath). The second type of path variables that
we use are the flow path variables defined for each
demand origin and destination node pair. Each flow
path variable represents a possible path for sending
the demand from its origin to its destination over the
established set of lightpaths in the network.

x,—local lightpath indicator variable that indicates
whether lightpath z is used in a given solution.

p(s’d)—ﬂow path indicator variable that indicates

whether flow path p is used to carry traffic demand
for commodity (s, d).

h9—lost traffic indicator variable that indicates
whether demand of commodity (s, ) is lost.

MIP-PATH-LOCAL Formulation

Min Y TE9pE9D (1)
(s,d)eQ)
subjectto > x, <A, VieV, )

z: O(z)=i
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Z xZSA]T‘ VjEV, 3)
z:D(z)=j
Y x <L, Y(,meA, (4)
z:(l, m)ez
-y fp(sfd)zo VzeZ, (s,d)eQ, (5)
pizep
.= X TOVfED=0 vzeZ, ()
(s, d)eQ,p:zep
s, d s,d) __
YN =1 V(s,d) e,  (7)
peP.d)
fPe{0,1} VpeP®?, (s,d)eQ, (8)
D20 V(s,d)eQ, ©)
0<x,<1 VzeZ (10)

Constraint sets (2) and (3) limit the out-degree and in-
degree of any node by the total number of transmit-
ters and receivers, respectively. Constraint set (4) lim-
its the number of lightpaths that can be carried over a
fiber. (Multiple fibers between nodes are treated as a
single fiber with the number of wavelengths available
equal to the number of fibers multiplied by the num-
ber of wavelengths available at each fiber.) The next
constraint set, (5), ensures that the traffic of any com-
modity can be sent on lightpath z only if that light-
path exists. Constraint set (6) ensures that the total
traffic over lightpath z cannot exceed the total capac-
ity of that lightpath. Constraint (5) is redundant in
the presence of constraint (6); however, the use of this
constraint strengthens the linear programming (LP)
relaxation and, given that constraint (8) specifies the
flow path variables are integral, allows the x, vari-
ables to be defined as real variables (10). Finally, con-
straint set (7) ensures either that all the demand for a
given commodity is satisfied or is entirely lost.

An important property of the MIP-PATH-LOCAL
formulation is that both types of path-based variables
used in this formulation (the local licghtpath vari-
ables x, and the flow path variables f,,,(s’ ) grow expo-
nentially in number with the network size, making it
impractical to include all the paths for either of these
variables. Consequently, we propose a strategy that
dynamically generates both types of variables using
column generation.

3. Branch-and-Price Framework for
the WDM Optical Network
Design Problem

In this section we describe our branch-and-price
framework for the WDM optical network design prob-
lem considered in this paper. In particular, we iden-
tify the challenges associated with column generation

with two types of variables in row-incomplete formu-
lations. We explain why developing an exact column
generation procedure for the MIP-PATH-LOCAL for-
mulation is a significant challenge that is difficult to
solve. As a result, we propose an approximate column
generation procedure and branch-and-price procedure
for the MIP-PATH-LOCAL formulation that can be
used as an upper bounding procedure. We also con-
sider a weaker version of the MIP-PATH-LOCAL for-
mulation that we refer to as MIP-PATH-LOCALw. For
this latter formulation we propose a column gener-
ation and branch-and-price procedure that solve the
problem to optimality.

3.1. Column Generation for the WDM Optical
Network Design Problem

In general, having two types of variables in the
column generation framework is not a problem, as
long as the restricted master problem is row com-
plete (that is, the number of constraints in the
restricted master problem remains the same regard-
less of the number of variables dynamically added to
the model). WDM optical network design problems
that deal with the dynamic generation of two types
of variables and have row-complete formulations are
therefore relatively straightforward, as the applied
column generation techniques do not significantly dif-
fer from the standard column generation techniques
used for the formulations with a single type of vari-
able dynamically added to a model (see Raghavan
and Stanojevi¢ 2006 for an example).

However, the omission of any of the lightpath vari-
ables x, from the restricted master problem of the
MIP-PATH-LOCAL formulation makes the restricted
master problem row incomplete (constraints (5)
and (6) are specified only for those lightpaths that
are included in the restricted master problem). This
significantly complicates column generation because
the standard pricing scheme used in column genera-
tion may end up being of little help when the mas-
ter problem is row incomplete. The issue can be best
explained by looking at the computation of reduced
cost for the lightpath and flow path variables in the
MIP-PATH-LOCAL formulation.

First, let the following dual variables correspond to
the constraints of the MIP-PATH-LOCAL formulation:

* nonpositive o; and B; variables for constraints (2)
and (3), respectively;

* nonpositive §, ,, variables for constraint (4);

* nonnegative % variables for constraint (5);
* nonegative v, variables for constraint (6);
* unrestricted in sign w®? variables for con-
straint (7); and
* nonpositive u, variables for constraint (10).
Also, let ZF denote the set of all lightpaths that

are included in the restricted master problem, and
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let ZV denote the set of all lightpaths that are not
included in the restricted master problem. Similarly,
let PF denote the set of all flow paths that are included
in the restricted master problem, and let PN denote
the set of all flow paths that are not included in the
restricted master problem.

The reduced cost of any lightpath variable x, with
an origin at node O(z) and destination at node D(z)
is then

RC, = —Q0(z) _BD(Z) - Z 8(1,111)

(I, m)ez

- Z rz(Sl 9 — U, — U. (11)
(s, d)eQ

The reduced cost of any flow path variable fp(s “ for
a commodity (s, d) is

RCH =

¢ > e+ TNy )~ (12)

zep, zeZE

ProrosiTiON 1. Column generation with independent
pricing of lightpath variables x, and flow path variables
fp(s’ 9 using reduced costs (11) and (12) does not provide
a provably optimal solution for the linear relaxation of the
MIP-PATH-LOCAL formulation.

Proor. Note that if a lightpath z and the cor-
responding variable x, are not already part of the
restricted master model, dual variables rz(s’d), v,
and u, can be set to zero, as the corresponding con-
straints are not in the restricted master model. Thus,

the reduced cost RC, becomes

RC, = —Qoz) — BD(z) - Z B(Z,m)' (13)

(I, m)ez

Given that dual variables a,), Bp,), and § ,, are
nonpositive, it follows that the reduced cost of any
new lightpath can never be negative, and therefore,
it is never beneficial to add a new lightpath. While
the last statement is obviously not correct (we may
very well need to include many new lightpaths to
the model), from a computational perspective this
is not surprising, because the introduction of a new
lightpath without the presence of a flow path that
actually uses that lightpath has no effect on the objec-
tive function. This further implies that independent
pricing of lightpath variables x, and flow path vari-
ables fp(s’d) using reduced costs (11) and (12) limits the
linear relaxation of the MIP-PATH-LOCAL formula-
tion to the initial set of lightpaths, therefore leading to
a possible premature termination of the column gen-
eration algorithm. 0O

The fact that independent pricing of lightpath and
flow path variables does not allow identification and
introduction of new, potentially promising, lightpaths

indicates that we need to define some form of a com-
bined reduced cost (we use the term “combined reduced
cost” to refer to the change in the objective value
caused by the introduction of two or more nonbasic
variables into the basis) that will determine the simul-
taneous effect of introduction of multiple lightpath
and flow path variables. Unfortunately, finding the
combined reduced cost for two or more nonbasic vari-
ables is a nontrivial task that usually does not have
an efficient solution other than solving the problem
with the new variables included in the restricted mas-
ter model. One might incorrectly try to add up the
reduced cost of the lightpath and flow path variables
so that the cost of new lightpaths is directly accounted
for when computing the reduced cost of flow paths.
The resulting reduced cost of a flow path would have
the following form:

RC;,S'd)= > <_ao(z)_,BD(z)_ > 6(l,m)>

zep, zeZN (I, mez
+ Y (TN —wD (14)
zep, zeZE

Note that, if a flow path variable f,,(s' “ has a negative
reduced cost RCS"“ specified by Equation (14), the
flow path and any new lightpaths used by this flow
path would be added to the model. The problem with
this approach is that new lightpath(s) are introduced
into the model only if their introduction can be justi-
fied by introduction of a single new flow path. This,
however, is not always the case, as it is possible that
the introduction of a new lightpath can be justified
only if we introduce multiple new flow paths. As in
the case of independent pricing of lightpath and flow
path variables, this implies that some good lightpath
and flow path variables may never get a chance to
be introduced into the model, therefore leading to a
possible premature termination of the column gener-
ation algorithm. Given this observation, the following
proposition holds.

