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The network design problem with connectivity require-
ments (NDC) includes as special cases a wide variety of
celebrated combinatorial optimization problems includ-
ing the minimum spanning tree, Steiner tree, and surviv-
able network design problems. We develop strong for-
mulations for two versions of the edge-connectivity NDC
problem: unitary problems requiring connected network
designs, and nonunitary problems permitting noncon-
nected networks as solutions. We (1) present a new
directed formulation for the unitary NDC problem that
is stronger than a natural undirected formulation;
(2) project out two classes of valid inequalities—partition
inequalities, and combinatorial design inequalities—that
generalize known classes of valid inequalities for the
Steiner tree problem to the unitary NDC problem; and
(3) show how to strengthen and direct nonunitary prob-
lems. Our results provide a unifying framework for
strengthening formulations for NDC problems, and dem-
onstrate the power of flow-based formulations for network
design problems with connectivity requirements. © 2005
Wiley Periodicals, Inc. NETWORKS, Vol. 45(2), 61–79 2005
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1. INTRODUCTION

Network Design Problems with Connectivity Require-
ments (NDC) arise in a wide variety of application domains
including VLSI design and telecommunication network de-

sign. The increasing reliance on communication networks
(and expectations of a digital future) places an enormous
importance on the reliability of such networks. Given the
enormous bandwidth capabilities of communication net-
works, and the increasing array of services provided over
them, the failure of any link in such a network can have
significant, perhaps even catastrophic consequences.

In this article, we consider network design problems with
edge connectivity requirements. Informally, given require-
ments for the number of edge–disjoint paths between every
pair of nodes, we wish to design a minimum cost network
that satisfies these requirements. To set notation, and define
the class of problems we consider, we formally state the
NDC problem (also described as the Generalized Steiner
Problem by Winter [33, 34]) as follows.

Network Design Problem with Connectivity Require-
ments (NDC): We are given an undirected graph G � (N,
E), with node set N and edge set E, and a cost vector c
� ��

�E� on the edges E. We are also given a symmetric �N�
� �N� requirement matrix R � [rij]. The entry rij prescribes
the minimum number of edge-disjoint paths needed be-
tween nodes i and j. We wish to select a set of edges that
satisfy these requirements at minimum cost, as measured by
the sum of costs of edges we choose.

The NDC problem models a wide variety of combinato-
rial optimization problems including the classical minimum
spanning tree and Steiner tree problems. One important
specialization of the NDC problem that arises in the design
of telecommunications networks (see [7]) is the Survivable
Network Design Problem (SND). In this application, each
node v in the graph has a connectivity requirement rv and
the connectivity requirements between nodes s and t are
given by rst � min{rs, rt}. Table 1 shows several other
noteworthy cases of the NDC problem.

A few observations concerning the entries in Table 1 are
worth making. The k-edge disjoint path problem seeks, at
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minimum cost, k-edge disjoint paths between specified
nodes s and t. The minimum cost k-edge connected span-
ning subgraph problem is an SND problem with rv � k for
all nodes. The network design problem with low connec-
tivity requirements (NDLC) is of particular interest to
local telephone companies (see [7]). In this special case
of the SND problem, the connectivity requirements are
restricted to {0, 1, 2}. (Because most local telephone
companies believe it is sufficient to protect against single
link failures in the local loop, this problem is of signif-
icant importance to them.) In the Steiner forest problem,
we are given a graph G � (N, E) and node sets T1, T2, . . . ,
TP with Ti � Tj � � for all node set pairs i, j. We wish to
design a graph at minimum cost that connects all the
nodes in each node set. The point to point connection
problem is a special case of the Steiner forest problem with
Ti � {si, ti} for i � 1, . . . , P.

NDC problems can be classified in two ways. If the
connectivity requirements imply that all nodes with a (pos-
itive) connectivity requirement must be connected, we say
the problem is a unitary NDC problem. Otherwise, it is a
nonunitary NDC problem. For example, the SND problem
is a unitary NDC problem, while the Steiner forest problem
is a nonunitary NDC problem.

The examples in Table 1 show that the NDC problem
models a very wide variety of connectivity problems on
graphs. These problems appear both as stand alone prob-
lems and as subproblems in more complex network design
applications (like VLSI design and telecommunications net-
work design and management). Consequently, techniques
for modeling and solving NDC problems have widespread
applicability.

Considerable accumulated experience in the optimiza-
tion literature has demonstrated the value of developing
good linear programming relaxations (strong formula-
tions) of combinatorial optimization problems. Strong
formulations are very useful in developing exact algo-
rithms solution methods (branch and bound, branch and
cut, column generation) because their use rapidly accel-

erates these solution techniques. Strong formulations can
also provide good bounds on the optimal solution and so
are useful in assessing heuristic solution methods. In
particular, dual-ascent heuristic techniques (that generate
both lower bounds on the optimal solution value and
feasible solutions to the combinatorial optimization prob-
lem) based upon strong formulations typically provide
better solutions than those based upon weaker linear
programming relaxations. The development in this article
is motivated by a desire to develop better linear pro-
gramming relaxations for NDC problems, and to provide
a unifying strengthening approach applicable to all NDC
problems.

Because the NDC problem models a wide variety of
combinatorial optimization problems, the polyhedral struc-
ture of many special cases of the NDC problem have been
well studied. Over the past 20 years, researchers have pro-
posed a large number of formulations (and solution method
based on them) for the Steiner tree problem. Most notewor-
thy among these are the articles by Wong [35], proposing a
(bi)directed model for the undirected Steiner tree problem;
Chopra and Rao [10, 11], examining the facial structure of
the undirected Steiner tree polyhedron and its relationship to
a directed formulation for the Steiner tree problem;
Goemans [15], investigating extended formulations with
node and edge variables for the Steiner tree problem and
introducing combinatorial design inequalities for the Steiner
tree problem; and Goemans and Myung [17], establishing
the relationship between several formulations for the Steiner
tree problem.

Several researchers have examined special cases of uni-
tary NDC problems with higher connectivity requirements
(i.e., greater than 1). For series-parallel graphs, Mahjoub
[27] and Baı̈ou and Mahjoub [1] provide complete descrip-
tions of the 2-edge-connected spanning subgraph polytope
and the Steiner 2-edge-connected spanning subgraph poly-
tope, respectively. Didi Biha and Mahjoub [5] provide a
complete description of the k-edge-connected polytope on
series-parallel graphs. Boyd and Hao [6] introduce a class of

TABLE 1. Specializations of network design problems with connectivity constraints.

Problem type SND or NDC Connectivity requirements

Minimum spanning tree problem SND rv � 1 for all nodes v.
Steiner tree problem SND rv � 1 for all nodes v required in the tree;

rv � 0 for all other nodes.
k-Edge disjoint path problem SND rs � rt � k;

rv � 0 for all other nodes.
Minimum cost k-edge–connected spanning subgraph problem SND rv � k for all nodes v.
Minimum cost Steiner k-edge–connected spanning subgraph problem SND rv � k for all required nodes v;

rv � 0 for all other nodes.
Network design with low connectivity requirements (NDLC) SND rv � {0, 1, 2} for all nodes v.
Point to point connection problems NDC rsiti

� 1 for given source sets {s1, s2, . . . , sP}and
terminal sets {t1, t2, . . . , tP};

rij � 0 otherwise
Steiner forest problem NDC rij � 1 if i � Tq and j � Tq for some pairwise disjoint

node sets in T1, T2, . . . , TP;
rij � 0 otherwise.
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valid inequalities for the 2-edge-connected spanning sub-
graph polytope and describe necessary and sufficient con-
ditions for these valid inequalities to define facets. Based on
a result by Robbins, Chopra [9] describes a directed formu-
lation for the NDLC problem in a model that permits
unlimited edge replication. Using a result due to Nash-
Williams [29], a generalization of Robbins theorem,
Goemans [14] shows how to strengthen a well-known cutset
formulation for the SND problem with connectivities rv

� {0, 1, even} in a model that permits unlimited edge
replication. Grötschel et al. [21–23, 32] investigate the
polyhedral structure of both the edge- and node-connectiv-
ity versions of the SND problem. One of these articles [21]
investigates the polyhedral structure of the NDLC problem,
while another [23] examines the polyhedral structure of
SND problems whose highest connectivity requirements are
three or more. The other two articles, [22] and [32], contain
comprehensive summaries of polyhedral results for the
SND problem. Recently, Balakrishnan et al. [2] propose a
connectivity splitting-model for the NDC that strengthens a
well-known cutset formulation for the problem. Their
model is particularly useful for worst-case analysis of heu-
ristics for the NDC problem.

Researchers have proposed many solution methods (both
exact and approximate) for the NDC problem and its spe-
cializations. Our discussion has focused on polyhedral re-
search in this area. Survey articles by Grötschel et al. [22],
Raghavan and Magnanti [31], and Frank [12] provide more
comprehensive reviews of research on the NDC and its
specializations.

In this article, we develop strong formulations for both
unitary and nonunitary NDC problems. Our work differs
from earlier research in several ways. Goemans [14] and
Grötschel et al. [22] have shown in various forms how to
use a result due to Nash-Williams to obtain stronger models
for the SND problem with connectivities rv � {0, 1, even}.
We show that although the Nash-Williams theorem is useful
to motivate the directing procedure, it does not play a role
in strengthening the formulation (i.e., it is not necessary!).
Consequently, we are able to generalize the directing pro-
cedure to strengthen formulations for all unitary NDC prob-
lems.

Next, by projecting from a strengthened (extended) for-
mulation for the unitary NDC problem, we develop two
classes of valid inequalities that are generalizations of facet-
defining valid inequalities for the Steiner tree problem. For
special cases of the unitary NDC problems, several re-
searchers [10, 11, 15, 22] have shown how to project these
inequalities from extended formulations that are equivalent
to the flow-based formulation we have used for the NDC
problem. We develop the projection from the flow-based
formulation for three reasons. First, several extended for-
mulations that are equivalent to the flow formulation for the
Steiner tree problem (e.g., node weighted extended formu-
lations for the Steiner tree problem [15]) do not generalize
to the NDC problem. Second, the understanding of the
flow-based formulation and its relationship to the cutset

formulation will permit us to develop a directing and strength-
ening technique for nonunitary problems that requires flow
variables. Third, we believe this article is the first to explicitly
show how to project from this flow-based formulation.

