Twinless Strongly Connected Components

S. Raghavan

The Robert H. Smith School of Business & the Institute for Systems Research
Van Munching Hall

University of Maryland

College Park, MD 20742

raghavan@umd.edu

Summary. Tarjan [9], describes how depth first search can be used to identify
Strongly Connected Components (SCC) of a directed graph in linear time. It is
standard to study Tarjan’s SCC algorithm in most senior undergraduate or intro-
ductory graduate computer science algorithms courses. In this paper we introduce
the concept of a twinless strongly connected component (TSCC) of a directed graph.
Loosely stated, a TSCC of a directed graph is (i) strongly connected and (ii) remains
strongly connected even if we require the deletion of arcs from the component so that
it does not contain a pair of twin arcs (twin arcs are a pair of bidirected arcs (,) and
(4, %) where the tail of one arc is the head of the other and vice versa). This structure
has diverse applications, from the design of telecommunication networks [7] to struc-
tural stability of buildings [8]. In this paper, we illustrate the relationship between
2-edge connected components of an undirected graph—obtained from the strongly
connected components of a directed graph—and twinless strongly connected com-
ponents. We use this relationship to develop a linear time algorithm to identify all
the twinless strongly connected components of a directed graph. We then consider
the augmentation problem, and based on the structural properties developed earlier,
derive a linear time algorithm for the augmentation problem.

Key words: Digraph augmentation; strong connectivity; linear time algorithm.

1 Introduction

Let D = (N, A) be a directed graph (digraph) with node set N and arc set
A. A pair of nodes x and y are twinless reachable if there exists a directed
path from node z to node y, and a directed path from node y to node =,
such that for every arc (i,7) contained in the path from node x to node y,
the path from node y to node = does not contain arc (j,i). The Twinless
Strongly Connected Components (TSCCs) of a digraph are the equivalence
classes of nodes under the “twinless reachable” condition (we will show later
that the twinless reachable condition defines an equivalence relationship). We

2 S. Raghavan

Twinless Strongly
Connected Component

Fig. 1. Twinless Strongly Connected Components of a digraph. Bold arcs show
twinless arcs that form a strongly connected component.

say a digraph is Twinless Strongly Connected if every pair of nodes is twinless
reachable.

We now provide a slightly different, but equivalent, definition of twinless
strongly connectedness. We say that a pair of bidirected arcs (,7) and (j,1)
are twins. Recall that a digraph is strongly connected if it contains a directed
path between every pair of its nodes. Our alternate definition then is as follows.
A digraph D = (N, A) is Twinless Strongly Connected if for some subset A’ of
A, the digraph (N, A’) is strongly connected and A’ does not contain an arc
together with its twin. A Twinless Strongly Connected Component (TSCC) of
a digraph is the node set of a maximal twinless strongly connected subdigraph
of D. Figure 1 gives an example of four TSCCs, that contain 3 or more nodes,
in a digraph.

It should be apparent that every pair of nodes in a TSCC, as defined by the
second definition, are twinless reachable. What may not readily apparent is the
converse. That is, if N? is a TSCC under the first definition of a TSCC. Then,

Twinless Strongly Connected Components 3

the subdigraph D = (N¢, A?), where A® = {(z,y)|(z,y) € A,z € N*,y € N},
is twinless strongly connected as per the second definition. We will work with
the second definition until we show, in the next section, that both definitions
are indeed equivalent.

Additionally, when considering digraphs, it is clear that reachability is a
transitive property. That is, if there is a directed path from node z to node y,
and a directed path from node y to node z, then there is a directed path from
node x to node z. It turns out that the twinless reachable property is also
transitive, but this is not so obvious. Transitivity of the twinless reachable
property means that, if a pair of nodes x and y are twinless reachable, and
a pair of nodes y and z are twinless reachable, then the pair of nodes xz and
z are twinless reachable. Transitivity is necessary to define an equivalence
relationship and we will show this property in the next section.

In this paper, we consider the following questions (analogous to those for
SCCs) in connection with TSCCs. How do we recognize TSCCs of a digraph?
Is it possible to recognize TSCCs of a digraph in linear time? We also consider
the (unweighted) augmentation problem. That is, given a digraph D = (N, A)
find the minimum cardinality set of arcs A’ to add to the digraph so that
D = (N,AU A’) is twinless strongly connected (In a seminal paper Eswaran
and Tarjan [4] introduced and solved the augmentation problem for strong
connectivity). Our answer to these questions is affirmative. Specifically, we
develop linear time algorithms to recognize all TSCCs of a digraph and to
solve the augmentation problem.

The remainder of this paper is organized as follows. In Section 2 we first
derive some structural properties of TSCCs. Specifically we show a correspon-
dence between TSCCs in a strongly connected digraph and 2-edge connected
components of an associated undirected graph. Using these structural prop-
erties, in Section 3 we describe a linear time algorithm for identifying the
TSCCs of a digraph. In Section 4 we consider the augmentation problem and
show how to solve the unweighted version of the augmentation problem in
linear time. In Section 5 we describe some applications of this structure—
one in telecommunications, and one in determining the structural rigidity of
buildings. Finally, in Section 6 we discuss a connection between the notion of
a twinless strongly connected digraph and strongly connected orientations of
mixed graphs.

2 TSCCs of a Strongly Connected Digraph and 2-Edge
Connected Components

We now derive some structural properties of TSCCs in a strongly connected
digraph D. For ease of exposition, we introduce some additional notation.
The TSCC induced digraph of D is the digraph DTSCC = (NTSCC ATSCC)
obtained by contracting each TSCC in D to a single node. We replace parallel
arcs that the contraction creates by a single arc. Every node in the TSCC

4 S. Raghavan

=000 w0
J

S P i a t

Fig. 2. Proof that the paths P and P’ are twin paths.

induced digraph DTSCC corresponds to a TSCC in the original digraph D.
Consequently, for any node i € NTSCC we refer to the TSCC node i corre-
sponds to in the original digraph, including the arcs and nodes in the TSCC,
as TSCC(3).