Proros1TION 2. Column generation with simultaneous
pricing of lightpath variables x, and flow path variables
fp(s’ K using the combined reduced cost (14) does not pro-
vide a provably optimal solution for the linear relaxation of
the MIP-PATH-LOCAL formulation.

Given that straightforward approaches for simulta-
neous pricing of the lightpath and flow path variables
do not guarantee optimality of column generation
performed on a row incomplete restricted master
model of the linear relaxation of the MIP-PATH-
LOCAL formulation, we consider a relaxed version
of the MIP-PATH-LOCAL formulation that does not
include constraint set (5) (we will refer to this formu-
lation as MIP-PATH-LOCALw) and propose an alter-
native column generation approach that eliminates
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the need for independent pricing of new lightpath
variables altogether.

We will show that column generation with the
reduced cost of flow path variables computed using
the formula

RCED = Y

,d
T® )<—0‘o<z)—/31)(z)— Z 5(1,m)>

zep, zeZN (I, myez

+ > TOP9, —wt? (15)

zep, zeZE

provides an optimal solution for the linear relaxation
of the MIP-PATH-LOCALw formulation.

ProrosiTION 3. Column generation with indirect pric-
ing of lightpath variables x, using the combined reduced
cost (15) for the flow path variables f,,(s’d) solves the linear
relaxation of the MIP-PATH-LOCALw formulation.

Proor.First, consider the formulation MIP-PATH-
LOCALw and observe that the value of any new x,
variable used by any set of new flow paths p € PV in
the linear relaxation of the MIP-PATH-LOCALw for-
mulation is

= %

(s, d)eQ, p:zep

TEDfeD vzezN. (16)

If we substitute the new expression for x, in the MIP-
PATH-LOCALw formulation, only for those x, vari-
ables not included in the master model, the linear
relaxation of the formulation MIP-PATH-LOCALw
becomes
Min Y TE9p69 (17)
(s, d)eQ

subject to

>oxn+ >

2:0(z)=i, zeZE (s, d)eQ, p:3zep: O(z)=i, zeZN

T(S,d)f(srd) < Af
p =

VieV, (18)
T(s,d)fp(s,d) < A{,

> xn+t >
z:D(z)=j, zeZE (s, d)eQ, p:3zep: D(z)=j, zeZN

VieV, (19)
T(s,d)fp(s,d) < le

> oxn+ >

z:(l, myez, zeZE (s,d)eQ, p:3zep:(I, m)ez, zeZN
V(l, m) EA/ (20)
- Y TOVfeD0 vzeZ, 21

(s, d)eQ, p:zep

Y FEN D=1 V(s,d)eQ, (22)
peps,d)

[P =0 VpeP®?, (s,d) e Q, (23)
WD =0 ¥(s,d)eQ, (24)

0<x,<1 VzeZ. (25)

Notice that there is no need for constraint (21) when
it comes to new flow paths p € PV given our condi-
tion (16). This allows the use of the combined reduced
cost (15) for straightforward pricing of new fp(s’ ) vari-
ables that allows introduction of a single new flow
path variable (and possibly multiple new lightpath
variables). O

Although we can use the last proposition to find
the optimal solution for the linear relaxation of
the MIP-PATH-LOCALw formulation, we recognize
that the linear relaxation of the MIP-PATH-LOCALw
formulation is weaker than the linear relaxation of
the MIP-PATH-LOCAL formulation (recall that MIP-
PATH-LOCALwW is obtained from MIP-PATH-LOCAL
by removing constraint (5)). In addition, because
we do not have constraint (5) in the MIP-PATH-
LOCALw formulation, we need to define the x, vari-
ables as integers, which adds to the complexity of the
branching procedures for this formulation.

Naturally, it would be desirable to keep constraint
set (5) and try to apply a column generation approach
similar to the one proposed for the MIP-PATH-
LOCALw. The problem with this approach is that the
value of any x, variable in the linear relaxation of the
MIP-PATH-LOCAL formulation is a nonlinear term,

xzzmax{ max Y f&9, M T(s'd)f(s'd)}, (26)
(S'd)sﬂp:zep . (s,d)eQ,p: zep .
and therefore cannot be directly implemented in the
column generation framework for linear programs.
To avoid this nonlinearity and preserve the advan-
tage of having a stronger linear relaxation, we pro-
pose the use of the following approximate value
for new x, variables within the column generation
framework for the MIP-PATH-LOCAL formulation
(to determine the impact of introducing a new flow
path variable):

= %

(s, d)eQ, p:zep

£0. (27)

Using arguments similar to those provided in the
proof of Proposition 3, it follows that using expres-
sion (27) for new lightpath variables in the linear relax-
ation of the MIP-PATH-LOCAL formulation leads to
column generation with simultaneous pricinfg of light-
path variables x, and flow path variables fps’d) using
the combined reduced cost (14). As stated in Proposi-
tion 2, this approach may lead to overestimation of the
reduced cost, which could cause omission of columns
that might further improve the value of the objective
function. However, the benefit of this type of approx-
imate computation of the reduced cost is that, when
used in combination with a valid branching strategy,
this approach provides a valid upper bound for the
original problem. We discuss one such strategy in the
next section, where we first describe the details of
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our column generation approach for both MIP-PATH-
LOCALw and MIP-PATH-LOCAL and then propose a
branching procedure that can be used to obtain a prov-
ably optimal solution for MIP-PATH-LOCALw and
valid upper bounds for MIP-PATH-LOCAL.

3.2. Column Generation Algorithm for the
MIP-PATH-LOCALw and MIP-PATH-LOCAL
Formulations

In each iteration of the column generation algorithm
for the MIP-PATH-LOCALw formulation, we need to
answer the following questions: Do we need to add any
new flow paths? If we do need to add a new flow path,
should the new flow path solely use existing lightpaths,
new lightpaths, or some combination of the two? More-
over, if we do need to add (use) new lightpath(s) for
the new flow path, what is the best propagation path for
the new lightpath(s)?

These questions can be answered using several sim-
ple steps. First, recall that expression (15) was defined
as a reduced cost that takes into account the combined
effect of introduction of a new flow path variable f,” 9
and (possibly) multiple new lightpaths used by the
same flow path variable. (We will refer to expres-
sion (15) as the reduced cost of the flow path vari-
able, which is a slight abuse of terminology, because
expression (15) captures the combined impact of intro-
ducing a new flow path variable and new light-
path variables, which this flow path uses, into the
restricted master model.) Now, notice that the sum-
mation terms in (15) can be grouped by the type of
lightpaths used for a given flow path as follows:

,d) E N ,d
RC;(JS )= Z Hz; (s,d) + Z Hz; (s,d) w(s )/ (28)
zep, zeZE zep,zeZN
where
d
HE; (s,d) = T(S, )vz (29)
and
H,Iz\] (s,d) =-T® d)ao BD
,d
(I, m)ez

can be thought of as the price of an existing and
a new h§htpath respectively, used by the new flow
path f;°

Finding a flow path with the minimum reduced
cost for a given commodity (s,d) then requires
solving the following pricing problem:

Z HZ(<d+ Z Hz(cd }/

VpeP:O D d{
pe (p) s:Dip)= zep,zeZE zep,zeZN

or, equivalently,

min
VpeP:0O(p)=s,D

Z HZ(Sd+ Z Hz(sd)}' (31)

zep,zeZE zep,zeZN

The pricing problem (31) can be solved as a short-
est path problem in an auxiliary graph G®%, where
each lightpath already present in the restricted mas-
ter problem represents an arc with the price IIZ,  ,,
and each lightpath not present in the restricted master
problem represents an arc with the price ITY}  ,. Since
the auxiliary graph G®% may contain more than one
lightpath between any two nodes (we may have many
different ways to connect two nodes in the physi-
cal layer, and therefore many different lightpaths), we
reduce the auxiliary graph G®? to include only one
arc for a given pair of nodes by selecting either a
new or an existing lightpath with the minimum price
(recall that in any shortest path, only the cheapest arc
between two pairs of nodes will be selected). Now,
note that for a given lightpath with origin i and desti-
nation j, a lightpath of the minimum price is the one
that satisfies the following relation:

. . E
IL,. (5,d) = mm{ min HZ; (s,d)

VzeZE: O(z)=i, D(z)=j

min vy . (32
VzeZN:O@)=i, D)= > &P } (32)

Finding the minimum price existing lightpath for
a given pair of origin and destination nodes i and j
is straightforward, and is determined by finding an
existing lightpath (with O(z) =i and D(z) = j) with
the minimum I, , = T®?v, value. Finding the
minimum price new lightpath for a given pair of ori-
gin and destination nodes i and j is more involved
because it requires finding a new lightpath that satis-
fies the following relation:

_TGEDg T d)ﬁ'

N _ .
Hz; ) = min I

VzeZN:0(z)=i, D(z)=j

sd Z S(Zm)

(1, m)ez

This can effectively be determined by solving the fol-
lowing problem:

min — Y Sum (33)

VzeZN:0(z)=i, D(z)=j 1, myez

The minimum price new lightpath for a given pair
of nodes i and j can therefore be found by solving a
shortest path problem in a graph with a set of arcs
identical to the one in the original graph G, with the
cost of any single arc defined by the negation of the
value of its corresponding dual variable §; ;.

The steps of the procedure for finding the minimum
price flow path for a given commodity (s, d) can be
summarized as follows:

Step 1. For each pair of nodes, determine the low-
est price lightpath included in the restricted master
problem.
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Step 2. For each pair of nodes, determine the lowest
price lightpath not included in the restricted master
problem.

Step 3. Construct the auxiliary graph G®9 so that
there is exactly one arc between each pair of nodes
(given the lightpaths selected in Steps 1 and 2, an arc
added to the graph G® 9 is the one with lower price).

Step 4. Solve the shortest path problem between
nodes s and d in the auxiliary graph G© 9.

Step 5. Compute the reduced cost (28) for com-
modity (s, d). If the reduced cost is negative, check
whether the entering flow path variable is using any
new lightpaths. If it is, add these lightpaths and
the corresponding constraints (21) and (25) to the
restricted master model. Finally, add the new flow
path variable to the restricted master model.

This five-step procedure is repeated for all com-
modities, so in one iteration of the column generation
algorithm we may add one new flow path variable for
each commodity. The column generation algorithm
continues until we cannot reduce the objective value
any further—that is, when the reduced cost for each
commodity (s, d) is nonnegative.

The column generation algorithm described for
the MIP-PATH-LOCALw formulation can be directly
applied to the MIP-PATH-LOCAL formulation as an
approximate column generation procedure with three
minor modifications. First, the price for using an exist-
ing lightpath z is

L, =1 +TD,, (34)

Second, the price for using a new lightpath z with
origin at node i and destination at node j is

Hi\,{(s,d)z_ai_ﬁj_ Z 5(1,m)~ (35)

(I, m)ez

Finally, if for a given commodity (s, d), the reduced
cost turns out to be negative, and a new lightpath
needs to be introduced, then we add the variable cor-
responding to that lightpath and the corresponding
constraints (5), (6), and (10) to the model. (Recall that
in the MIP-PATH-LOCALw formulation we never
use constraint (5).) As we explained previously, this
approach provides an upper bound for the linear
relaxation of the MIP-PATH-LOCAL formulation and,
combined with a valid branching strategy, can be used
to derive valid upper bounds for the WDM optical
network design problem.

Figure 1 summarizes the main steps of our pricing
procedure for the formulations MIP-PATH-LOCALw
and MIP-PATH-LOCAL.

3.3. Branching Strategy
One of the challenging aspects of the branch-and-
price framework lies in the relationship between the

branching rules and the pricing problem used to
solve the LP relaxation at each node of the branch-
and-bound tree. The main issue in this framework
is that the pricing problem has to be modified at
each branch of the branch-and-bound tree so that all
applicable branching rules are taken into account. We
would ideally like to have branching rules that do not
require significant modifications of the pricing prob-
lem. Unfortunately, such branching rules sometimes
do not exist or are difficult to identify. As we will
show next, the approximate MIP-PATH-LOCAL for-
mulation allows use of branching rules that main-
tain the structure of the pricing problem, whereas
the exact MIP-PATH-LOCALw formulation requires
branching rules that significantly increase the com-
plexity of the pricing problem.

For the MIP-PATH-LOCAL formulation, we pro-
pose a hierarchical three-layer branching strategy for
the flow path variables, with branching in two of the
layers similar to the one of Barnhart et al. (2000). The
hierarchical approach is key to this branching proce-
dure, because WDM networks have two layers, and
it is possible that a single flow path visits the same
node more than once in the physical layer. However,
for WDM optical networks, it also holds that a flow
path never revisits a node in the logical topology,
and a lightpath never revisits a node in the physical
topology. Thus, we can design a branching strategy
where we first make sure that a flow path of a given
commodity has a unique path in the logical topology.
Once we make sure that flow paths for all commodi-
ties satisfy this condition, we can move on to branch-
ing in the physical layer.

In addition to three levels of branching on the
flow path variables, we also branch on the lost traffic
variables, creating a four-level hierarchical branching
approach. If the branching criteria are met at any level
of branching, we perform the branching and solve the
linear relaxations on the newly created branches. This
is followed by selection of the next branch for column
generation and subsequent branching. The procedure
is repeated until the optimal solution is found.

Branching Level 1. Lost traffic variables: We first
check whether commodities with partially lost traffic
exist. If no such commodities exist, we check for any
fractional flow in the logical layer (branching level 2).
Otherwise, we identify all commodities with partially
lost traffic and select the commodity with the great-
est demand. We perform branching on the lost traf-
fic variable h™? of this commodity by creating two
branches: on one branch, we enforce the use of this
commodity (by setting variable 1'% to one); and on
the other branch, we prohibit the use of this commod-
ity (by setting variable h®? to zero).

Branching Level 2. Fractional flow in the logical layer:
At this level of branching, we first check whether
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Solve restricted master problem

For all
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Compute l'lf:(m,) for all z already in the restricted
master model

.

Among all z with the same origin and destination
pick the one with the minimum l'lf;(jv &)

.

Compute H];/;(.\-. «) for all pairs of nodes (i, j)

.

For each pair of nodes (i, j) select

Min {Hjxm 4 ,Hﬁu_ d)}as the cost of arc
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(i, j) in the auxiliary graph G4

.
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the shortest flow path from node s to node d in
the auxiliary graph G @
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commodities
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shortest flow path
<w D9
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used on the shortest
flow path?
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corresponding traffic constraints

.

> Add new flow variable

Figure 1

commodities with fractional traffic that use paths
differing in the logical layer exist. If no such com-
modities exist, we check for any fractional flow in
the physical layer (branching level 3). Otherwise, we
identify a commodity with fractional traffic that uses
paths differing in the logical layer. We then locate the
first divergence node in the logical layer and define
two subsets of lightpaths originating at the divergence

Steps of Column Generation Algorithm for MIP-PATH-LOCALw and MIP-PATH-LOCAL Formulations

node such that one set contains one of the fractional
paths of the given commodity and the second set con-
tains the other fractional path of the same commod-
ity. (In other words, we use the branching strategy
developed in Barnhart et al. 2000, but only in the log-
ical layer.) Branching is performed on the flow path
variables of this commodity by creating two branches:
on one branch, we do not allow lightpaths from the
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first set to be used by the selected commodity; and
on the other branch, we do not allow lightpaths from
the second set to be used by the selected commodity.
(To ensure proper implementation of the branching
rules at this branching level, we never generate light-
paths for origin—destination pairs that are forbidden
for a given commodity.)