Finally, we show how to direct nonunitary NDC prob-
lems. In the literature, these problems appear to have re-
ceived significantly less attention. We implement our di-
recting procedure using flow variables to obtain
strengthened (flow-based) formulations for nonunitary NDC
problems. It it not obvious how to implement the directing
procedure without using flow variables.

The rest of this article is organized as follows. In Section
2 we review two well-known formulations for the NDC
problem—a natural formulation with edge variables, and an
extended formulation containing both flow and edge vari-
ables. Next, in Section 3, we first motivate the directing
procedure using a result by Nash-Williams that applies to
unitary NDC problems with restricted connectivities. We
then develop a strengthened formulation of all unitary NDC
problems, without using the Nash-Williams result. Section 4
deals with the strength of the improved formulation. First,
we provide some preliminary results regarding the projec-
tion of the improved flow formulation onto the space of the
edge variables. Next, we show how to project both partition
inequalities and combinatorial design inequalities (which
includes the special case of odd-hole inequalities) from the
improved flow formulation. In Section 5 we examine non-
unitary NDC problems. We first show how to strengthen a
formulation of the Steiner forest problem by applying a new
directing technique. In Section 6 we use this technique to
strengthen formulations for all NDC problems. Finally, in
Section 7, we provide some concluding remarks.

1.1. Notation

We assume familiarity with standard graph theory ter-
minology. We work with undirected graphs, denoted by G
� (N, E), and directed graphs, denoted by D � (N, A),
which we refer to as graphs and digraphs. To distinguish
between directed and undirected graphs, we refer to undi-
rected graphs as graphs, undirected edges as edges, directed
graphs as digraphs, and directed edges as arcs. We use
braces to denote an edge between nodes i and j, that is,
{i, j}, and parentheses to denote a directed arc from node
i to node j, that is, (i, j). econ(T) :� max{rij�j � T, i
� N�T} denotes the edge-connectivity requirements of a set
of nodes T � N. It is the maximum edge-connectivity
requirement between any node in T and its complement. For
NDC problems we refer to econ(i) as the maximum con-
nectivity requirement of node i. If econ(i) � 0, we say node
i is a required node. In models that permit parallel edges,
we let bij represent the number of parallel edges allowed
between nodes i and j. For example, if a model permits two
edges between nodes i and j, then the graph G contains the
edge {i, j} and bij � 2. In an undirected graph, any set of
nodes T � N defines a cut �(T) � {{i, j} : i � N�T,
j � T, {i, j} � E}. Similarly, any set of nodes T � N in
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a directed graph defines a dicut ��(T) � {(i, j) : i � N�T,
j � T, (i, j) � A} of arcs directed into the node set T and
a dicut ��(T) � {(i, j) : i � T, j � N�T, (i, j) � A} of
arcs directed out of T. An s � t cut is a cut �(T) with s �
T and t � T. Similarly, an s � t dicut is a dicut, say ��(T),
with s � T and t � T. When we consider flow formula-
tions, the capacity of an edge or arc represents the maxi-
mum flow of any commodity that may be sent on that edge
or arc. The capacity of a cut �(W) is the sum of the capacity
of the edges in the cut, and the capacity of a dicut ��(W) is
the sum of the capacities of the arcs in the dicut.

Sometimes we will want to eliminate the variables
from an “extended” formulation of a problem. Let A and
B be two given matrices and d be a column vector, all
with the same number of rows. Consider the polyhedron
P � {(x, f) : Ax � Bf � d}. The polyhedron Q � {x : Ax
� Bf � d for some vector f} obtained by eliminating the
f variables is the projection of the polyhedron P onto the
space of the “natural” x variables. We denote it as
Projx(P). Suppose we have two formulations for a prob-
lem with the same set of “natural variables” (in this
article, the natural variables are edge variables xij). We
say the two formulations are equivalent if they provide
the same objective value, when solved as linear pro-
grams, for all objective function coefficients of the nat-
ural variables (the objective function coefficients for the
additional variables are zero). In other words, two for-
mulations are equivalent if their projection onto the space
of the natural variables is identical. We say that adding an
inequality � strengthens a formulation of a (mixed) in-
teger programming problem if it is valid and adding it to
the formulation improves the objective value of the linear
programming relaxation of the formulation for some
choice of the objective function coefficients. We say that
a formulation �1 is stronger than a formulation �2 if,
when solved as linear programs, the objective value of �1

is always as good as the objective value of �2, and in at
least one instance is strictly better than the objective
value of �2.

2. FORMULATIONS FOR THE NDC PROBLEM

In this section we describe two well-known models for
the NDC problem—one a cutset model, and the other a
multicommodity flow-based model. For the flow-based
model we also show how to minimize the number of com-
modities, a method that proves invaluable in our subsequent
discussions.

Menger’s theorem [28] states that the number of edge-
disjoint paths between a pair of nodes, say s and t, is equal
to the minimum number of edges across any cut between
them, that is, any s � t cut. Consequently, the following
well-known “cutset” formulation, with xij representing the
number of copies of edge {i, j} in the network, is a valid
representation of the NDC problem.

Cutset Formulation for the NDC Problem:

Minimize �
�i, j��E

cijxij (1a)

subject to: �
�i, j����S	

xij � econ�S	

for all nodes sets S with � � S � N, (1b)

xij � bij for all �i, j� � E, (1c)

xij � 0 and integer, for all �i, j� � E. (1d)

An alternative way to formulate the problem is to enforce
the connectivity requirements of the matrix R using com-
modity flows. For each pair {s, t} of nodes, with rst � 1,
create a commodity, arbitrarily choosing one of the nodes as
the origin of the commodity and the other nodes as the
destination. Let K denote the set of commodities and let qk,
for each k � K, denote the edge-connectivity requirement
between the origin and destination of commodity k: if rst

� 3, then qk � 3 for the commodity k corresponding to the
node pair {s, t}. The following mixed integer program,
with xij representing the number of copies of edge {i, j} in
the network and fij

k the flows, is a valid formulation for the
NDC problem.

Undirected Flow Formulation for the NDC Problem:

Minimize �
�i, j��E

cijxij (2a)

subject to: �
j�N

fji
k � �

l�N

fil
k � �

�qk if i � O�k	,

qk if i � D�k	,

0 otherwise,
�

for all i � N and k � K, (2b)

fij
k

fji
k� � xij for all �i, j� � E and k � K, (2c)

fij
k, fji

k � 0 for all �i, j� � E and k � K, (2d)

xij � bij for all �i, j� � E, (2e)

xij � 0 and integer, for all �i, j� � E. (2f)

Let Pcut
(1) denote the polyhedron defined by the linear

relaxation of constraints (1b)–(1d). Let Pflo
(2) denote the poly-
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hedron defined by the linear relaxation of constraints (2b)–
(2f). The max-flow min-cut theorem implies that the cutset
and flow formulations are equivalent in the following sense.

Lemma 2.1. Pcut
(1) � Projx(Pflo

(2)).

Notice that the cutset formulation is of exponential size,
while the flow formulation is compact: it has �(�K�(�E� �
�N�)) constraints and �(�K� �E�) variables.

A simple, and naive, way to determine the number of
commodities in the flow formulation is to create a commod-
ity for every pair of nodes with a connectivity requirement.
For an underlying graph with 100 nodes and 1000 edges and
positive connectivity requirements between all nodes, this
approach would create a commodity for every node pair and
so 4950 commodities. Consequently, the model would con-
tain 495,000 flow balance constraints, 9,900,000 constraints
of type (2c), 9,900,000 nonnegativity constraints for the
flow variables, 1000 constraints of type (2e), and 1000
nonnegativity and integrality constraints for the edge vari-
ables. As this example shows, the flow formulation can be
very large.

By using fewer commodities, if possible, we could re-
duce the size of the formulation. To accomplish this objec-
tive, we can use an idea that Gomory and Hu [18] used
when solving the classical network synthesis problem.
Given the connectivity requirements matrix R, create a
“requirement” graph GR on the node set N, giving edge {i,
j} between nodes i and j in GR a weight rij. Gomory and Hu
[18] showed that it is sufficient to consider the connectivity
requirements only for the edges on a maximum spanning
tree of this graph. It is easy to verify this result using the
max-flow min-cut theorem and the maximum spanning tree
optimality conditions. As is well known, a spanning tree is
a maximum spanning tree if and only if it satisfies the
following optimality condition: for every nontree edge
{k, l} of GR, rij � rkl for every edge {i, j} contained in the
(tree) path on the maximum spanning tree connecting nodes
k and l. As a result, any network that satisfies the require-
ments of the maximum spanning tree has sufficient capacity
to satisfy the requirements of nontree edges.

Gomory and Hu’s [18] result permits us to model the
edge-connectivity requirements in any NDC problem with
�N� � 1 or fewer commodities. We simply compute the
maximum spanning tree of the requirement graph, which we
now refer to as the requirement spanning tree, and create
commodities only for those edges of the maximum spanning
tree with nonzero weight. Because the requirement span-
ning tree has �N� � 1 edges and finding it requires �(�E� �
�N�log�N�) time [13], this procedure creates at most �N� � 1
commodities (we will not create commodities for zero
weight edges of the requirement spanning tree) and requires
�(�E� � �N�log�N�) time.

The cutset formulation (1) and the undirected flow
formulation (2) for the NDC problem are known to be
weak. Computational experiments reported by Grötschel
et al. [20, 23] confirm this result, particularly when the

requirement spanning tree has edges with connectivity
requirement 1. Jain (see [24]) provides some theoretical
evidence to support these results. He shows that the
worst-case ratio of the optimal value of the integer pro-
gram to the optimal value of the linear programming
relaxation of the cutset formulation is 2.