For any digraph D = (N, A), the associated undirected graph G(D) =
(N, E) is a graph with edges E = {{i,5} : (,7) € A and/or (j,i) € A}. If
(,7) belongs to A, we refer to the edge {i,7} in E as an image of this arc.
We say that two paths P and P’ are twin paths if P is a path from node i to
node 7, and P’ is a path from node j to node 7 that uses exactly the reversal
(i.e., the twin) of each arc on the path P.

We first prove a useful property concerning the structure of directed paths
between TSCCs in a strongly connected digraph.

Theorem 1 (Twin-arc). Let D = (N, A) be any strongly connected digraph
and let DT5CC be its TSCC induced digraph. The associated undirected graph
of DTSCC s q tree. Moreover, every edge in the associated tree is the image
of a pair of twin arcs (and no other arcs) of D.

Proof:
First, consider the TSCC induced subdigraph DTS€C (note that since D is
strongly connected, so is DTSCC). We show that DTSC contains a twin path
and no other path between any two nodes. As a result, the associated undi-
rected graph of DTSCC is a tree. We will establish this result by contradiction.
Assume the digraph DTS€C contains a path P from a node s to a node ¢ and
a path P’ from node t to node s that are not twin paths. Let arc (i,¢q) be
the first arc on P’ that does not have a twin arc on the path P and let 7 be
the first node following node ¢ on the path P’ that lies on the path P (see
Figure 2). Then all nodes on P’ between nodes ¢ and j and all nodes on P
between nodes j and ¢ are twinless strongly connected and thus in the same
TSCC. In other words, nodes 7 and j do not correspond to maximal twinless
strongly connected subdigraph’s of D (i.e., TSCCs). But, DTSC is obtained
by contracting TSCCs in D and thus each node in DTSCC is a TSCC. We now
have a contradiction.

We now show that every pair of twin arcs in corresponds to a pair
of twin arcs and no other arcs of D. As a result, every edge in the associated

pTscc

Twinless Strongly Connected Components 5

tree (i.e., G(DTSCC)) is the image of a pair of twin arcs and no other arcs
of D. Consider any two adjacent nodes in DTS€C | say nodes a and t. Node ¢
and node a correspond to TSCCs (possibly single nodes) in the expanded
digraph (i.e., D). If the original (expanded) digraph contains two non-twin
arcs (i, j) with ¢ € TSCC(a) and j € TSCC(¢) and (k, 1) with k € TSCC(¢) and
I € TSCC(a), then the digraph obtained by the union of TSCC(a), TSCC(t)
and the arcs (i,7) and (k,l) is twinless strongly connected, and we have a
contradiction. Therefore, only a single arc (a, t) connects TSCC(a) to TSCC(t)
and only a single arc, the twin of arc (a,), joins TSCC(t) to TSCC(a). O

Since DTSCC has the structure of a bidirected tree (that is, a tree with
twin arcs in place of each edge [see Figure 3]) when D is strongly connected;
we refer to DTSCC as the TSCC tree.

Theorem 1 implies the following result concerning the relationship between
a strongly connected digraph and its associated undirected graph.

Theorem 2. The associated undirected graph G(D) of a strongly connected
digraph D is 2-edge connected if and only if D is a twinless strongly connected
digraph.

Proof:

If D is a twinless strongly connected digraph, then its associated undirected
graph G(D) must be 2-edge connected. Otherwise, if G(D) is not 2-edge con-
nected, deleting some edge {4,;j} from G(D) disconnects the graph. In D,
this edge corresponds to arc (4,7) or arc (j,i) or both arcs (¢,7) and its twin
(j,). Eliminating these arcs destroys any directed path between nodes i and
j. Consequently D is not twinless strongly connected; a contradiction.

To complete the proof, we show that if the associated undirected graph
G(D) is 2-edge connected, then D is a twinless strongly connected digraph.
Suppose this is not true. Then G(D) is 2-edge connected while D is not a
twinless strongly connected digraph. Consider the TSCC tree of D. If D is not
twinless strongly connected then its TSCC tree contains at least two nodes. If
the TSCC tree contains 2 or more nodes, then its associated undirected graph
(a tree) has at least one edge. Deleting an edge on this graph disconnects
it. Since an edge on the associated undirected graph of the TSCC tree is
an image of twin arcs and no other arcs in D, deleting the same edge in
G(D) disconnects G(D). But then G(D) is not 2-edge connected, resulting
in a contradiction. Consequently, the TSCC tree is a single node and D is a
twinless strongly connected digraph. (I

Theorem 1 and Theorem 2 imply the following characterization of TSCCs
in a strongly connected digraph.

Corollary 1 The 2-edge-connected components of the associated undirected
graph G(D) of a strongly connected digraph D correspond in a one to one
fashion with the TSCCs of D.

6 S. Raghavan

() ©

(d)

Fig. 3. Illustration of Theorem 1, Theorem 2, and Corollary 1. (a) Strongly con-
nected digraph D, (b) DTS€C the TSCC induced subdigraph of D (the TSCC tree),
(c) Associated undirected graph of DTSCC, (d) Associated undirected graph of D.

Twinless Strongly Connected Components 7

Notice that Corollary 1 assures us that the TSCCs of a digraph are
uniquely defined. Also, from Theorem 1 it follows that the twinless reach-
able property is transitive.

Lemma 1 Twinless reachability is a transitive property.