Branching Level 3. Fractional flow in the physical
layer, considering lightpaths with different propagation
paths in the physical layer: At the third level of branch-
ing, we check whether any commodities have frac-
tional flow while using identical paths in terms of
the lightpath origins and destinations but differing in
propagation paths in the physical layer. If no such
commodities exist, we proceed to the lowest level of
branching (branching level 4). Otherwise, we select
one such commodity. We then select two lightpaths
carrying fractional traffic of this commodity that have
identical origin and destination but have different
propagation paths in the physical topology. Next, we
locate the divergence node of these two lightpaths in
the physical layer and define two sets of arcs such
that one set contains the arc originating at the diver-
gence node belonging to the first fractional flow path
and the second one contains the arc originating at
the divergence node belonging to the second frac-
tional flow path. The branching is performed on the
flow path variables of this commodity by creating two
branches: on one branch, we do not allow lightpaths
for a selected origin and destination and commodity
to use any of the arcs from the first set of arcs; on
the other branch, we do not allow lightpaths for a
selected origin and destination and commodity to use
any of the arcs from the second set of arcs. (The rules
defined at this level of branching are enforced by set-
ting the cost —§, ,, to high values in the pricing part
of the column generation algorithm for those arcs that
are prohibited by the proposed branching rule.)

Branching Level 4. Fractional flow in the physical
layer, considering lightpaths with identical propagation
paths in the physical layer: At this branching level, we
first select a commodity with fractional flow. Next,
we identify two lightpaths with the same origin i and
destination j that are used by this commodity (notice
that these lightpaths will have the same propagation
path in the physical layer). This is followed by iden-
tifying two (exhaustive and mutually exclusive) sets
of lightpaths originating and terminating at nodes i
and j, respectively. The branching is performed on
the flow path variables of this commodity by cre-
ating two branches: on one branch, we prohibit the
selected commodity from using any of the lightpaths
in the first set; and on the other branch, we prohibit
the selected commodity from using any of the light-
paths in the second set. Note that branching rule 4
may cause the generation of many identical lightpaths

with the same origin and destination (i.e., once we
prohibit the use of a certain set of lightpaths, there
is nothing to stop the generation of a new, identical
lightpath in the next iteration of our column genera-
tion algorithm). We resolve this issue and guarantee
termination of the algorithm by imposing an addi-
tional rule. That is, for each commodity, we keep track
of the number of forbidden lightpaths that have the
same origin and destination and that use the same arc
in the physical topology. Once this number reaches
the maximum possible number of lightpaths that can
be established over a given arc in the physical topol-
ogy (this is either the number of transmitters and
receivers, or the maximum number of lightpaths that
can be established on any physical link), we do not
allow the generation of any additional new lightpaths
with the same origin and destination that require use
of the same arc. (This rule is used separately for each
commodity, so we may not allow use of certain light-
paths for one commodity, but we would still allow
use of the same lightpaths for other commodities.)

Because the x, variables in the MIP-PATH-LOCAL
formulation do not have to be defined as binary,
the described branching strategy provides an integer
solution for this formulation, and it therefore provides
a valid upper bound for the original WDM optical
network design problem.

In the case of the MIP-PATH-LOCALw formulation,
however, we need to perform additional branching to
ensure that the x, variables are binary. It turns out
that this is a nontrivial task (short of prespecifying all
possible lightpath variables beforehand) that requires
the solution of an NP-complete pricing problem.

First, note that branching on the x, variables based
on variable dichotomy is not convenient. The rea-
son is that this type of branching requires that, for a
given fractional variable x, and its current fractional
value x}, we create two new nodes by adding the
restriction x, < [x}]| on one branch and the restriction
x, > [x}] on the other branch. Although enforcing the
second restriction is not a problem, the first restriction
requires that we do not generate any new lightpaths
that would have the same propagation path as the
lightpath z corresponding to the variable x,. Because
the first restriction is hard to enforce, we use a differ-
ent branching strategy that indirectly forces all light-
path variables to be binary.

The branching strategy that we use to ensure inte-
grality of the x, variables is based on the observation
that if the sum of all lightpath variables with the same
origin and destination is integer over every arc used
in the physical layer, then either

(a) all lightpath variables are binary, or

(b) all lightpath variables do not have binary val-
ues, but the solution can be converted to a binary
one. (In this case we solve a single commodity flow
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problem between the origin and the destination using
the sum of the lightpath variables with the origin
and destination as the capacity of the arc. Because
the capacities have integer values, the resulting flows
between the origin and destination have integer val-
ues as well, which then allows us to recover binary
values for each lightpath variable; see Raghavan and
Stanojevi¢ 2006.)

The specific branching step that we apply to ensure
integrality of the x, variables performs a check on
whether any arcs exist with a fractional sum of all
lightpath variables with the same origin and destina-
tion and using that arc. If there is no such arc, we
proceed to branching level 1. Otherwise, we create
two new branches:

Branch 1. Add restriction

> x, < > x; |-
z:(m,n)ez, O(z)=i, D(z)=]
Branch 2. Add restriction

> X, > > X7,

z:(m,n)ez, O(z)=i, D(z)=j z:(m,n)ez, O(z)=i, D(z)=j

where (m,n) and (i,j) are the arc and the light-
path origin—destination pair identified in the previous
check, and x} are the actual values of lightpath vari-
ables in the current solution.

The problem with this approach is that the dual
variable associated with branch 2 is positive and thus
may lead to the creation of negative cost arcs that
in turn could result in a negative cost cycle. In the
presence of a negative cost cycle the shortest (loop-
less) path problem is NP-complete and thus is no
longer polynomially solvable. In our computational
experiments, however, we did not encounter the neg-
ative cost arc problem. Thus, we use a standard
shortest path algorithm to solve the pricing problem.
When a negative cost cycle is encountered, we resort
to solving the pricing problem via integer program-
ming. (The shortest loopless path problem between a
source (s) and a destination (d) may be formulated
as a minimum cost network flow problem where we
wish to send one unit of flow from s to d with the
additional restrictions that the flow into any interme-
diate node is at most one, and all flow is integer).
We note that negative cost cycles rarely appear in our
pricing problem. The reason for this is threefold. First,
the dual variable associated with a branch 2 constraint
is only positive when constraint (4) associated with
the same arc is near its capacity. Second, the cost of
arcs in the corresponding graph is comprised of both
nonnegative and nonpositive dual variables, meaning
that the arc cost will not necessarily have a nega-
tive value even if the dual variable associated with a
branch 2 constraint is positive. Third, the existence of

a negative cost arc by itself does not necessarily imply
the existence of a negative cost cycle.

In our implementation of the branching strategy for
the MIP-PATH-LOCALw, we first perform the step
described above and then the previously described
four-level branching procedure. In other words, we
first branch on the sum of lightpath variables, then
we branch on the lost traffic variables, and finally, we
branch on the flow path variables.

To guarantee feasibility of the restricted master
model on each branch of the branch-and-bound tree,
we apply the necessary modifications to our branch-
and-price procedures. In the case of the MIP-PATH-
LOCAL formulation, the only situation when our
branching strategy can cause infeasibility in one of
the branches is when we impose the restriction that
all the traffic must be served (that is, when on one
branch we set ¥ = 0). In this case, we may not have
a sufficient number of lightpath or flow path variables
to satisfy additional demand for a given commodity
(s, d) (recall that we performed branching on the lost
traffic variables only if the lost traffic variable has a
fractional value in a given solution). To ensure that
the branch is not pruned in such situations, we add
an artificial variable to constraint (7) in the restricted
master model, which accounts for all traffic that can-
not be served. We also set a high cost for this artificial
variable in the objective function so that this variable
does not assume a positive value when a feasible solu-
tion to the original problem exists. If at the end of
the column generation stage for a given branch in the
branch-and-bound tree this variable still has a posi-
tive value, we fathom the branch, because this means
that, given the restrictions in the branch-and-bound
tree, a feasible solution for the original problem does
not exist (if there were a feasible solution, the artifi-
cial variable would have to be equal to zero, given its
high cost in the objective function).