3. STRONGER FORMULATIONS FOR UNITARY
NDC PROBLEMS

In this section we first describe a procedure for directing
unitary NDC problems for situations when the connectivity
requirements are all even or 1. We then generalize this
result, developing a strong (i.e., directed) formulation for
any unitary NDC problem (i.e., even those with odd con-
nectivity requirements). For ease of exposition, for the rest
of this article we assume that the model does not permit
edge replication. It is straightforward to verify that the
results apply to models that permit edge replication.

3.1. Directing the Unitary NDC Problem

The following result due to Nash-Williams [29] provides
a key ingredient for transforming the undirected formulation
to a directed one.

Theorem 3.1 (Nash-Williams). Suppose G is an undi-
rected graph with rxy edge-disjoint paths connecting each
pair x and y of its nodes. Then it is possible to direct the
graph (i.e., orient its edges) so that the resulting digraph
contains rxy/2 arc-disjoint paths from node x to node y
and rxy/2 arc-disjoint paths from node y to node x.

Consider any unitary NDC problem whose connectivity
requirements rst are even or 1. We can view any feasible
integer solution to this problem as follows: it is connected
and contains several 2-edge-connected components. If we
contract the 2-edge-connected components, the solution be-
comes a tree. The edges on the tree are the bridge edges in
the feasible solution before we contracted the 2-edge-con-
nected components; that is, removing these edges discon-
nects the graph defined by that solution.

The Nash-Williams theorem permits us to direct the
edges of each 2-edge-connected component so that for any
pair of nodes i and j with rij � 2 (by assumption these
requirements must be even), the network contains rij/ 2
directed arc-disjoint paths from node i to node j, and rij/ 2
directed arc-disjoint paths from node j to node i. Once
oriented, each 2-edge-connected component contains a di-
rected path between every pair of its nodes. Therefore, if
nodes i and j belong to the same 2-edge-connected compo-
nent and rij � 2, the oriented network contains a directed
path from node i to node j and a directed path from node j
to node i. To direct the bridges, consider the tree obtained
by contracting each 2-edge-connected component of the
solution. Select any one of the nodes created by the con-
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traction as a root node and direct the tree away from this
node.

Figure 1 illustrates this directing procedure. In this
example a, b, c and g are 2-edge-connected components.
Between every pair of nodes s and t in these components
rst � 2. We orient the edges of each component (see Fig.
1b) so that it contains a directed path between every pair
of nodes in each 2-edge-connected component. Next, we
select the node created by contracting component b as the
root node and direct the tree edges (i.e., the bridges of the
solution) away from node b. Figure 1c shows the graph at
the conclusion of the directing procedure.

These observations permit us to formulate the unitary
NDC problem as follows. Let yij be 1 if edge {i, j} is
oriented from node i to node j in the directing procedure
applied to the optimal solution [i.e., the oriented network
contains arc (i, j)] and be 0 otherwise.

Directed Cut Formulation for the Unitary NDC Problem
(rst � {0, 1, even}):

Minimize �
�i, j��E

cijxij (3a)

subject to: �
�i, j	����S	

yij �
econ�S	

2

if econ�S	 � 2, for all S � N, (3b)

�
�i, j	����S	

yij � 1 if econ�S	 � 1, for all S, root�S, (3c)

yij 	 yji � xij for all �i, j� � E, (3d)

xij � 1 for all �i, j� � E, (3e)

yij, yji, xij � 0 and integer, for all �i, j� � E. (3f)

Because econ(S) 
 max{rij�j � S; i � N�S}, constraint
(3b) ensures that for every pair of nodes s and t with rst

� 2, every s � t dicut contains at least rst/ 2 arcs and every
t � s dicut contains at least rst/ 2 arcs. Menger’s theorem
ensures that the oriented network contains at least rst/ 2
arc-disjoint paths from node s to node t and rst/ 2 arc-
disjoint paths from node t to node s. Similarly, constraints
(3b) and (3c) ensure that the oriented network contains a
directed path from the root to every required node. Con-
straint (3d) ensures that the oriented network contains at
most one of the arcs (i, j) and ( j, i).

Proposition 3.2. The directed cut model is a valid formu-
lation for the unitary NDC problem when rst � {0, 1, even}
in the sense that (x, y) is a feasible solution to this model if
and only if x is an incidence vector of a feasible NDC design
[that is, x is a feasible solution to the cutset model (1)].

Proof. Suppose x is an incidence vector of a feasible
NDC design. The argument following Theorem 3.1 shows
how to construct an integer vector y so that (x, y) is a valid
solution for the directed cut model.

To establish the converse, suppose (x, y) is a feasible
solution to the directed cut model. Let Q be any node set
with econ(Q) � econ(N�Q) � 2. Combining inequality
(3b) for S � Q and S � N�Q and the inequalities (3d)
summed over all {i, j} � �(Q) gives

�
�i, j����Q	

xij � �
�i, j	����Q	

yij 	 �
� j,i	����Q	

yji � econ�Q	.

If Q is any node set with econ(Q) � econ(N�Q) � 1,
assume without loss of generality that the root node is not in
Q. Then the inequality (3c) with S � Q and the inequality
(3d) summed over {i, j} � �(Q) imply that

FIG. 1. Directing the bridges of a feasible solution to the unitary NDC
problem. (a) Feasible solution. (b) Direct the edges of each 2-edge-
connected component. (c) Direct the bridges away from component b.
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�
�i, j����Q	

xij � 1.

Therefore, x is a feasible solution to the cutset formula-
tion (1). ■

In the next section we describe a relaxation of the di-
rected cut model (3) that applies to all unitary NDC prob-
lems and obviates the need for the Nash-Williams theorem.

3.2. Generalizing the Directing Procedure

The directed cut formulation (3) is not valid for unitary
NDC problems with odd connectivity requirements. As an
example, consider an SND problem defined on K4, the
complete graph on four nodes, assuming each node has a
connectivity requirement of 3. The optimal solution for this
problem is K4. For any node i in K4, there is no way to
direct the edges so that both ��(i) and ��(i) are at least 1.5.

Suppose, however, that in the directed cut formulation
we relax the integrality constraints imposed upon the yij

variables, and interpret yij as the capacity on the flow of any
commodity on arc (i, j). We will show that this formulation
is a valid mixed integer program for any unitary NDC
problem. Consider any feasible solution to an unitary NDC
problem. As we noted previously, the solution is a con-
nected graph consisting of 2-edge-connected components
and bridges. Suppose (1) we set yij � yji � 1/ 2 for each
edge on the 2-edge-connected components, and (2) direct
the bridges away from the component that contains the root
node, setting yij to 1 if edge {i, j} is oriented from node i
to node j, and 0 otherwise (i.e., once we contract the
2-edge-connected components the directing procedure for
the bridges is similar to the directing procedure for the
Steiner tree). The resulting solution (x, y) is feasible in the
directed cut formulation if we relax the integrality condition
on y. Therefore, the following directed cut formulation is
valid for all unitary NDC problems.

Directed Cut Formulation for the Unitary NDC Prob-
lem:

Minimize �
�i, j��E

cijxij (4a)

subject to: �
�i, j	����S	

yij �
econ�S	

2

if econ�S	 � 2, for all S � N, (4b)

�
�i, j	����S	

yij � 1 if econ�S	 � 1, for all S, root�S, (4c)

yij 	 yji � xij for all �i, j� � E, (4d)

xij � 1 for all �i, j� � E, (4e)

yij, yji � 0 for all �i, j� � E, (4f)

xij � 0 and integer, for all �i, j� � E. (4g)

Proposition 3.3. The directed cut model (4) is a valid
formulation for the unitary NDC problem in the sense that
(x, y) is a feasible solution to this model if and only if x is
an incidence vector of a feasible NDC design.

Proof. Similar to the proof of Proposition 3.2. ■

Let Pdcut
(4) denote the polyhedron defined by the linear

relaxation of constraints (4b)–(4g). We can now make a
stronger claim.

Lemma 3.4. Projx(Pdcut
(4) ) � Pcut

(1).

Proof. Similar to the proof of the converse in Propo-
sition 3.2. ■

To see that there are instances where Projx(Pdcut
(4) ) � Pcut

(1),
consider the NDLC example shown in Figure 2. Nodes a, b,
and c have a connectivity requirement of 2. Nodes d, e, and
f have a connectivity requirement of 1. The solution xab

� xac � 1 and xbc � xbd � xcd � xde � xdf � xef � 0.5
is feasible to Pcut

(1), but not contained in Projx(Pdcut
(4) ).

3.2.1. Flow Formulation. The max-flow min-cut theo-
rem permits us to formulate an improved flow model, with
multiple commodities K to be defined below, that is equiv-
alent to the directed cut model (4).

Improved Undirected Flow Formulation for the Unitary
NDC Problem:

Minimize �
�i, j��E

cijxij (5a)

subject to: �
j�N

fji
k � �

l�N

fil
k � ��qk if i � O�k	,

qk if i � D�k	,
0 otherwise,

�
for all i � N and k � K, (5b)

fij
k 	 fji

h � xij for all �i, j� � E and k, h � K, (5c)

FIG. 2. The directed cut formulation is stronger than the cutset formu-
lation. (a) Underlying graph. (b) Fractional solution to the cutset formula-
tion that is cut off by the directed cut formulation.
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fij
k, fji

k � 0 for all �i, j� � E and k � K, (5d)

xij � 1 for all �i, j� � E, (5e)

xij � 0 and integer, for all �i, j� � E. (5f)

Using the procedure described in Section 2, we can
create the commodities (K) as follows.

Commodity Selection Procedure for Improved Flow
Formulation (5):

1. Find the requirement spanning tree.
2. Delete all edges with rst � 0 from the requirement

spanning tree. The resulting tree is connected because,
by assumption, the NDC problem is unitary.