Proof:
Suppose nodes a and b in a digraph are twinless reachable, and nodes b and ¢
in the same digraph are twinless reachable. It immediately follows that nodes
a, b, and ¢ must all be in the same strongly connected component of the
digraph. Consider the strongly connected component that contains nodes a,
b, and ¢. From Theorem 1 it follows that nodes a and b must be in the same
TSCC, and nodes b and ¢ must be in the same TSCC. But that means nodes
a and c are in the same TSCC. From the second definition of twinless strongly
connectedness it follows that nodes a and ¢ must be twinless reachable. [

Lemma 1 also shows that the twinless reachable condition defines an equiv-
alence relationship. A binary relationship defines an equivalence relationship if
it satisfies reflexivity, symmetry and transitivity. By definition twinless reach-
ability satisfies reflexivity and symmetry, while Lemma 1 shows transitivity
proving that it defines an equivalence relationship.

The proof of Lemma 1 also shows the equivalence of the two definitions.

Lemma 2 The two definitions of a TSCC are equivalent.

Proof:
It is readily apparent that all node pairs in a TSCC under the second definition
are twinless reachable. The proof of Lemma 1 shows any pair of nodes that
are twinless reachable must be in the same TSCC (as defined by the second
definition of a TSCC). O
The previous lemmas also allow us to show that nodes on any directed
path between two nodes in a TSCC are also in the TSCC. This will be useful
to us when we consider augmentation problems.

Lemma 3 Let D be any twinless strongly connected digraph, and P;; be any
directed path from node i to j with i,5 € D. Then Dp = DU P;; is a twinless
strongly connected digraph.

Proof:

Clearly Dp is strongly connected. Consider G(Dp). From Theorem 2 G(D) is
2-edge connected. Thus G(D) U G(P;;) is also 2-edge connected. But G(D) U
G(P;;) = G(Dp), showing G(Dp) is 2-edge connected. Thus, by Theorem 2
Dp is also twinless strongly connected. O

3 Identifying Twinless Strongly Connected Components
in Linear Time

With the characterization of the relationship between TSCCs in a strongly
connected digraph and 2-edge connected components of the associated undi-

8 S. Raghavan

rected graph it is now easy to develop a linear time algorithm (based on depth
first search) to identify all TSCCs. The first step consists of finding all strongly
connected components of the directed graph. As noted in the outset of the
paper this is easily done in linear time using depth first search [9]. A singleton
node constituting a SCC of the digraph is also a TSCC of the digraph. If a
SCC has cardinality 2, i.e., it consists of 2 nodes, then each node in the SCC
is a TSCC. For each of the remaining SCCs (i.e., ones with cardinality greater
than or equal to 3) we construct the strongly connected digraph (defined by
the arcs between nodes of the SCC) and identify the TSCCs on the SCC.

Corollary 1 states that to identify the TSCCs of a strongly connected
digraph, it is sufficient to identify all 2-edge-connected components of its as-
sociated undirected graph. Let Dg denote a strongly connected component
of D. Consequently, we can convert Dg to its associated undirected graph
Gs in O(|N| + |A]) time, and use the well-known method for identifying all
2-edge-connected components that is also based on depth first search (see
exercise 23.2 in [3]).

4 The Augmentation Problem

In this section we consider the problem of augmenting a digraph so that it is
twinless strongly connected. As mentioned in the introduction to this paper,
Eswaran and Tarjan [4] introduced the augmentation problem. They showed
how to minimally augment a digraph in linear time so that it is strongly
connected. They also showed how to minimally augment an undirected graph,
in linear time, so that it is 2-edge connected.

Our procedure to augment a digraph so that it is twinless strongly con-
nected is roughly as follows. We first apply Eswaran and Tarjan’s augmenta-
tion procedure to strongly connect the digraph. From Theorem 2, it follows
that this strongly connected digraph is twinless strongly connected if and only
if its associated undirected graph is 2-edge connected. Consequently, we can
apply Eswaran and Tarjan’s augmentation procedure (implicitly) to the as-
sociated undirected graph to determine the edges to add to make it 2-edge
connected. In the corresponding digraph, we add an arc corresponding to
each edge added, arbitrarily choosing a direction for the arc in the digraph.
Theorem 2 assures us that this procedure gives a twinless strongly connected
digraph. We will show that our procedure in fact works (i.e., adds the fewest
number of arcs) if the digraph D is carefully modified by deleting certain care-
fully chosen arcs. As a result we present a linear time algorithm to solve the
augmentation problem for twinless strong connectivity.

Since our procedure is based on Eswaran and Tarjan’s augmentation al-
gorithms we briefly review their procedures.

Twinless Strongly Connected Components 9

4.1 Augmenting for Strong Connectivity

Let D = (N, A) be a directed graph, and define DSCC = (NS€C ASCC) to be
the SCC induced digraph of D that is obtained by contracting each SCC in
D to a single node. We replace parallel arcs that the contraction creates by a
single arc. It is well-known (and straightforward) that DSCC is acyclic.

Eswaran and Tarjan show that it is sufficient to focus attention to the
augmentation problem on the SCC induced digraph. To be specific let g be a
mapping from N5€C to N defined as follows. If z € NS€C then §(z) defines
any node in the strongly connected component of D corresponding to node
x. They show that if A*SC is a minimal set of arcs whose addition strongly
connects D5CC| then B(A*SC) = {(B(x), B(y))|(x,y) € AASC} is a minimal
set of arcs whose addition that strongly connects D.

In the acyclic digraph DSCC | a source is defined to be a node with outgoing
but no incoming arcs, a sink is defined to be a node with incoming but no
outgoing arcs, and an isolated node is defined to be a node with no incoming
and no outgoing arcs. Let S,T and @ denote the sets of source nodes, sink
nodes, and isolated nodes respectively in DSCC_ and assume without loss of
generality |S| < |T].