In the case of the MIP-PATH-LOCALw formula-
tion, we use the same logic, except that the artifi-
cial variable is added to all constraints of the type
D mmyez Xz = [ 2 mmez X2 | (this is necessary because
on a given branch of the branch-and-bound tree, the
lightpaths that are present in the restricted master
model may be such that there is insufficient capacity
in the network to accommodate the new requirement

Zz:(m,n)ez X, = I—ZZ: (m,n)ez X:-| )

3.4. Alternative Design Objectives

The algorithm proposed in the previous section solves
the WDM optical network design problem with the
objective of minimizing the total lost traffic. Although
this is the most common objective that a telecom-
munication service provider faces in practice, it is
possible that different design objectives need to be
considered when solving this problem. We discuss
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several objectives that have been studied in the litera-
ture and show that our algorithm can be easily mod-
ified to solve the WDM optical network design for
different objective functions. In all cases that we will
discuss next, the lost traffic variables can be dropped
from our path formulation without any effect on the
pricing procedure. The branching strategy changes
only in that we do not use lost traffic variables for
branching any longer.

3.4.1. Minimizing the Network-Wide Average
Packet Delay. Given the propagation delay ¢&; ,,
for each physical arc (I, m), this objective function
becomes

Min  }° > Eumf?

(s, d)eQ, peP D (I, m)ep

Notice that if we were to set §; ; =1, for all arcs
(i, j), this objective function would minimize the aver-
age hop distance measured by the number of physical
edges traversed by a flow of a given commodity.

The use of this objective function in our branch-
and-price algorithms would only change the expres-
sion for the reduced cost used in the pricing part as
follows:

(MIP-PATH-LOCAL)

Rcrgs,d): Z g(lm)+ Z (rz(s,d)+T(s,d)vZ)_w(s,d)

(1, myep zep, zeZE

+ 2 <—0‘0(z)—/30<z>— > 5(/,m>>r
zep,zeZN

(I, m)ez

(MIP-PATH-LOCALw)

5,d :
RCED = 3 &+ > TP, —w?
(I, myep

+ > T(S’d)<—a0<z>—BD<z>— > 5(/,m>)r
(

zep, zeZN 1, myez

zep, zeZE

which can easily be used in the computation of the
cost of using existing and new lightpaths. The other
parts of our branch-and-price algorithms remain the
same.

3.4.2. Minimizing the Congestion. In this case
the objective function becomes
Min A,
where A, is a variable that represents the maximum
flow on any given lightpath. To use this objective
function, it is necessary to add a new set of constraints
to the MIP-PATH-LOCAL and MIP-PATH-LOCALw
formulations:

)\max - Z

(s, d)eQ, p:zep

TEAfFeD >0 vz
(o) > :

This also requires modification of the expression for
the reduced cost used in the pricing part of our
branch-and-price algorithm in the following way:

(MIP-PATH-LOCAL)

RCFD = 3 (r&P4+TCDo, 4 TEDp)
zep,zeZE
s, d
+ X <—a0(z)—.3D(z)— > 8(l,m)>_w( ),
zep, zeZN (I, m)ez

(MIP-PATH-LOCALw)

(. d)
RC}
= Y (T®99,+T9t)
zep,zeZE
,d s, d
+ )y T¢ )(_aO(z)_BD(z)_ > 3(l,m>>—w( !,
zep,zeZN (I, myez

where t, is a nonnegative dual variable associated
with the new set of constraints. Again, as in the case
of the minimization of propagation delay, the new
objective function requires only a minor change in
computation of the reduced cost, and the other parts
of our branch-and-price algorithms remain the same.

3.4.3. Minimizing the Number of Transponders.
In this case the objective function becomes

Min Y (Al +A)).

In our branch-and-price algorithm, the use of this
objective function would only mean that Al and Al
would be variables, not given constants. This has no
effect on the algorithmic steps of our branch-and-price
algorithms, because lightpath variables x, are integer,
which immediately implies that Al and Al will be inte-
ger as well; i.e., there is no need to branch on these
variables to get integer values.

4. Lower Bound Procedure
One of the problems related to the linear relaxations
of two-layer multicommodity flow formulations is
that these formulations are not easy to strengthen,
especially when it is not necessary to serve all
the commodities in the network. Stanojevi¢ (2005)
showed that adding cover inequalities for con-
straint (6) in the MIP-PATH-LOCAL formulation is
not an efficient way to improve the lower bounds.
Consequently, we propose the use of an independent
lower bounding procedure for the WDM optical net-
work design problem that we now describe.

An alternative way of formulating the WDM opti-
cal network design problem is to define an additional
type of lightpath variables, global lightpath variables,
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that would provide information only on the num-
ber of lightpaths established between any two nodes
in the network. The advantage of this approach is
that the number of global lightpath variables is rela-
tively small, and we can use these variables to specify
flow paths in the logical layer. This approach elim-
inates the challenging issues we encountered with
the MIP-PATH-LOCAL formulation, but it also intro-
duces additional complexity when it comes to ensur-
ing no bifurcation of flow in the physical layer. In
this section, we present a formulation that utilizes
global lightpath variables (we refer to this formu-
lation as MIP-PATH-GLOBAL) and propose a solu-
tion approach that can be used to obtain valid
lower bounds for the WDM optical network design
problem.

The notation that we use for the MIP-PATH-
GLOBAL formulation is identical to the one that we
used for the MIP-PATH-LOCAL formulation, with a
few additional precomputed terms and slightly rede-
fined decision variables.

Predetermined input

W—The set that includes all possible subsets of the
commodities.

@fp’")—The number of lightpaths needed to carry
the traffic of all commodities (s,d) € ¢ (¥ € P)
without bifurcation.

C,—The cardinality of the set .

Variables

yU)—global lightpath variable that indicates the
number of lightpaths established between nodes i
and j. Note that these variables do not provide infor-
mation on how the lightpaths of a given origin and
destination are routed over the physical topology.

x"’—local lightpath variable that indicates the
number of lightpaths z used in a given solution.

p(s’d)—ﬂow path indicator variable that indicates
whether flow path p is used to carry traffic demand
for commodity (s, d). In the MIP-PATH-GLOBAL for-
mulation, flow paths are defined over the global light-
paths (i.e., we do not determine the exact propagation
path of a given commodity in the physical topology).

h®—lost traffic indicator variable that indicates
whether demand of commodity (s,d) is lost or
satisfied.

") —indicator variable equal to one, only if all
commodities that belong to set ¢ use a global light-
path connecting nodes i and j.

MIP-PATH-GLOBAL Formulation

Min Y T Dp6D (36)
(s, d)eQ
subjectto Y.y <A} VieV, (37)

ji (i f)eA

Y oyt <Al VjeV, (38)
i:(i,j)eA

y(frf) — Z

z:0(z)=i, D(z)=j

2D =0

V(i,)eA,  (39)
3 XD <L, Y(,m)eA, (40)

(i, e, z:(I,m)ez

- Y D=

p:(i,j)ep
V(i,j)eA, (s,d) e, (41)
T(s,d)fp(s,d) > 0

y(i/i) — Z

(s,d)eQ, p:(i,j)ep
V@i, )eA, (42)

3 fp(s,d) +pED —q

pEp(s,d)
V(s,d)eQ, (43)
y(i,]‘) _ @l(pi,f)Kg,J’) >0
V(i,j)eQ, ye¥, (44)

,d (%)
fp(s )+Kx// 21

G- X
(s, d)ed, p:(i,j)ep
V@, j)eA, peW, (45)

Kl(;,j) _fp(s,d) <0

Y(i,j)ep, (s,d)ey, ype¥, (46)
kY el0,1) Vi, j)eA, yew, (47)
8P ef0,1} VpeP®? (s, d)eQ, (48)
yi =0 V(i j)eA, (49)
xf’j) >0 and

integer Vze Z, (i,j)e A.  (50)