3. For each edge {s, t} of the requirement spanning tree
with rst � 2, create two commodities: one with origin
node s and destination node t, and the other with origin
node t and destination node s; each of these commodities
has a flow requirement of rst/ 2.

4. Contract each edge {s, t} with rst � 2 in the require-
ment spanning tree, creating a contracted requirement
spanning tree T with rij � 1 for all edges {i, j}. We
distinguish nodes created by the contraction from the
original nodes by calling them components. We denote a
component by any one of the nodes it contains in the
original requirement spanning tree (e.g., if we create a
component by contracting nodes s and t, then we denote
the component as s). Select a component i in T as the
root node (if T does not contain any components, then
select any node as the root node arbitrarily). Create a

commodity for every node j in T other than the root
node, with node i as its origin (in the original graph), and
node/component j as its destination (in the original
graph), with a requirement of 1.

Figure 3 illustrates this procedure. The following useful
property is a consequence of the commodity selection pro-
cedure.

Proposition 3.5. For any node set S,

1. If econ(S) � 2, then the improved flow formulation
contains a commodity k whose flow requirement is
econ(S)/ 2, origin is in N�S, and destination is in S.

2. If econ(S) � 1 and root � S, then the improved flow
model contains a commodity whose flow require-
ment is 1, origin is the root node, and destination
is in S.

3. If econ(S) � 1 and root � S, then no commodity in
the improved flow model has its origin in N�S, and
destination in S.

Proof. This result follows from the commodity selec-
tion procedure and the fact that rst � max{rij�j � S; i
� N�S} 
 econ(S) for any edge {s, t} in the requirement
spanning tree. ■

We now establish the validity of the improved undirected
flow formulation for the unitary NDC problem by showing
that this formulation and the directed cut formulation are

FIG. 3. Commodity selection procedure for the unitary NDC problem. (a) Requirement spanning tree. (b) Tree
obtained by deleting edges {s, t} with rst � 0. (c) Tree obtained by contracting edges {s, t} with rst � 2. (d)
Commodities in improved flow formulation (5) with node a selected as the root.
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equivalent. Let Piflo
(5) denote the polyhedron defined by the

linear relaxation of constraints (5b)–(5f).

Lemma 3.6. Projx(Pdcut
(4) ) � Projx(Piflo

(5)) whenever the root
nodes selected in both formulations are in the same com-
ponent of the contracted requirement spanning tree.

Proof. First, consider any feasible solution (x*, y*) to
the directed cut formulation. If we interpret y*ij as a capacity
imposed upon the flow from node i to node j, the max-flow
min-cut theorem implies that we can (1) send rst/ 2 units of
flow between any pair of nodes s and t in the requirement
spanning tree with rst � 2, and (2) send one unit of flow
from the root component in the contracted requirement
spanning tree to any other node/component in the contracted
requirement spanning tree. Furthermore, the constraint y*ij
� y*ji � x*ij implies that we can fulfill conditions (1) and (2)
while ensuring that for each edge {i, j}, the sum of the
maximum flow sent (on the edge {i, j}) from node i to node
j, and the maximum flow sent from node j to node i does not
exceed xij. These arguments show that we can find flow vari-
ables f* so that (x*, f*) is feasible in the improved undirected
flow formulation. Thus, Projx(Pdcut

(4) ) � Projx(Piflo
(5) ).

Suppose (x� , f�) is a feasible solution to the improved flow
formulation. For each edge {i, j}, set y� ij � maxk�Kf�ij

k and
y� ji � maxk�Kf�ji

k . We claim the solution (x� , y�) is feasible in
the directed cut formulation. Whenever edge {s, t} is in the
requirement spanning tree and rst � 2, the improved un-
directed flow formulation sends rst/ 2 units of flow from
node s to node t and rst/ 2 units of flow from node t to node
s. Consequently, if edge {s, t} is in the requirement span-
ning tree and rst � 2, the capacity of every s � t dicut and
every t � s dicut is at least rst/ 2 [for the solution (x� , y�)].
For any node set S, the requirement spanning tree contains
an edge {s, t} in �(S) with econ(S) � rst. Therefore,
whenever econ(S) � 2, the capacity of the dicut ��(S) is
at least econ(S)/ 2. The improved undirected flow formula-
tion sends 1 unit of flow from the root component to every
node/component in the contracted requirement spanning
tree. Therefore, the capacity of every dicut ��(S) with root
� S and econ(S) � 1 is at least 1. The constraint f�ij

k � f�ji
h

� x� ij implies that for every edge, y� ij � y� ji � x� ij. Conse-
quently, (x� , y�) is feasible for the directed cut model. Thus,
Projx(Piflo

(5) ) � Projx(Pdcut
(4) ). ■

The preceding discussion showed that Projx(Pdcut
(4) )

� Projx(Piflo
(5) ) when both the directed cut model (4) and the

improved flow model (5) choose the root node from the
same component of the contracted requirement spanning
tree. Because the contracted requirement spanning tree of
the SND problem has a single component, in this case
Projx(Pdcut

(4) ) and Projx(Piflo
(5) ) are independent of the choice of

root node. (In the special case of the Steiner tree problem,
Goemans and Myung [17] establish this result.) This result
is also a consequence of the fact that the choice of root node
within a component of the contracted requirement spanning
tree does not affect constraint (4c). We conjecture that for

the unitary NDC problem Projx(Pdcut
(4) ) and Projx(Piflo

(5) ) are
independent of the choice of root node as well.

Taken together, Lemmas 2.1, 3.4, and 3.6 imply the
following relationships between the formulations (the first
equality assumes the root node in both models are in the
same component of the contracted requirement spanning
tree)

Projx�Piflo
�5		 � Projx�Pdcut

�4	 	 � Pcut
�1	 � Projx�Pflo

�2		.

Before concluding this section, we note the directed cut
model (4) and the improved flow model (5) are stronger, as
linear programs, than the cutset (1) and the undirected flow
(2) model only if the requirement spanning tree contains an
edge {s, t} with rst � 1. To see this result, observe that if
no pair of nodes i and j has a connectivity requirement of 1,
then for all node sets S, econ(S) � 1. But then, if x� is any
feasible solution to the cutset formulation, the vector (x� , y�),
with y� ij � y� ji � x� ij/ 2, is feasible in the directed cut
formulation. As we have shown before, if (x� , y�) is any
feasible solution to the directed cut formulation, then x� is
feasible in the cutset formulation. Therefore, in this case, the
two models are equivalent.

Finally, we note that a simple modification of the for-
mulations we have considered permits us to model situa-
tions that allow edge replication: we just replace the con-
straint xij � 1 by the constraint xij � bij throughout our
discussion.

4. PROJECTING FROM THE IMPROVED FLOW
FORMULATION

To compare the improved flow formulation and the cut-
set formulation, we would like to project out the flow
variables from the improved flow formulation so that the
resulting models have the same set of variables. An elegant
method for projection, proposed by Balas and Pulleyblank
[3], and implicit in the work of Benders [4], is based upon
a theorem of the alternatives.

Theorem 4.1 (Projection Theorem). The projection of
the set P � {(x, f) � �n�m�Ax � Bf � d} onto the space
of the x variables is

Projx�P	 � �x � �n��gj	TAx � �gj	Td, for j � 1, 2, . . . , J�,

which is defined by a finite set of generators {gj�j � 1, . . . ,
J} of the cone C � {g�BTg � 0; g � 0}.

The cone C in the statement of Theorem 4.1 is just the
linear programming dual to the feasibility problem obtained
by deleting the x variables and setting the right-hand side to
zero in the inequality Ax � Bf � d. When the polyhedron
P is defined by equality as well as inequality constraints, as
in the improved undirected formulation, Theorem 4.1 as-
sumes the following form.
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Corollary 4.2. The projection of the set P � {(x, f)
� �n�m�Ax � Bf � d; A�x � B�f � d�; x � X; f � 0} onto
the space of the x variables is

Projx�P	 � �x � X��gu
j 	TAx 	 �gv

j 	TA�x

� �gu
j 	Td 	 �gv

j 	Td�, for j � 1, 2, . . . , J�,

which is defined by a finite set of generators {(gu
j , gv

j )�j
� 1, . . . , J} of the cone C � {(u, v)�BTu � B�Tv � 0; u �
0; v unrestricted}.

If we can identify a set of finite generators of the cone C,
then we obtain the projection of the set P. The Projection
Theorem has the additional advantage that every member
(u, v) of the cone C defines a valid inequality (uTA
� vTA�)x � uTd � vTd� for Projx(P). As a consequence,
even if we cannot characterize the generators of the cone,
we can still use the cone to obtain valid inequalities for
Projx(P).

In Sections 4.1 and 4.2 we will use the Projection The-
orem to show that the improved flow formulation (5) im-
plies two classes of valid inequalities for the cutset formu-
lation. To develop these results, we need to find generators
for the following projection cone:

�
h�K

uij
kh 	 vi

k � vj
k

�
h�K

uij
hk 	 vj

k � vi
k� � 0 
 �i, j� � E, 
 k � K, (6a)

uij
kh � 0 
 �i, j� � E, 
 k, h � K. (6b)

In these inequalities, vi
k is the dual variable correspond-

ing to the flow balance equation at node i for commodity k,
and uij

kh is the dual variable corresponding to the forcing
constraint fij

k � fji
h � xij. Note that for any edge {i, j} and

any pair of commodities k and h, the model contains two
forcing constraints fij

k � fji
h � xij and fij

h � fji
k � xij. We

identify the dual variable uij
kh with the constraint fij

k � fji
h �

xij and the dual variable uij
hk with the constraint fij

h � fji
k �

xij. By convention, the dual variables obtained by reversing
the indices, that is, uij

kh and uji
hk, are the same.

Because one flow balance equation for each commodity
is redundant, we can set, for each commodity k, vO(k)

k to
value zero. Using Corollary 4.2 for any member of this
cone, we obtain a valid inequality of the form

�
�i, j��E

� �
k�K

�
h�K

uij
kh� xij � �

k�K

qkvD�k	
k . (7)

In this expression, qk is the number of units of commodity
k sent from commodity k’s origin to its destination. We
refer to the coefficient of xij in this inequality as �ij and the
right-hand side coefficient as �0.