Eswaran and Tarjan’s procedure finds an index r and an ordering s(1), .

,5(|S]) of the sources of DSCC and ¢(1),...,t(|T|) of the sinks of DSCC
such that

1. there is a path from s(i) to ¢(i) for 1 <i <r;
2. for each source s(i), r+1 < i < |S] there is a path from s(¢) to some (j),
1 <75 <r;and
3. for each sink ¢(j), r+1 < j < |T7|, there is a path from some s(i), 1 < i <,
to t(j).
They show that a minimal augmentation of DSC is obtained from the arc
set

ANSC = L(t(i), s(i + 1)1 < i < rYU{(t(d), s(0))|r +1 <i<|S|}

(t(r),s(1)) if Q] =0 and |S| = |T|
(t(r), t(IST+ 1)) U{(t(@), t(i + D)|IS|+1 < < [T}
U U(IT1), s(1)) if Q] =0 and |S| < |T|
(t(r), t(|S]+ 1)) U{(t(@), ti +)|[S|+1 < <[T'[}
U(t(IT1), q(1)) U {(q(9),q(i + 1)1 <i < |Q[}
U(q(]Q)), s(1)) otherwise

Notice that the augmenting set contains |T'| 4+ |Q| arcs. Since there are
|S] + |Q| nodes with no incoming arcs, at least |S| + |Q| arcs are needed to
augment DSCC so that it is strongly connected. Similarly, as there are |T'|+|Q)|
nodes with no outgoing arcs, at least |T'| 4+ |@Q| arcs are needed to augment
DSCC 5o that it is strongly connected. Thus max(|S|, |T|) +|Q| arcs is a lower
bound on the number of arcs needed to augment DSCC so that it is strongly
connected.

10 S. Raghavan

We now show that the addition of the arcs in A*SC strongly connects the

digraph DSCC. Actually we show a stronger result that the addition of these
arcs makes DSCC twinless strongly connected. Note however this does not
mean adding B(A*5€) to D makes it twinless strongly connected.

Lemma 4 When |N99C| > 2 the augmented digraph DA5¢ = (NS¢C| ASCCy
AASCY s twinless strongly connected.

Proof:

Observe that in DSCC any path from a source to sink does not contain a
source, sink, or isolated node as an intermediate node. Further DSCC is acyclic
and so does not contain twin arcs. Consider the pair (¢(¢),s(i + 1)) for any
1 < i < r. By design there is a path from ¢(i) to s(i) + 1 (i.e., the arc
(t(7),s(i+1))). Additionally, the addition of arcs has created a directed path
from s(i + 1) to t(i) that does not use (s(i + 1),¢(¢)). The path is defined
by following the path from s(i + 1) ~ t(i + 1) — s(i +2) ~ t(i + 2) —
oo t(r) = t(IS|+ 1) = t(|S]+2) — ... = T = q(1) — ¢(|Q] —
s(1) ~ t(1) — s(2) ~ ... — s(i) ~ t(i)).} Consequently s(i + 1), t(i),
and all other nodes on the path from s(i + 1) to #(i) are twinless reachable
and thus in the same TSCC. Consequently, s(1),...,s(r),t(1),...,t(r), t(|S]|+
1)y, t(|IT)),q(1), ..., q(]Q|) are in the same TSCC.

Now consider s(i) and ¢(7) for any r + 1 < ¢ < |S|. Augmentation has
created a directed path from ¢(7) to s(¢). Observe, there is a directed path from
s(2) to some t(j),1 < j < r, and a path from some s(k),1 < k < r, to t(¢). The
augmentation also creates a directed path from (j) to s(k) (by following the
path described in the first part of the proof). Thus s(i) ~ t(j) ~ s(k) ~ t(i) is
a directed path from s(7) to ¢(7) that does not use arc (s(4), ¢(7)). Consequently
s() and t(7), and all other nodes on the path from s(i) to ¢(i) are twinless
reachable. This means that s(1),...,s(|S]),t(1),...,t(|T]), ¢(1),...,q(|Q]) are
in the same TSCC.

Finally observe that every node in DSCC that is not a source, sink, or an
isolated node is on a path from a source to a sink. Thus, using Lemma 3,
DASC ig a twinless strongly connected digraph. O

4.2 Augmenting a Strongly Connected Digraph so that it is
Twinless Strongly Connected

We now consider the following problem. Given a strongly connected digraph
how do we minimally augment it so that it is twinless strongly connected.
Before we begin we first make the following observation that immediately
follows from the transitivity of the twinless reachable condition.

1 'We denote a path from node i to j by i ~» j, and an arc from node i to node j
by i — j.

Twinless Strongly Connected Components 11

Property 1 Let v be a mapping from NT9CC to N defined as follows. If
x € NT5CC then y(x) defines any node in the twinless strongly connected com-
ponent of D corresponding to node . If AAT5C is a set of arcs whose addition
twinless strongly connects DTSCC | then v(AATSC) = {(v(x),v(y))|(z,y) €
AATSCY s q set of arcs whose addition twinless strongly connects D.

Observe however that the converse is not true. Consequently, this property
does not immediately show that it suffices to focus on DTSCC,

Suppose D is a strongly connected digraph. Recall that DTSCC | the TSCC
induced digraph has the structure of a bidirected tree. Consider the set of leaf
nodes L (also referred to as leaf TSCCs) of this TSCC tree and observe a
leaf node on the TSCC tree has a pair of twin arcs directed into and out of
it (referred to as twin leaf arcs). Consequently to make D twinless strongly
connected we need to either add an arc directed into the leaf TSCC or out of
the leaf TSCC that is not the twin of the twin leaf arcs. Since there are | L| leaf
TSCCs, we need at least [%] arcs to make D twinless strongly connected.