Constraints in the MIP-PATH-GLOBAL formula-
tion have a similar interpretation to those in the
MIP-PATH-LOCAL formulation. Constraint sets (37)
and (38) limit the out-degree and in-degree of
any node by the total number of transmitters and
receivers, respectively. Constraint set (39) ensures that
all global lightpaths are defined in the physical topol-
ogy through an adequate number of the local light-
paths in the physical topology. Constraint set (40)
represents a limit on the number of lightpaths that
can be established on any physical edge. Constraint
set (41) ensures that the flow path of any given com-
modity (s, d) can use global lightpath (i, j) only if
that lightpath is included in the logical topology. Con-
straint set (42) are capacity constraints limiting total
flow over all global lightpaths established between
two nodes. Constraint set (43) ensures that either all
demand for a given commodity is satisfied, or is
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entirely lost. Constraints (44)—(46) ensure no bifur-
cation of flow among lightpaths with the same ori-
gin and destination. These constraints are bin-packing
constraints, where the number of lightpaths repre-
sents the number of bins, the capacity of each light-
path represents the size of each bin, and demands
of commodities to be carried by a given set of light-
paths represent the size of individual items that need
to be placed in the bins. Constraints (45) and (46)
ensure proper definition of the indicator variable Kflj'] )

by guaranteeing that variable Kf;']) will be equal to
one if all commodities from set ¢ use global arc (i, j)
(constraint (45)) and that variable Kf/f’]) will be equal
to zero if at least one of the commodities from set ¢
is not using global arc (i, j) (constraint (46)).

In addition to the prohibitively large number of
packing constraints, the MIP-PATH-GLOBAL formu-
lation has several other drawbacks. First, to add the
packing constraints, it is necessary to know the num-
ber of possible lightpaths between all pairs of nodes
in advance. Second, this formulation is less versatile
in terms of its adaptation to different WDM optical
network settings. For example, because the flow path
variables are not mapped to the local lightpath vari-
ables, there is no way to determine the number of
physical hops used by each individual flow path. This
means that the MIP-PATH-GLOBAL formulation can-
not be used for networks where we need to place a
limit on the number of physical hops for each indi-
vidual flow path.

Although the MIP-PATH-GLOBAL formulation in
the form (36)—(50) does not appear to be a good choice
for the WDM optical networks without bifurcation
of flow, this formulation has important advantages
over MIP-PATH-LOCAL formulation in optical net-
works where bifurcation of flow is allowed. The rea-
son is that MIP-PATH-GLOBAL formulation remains
row-complete in the column generation framework.
Specifically, the pricing procedure is straightforward,
and we can gerform direct and independent pricing
of x, and fp(s’ ) variables. In a related paper (Raghavan
and Stanojevi¢ 2006), we have developed such a pro-
cedure, and in this paper, we adapt that procedure as
a lower bounding procedure for use in the optical net-
works without bifurcation of flow. (Note that we can
allow bifurcation of flow in the MIP-PATH-GLOBAL
formulation by dropping constraints (44)—(47) and
allowing noninteger values of the flow path vari-
ables. The objective value determined by solving this
relaxed form of the MIP-PATH-GLOBAL formulation
represents a lower bound for the optimal objective
value of the original MIP-PATH-GLOBAL formula-
tion.) The details of the branch-and-price algorithm
for MIP-PATH-GLOBAL formulation with bifurcation
of flow can be found in Raghavan and Stanojevi¢
(2006). In this branching strategy, we first branch on

the global lightpath variables, then on the local light-
path variables, followed by branching on the lost
traffic variables, and finally branching on the flow
path variables. For the global lightpath variables and
the lost traffic variables, variable dichotomy is used.
Branching on the local lightpath variables is based
on the sums of local lightpath variables with the
same origins and destinations crossing the same phys-
ical arcs. To strengthen the lower bound that can be
obtained by the MIP-PATH-GLOBAL relaxation with
fractional variables, we impose a restriction on the
flow path variables to have binary values. (Branching
on the fractional flow path variables can be performed
using the branching strategy defined in Barnhart et al.
2000 by looking at the divergence node of the frac-
tional flow variables in the logical topology.) This
integrality requirement imposed on the flow path
variables guarantees that there will be no bifurca-
tion of flow for a given commodity over lightpaths
with different origins and destinations, but it does not
guarantee that bifurcation of flow will not occur over
the lightpaths with the same origin and destination
(we refer to this relaxation of the MIP-PATH-GLOBAL
formulation as MIP-PATH-GLOBALY).

In our computational experiments with four
different network settings, this procedure found the
optimal solution in all instances where the optimal
solution was known.

5. Computational Experiments

The procedures presented in this paper were coded
using Microsoft Visual C++4, ILOG Maestro (ILOG
2003), and CPLEX 9.0. All computations were per-
formed on a workstation with 2.66 GHz Xeon
processor with 2 GB of RAM.

We used four different sets of problems in our com-
putational tests (the test problems are identical to
those described in Raghavan and Stanojevi¢ 2006).
These sets of problems include two sets of randomly
defined problems that use complete and incomplete
graphs in the physical layer (defined in Raghavan
and Stanojevi¢ 2006) with low (L) and high (H)
demand levels D, and a simple six-node network and
NSENET network used in the study of Prathombutr
et al. (2005) with varying number of transmitters and
receivers (T/R Nbr) and varying number of wave-
lengths (Wav. Nbr) that can be established on each
fiber. The low demand networks had traffic requests
for each commodity in the range [0.1, 0.5], whereas
the high demand networks had traffic requests in the
range [0.1, 1].

In all our computational experiments, we have used
the following settings. The initial set of lightpaths
used in column generation is determined using the
all-pairs shortest path algorithm (where the length of
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the path is defined by the number of physical hops
used by the lightpath). The initial set of flow paths is
determined using the shortest path algorithm with a
single flow path defined for each commodity (where
the length of the flow path is defined by the number
of lightpaths used).

We included the use of the CPLEX MIP optimizer
for the initial LP in the branch-and-bound tree with
a 600-second CPU time limit. Also, in the branch-
and-price algorithm for the MIP-PATH-GLOBALr for-
mulation, we included the use of the CPLEX MIP
optimizer at all nodes of the branch-and-bound tree
at which both global and local lightpath variables
are integer, but fractional flow path variables exist.
Finally, in each subsequent iteration of our branch-
and-price algorithms, we select the branch that has
a minimum parent lower bound in the branch-and-
bound tree at that point, perform column genera-
tion, and (if the solution is fractional) perform further
branching steps.

Table 1 provides the results for the randomly
defined networks that use a complete graph in the
physical layer. These results indicate that, as expected,
the branch-and-price algorithm for (B&P) the MIP-
PATH-LOCALw formulation requires longer compu-
tational times to solve the problems. This procedure
actually solves to optimality only one test instance
within the 3,600-second CPU time limit. The other
two branch-and-price algorithms (for the formula-
tions MIP-PATH-LOCAL and MIP-PATH-GLOBALLY),
on the other hand, solved six out of eight instances in
the networks with five and seven nodes. We can see
that in all solved instances the bound provided by the
branch-and-price algorithms for MIP-PATH-LOCAL
and MIP-PATH-GLOBALr are the same, indicating

that the solutions found by these procedures are opti-
mal. (Recall that solutions provided by the branch-
and-price algorithm for MIP-PATH-LOCAL represent
upper bounds for the original problem, whereas the
solutions provided by the branch-and-price algorithm
for MIP-PATH-GLOBALTr represent lower bounds for
the original problem. This means that we have an
optimal solution for the original problem if the
upper bound obtained from MIP-PATH-LOCAL is
equal to the lower bound obtained from MIP-PATH-
GLOBALr.) We can also see that in terms of upper
bounds the branch-and-price algorithm for the MIP-
PATH-LOCAL formulation outperforms the branch-
and-price algorithm for the MIP-PATH-GLOBALr
formulation. This may appear surprising consider-
ing the fact that the (final) solutions provided by
the branch-and-price algorithm for the MIP-PATH-
GLOBALr formulation represent a lower bound for
the original problem. However, these results may
indicate that a better set of lightpaths was gen-
erated for the initial LP solution of the algorithm
using the MIP-PATH-LOCAL formulation. This is
likely because the local lightpath variables in the
MIP-PATH-LOCAL formulation are defined as binary
variables, whereas in the MIP-PATH-GLOBALr for-
mulation these variables are defined as general inte-
gers. Consequently, we can expect to have a larger
number of lightpaths (that differ from the lightpaths
in the initial set) generated for the initial LP solu-
tion of the branch-and-price algorithm for the MIP-
PATH-LOCAL formulation. As a result, in the case
of MIP-PATH-LOCAL formulation, the search space
corresponding to the problem solved by CPLEX opti-
mizer has a higher chance to include larger number
of good candidate lightpaths.