Given some choice of the variables vi
k for all the nodes i

and commodities k, there are a number of choices for uij
hk.

How do we determine the best such choice? Because the
coefficient �ij of xij in the inequality �x � �0 is ¥k�K

¥h�K uij
kh, we would like ¥k�K ¥h�K uij

kh to be as small as
possible for each edge. The following theorem, which we
will use in our derivation of valid inequalities, describes the
choice of uij

hk that minimizes ¥k�K ¥h�K uij
kh. We give a

constructive proof that also shows how to determine the uij
hk

values.

Theorem 4.3. Suppose we are given values for vi
k for all

nodes i and all commodities k. For any edge {i, j}, let tij
k �

max(0, vj
k � vi

k) and tji
k � max(0, vi

k � vj
k). Define tij � ¥k�K

tij
k and tji � ¥k�K tji

k . Then max(tij, tji) is the minimum value
of ¥k�K ¥h�k uij

kh in inequality (7) over all feasible uij
kh

values in the projection cone.

Proof. We will establish this result for each edge {i,
j}. We first show that max(tij, tji) is a lower bound on the
value of ¥k�K ¥h�K uij

kh in any feasible solution to the
projection cone (i.e., inequalities (6a)–(6b)). Let I be the set
of all commodities with tij

k � 0 and J be the set of
commodities with tji

k � 0. Equation (6a) states ¥h�K uij
kh �

vj
k � vi

k. Summing over all commodities in the set I gives
¥k�I ¥h�K uij

kh � ¥k�I (vj
k � vi

k) � tij. Similarly, by
considering the commodities in the set J, we obtain ¥k�J

¥h�K uij
hk � ¥k�J (vi

k � vj
k) � tji. But then the inequal-

ities ¥k�K ¥h�K uij
kh � ¥k�I ¥h�K uij

kh and ¥k�K ¥h�K

uij
kh � ¥k�J ¥h�K uij

hk imply that ¥k�K ¥h�K uij
kh �

max(tij, tji).
We next prescribe feasible values for the variables uij

kh

that achieve the lower bound max(tij, tji). Initially, each uij
kh

� 0 and ¥k�K ¥h�K uij
kh � 0. Select a commodity l from

I and a commodity m from J. Set uij
lm � min{tij

l , tji
m}. If tij

l

� tji
m, delete m from J, and if tij

l � tji
m, delete l from I. Set

tij
l � tij

l � uij
lm and tji

m � tji
m � uij

lm. Repeat this procedure
until one of the two sets I and J, say J, is empty. Note that
at this point ¥k�K ¥h�K uij

kh � min(tij, tji) and the u and
v variables satisfy inequalities (6a)–(6b) for every commod-
ity we have deleted from I and J. For the remaining com-
modities l � I, let m be any commodity in K and set uij

lm �
uij

lm � tij
l . Thus, ¥k�K ¥h�K uij

kh � min(tij, tji) � (max(tij,
tji) � min(tij, tji)) � max(tij, tji). By construction, this
choice of uij

hk satisfies the inequalities of the cone. ■

With the aid of Theorem 4.3, we will now derive two
classes of valid inequalities—partition inequalities, and
combinatorial design inequalities—that generalize known
classes of valid inequalities for the Steiner tree problem to
the unitary NDC problem.

4.1. Partition Inequalities

Suppose we partition the node set N into disjoint node
sets N0, N1, . . . , Np satisfying the property that each node
set has econ(Ni) � 0. Let, I1 � {i : econ(Ni) � 1} and I2

70 NETWORKS—2005



� {i : i � econ(Ni) � 2}. A partition inequality for the
unitary NDC problem is an inequality of the form:

1

2 �
k�0

k�p �
��Nk	

xij � �
p if I2 � �,

1

2 �
i�I2

econ�Ni	 	 �I1� otherwise.

(8)

Chopra [8] and Magnanti and Wolsey [26] show that the
partition inequalities describe the dominant of the spanning
tree polytope. Chopra and Rao [10] and Grötschel and
Monma [19] show that under appropriate conditions, parti-
tion inequalities are facet defining for the Steiner tree prob-
lem and for the NDLC problem, respectively. Stoer [32]
shows that under appropriate conditions they are facet de-
fining for the SND problem. Our derivation will show that
these inequalities are valid for the more general unitary
NDC problem.

Consider a partition N0, . . . , Np. Without loss of gen-
erality assume that the root node is a node in N0. Consider
any set Ni of the partition. If econ(Ni) � 2, Proposition 3.5
implies the improved flow formulation must contain two
commodities: one with origin ni � Ni and destination some
node mi � Ni, and one with destination ni � Ni and origin
mi � Ni, both with a flow requirement of econ(Ni)/ 2. Let
i denote the commodity with destination node ni � Ni (and
origin mi � Ni) and a requirement of econ(Ni)/ 2. Simi-
larly, if econ(Ni) � 1 and i � 0, the improved flow
formulation must contain a commodity i with destination a
node ni � Ni (the origin would be the root node) and a
requirement of 1.

For commodities k � 0, . . . , p, we set

vi
k � �1 if i � Nk,

0 otherwise,

and set vi
k � 0 otherwise.

With this choice of values for the vi
k variables, we ensure

that for all edges {i, j} across the partition ¥k�K max(0, vj
k

� vi
k) � ¥k�K max(0, vi

k � vj
k) � 1 and for edges {i, j}

not in the partition ¥k�K max(0, vj
k � vi

k) � ¥k�K max(0,
vi

k � vj
k) � 0. Thus, by choosing the values of uij

kh as
indicated by Theorem 4.3, we find that �ij � ¥k�K ¥h�K

uij
kh is 1 if i and j are in different sets of the partition and �ij

� 0 otherwise. Also, �0 � ¥k�K qkvD(k)
k � 1

2
¥i�I2

econ(Ni) � �I1�, because vD(k)
k � 1, qk � 1 if econ(Nk)

� 1, and qk � econ(Nk)/ 2 if econ(Nk) � 2, for commod-
ities 0, . . . , p; and vD(k)

k � 0 otherwise.
If I2 � �, by Proposition 3.5, the improved flow for-

mulation does not contain any commodity with origin out-
side N0 and destination in N0. Consequently, we select p
commodities with destinations in N1, . . . , Np and origin in
N0. With the same choice of vi

k for k � 1, . . . , p (i.e., vi
k

� 1 if i � Nk and 0 otherwise), for all edges {i, j} across
the partition, max(¥k�K max(0, vj

k � vi
k), ¥k�K max(0, vi

k

� vj
k)) � 1; and for edges {i, j} not in the partition, ¥k�K

max(0, vj
k � vi

k) � ¥k�K max(0, vi
k � vj

k) � 0. Thus, in
accordance with Theorem 4.3, the edges across the partition
have coefficient 1; all others have coefficient 0. The result-
ing right-hand side is �0 � ¥k vD(k)

k � p.
We have thus obtained the following valid inequality:

1

2 �
k�0

k�p �
��Nk	

xij � �
p if I2 � �,
1

2 �
i�I2

econ�Ni	 	 �I1� otherwise.

(9)

But since, in the mixed integer program, the variables xij are
either 0 or 1, we can round up the right-hand side in this
inequality and still maintain feasibility to obtain (8).

If the number of sets in the partition inequality with odd
connectivity requirement greater than one is odd, then the
improved undirected formulation implies a weaker form of
the partition inequality that we refer to as weak partition
inequalities [that is inequality (9)]. Otherwise, the formula-
tion implies the partition inequality. Note that the weak
partition inequalities are stronger than the cutset formula-
tion (as long as I1 � �).

Because the flow model implies the weak partition ine-
qualities, and does not always imply the partition inequali-
ties, we might like to characterize, in a certain sense, how
much stronger a model containing the partition inequalities
would be compared to a model containing the weak parti-
tion inequalities.

To compare two classes of valid inequalities, we use the
following notion previously introduced by Goemans [16].
Let �1 and �2 denote two finite classes of valid inequalities
and P(�1) and P(�2) the feasible sets associated with them.
Then, the relative strength of the class of the valid inequal-
ities �1 to the class of the valid inequalities �2 is defined as

max
c���

�E�
�min�cx : x � ��

�E�; x � P��1	; x � P��2	�

min�cx : x � ��
�E�; x � P��2	�

�,

with the convention 0
0

� 1. The relative strength measures
how much, in the best case, the objective function of a linear
program that contains the class of valid inequalities �2

improves by adding to it the class of valid inequalities �1.
The following result characterizes the relative strength of

the partition inequalities with respect to the weak partition
inequalities when (unlimited) edge replication is permitted.

Theorem 4.4. When edge replication is permitted, the
relative strength of the class of partition inequalities �1

with respect to the class of weak partition inequalities �2 is
at most 10

9
.

Proof. We will show that by multiplying any feasible
solution (including any optimal solution) to the linear pro-
gram min{cx : x � ��

�E�; x � P(�2)} (we refer to this linear
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program as LP2) by 10
9

gives a feasible solution to the linear
program min{cx : x � ��

�E�; x � P(�1); x � P(�2)} (we
refer to this linear program as LP1). This result implies that
the optimal value to LP1 is at most 10

9
times the optimal

value to LP2. Note that the weak partition inequalities are
implied by the partition inequalities. Consequently, we can
delete x � P(�2) from LP1.

LP1 and LP2 differ when the right-hand side of the weak
partition inequalities is fractional. If we show the maximum
ratio between the right-hand side of any partition inequality
and its corresponding weak partition inequality is 10

9
, we

have shown that the relative strength of the partition ine-
qualities with respect to the weak partition inequalities is 10

9
.