The procedure to make D twinless strongly connected is as follows. Con-
sider the associated undirected graph of DTSCC. Recall since D is strongly
connected, G(DTSCC) is a tree. Select one of the leaf nodes and perform DFS
from this node. Number the leaf nodes of the TSCC tree in the order they are
visited in the DFS procedure, and let I(1), ..., I(]L|) denote this ordering. Aug-
ment DSCC with the arc set AATSC = {(1(4),1(i + ||L|/2])|1 < i < [|L|/2]}.

Lemma 5 DATSC s Twinless Strongly Connected.

Proof:
Observe that DATSC is strongly connected and thus by Theorem 2 to prove
it is twinless strongly connected it suffices to show that G(DATSC) is 2-edge
connected. Consider G(DTSCC). The procedure described above is exactly
Eswaran and Tarjan’s procedure to augment a graph so that it is 2-edge
connected. In other words Eswaran and Tarjan’s procedure adds the edges?
AATSC 6 G(DTSCC) to obtain a 2-edge connected graph G(DATSC), O
Observe that the procedure adds (‘2&1 arcs. Thus v(AATSC) minimally
augments D so that it is twinless strongly connected.

4.3 Augmenting an Arbitrary Digraph so that it is Twinless
Strongly Connected

We now describe how to put together the two procedures carefully so that
the number of arcs added by the augmentation procedure is minimal. In par-
ticular, we will modify the digraph D by deleting certain arcs® so that when

2 With a slight abuse of notation we use AATSC ¢ denote the edges corresponding
to the arcs in the set.

3 We note that if D is a digraph obtained by deleting arcs in D, then an arc set
that augments D so that it is twinless strongly connected also augments D to be
twinless strongly connected.

12 S. Raghavan

the two procedures are applied in sequence, the number of arcs added in the
augmentation procedure is minimal.

First, we define some notation that we need to describe our procedure.
Let v € NTSCC. Then 6(v) is the node in D3“C corresponding to the strong
component in DTSCC that contains v. For every w € N5¢C ¢)(w) is the set of
nodes in the strong component of DTSCC corresponding to node w. We will
call a TSCC in D with exactly one incoming arc and one outgoing arc that
are twin arcs a leaf TSCC, and refer to the pair of twin arcs directed into and
out of a leaf TSCC as twin leaf arcs. It is fairly straightforward to see that
in DTSCC 3 leaf TSCC is a node (i.e., TSCC) with exactly one incoming arc
and one outgoing arc that are twin arcs.

Let L denote the set of leaf TSCCs in DTSCC. As before, let S, T, and Q,
denote the set of source nodes, sink nodes, and isolated nodes in D5¢C. We
further classify the sources in DSCC, based on whether or not they contain a
leaf TSCC when expanded (to its constituent TSCCs) in DTS¢, We denote
the set of sources in DSCC that do not contain a leaf TSCC as S°. Similarly, we
denote the set of sinks in DSCC that do not contain a leaf TSCC as T°. With
respect to the set of isolated nodes Q in DSCC, observe that an isolated node
in DSCC either corresponds to an isolated node in DTSCC or it corresponds
to several TSCCs in DTSCC that are strongly connected with each other. In
the former case the isolated node does not contain any leaf TSCCs. In the
latter case, from the fact that this strongly connected component is isolated
(i.e., does not have any arcs directed into or out of it from nodes that are not
in the strongly connected component) and the fact that the twinless strong
component graph has the structure of a bidrected tree when the underlying
digraph is strongly connected, it follows that there must be at least two leaf
TSCCs contained in it. Let Q° denote the set of isolated nodes in DSCC that
do not contain leaf TSCCs.

We now show that

(1)

2

max{5| 10117 +1Ql, ['L' +15°1+ 17 *2'% }

is a lower bound for the number of arcs needed to augment D so that it is
strongly connected.

Claim 1 FEquation 1 describes a lower bound on the number of arcs needed
to augment D so that it is strongly connected.

Proof:
Clearly the number of arcs needed to make D strongly connected is a lower
bound on the number of arcs needed to make D twinless strongly connected.
Thus, |S]+ |Q| and |T'| + |Q| are lower bounds.

Observe that to make D twinless strongly connected, for each leaf TSCC,
we will need to add an arc directed into or out of the leaf TSCC that is distinct
from the twin leaf arcs. Notice further any source node in S° corresponds

Twinless Strongly Connected Components 13

to a strongly connected component with no leaf TSCC in D. This strongly
connected component has no incoming arc and so requires at least one arc
directed into it to make D strongly (or twinless strongly) connected. Similarly,
any sink node in T corresponds to a strongly connected component with no
leaf TSCC in D. This strongly connected component has no outgoing arc and
0 requires at least one arc directed out of it to make D strongly (or twinless
strongly) connected. Finally, observe that an isolated node in Q° corresponds
to a strongly connected component with no leaf TSCCs in D. This strongly
connected component has no outgoing arcs or incoming arcs, and so requires at
least one arc directed into it, and one arc directed out of it to make D strongly
(or twinless) connected. Putting all of this together, we obtain that at least
[\L|+\S°I+I2T°I+2\Q°\—‘

are required to make D twinless strongly connected. []