Table 1 Minimizing the Lost Traffic in the Network: Complete Physical Network with Two Fibers (Fiber Capacity of Two Lightpaths) Between All
Pairs of Nodes
B&P (LOCALw) B&P (LOCAL) B&P (GLOBALr)

V| | D LB uB CPU (sec) LB uB CPU (sec) LB uB CPU (sec)
5 20 H 0.11 0.88 3,602.16 0.62 0.62 2.31 0.62 0.62 2,283.58
5 20 L 0.00 0.89 3,602.58 0.00 0.00 0.34 0.00 0.00 0.13
5 10 H 0.00 0.16 3,600.58 0.00 0.00 0.17 0.00 0.00 0.06
5 10 L 0.00 0.00 3.22 0.00 0.00 0.19 0.00 0.00 0.05
7 42 H 2.28 6.97 3,600.58 4.32 5.32 3,601.36 4.29 5.29 3,602.26
7 42 L 0.00 4.25 3,600.33 0.00 0.15 3,600.88 0.00 0.00 312.05
7 21 H 0.19 1.90 3,600.73 0.70 0.70 11.23 0.70 0.70 3,617.31
7 21 L 0.00 1.23 3,600.39 0.00 0.00 2.06 0.00 0.00 0.67

10 90 H 17.65 24.50 3,600.20 21.14 22.89 3,602.56 21.15 23.14 3,601.14

10 90 L 0.21 14.18 3,600.17 5.18 7.14 3,602.33 5.20 6.92 3,879.33

10 45 H 1.47 5.88 3,600.23 2.41 433 3,600.66 2.55 417 3,603.84

10 45 L 0.00 3.81 3,600.20 0.00 0.43 3,601.83 0.00 0.14 3,602.39

20 380 H 149.39 156.67 3,607.74 153.68 155.44 3,601.36 152.44 155.04 4,137.05

20 380 L 54.13 86.84 3,610.52 74.87 86.84 3,601.99 70.49 74.50 3,653.72

20 190 H 48.07 57.09 3,702.78 54.11 57.29 3,601.80 52.76 57.01 3,626.23

20 190 L 7.19 31.17 3,602.48 18.97 32.80 3,600.38 16.60 22.26 3,672.38




Raghavan and Stanojevié: Branch and Price for WDM Optical Networks

INFORMS Journal on Computing 23(1), pp. 56-74, ©2011 INFORMS 71
Table 2 Minimizing the Lost Traffic in the Network: Incomplete Physical Network with Two Fibers (Fiber Capacity of 20 Lightpaths) on All Arcs
B&P (LOCALw) B&P (LOCAL) B&P (GLOBALT)

V| |A| 1Q] D LB UB CPU (sec) LB UB CPU (sec) LB uB CPU (sec)
5 10 15 H 0.38 0.89 3,604.70 0.69 0.69 1.06 0.69 0.69 1,953.45
5 10 15 L 0.00 0.00 53.97 0.00 0.00 0.22 0.00 0.00 0.09
7 15 30 H 1.71 4.61 3,601.27 2.40 3.44 3,601.81 2.04 3.10 3,607.97
7 15 30 L 0.00 2.60 3,600.49 0.00 0.16 3,600.72 0.00 0.00 9.39

10 20 40 H 1.71 4.25 3,600.51 2.41 2.95 3,601.33 1.86 3.05 3,605.39

10 20 40 L 0.00 2.61 3,600.28 0.00 0.16 3,601.72 0.00 0.19 3,601.51

20 30 60 H 4.68 6.55 3,600.33 4.68 6.19 3,605.47 4.68 6.42 3,609.92

20 30 60 L 0.00 418 3,600.33 0.00 1.20 3,619.41 0.00 1.32 3,628.48

Table 2 provides results for the randomly defined
networks that use an incomplete graph in the physical
layer. These results indicate the same pattern in the
performance of our branch-and-price algorithms as in
the case of the first set of instances defined over the
complete physical networks.

The results for test instances defined in the study
of Prathombutr et al. (2005) are shown in Tables 3
and 4. In this case, our branch-and-price algorithms
did not find optimal solutions for any of the instances
within a specified CPU time limit. However, the
upper bounds provided by the branch-and-price algo-
rithm for the MIP-PATH-GLOBALYr formulation were,
in most instances, better than the upper bounds pro-
vided by the branch-and-price algorithm for the MIP-
PATH-LOCAL formulation. The most likely reason is
that in most of these instances, the branch-and-price
algorithm for the MIP-PATH-LOCAL formulation did
not complete column generation for the initial LP, and

the algorithm did not get a chance to have any bene-
fits from the local optimizer otherwise applied to the
initial LP solution. An analysis of the progress of our
column generation indicated that the long time spent
at the root is not due to degeneracy or stalling of the
solution procedure at a specific lower bound, in which
case common stabilization procedures could be used.
Instead, the problem was mostly related to small
incremental improvements achieved at each iteration
of the column generation algorithm. We believe that
one good venue for further improvements would be
to try to generate a pool of good lightpaths that could
be considered for introduction into the restricted mas-
ter problem at any given branch of the branch-and-
bound tree (see Chabrier 2003 for a similar strategy
applied to the multicommodity multifacility network
design problem). We leave this for future research.
In Table 5 we provide a comparison of the branch-
and-price algorithm for MIP-PATH-LOCALw and

Table 3 Minimizing the Lost Traffic in the Network: The Six-Node Network with a Single Fiber on Each Arc

B&P (LOCALw) B&P (LOCAL) B&P (GLOBALY)
T/R Nbr Wav. Nbr LB uB CPU (sec) LB uB CPU (sec) LB UB CPU (sec)
3 3 3.47 6.46 3,602.08 5.10 6.02 3,606.42 5.09 6.02 3,614.95
4 3 0.28 3.14 3,601.84 0.77 2.78 3,601.02 1.12 2.68 3,605.81
5 3 0.28 2.81 3,601.64 0.44 2.43 3,600.94 0.28 1.29 3,616.30
7 3 0.28 2.81 3,601.78 0.44 2.45 3,600.75 0.28 0.92 3,618.39
3 4 3.60 6.46 3,602.02 5.10 6.02 3,605.81 5.03 6.02 3,615.16
4 4 0.17 3.02 3,601.80 0.75 2.63 3,602.53 0.95 2.48 3,608.02
5 4 0.00 1.31 3,601.08 0.00 0.35 3,600.69 0.00 0.91 3,611.61
Table 4 Minimizing the Lost Traffic in the Network: The NSFNET Network with a Single Fiber on Each Arc