(Because multiplying any solution that satisfies the weak
partition inequalities by 10

9
gives a solution that satisfies the

partition inequalities.)
The right-hand side of the weak partition inequalities and

the partition inequalities differ by at most 0.5. This occurs
when the cardinality of the set {i : econ(Ni) odd; and
econ(Ni) � 3} is odd [that is for an odd number of sets,
econ(Ni) is (1) odd, and (2) greater than or equal to 3].
Noting that the partition contains at least two sets with the
highest value of econ(Ni), we find that the maximum ratio
is obtained by considering a partition with three sets, each
with connectivity 3. The right-hand side for the weak par-
tition inequality is 4.5, and the right-hand side for the
partition inequality is 5. The ratio is 10

9
. ■

4.2. Combinatorial Design Inequalities

For the Steiner tree problem Goemans [15] introduced a
new class of facet defining valid inequalities called combi-
natorial design inequalities. These inequalities generalize a
class of inequalities called odd-hole inequalities [10]. He
showed that under appropriate conditions combinatorial de-
sign inequalities are facet defining for the Steiner tree prob-
lem. He derives the combinatorial design inequalities by
projecting from a node weighted (undirected) extended for-
mulation for the Steiner tree problem. We show how to
project out the combinatorial design inequalities from the
improved undirected flow formulation (5), and as a result
generalize the combinatorial design inequality to the unitary
NDC problem, obtaining a new class of valid inequalities
for this problem.

The description of the combinatorial design inequality is
fairly involved. Let Tp � {a0, . . . , ap} be the set of nodes
with nonzero connectivity requirements. Zq � N � Tp

� {b0, . . . , bq} is the set of nodes with zero connectivity
requirements. Associate with each node ai of Tp a subset Zai

containing elements of Zq. Based on these subsets, we also
define sets Tbi

associated with each node bi in Zq. Tbi

contains those elements of Tp whose associated subset con-
tains the node bi.

Define the (q � 1) � ( p � 1) matrix D � [dij] with
dij � 1 if aj � Tbi

and dij � 0 otherwise. Impose the
following two conditions on D: (1) rank(D) � p � 1, and
(2) the unit vector e belongs to the cone generated by the

columns of D; i.e., Dy � e for some vector y � ��
( p�1). For

any fixed d � 0, if we set � � dy, we see that D� � de.
Letting �j denote the jth component of � (i.e., �j � d yj),
we see that

�
aj�Tbi

�j � d for all i � 0, 1, . . . , q. (10)

If we select d so that the greatest common divisor of �0,
�1, . . . , �p, and d is 1, the coefficients of xij in the
following combinatorial design inequalities will be integer
and as small as possible. For every edge {s, t}, define

dst � �
�

k:ak��Tbi�T	

�k �s, t���bi, bj� where bi, bj�Zq;

�j �s, t���aj, bi� with bi�Zaj
;

0 otherwise.

For the Steiner tree problem, the inequality

�
�i, j��E

�d � dij	 xij � dp

is a combinatorial design inequality. Goemans [15] provides
some graphical examples of combinatorial design inequal-
ities for the Steiner tree problem.

We extend the definition of the combinatorial design
inequality to obtain the following class of valid inequalities
for the unitary NDC problem. Let L1 � {i : i � Tp, econ(i)
� 1} and L2 � {i : i � Tp, econ(i) � 2}.

�
�i, j��E

�d � dij	 xij

� �
dp if L2 � �,

� d

2 �
l�L2

econ�l 	 	 d	L1	� otherwise. (11)

We now show the validity of the combinatorial design
inequalities for the unitary NDC problem by projecting
them from the improved undirected flow formulation. In the
improved undirected flow formulation, let node a0 be the
root node. For each node al, l � 0, . . . , p, we select a
commodity l with destination al as follows. If econ(al)
� 2, we select a commodity l with destination node al and
flow requirement econ(al)/ 2. If econ(al) � 1, we select a
commodity l with destination node al and flow requirement
1. For these commodities (k � 0, . . . , p), we set

vi
k � �d if i � ak;

�k if i � Zak
;

0 otherwise.

For all other commodities k, set vi
k to zero.

Consider an edge {s, t} � {aj, bi} with bi � Zaj
. When

aj is the destination node, vaj

j � d and vbi

j � �j if i � Zaj
.
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Consider any node ak � Tbi
�{aj}. vak

l � 0 only if ak is a
destination node for commodity l, that is, l � k and, in this
case, vbi

k � �k and vaj

k � 0. Note that, vbi

k � vaj

k � �k.
Thus,

�
ak��Zbi��aj��

vbi

k � vaj

k � �
ak��Zbi��aj��

�k �
�10	

d � �j � v aj

j � v bi

j .

Here the notation �
(10) means that the equality follows from

expression (10). If ak � Tbi
, then vaj

k � vbi

k � 0. Therefore,
¥k�K max(0, vaj

k � vbi

k ) � ¥k�K max(0, vbi

k � vaj

k ) � d
� �j. By Theorem 4.3, in the projected inequality, d � �j

is the coefficient of an edge {s, t} � {aj, bi} with bi � Zaj
.

Consider an edge {s, t} � {bi, bj}. For any commodity
k with destination ak, vbi

k and vbj

k differ only if exactly one
of bi and bj belongs to Zak

. If bi belongs to Zak
, then vbi

k �
�k and vbj

k � 0. Thus, vbi

k � vbj

k � �k. Summing over all
sets Zak

that contain node bi but not node bj, we find that

�
k:bi�Zak;bj�Zak

vbi

k � vbj

k � �
k:bi�Zak;bj�Zak

�k

�
�10	

d � �
k:bi�Zak;bj�Zak

�k.

Similarly, summing up over all sets Zak
that contain node bj

but not node bi, we find that

�
k:bj�Zak;bi�Zak

vbj

k � vbi

k � �
k:bj�Zak;bi�Zak

�k

�
�10	

d � �
k:bj�Zak;bi�Zak

�k.

Therefore, ¥k�K max(0, vbj

k � vbi

k ) � ¥k�K max(0, vbi

k �
vbj

k ) � d � ¥k:bj�Zak;bi�Zak
�k. By Theorem 4.3, d �

¥k:bj�Zak;bi�Zak
�k is the coefficient of an edge {s, t} �

{bi, bj} in the projected inequality.
All the other edges are either of the form {s, t} �

{ai, aj} or {s, t} � {aj, bi} with bi � Zaj
. For any edge

of the form {ai, aj}, vaj

j � vai

j � vai

i � vaj

i � d for
commodities i and j and vai

k � vaj

k � 0 otherwise. Consider
an edge of the form {s, t} � {aj, bi} with bi � Zaj

. For
all commodities k with ak � Tbi

, that is, ak is the destina-
tion, vbi

k � vai

k � �k. For commodity j, aj is the destination
and vaj

j � vbi

j � d. For all other commodities k, vaj

k � vbi

k

� 0. Therefore, for both edges of the form {s, t} � {ai,
aj} and {s, t} � {aj, bi} with bi � Zaj

, we find that ¥k�K

max(0, vs
k � vt

k) � ¥k�K max(0, vs
k � vt

k) � d. By
Theorem 4.3, d is the coefficient of these edges in the
projected inequality.

The right-hand side of the projected inequality is �0

� ¥k qkvD(k)
k � d(1

2
¥l�L2

econ(l ) � �L1�) because vD(k)
k

� d for commodities 0, . . . , p, and vD(k)
k � 0 otherwise.

If the problem has exactly one node or no nodes with

econ(i) � 2, with the same choice of vi
k variables, we

obtain the same coefficients for xij and a right-hand side of
dp (there will be no commodity with destination the root
node a0).

Thus, the projected inequality is

�
�i, j��E

�d � dij	 xij � �
dp if L2 � �,

d�1

2 �
l�L2

econ�l 	 	 �L1�� otherwise.

(12)

Once again, noting that the left-hand side should be integer
if the x variables are integer, we can round up the right-hand
side, giving inequality (11).

We refer to inequalities (12) as weak combinatorial de-
sign inequalities. Noting that d � 1, it is easy to prove a
result similar to Theorem 4.4—namely, if edge replication
is permitted, the relative strength of the class of combina-
torial design inequalities with respect to the class of weak
combinatorial design inequalities is at most 10

9
.

To close this section, we recall that odd-hole inequalities
are special cases of combinatorial design inequalities (see
[15]), so these results also show that by projecting out the
flow variables from the formulation we obtain the odd-hole
inequalities.

5. NONUNITARY PROBLEMS

So far we have restricted our attention to unitary prob-
lems. We now examine nonunitary NDC problems. Our
starting point will be the special case of the Steiner forest
problem. Recall that in the Steiner forest problem we are
given a graph G � (N, E) and node sets T1, T2, . . . , TP

with Ti � Tj � � for all node set pairs (i � j). We wish
to design a graph at minimum cost that connects the nodes
in each node set (possibly by including multiple node sets in
any connected component of the graph).

For the unitary NDC problem, we derived a stronger
formulation by generalizing a well-known directing proce-
dure for the Steiner tree problem. The essential idea used
was to direct the bridge edges of a solution to the unitary
NDC problem in a manner akin to the directing procedure
for the Steiner tree. Analogously, to strengthen the formu-
lation for the nonunitary NDC problem we will first deter-
mine how to strengthen the Steiner forest problem—a nonuni-
tary NDC problem with each rst � {0, 1}—by directing it.

We are unaware of any models stronger than the cutset
model for the Steiner forest problem, and believe the model
we present is the first directed model in the literature for this
problem.

5.1. Directing the Steiner Forest Problem

For convenience, we once again describe the cutset and
undirected flow formulations for the NDC problem as ap-
plied to the Steiner forest problem.
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Cutset Formulation for the Steiner Forest Problem:

Minimize �
�i, j��E

cijxij (13a)

subject to:

�
�i, j����S	

xij � 1
for all S, � � S � N,
S � Ti � � and
�N�S	 � Ti � � for some i, (13b)

xij � 1 for all �i, j� � E, (13c)

xij � 0 and integer. (13d)

In the undirected flow formulation (2) for the Steiner
forest problem, we select a root node for each node set and
send one unit of flow from the root node of each node set to
every node in that node set. Thus, qk � 1 for all k � K, and
bij � 1 for all {i, j} � E, in the undirected flow formu-
lation.