We now describe how to modify D so that when the two procedures de-
scribed in Sections 4.1 and 4.2 are applied in sequence a minimal augmentation
is obtained. To motivate the modifications needed consider the first step of
the augmentation procedure (i.e., the application of Eswaran and Tarjan’s
augmentation procedure that we described in Section 4.1). Consider DSCC
and observe that the augmentation procedure adds exactly one incoming arc
to the sources s(1),...,s(|S|) in N5€C adds exactly one outgoing arc from
the sinks #(1),...,%(]S|), and adds one arc directed into and one arc directed
out of the isolated nodes ¢(1),...,q(|@Q|). If any ¢ (s()) contains a leaf TSCC,
then ensuring that the arc directed into t(s(7)) is directed into the leaf TSCC
takes care of the leaf TSCCs requirement while simultaneously ensuring that
an arc is added that is directed into the source s(4). Similarly, if any 1 (¢(4))
(1 < i <|S|) contains a leaf TSCC, then ensuring that the arc directed out
of ¥(t(i)) is directed out of the leaf TSCC takes care of the leaf TSCCs re-
quirement while simultaneously ensuring that an arc is added that is directed
out of the sink ¢(¢). For the isolated nodes, as noted earlier, ¥ (q(i)) either
contains two or more leaf TSCCs or is a singleton set. In the former case we
can direct the arc into 9 (¢(¢)) into one of the leaf TSCCs in 9(g(4)), and the
arc out of ¢ (q(i)) out of a different leaf TSCC in 1 (q(7)). In the latter case
there is no choice in selecting the node in ¥ (g(7)).

Finally consider the sink nodes t(|S|+1),...,t(|T|). For each of these sinks
the augmentation procedure adds both arcs directed into the sink and out of
the sink. If ¢(¢(4)) contains two or more leaf TSCCs then we may proceed as
the isolated nodes, selecting one leaf TSCC in 9 (t(7)) for the incoming arc,
and another leaf TSCC in ¢ (¢(4)) for the outgoing arc. However, if 1)(¢(4)) con-
tains none or one TSCC then the augmentation procedure, if applied without
adaptation, may add more arcs than necessary (as it adds an arc directed into
this sink as well as directed out of the sink). Therein lies the problem (i.e., if
|S| = |T'| we would not have had this problem).

To get around this problem we now describe how to modify the augmenta-
tion procedure. The modification we propose will delete arcs from the digraph
D, to obtain a new digraph D, so that the number of sources is increased.

14 S. Raghavan

S

Fig. 4. Leaf TSCCs in a source may be converted into sources by deleting their
incoming arcs.

Specifically, we will increase the number of sources by taking a leaf TSCC
and deleting its incoming arc. We will do this until the number of sources is
equal to the number of sinks, or there are no more leaf TSCCs available for
this purpose. We will show that when the two augmentation procedures are
applied in sequence to the digraph D the number of arcs added is equal to
the lower bound in Equation 1. We now elaborate on how this may be done.

Consider a source s(i) with 1(s(i)) containing z leaf TSCCs. Then the
number of sources in D5CC may be increased by y < z — 1 by taking y + 1
leaf TSCCs in (s(i)) and deleting their incoming arcs (see Figure 4 for an
example). For a sink ¢(i) with ¢(¢(¢)) containing x leaf TSCCs, the number of
sources in DSCC may be increased by y < 2—1 by taking one of the leaf TSCCs
and deleting its outgoing arc (creating a sink), and taking y of the remaining
TSCCs and deleting their incoming arcs (creating sources). For an isolated
node ¢(i) with 1(q(i)) containing x (> 2) leaf TSCCs, we may increase the
number of sources by y < x — 1 and sinks by 1 by taking 1 leaf TSCC and
deleting its outgoing arc (creating a sink) and taking y of the remaining leaf
TSCCs and deleting their incoming arc. We refer to nodes that are neither,
source nodes, sink nodes, or isolated nodes in DSCC as intermediate nodes.
Consider an intermediate node i in DS€C. If 4)(i) contains = leaf TSCCs then
the number of sources may be increased by y < x by deleting the incoming
arc into y of the leaf TSCCs.

We are now ready to explain how to modify DTSCC and apply the augmen-
tation procedure. The algorithm TSCAUG is summarized in Figure 5. The
first step is to identify the strongly connected components of DTSCC_ and each
leaf TSCC in the strongly connected components. These may be done in linear
time following the procedure described in Section 3. The next step is to classify
each strongly connected component of DTSCC as a source, sink, isolated, or
intermediate strongly connected component. This may also be done in linear
time (in fact since the procedure to find TSCCs requires identifying SCCs first
it may be done as part of the procedure to identify TSCCs). Next, we consider
the strongly connected component of DTSCC one by one, while keeping track
of the difference between the number of sinks and sources, to identify the arcs
that are to be deleted to create D. When considering a strongly connected
component that is a source the procedure deletes an incoming arc from one

Twinless Strongly Connected Components 15

algorithm TSCAUG:

1: Construct DTSCC, Identify each strongly connected component in
DTSCC and identify the leaf TSCCs in each strongly connected
component of DTSCC,

2. Classify each strongly connected component of DTSCC a5 a source,
sink, isolated, or intermediate strongly connected component.

3. Set k to be the difference between the number of sinks and sources.
Consider each strongly connected component of DTSCC,

If it is a source containing leaf TSCCs
Delete an incoming arc from one leaf TSCC.
If £ > 0, create upto k sources from the remaining
leaf TSCCs by deleting their incoming arcs. Update k.
If it is a sink containing leaf TSCCs
Delete an outgoing arc from one leaf TSCC.
If £ > 0, create upto k sources from the remaining
leaf TSCCs by deleting their incoming arcs. Update k.
If it is isolated containing leaf TSCCs
Delete an incoming arc from one leaf TSCC and
delete an outgoing arc from another leaf TSCC.
If £ > 0, create upto k sources from the remaining
leaf TSCCs by deleting their incoming arcs. Update k.
If it is intermediate containing leaf TSCCs
If £ > 0, create upto k sources from the
leaf TSCCs by deleting their incoming arcs. Update k.