B&P (LOCALw) B&P (LOCAL) B&P (GLOBALY)
T/R Nbr Wav. Nbr LB uB CPU (sec) LB uB CPU (sec) LB uB CPU (sec)
3 3 0.00 19.26 3,600.35 413 8.89 3,606.41 3.99 8.99 3,655.20
4 3 0.00 16.82 3,600.32 0.00 8.98 3,626.69 0.00 6.71 3,641.36
5 3 0.00 15.39 3,600.35 0.00 5.32 3,641.06 0.00 2.62 3,612.26
4 4 0.00 17.04 3,600.32 0.00 8.46 3,614.05 0.00 9.30 3,618.47
5 4 0.00 14.91 3,601.21 0.00 4.93 3,609.97 0.00 2.39 3,614.84
6 4 0.00 13.51 3,600.32 0.00 3.26 3,620.81 0.00 0.21 3,917.52
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Table 5 Summary: Minimizing the Lost Traffic in the Network Table 6 Summary: Minimizing the Total Number of Transmitters and
Receivers in the Network
Combined
B&P (LOCALw) LOCAL and GLOBALr Combined
B&P (LOCALw) LOCAL and GLOBALr
Avg. gap Avg. CPU Avg. gap Avg. CPU
Network type (%) (sec) (%) (sec) Avg. gap Avg. CPU Avg. gap Avg. CPU
Network type (%) (sec) (%) (sec)
Complete 24.04 3,383.43 7.94 4,726.48
Incomplete 14.49 3,157.73 3.65 5,205.99 Complete 131.85 3,608.85 29.36 6,879.83
Six nodes 13.46 3,601.75 7.53 7,215.49 Incomplete 93.49 3,602.56 14.97 7,561.20
NSFNET 54.03 3,600.48 20.40 7,296.44 Overall 119.06 3,606.75 24.56 7,106.95
Overall 24.84 3,411.13 8.96 5,717.80

the combined use of the branch-and-price algo-
rithms for MIP-PATH-GLOBALr and MIP-PATH-
LOCAL. (In the combined use of the branch-and-price
algorithms for MIP-PATH-GLOBALr and MIP-PATH-
LOCAL, the lower bounds are those of the branch-
and-price algorithms for MIP-PATH-GLOBALr, and
the upper bounds are those of branch-and-price algo-
rithms for MIP-PATH-LOCAL.) The results in this
table include the average percentage gaps and CPU
times for each type of network used in our test
instances. The percentage gaps in this case were cal-
culated as ((UB—LB)/(total demand — LB)) %« 100% (the
straightforward computation of the gap in the form
(UB — LB)/LB was not practical for these problems
because the lower bound was equal to zero in many
instances). In other words, we provide the percentage
gaps with the respect to the total traffic served instead
of the total traffic lost. These results clearly indicate
superior performance of the combined branch-and-
price algorithms for MIP-PATH-LOCAL and MIP-
PATH-GLOBALL=.

In addition to the computational experiments
described, we have tested the performance of our
branch-and-price procedures for the objective func-
tion that minimizes the number of transmitters and
receivers in the network. We have found that, in
general, our procedures do not provide good upper
bounds for this objective, which is likely because our
search for integer solutions (upper bounds) is left to
the CPLEX optimizer. We suspect that integration of
custom upper bounding heuristics within our branch
and price procedures would provide better results.
The summary of the results of our computational
experiments for the objective of minimizing the num-
ber of transmitters and receivers is shown in Table 6,
with the percentage gaps calculated as (UB—LB')/LB/,
and the lower bound LB’ calculated as the smallest
even integer number greater or equal to the actual LB
obtained with our branch-and-price algorithm.

In our final set of experiments, we tested the appli-
cation of our approximate branch-and-price proce-
dures for the design of WDM optical networks where
design requirements differ from the problem defined

Note. We have assumed an upper bound of 380 for one instance of LOCALw
where we did not have an integer solution.

and studied in this paper. The requirements that we
considered include networks where flow bifurcation
is allowed and networks where there is ample fiber
capacity, so there is no constraint on the number
of lightpaths that can be established on any physi-
cal link. We also looked at WDM optical networks
where we can make both assumptions. That is, we
allowed bifurcation of flow and assumed that an
infinite number of wavelengths is available in the
network. The proposed branch-and-price procedures
required only minor modifications in each alternative
network design setting.

Specifically, for the case of WDM optical networks
with the bifurcation of flow allowed, we only relaxed
the integrality constraints on the flow path vari-
ables, and in the case of the MIP-PATH-LOCAL for-
mulation, we imposed an integrality constraint on
the lightpath variables x, (recall that the constraint
x, — Zp:zepfp(s’d) >0Vz € Z,(s,d) € Q was ensur-
ing integrality of the variables x, as long as the
flow path variables fp(s’d) had integer values), which
can be accomplished by using the same branch-
ing strategy that we used for the x, variables in
the branch-and-price algorithm for the MIP-PATH-
LOCALw formulation. (The branch-and-price pro-
cedure for the MIP-PATH-GLOBALr formulation in
this case is an exact procedure and is described
in Raghavan and Stanojevi¢ 2006.)

For the case of WDM optical networks with an infi-
nite number of wavelengths, we eliminated the xi
variables in the MIP-PATH-GLOBALr formulation
and applied our branch-and-price procedure without
any other modifications. As for the MIP-PATH-
LOCAL formulation, we only eliminated the con-
straint on the number of lightpaths on physical links.

The summary of our computational results for dif-
ferent types of network restrictions and the two objec-
tive functions used in our computational experiments
are shown in Tables 7 and 8 (the abbreviations BA
and BNA refer to networks where bifurcation of flow
is allowed and not allowed, respectively, whereas
FW and IW refers to networks with finite and infi-
nite number of wavelengths, respectively). The results
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Table 7 Alternative Network Settings: Minimizing the Total Lost Traffic

in the Network

Combined
B&P (LOCALw) B&P (LOCALw) LOCAL & GLOBALr
Avg. gap Avg. gap Avg. gap
Network setting (%) Avg. CPU (%) Avg. CPU (%) Avg. CPU
BNA & FW 4.88 2,602.52  3.73 2,334.37 564 4,936.89
BA & FW 3.48 2,033.29 0.77 1,472.31 3.51 3,505.60
BNA & IW 3.92 2,48812  3.89 2,351.08 452 4,839.19
BA & IW 0.74 1,61319  0.88 1,44629  0.73 3,059.48
Table 8 Alternative Network Settings: Minimizing the Total Number of
Transmitters and Receivers
Combined
B&P (LOCALw) B&P (LOCALw) LOCAL & GLOBALr
Avg. gap Avg. gap Avg. gap
Network setting (%) Avg. CPU (%) Avg. CPU (%) Avg. CPU
BNA & FW 19.13 3,160.84 18.34 2,643.77 21.59 5,804.61
BA & FW 16.33 3,623.87 16.92 2,971.01 16.82 6,594.87
BNA & IW 12.87 3,191.54  10.60 2,651.05 12.41 5,842.59
BA & IW 18.53 2,979.76  8.67 3,134.47 17.25 6,114.23

presented in Tables 7 and 8 are a summary of the
results for a selected set of eight instances in complete
physical networks and eight instances in incomplete
physical networks. For the second network design
objective, minimization of the number of transmitters
and receivers, we have also used node degree inequal-
ities to strengthen the lower bounds (see Stanojevi¢
2005 for details). As expected, the gaps significantly
decrease in the less restricted WDM optical network
settings. The only exception seem to be the networks
where bifurcation of flow is allowed and an infinite
number of wavelengths is available when the objec-
tive is minimizing the total number of transmitters
and receivers.

6. Conclusion

In this paper, we discussed the design of branch-
and-price algorithms for the WDM optical network
design problem with no bifurcation of flow. The
unique feature of the proposed algorithms is the use
of column generation for the row-incomplete formu-
lations. We explained how the WDM optical network
design problem can be addressed in this situation
both exactly and approximately by proposing one
exact and two approximate branch-and-price algo-
rithms that can be used to obtain valid lower and
upper bounds for this problem.

Our computational experiments with the exact and
approximate lower bounding and upper bounding
branch-and-price algorithms indicate that the com-
bined use of the approximate branch-and-price algo-
rithms (one of which provides a lower bound and
the other an upper bound) provides significantly

better results than the proposed exact branch-and-
price procedure.

We have also performed computational tests with
our approximate branch-and-price algorithm for
WDM optical networks with different network restric-
tions. Specifically, we looked at (i) WDM optical
networks where bifurcation of flow is allowed, (ii) net-
works with ample fiber capacity, and (iii) networks
that both have ample fiber capacity and allow bifurca-
tion of flow. Our computational experiments indicate
that the performance of our approximate branch-and-
price algorithms improves as we relax restrictions in
the network settings.
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