If we assume each cij � 0, these formulations always
have a Steiner forest as an optimal solution, and so each
component of the forest is a tree. Nodes belonging to any
node set Ti, for any i, lie in the same component. As an
example, Figure 4a shows the optimal solution to a Steiner
forest problem with five components. One component con-
tains the two node sets T1 and T4. All the other components
contain nodes from exactly one node set.

How might we direct the Steiner forest problem? Be-
cause each component in the optimal solution is a tree, we
could arbitrarily choose a node in each component and
direct each tree away from it. Unfortunately, before we
solve the problem, although we know that nodes in each
node set will lie in the same component, we do not know the
number of components in the optimal solution and the node
sets they contain. The problem is to determine, a priori, the
root node for each component. For this reason, directing the
Steiner forest problem raises difficulties not encountered in
directing the Steiner tree (and the unitary NDC) problem.

To direct the Steiner forest, for each set Ti, we choose an
arbitrary root node ri � Ti. We then direct each component
(tree) away from the lowest indexed root node that it con-
tains. In the example shown in Figure 4a, one component
contains two node sets T1 and T4. Because T1 is the lowest
indexed node set in this component, we have directed the
component away from the root node r1 of node set T1. All
the other components contain nodes from only one node set
Ti and we direct each of them away from the root node ri of
node set Ti. Figure 4b shows the forest after we have
applied the directing procedure.

For notation, if j � Ti, we let ( j) � ri denote the root
node of the node set Ti that contains node j. We refer to ri

as node j’s root node. We also define T � T1 � T2 � . . .
TP, and let R be the set of all root nodes, that is, R � {r1,
r2, . . . , rP}.

5.2. Improved Flow Formulation for the Steiner Forest
Problem

We model the Steiner forest problem using multicom-
modity flows. Because the network we obtain after directing
the Steiner forest contains a directed path from the lowest
indexed root node in a component to all other nodes in that
component, we can send a unit of flow from the root node
of each directed component to every node in that compo-
nent.

For each node j � Ti, with j � ri, and for each p � i,
we define a commodity with origin node rp and destination
node j, and for each root node ri and for each p  i, we
define a commodity with origin node rp and destination
node ri. In the optimal solution, it is possible to send a unit
of flow from the lowest indexed root node of a component
to each required node in that component. Let CO(q) denote
the set of all commodities that have node q as their origin
and CD(q) the set of all commodities that have node q as
their destination. Let K denote the set of all commodities.
We also define � � {S : S � K, and �S � CO(rj)� � 1
for all j � 1, . . . , P}. Each member of � is a set of P

FIG. 4. Example of the directing procedure. Filled nodes are required nodes, unfilled nodes are Steiner nodes.
(a) Undirected forest. (b) Direct each forest away from the lowest indexed root node that it contains.
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commodities satisfying the property that it contains a com-
modity originating at each one of the P root nodes.

Let xij be 1 if the network design contains edge {i, j}
and be 0 otherwise. The improved undirected flow formu-
lation for the Steiner forest problem has the following form.

Improved Undirected Flow Formulation for Steiner
Forest Problem:

Minimize �
�i, j	�E

cijxij (14a)

subject to: �
j�N

fji
k � �

l�N

fil
k���1 if i � O�k	,

�1 if i � D�k	,
�0 otherwise,

� 
 i � N
and
k � K,

(14b)

�
k�CD�i	

�
j�N

fjD�k	
k � 1 for all i � T�R, (14c)

�
j�N

fjD�k	
k � �

j�N

fjD�k*	
k*


 i � T�R, 
 k � CD�i	,
s.t. O�k	 � O�k*	, and
D�k*	 � �i	,

(14d)

�
k�H

fij
k 	 �

k� �H

fji
k � xij

for all �i, j� � E, and
all H, �H pairs in �, (14e)

�
i�N

�
k�H

fij
k � 1

for all j � N, and
all H in �, (14f)

fD�k	l
k � 0

for all l � N, and
k � K, (14g)

fij
k � 0


 �i, j� � E and any k
s.t. O�k	 � Tv and
i or j � Tu where u � v,

(14h)

fij
k

fji
k� � 0

for all �i, j� � E, and
k � K, (14i)

xij � �0, 1� for all �i, j� � E. (14j)

Constraints (14b), (14c), and (14g) ensure that each node
i in T�R obtains a unit of flow from either its root node, or
the root node of a lower indexed node set. Constraints (14d)
and (14g) ensure that if node i � Tj, i � rj, is supplied by
a commodity k whose origin is not the root node of set Tj,
then its root node also is supplied from the origin of com-
modity k (i.e., its root node belongs to the same component
that it belongs to). Note that constraint (14g) simply states
that flow of a commodity out of its destination node is zero,
and so allows us to simplify notation in constraints (14c)
and (14d) (they contain terms for flow only into the desti-
nation node). Constraint (14e) follows from the property
that in an optimal solution, flow travels in only one direction

across an edge, and all the flow across an edge originates
from the same source (the root node of the component the
edge belongs to). Constraint (14f) follows from the fact that
flow into any node in a component originates from a single
node (the root node of that component). Constraint (14h)
eliminates a large number of flow variables from the for-
mulation. It says that for any node there should not be any
flow into or out of that node from the root of a higher
indexed node set.

We now show that the flow formulation obtained by this
directing procedure is stronger than the cutset formulation. Let
Pcut

(13) denote the polyhedron defined by the linear relaxation of
constraints (13b)–(13d). Let Pifsf

(14) denote the polyhedron de-
fined by the linear relaxation of constraints (14b)–(14j).

Lemma 5.1. Projx(Pifsf
(14)) � Pcut

(13).

Proof. Consider any set S such that S � Tm � � and
(N�S) � Tm � � for some m � {1, 2, . . . , P}. Without
loss of generality assume that rm � N�S and let l be a node
in S � Tm. Consider any feasible solution (x� , f�) to Pifsf

(14).
Select H and H� � �, such that H � CD(l ) and H� �
CD(rm) [i.e., CD((l ))]. Summing constraint (14e) over
all edges {i, j} � �(S), we obtain

�
�i, j����S	

x� ij � �
k�H

�
�i, j����S	

f�ij
k 	 �

k� �H

�
�i, j����S	

f�ji
k

� �
k�CD�l 	

�
�i, j����S	

f�ij
k 	 �

k�CD�rm	

�
�i, j����S	

f�ji
k.

By flow balance,

¥k�CD�l 	¥�i, j����S	f�ij
k � ¥k�CD�l 	, �k	�N�S¥j�Nf�jl

k.

Constraint (14d) states ¥j�N f�jl
k � ¥j�N fjrm

k* , @k � CD(l ),
k* � CD(rm), such that O(k) � O(k*). Thus, ¥k�CD(rm)

¥{i, j}��(S) f�ji
k � ¥k�CD(rm),O(k)�S ¥j�N f�jrm

k �
¥k�CD(l ),O(k)�S ¥j�N f�jl

k . In other words

�
k�CD�l 	

�
�i, j����S	

f�ij
k 	 �

k�CD�rm	

�
�i, j����S	

f�ji
k

� �
k�CD�l 	,O�k	�N�S

�
j�N

f�jl
k 	 �

k�CD�l 	,O�k	�S

�
j�N

f�jl
k �

�14c	

1.

■

5.3 Computational Results

Table 2 describes some computational experiments com-
paring the improved flow formulation with the undirected
flow formulation (or cutset formulation, because they are
equivalent) for the Steiner forest problem. In the experi-
ments reported in these tables, we generated problems with
10, 15, and 20 nodes. We then varied the number of node
sets P (i.e., T1, . . . , TP) and the number of edges in the
graph. In the test problems T1 � T2 � T3 � . . . � TP
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� N. Further, we ensure that each node set Tj contains at
least two nodes, and the underlying graph contains a tree on
each node set. (We do so by randomly ordering the nodes in
a node set and creating an edge between nodes that are
adjacent to each other in this ordering.) For each combina-
tion of these parameters (number of nodes, number of
edges, and number of node sets), we created five instances
with random edge costs and five instances with Euclidean
edge costs. For instances, with random edge costs, we
randomly generated the edge lengths as integers between 5
and 50 and for the Euclidean test problems, we generated
the nodes on a 35 � 35 square grid with the edge lengths the
Euclidean distances rounded down to the nearest integers.
We ran all the computations using CPLEX 8.1 on a WIN-

DOWS XP machine with an Intel Xeon processor, at 2.66
GHz, and 2-GB of RAM.

Our results indicate that the improved undirected flow
formulation is exceptionally strong. In 83 out of 85 random
instances, the optimal solution to the linear programming
relaxation is integral; while in all 85 Euclidean instances the
optimal solution to the linear programming relaxation is
integral. However, the size of this formulation grows dras-
tically. The total number of commodities in the formulation
is �K� � (¥i�1

P i�Ti�) � P and the number of sets in � is
�j�1

P ((¥i�j
P �Ti�) � 1). The number of constraints of type

(14e) is �E� ���2, which is extremely large although still
polynomial for fixed P. Consequently, to use this formula-
tion to solve large scale problems, we might need to judi-
ciously add a subset of the constraints of type (14e) (adding
others as necessary). This is a possible topic for future
research.

A natural question to ask for the Steiner forest problem
is whether (1) the choice of root node for each node set, and
(2) the order of node sets, affects the optimal objective value
of the linear programming relaxation of the improved flow
formulation for the Steiner forest problems. The answer to
the first question is open, and we conjecture that the choice
of the root node within each node set does not affect the
optimal objective value of the linear programming relax-
ation. However, as we show next, the order of node sets
does affect the value of the optimal solution to the linear
programming relaxation of the improved flow formulation
for the Steiner forest problem.