4. Let APPL denote the arcs deleted from DTSCC in Step 3.

Set b _ (N, A\’V(ADEL)) Or bTSCC _ (NTSCC’ATSCC\ADEL).

5. Apply Eswaran and Tarjan’s strong connectivity augmentation
algorithm to D to obtain the set of arcs 3(AA5C).

Set D = (N, Au B(ASC)).

6. Apply the algorithm described in Section 4.2 to D to obtain ~(
Set D = (N, AU y(AATSOY),

7. Output the arcs B(AASC) U y(AATSC),

AATSC).

Fig. 5. Algorithm to solve the twinless strong connectivity augmentation problem.

leaf TSCC in the strongly connected component. If the number of sinks is
greater than the number of sources, it also increases the number of sources
by converting leaf TSCCs into sources so that the number of sources is equal
to the number of sinks, or no more leaf TSCCs remain in the strongly con-
nected component. When considering a strongly connected component that is
a sink it deletes an outgoing arc from a leaf TSCC in the strongly connected
component, and creates additional sources using leaf TSCCs until the number
of sources is equal to the number of sinks, or the leaf TSCCs in the strongly

16 S. Raghavan

connected component are exhausted. When considering a strongly connected
component that is isolated it creates an additional source and an additional
sink, and also converts leaf TSCCs to sources as needed. Similarly when con-
sidering a strongly connected component that is intermediate it converts leaf
TSCCs into sources if needed. Observe that this procedure considers each leaf
TSCC in the digraph once and thus is an O(|N|) procedure. After obtaining
D we first apply Eswaran and Tarjan’s augmentation procedure to strongly
connect D. Recall that this procedure takes O(|A|) time. Next we apply the
procedure described in Section 4.2 which also takes O(]A|) time. Since each of
the steps in the algorithm take linear time, the procedure is an O(|N| + |A])
procedure.

We now show that the number of arcs added by the procedure is equal to
the lower bound shown in Equation 1.

Claim 2 The number of arcs added by algorithm TSCAUG is equal to the
bound in Equation 1.

Proof:

When the first step of the procedure is applied the procedure adds |T\ + Q\
arcs. Observe that in DSCC no source, sink, or isolated node contains leaf
TSCCs. Thus no arc added in the first step is directed into or out of a leaf

TSCC in D. Consequently, the second step adds P;—li‘ arcs. Thus a total of
IT|+1Q| + P—;‘—‘ arcs are added. Notice that,

7] = |T] + (1Q] = 1Q°]).

Q[= 1Q°l,

|L| = max{0, |L| — (|S| = [S°[+|T| = |T°| + 2(|Q| — [Q°]) + |T| — [S])}-
So the procedure adds

(T +1QI —le’) + Q%I+
[maX{O, L] = (S] = IS+ [T] = |T°] + 2(1Q[— |Q°) + [T — ISI)}W

2
arcs. Or I s T)
+ o + (o} _"_ o
w71+ .| L7120
arcs, which is the bound in Equation 1. (I

5 Applications and Extensions

We now discuss two applications of the TSCC structure. The first application
is in the design of survivable telecommunications networks. Magnanti and
Raghavan [7] describe a dual-ascent (primal-dual) algorithm for the network
design problem with low connectivity requirements (NDLC). In this problem,

Twinless Strongly Connected Components 17

we are given an undirected graph G = (N, E), with node set N and edge

set E, a cost vector ¢ € ’lel on the edges F, and a connectivity requirement
r; € (0,1,2) for each node, and wish to design a minimum cost network
that contains rg; = min(rs, ;) edge-disjoint paths between nodes s and ¢. To
develop a strong mixed-integer programming formulation for the problem they
direct the problem by replacing every edge {i,j} by a pair of arcs (4, ;) and
(4,4), each with the same cost as edge {4, j}. They show that in the equivalent
directed problem, we wish to design a minimum cost directed network that
contains a directed path from every node with r; = 2 to every node with
r; = 1 or 2. Further, any two nodes ¢ and j with r; = r; = 2 must be twinless
reachable. In their dual-ascent algorithm, it is necessary to identify twinless
strongly connected components of a so-called auxiliary digraph (to identify
ascent directions). The linear time algorithm described in Section 3 serves
this purpose.

A second application, described in Baglivo and Graver [1], arises in de-
termining whether the bracing of an architectural structure is rigid (i.e., will
not deform). In this application, we are given an n x m square grid and wish
to brace this structure by placing tension bracings. A tension bracing con-
sists of a tension wire that can be compressed but not stretched. Baglivo and
Graver show that the question of whether a square grid with tension bracings
is rigid may be answered by looking at its associated bracing digraph. The
bracing digraph is constructed as follows. Create a node for each row and
each column of the n X m square grid (i.e., n + m nodes). If a tension wire
is attached to the lower left and upper right hand corners of the cell in the
1th row and jth column of the square grid, then create a directed arc from
the node representing column j to the node representing row i. On the other
hand, if the tension wire is attached to the lower right and upper left hand
corners of the cell in the ith row and jth column, then create a directed arc
from the node representing row ¢ to the node representing column j. Figure 6
gives an example of this construction. Baglivo and Graver show that a tension
bracing of an n x m square grid is rigid if and only if the bracing digraph is
strongly connected.

For aesthetic reasons an architect may want to ensure that no cell in the
square grid has two diagonal tension bracings [8]. For an existing structure, a
question that then arises is whether tension bracings can be removed from cells
that contain two diagonal tension bracings while keeping the structure rigid.
It is easy to see this corresponds to the question of whether some subdigraph
of the bracing digraph is strongly connected and does not contain a pair of
twin arcs. This is precisely the definition of twinless strong connectedness,
and again the algorithm in Section 3 can be used to determine whether the
bracing digraph is twinless strongly connected.

If the bracing digraph is not twinless strongly connected, then a natural
question that arises is how it may be minimally augmented so that it is twin-
less strongly connected. This is an augmentation problem with a twist: the
augmented digraph also needs to be bipartite (arcs need to go from nodes

18 S. Raghavan

Fig. 6. A 3 x 4 grid with tension bracings and its corresponding bracing digraph.

representing rows to columns or vice versa); and the solution to this problem
remains an open question. Interestingly, the case when we wish to augment
the bracing digraph (preserving bipartiteness) so that it is strongly connected
was recently solved in [5].

6 On Strongly Connected Orientations of Mixed Graphs
and Twinless Strongly Connected Digraphs

A referee pointed out the connection between the notion of a twinless strongly
connected digraph and strongly connected orientations of mixed graphs. We
discuss this connection here.

A mixed graph M = (N, A, E) is a graph with node set N that contains
both directed arcs A and undirected edges E. A natural question that arises
in such graphs is whether the undirected edges can be directed (oriented) so
that the resulting digraph is strongly connected. Boesch and Tindall [2] show
that a mixed graph has a strongly connected orientation if and only if it is
connected* and the underlying undirected graph® of the mixed graph is 2-edge
connected.

The question of whether a digraph D is twinless strongly connected can be
translated into a question of whether a mixed graph has a strongly connected
orientation as follows. Replace each pair of twin arcs (i,7) and (j,¢) in the
digraph D by an undirected edge {i,j} to obtain a mixed graph M (D). It is
easy to observe that the digraph D is twinless strongly connected if and only
if M (D) has a strongly connected orientation. Based on this connection it is
possible to provide an alternate proof of some of the results in Section 2.

4 In other words, it is possible to go from any node to any other node between
using a sequence of undirected and directed arcs (directed arcs must be traversed
in the direction they are oriented).

5 The underlying undirected graph is obtained by replacing all directed arcs by
undirected edges.

Twinless Strongly Connected Components 19

After learning about the connection between strong orientations of mixed
graphs and twinless strongly connected digraphs, we did a web search and
found Gusfield [6] considers the following mixed graph augmentation problem.
Given a mixed graph M = (N, A, F) find the minimum number of directed
arcs to add to the mixed graph so that it has a strongly connected orientation.
By transforming the digraph D to the mixed graph M (D), as described in
the previous paragraph, our problem may be solved as a mixed graph aug-
mentation problem on M (D). Alternatively, the mixed graph augmentation
problem may be transformed to the problem of augmenting a digraph so that
it is twinless strongly connected as follows. First, take each pair of twin arcs
(¢,7) and (j,7) in the mixed graph M and replace (j,4) by adding a new node
ki; to the mixed graph and two arcs (j, k;;) and (k;;,i).5 Next replace each
undirected edge {i,7} by a pair of twin arcs (i,5) and (j,i) to obtain the
digraph D(M). It is easy to observe that the mixed graph M has a strong
orientation if and only if D(M) is twinless strongly connected. Thus the so-
lution to the augmentation problem for the mixed graph M may be obtained
by solving the twinless strongly connected augmentation problem on D(M).

Gusfield’s augmentation algorithm determines an optimal orientation of
the undirected edges of the mixed graph (thus transforming it into a directed
graph) after which Eswaran and Tarjan’s augmentation algorithm for strong
connectivity is applied. This procedure and especially the proofs of correct-
ness are complex and quite intricate (as determining the optimal orientation
of the undirected edges is quite challenging!). Our procedure in the context
of directed graphs is much simpler, and the proofs of correctness are fairly
straightforward. Our procedure nicely illustrates how the sequential applica-
tion of Eswaran and Tarjan’s two augmentation solve the problem of optimally
augmenting a graph so it is twinless strongly connected, or alternatively shows
how to optimally augment a mixed graph so that it admits a strong orienta-
tion.

References

1. J. A. Baglivo and J. E. Graver. Incidence and Symmetry in Design and Archi-
tecture. Cambridge University Press, Cambridge, UK, 1983.

2. F. Boesch and R. Tindall. Robbin’s Theorem for mixed multigraphs. The
American Mathematical Monthly, 87(9):716-719, 1980.

5 Observe that the mixed graphs considered by Gusfield may contain both arcs
(¢,7) and (4,%), in which case nodes 7 and j are strongly connected. However,
without this transformation, in our digraph ¢ and j are not twinless strongly
connected. Notice, that it suffices to focus on the mixed graph augmentation
problem on this transformed mixed graph. Let £(k;;) = 4 or j for the new nodes
added and £(i) = ¢ otherwise. The set of arcs AAMSC 44ded to the transformed
mixed graph are mapped to arcs on the original mixed graphs by E(AAMSC)

{(6(2),6()(w,y) € AANMECY.

20

S. Raghavan

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

K. Eswaran and R. Tarjan. Augmentation problems. SIAM Journal on Com-
puting, 5(4):653-665, 1976.

H. N. Gabow and T. Jordan. How to make a square grid framework with cables
rigid. SIAM Journal on Computing, 30:649—-680, 2000.

D. Gusfield. Optimal mixed graph augmentation. STAM Journal on Computing,
16:599-612, 1987.

T. L. Magnanti and S. Raghavan. A dual-ascent algorithm for low-connectivity
network design. Technical report, Smith School of Business, University of Mary-
land, College Park, MD 20742, 2006.

A. Recksi. Private Communication at Discrete Optimization 1999, Rutgers
University, 1999.

R. Tarjan. Depth-first-search and linear graph algorithms. SIAM Journal on
Computing, 1:146-160, 1972.