As an example, consider the graph in Figure 5 with
two node sets {a, d} and {b, c}. Assume each edge in the
graph has unit cost. In the improved undirected flow
formulation, suppose we select T1 � {a, d} with node a as
the root of node set T1, and select T2 � {b, c} with node
b as the root of node set T2. This formulation contains
four commodities. Commodities 1, 2, and 3 have origin
node a and destinations nodes b, c, and d. Commodity 4
has origin node b and destination node c. The optimal
solution to the linear programming relaxation of the
improved undirected flow formulation sets xab � xbd

� xdc � xca � xbc � 0.5, fab
3 � fbd

3 � fac
3 � fcd

3 � fab
1 � fac

2

� fbc
4 � 0.5, with a cost of 2.5. If instead T1 � {b, c} and

T2 � {a, d} with node b as the root of node set T1 and

TABLE 2. Computational experiments comparing linear programming
relaxations of improved undirected flow formulation and
cut-set/undirected flow formulation.

(a) Random edge costs

�N� P �E�

Improved flow Cutset

LP/IP ratio Time (seconds) LP/IP ratio

10 3 20 1.000 0.019 0.787
30 1.000 0.025 0.770
45 1.000 0.044 0.724

4 20 1.000 0.025 0.843
30 0.995 0.059 0.800
45 1.000 0.091 0.746

15 4 30 1.000 0.672 0.767
50 1.000 1.325 0.736

105 1.000 6.669 0.693
6 30 1.000 18.122 0.797

50 1.000 36.791 0.752
105 0.995 799.640 0.684

20 3 50 1.000 1.009 0.692
100 1.000 14.181 0.683
190 1.000 20.750 0.640

5 50 1.000 627.942 0.733
100 1.000 473.367 0.709

(b) Euclidean edge costs

�N� P �E�

Improved flow Cutset

LP/IP ratio Time (seconds) LP/IP ratio

10 3 20 1.000 0.025 0.818
30 1.000 0.028 0.742
45 1.000 0.056 0.702

4 20 1.000 0.034 0.861
30 1.000 0.053 0.815
45 1.000 0.119 0.751

15 4 30 1.000 0.787 0.724
50 1.000 1.506 0.719

105 1.000 43.625 0.658
6 30 1.000 20.725 0.787

50 1.000 46.369 0.748
105 1.000 1208.665 0.669

20 3 50 1.000 1.203 0.694
100 1.000 24.294 0.691
190 1.000 26.256 0.621

5 50 1.000 311.191 0.722
100 1.000 1880.696 0.703

FIG. 5. (a) Graph with unit edge costs and two node sets {a, d} and {b,
c}. (b) Optimal solution to LP relaxation of improved undirected flow
formulation when T1 � {a, d}, and T2 � {b, c}. (c) Optimal solution to
LP relaxation of improved undirected flow formulation when T1 � {b, c},
and T2 � {a, d}.
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node a as the root of node set T2 then (1) commodities 1,
2, and 3 have origin node b and destinations nodes c, a,
and d; and (2) commodity 4 has origin node a and
destination node d. The optimal solution to the linear
programming relaxation of the improved undirected flow
formulation sets xab � xbd � xbc � 1, fbc

1 � fba
2 � fbd

3 � fcd
3

� 1, with a cost of three units.
In this section we developed a directing procedure on

an undirected graph by using directed commodity flows.
We could instead implement the directing procedure by
transforming the problem onto a directed graph. Ragha-
van [30] describes equivalent directed flow formulations
for the Steiner forest problem. To conclude this section,
we note that we modeled the directing procedure using
commodity flows. Unlike the unitary NDC problem,
there does not seem to be a straightforward way to
formulate a directed cut model. This disparity demon-
strates the flexibility and power of using flow models for
modeling network design problems with connectivity
constraints.

6. DIRECTING THE NDC PROBLEM

We now show how to generalize the directing procedure
we have just presented for the Steiner forest problem to
obtain a directed model for all NDC problems. As a result,
we obtain a stronger formulation for the NDC model with
edge-connectivity requirements.

To sketch the basic idea underlying the directing proce-
dure, consider any solution to the NDC problem. It consists
of one or more connected components. By following the
procedure described in Section 3, we can direct each con-
nected component of the integer solution to the NDC prob-
lem. However, like the Steiner forest problem, because the
problem is nonunitary, we do not know a priori the number
of connected components in the optimal solution and the
required nodes they contain. By combining the directing
procedure for the unitary NDC problem and the directing
procedure for the Steiner forest problem, we obtain a di-
rected model for the NDC problem.

The following commodity selection procedure outlines
the essential idea of the directing procedure. We first use the
directing procedure described in Section 3.2 to direct the
problem for commodities with rst � 2. We then apply the
Steiner forest problem’s directing procedure to direct the
bridge edges in each component of the optimal integer
solution to the NDC problem.

Commodity Selection Procedure for Improved Flow
Formulation (15):

1. Find the requirement spanning tree.
2. Delete all edges with rst � 0 from the requirement

spanning tree. Delete all singleton nodes in the resulting
forest.

3. For each edge {s, t} of the requirement spanning tree
with rst � 2, create two commodities: one with origin

node s and destination node t, and the other with origin
node t and destination node s; each of these commodities
has a flow requirement of rst/ 2. Let L2 denote this set of
commodities.

4. Contract each edge {s, t} with rst � 2 in the require-
ment spanning tree, creating a forest F in which rij � 1
for all edges {i, j}. Identify the connected components
T1, T2, . . . , TP of this forest. Denote any node in F
created by contraction by any of the nodes it contains in
the original requirement spanning tree (e.g., if contract-
ing nodes s and t creates a node in F, then we denote the
contracted node by s). Select a contracted node in each
set Ti as the root node ri of the node set Ti. (If node set
Ti does not contain a contracted node, then arbitrarily
select any one of the nodes as the root node). Create
commodities as described for the Steiner forest problem
with node sets T1, T2, . . . , TP, and root nodes r1,
r2, . . . , rP. Let L1 denote this set of commodities.

Using this set of commodities K � L1 � L2, we obtain
the following improved undirected flow formulation.

Improved Undirected Flow Formulation for NDC Prob-
lem:

Minimize �
�i, j	�E

cijxij (15a)

subject to: �
j�N

fji
k � �

l�N

fil
k���1 if i � O�k	,

�1 if i � D�k	,
�0 otherwise,

� 
 i � N
and
k � L1,

(15b)

�
j�N

fji
k � �

l�N

fil
k � ��qk if i � O�k	,

qk if i � D�k	,
0 otherwise,

� 
 i � N
and
k � L2,

(15c)

�
k�CD�i	

�
j�N

fjD�k	
k � 1 for all i � T�R, (15d)

�
j�N

fjD�k	
k � �

j�N

fjD�k*	
k*


 i � T�R, 
 k � CD�i	,
s.t. O�k	 � O�k*	, and
D�k*	 � �i	,

(15e)

�
k�H

fij
k 	 �

k� �H

fji
k � xij

for all �i, j� � E, and
all H, H� pairs in �, (15f)

�
i�N

�
k�H

fij
k � 1

for all j � N, and
all H in �, (15g)

fij
k 	 fji

h � xij for all k, h � K, (15h)

fD�k	l
k � 0

for all l � N and k � L1,

 �i, j� � E and any k � L1

(15i)

fij
k � 0

s.t. O�k	 � Tv and
i or j � Tu where u � v, (15j)
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xij � 1 for all �i, j� � E, (15k)

fij
k

fji
k� � 0

for all �i, j� � E, and
k � K, (15l)

xij � 0 and integer, for all �i, j� � E. (15m)

In this formulation, T � T1 � . . . � TP, R � {r1, . . . ,
rP}, and ( j) denotes node j’s root node. CO(k), CD(k),
and � are defined as for the Steiner forest problem for the
commodities k � L1.

Let Pifndc
(15) denote the polyhedron defined by the linear

relaxation of constraints (15b)–(15m). Using an identical
argument as in the proof of Lemma 5.1 establishes the
following result.

Lemma 6.1. Projx(Pifndc
(15) ) � Pcut

(13).

If the requirement spanning tree contains no edge {s, t}
with rst � 1, the improved formulation for the NDC
problem (15) contains no commodities in L1, and so the
model contains only constraints (15c), (15h), (15k), (15l),
and (15m). In this case, arguing as in Section 3.2 shows that
this formulation is equivalent to the undirected flow formu-
lation. Consequently, the improved formulation for the
NDC problem is stronger than the undirected flow formu-
lation only when the maximum spanning tree of the require-
ment graph contains some edge {s, t} with rst � 1.

7. CONCLUDING REMARKS

We have shown how to improve formulations for net-
work design problems with connectivity requirements
(NDC problems) by generalizing directing procedures for
versions of these problems with connectivity requirements
rst of 0 or 1. For unitary NDC problems, we developed
strong models by generalizing the directing procedure for
the Steiner tree problem. We also developed a new directing
procedure for the Steiner forest problem, and generalized it
to create strong models for nonunitary NDC problems.
Unlike the known use of the Nash-Williams procedure for
orienting undirected graphs into directed paths, our method
uses an orientation based upon fractional paths, permitting
us to strengthen the underlying optimization models for
problems with arbitrary connectivity requirements (and so
not limited to connectivity requirements that are either one
or even).

For unitary NDC problems, we also showed that the
projection of the new formulations onto the space of the
edge design variables contains two classes of valid inequal-
ities (partition, and combinatorial design) that are general-
izations of valid inequalities for the Steiner tree problem.
For nonunitary NDC problems, we have not fully investi-
gated the projection of the improved models (the projection
cones are quite complex) to determine valid inequalities
implied by them in the space of the original edge variables.
This investigation is a potential direction of future research.

We have not considered node-connectivity requirements.
Raghavan [30] describes formulations and algorithms for
NDC problems with node-connectivity requirements, as
well as NDC problems with both edge- and node-connec-
tivity requirements. However, because node connectivity
implies edge connectivity, all the valid inequalities derived
for the edge-connectivity version of the NDC problem are
valid for the node-connectivity version. Consequently, the
partition, and combinatorial design inequalities are valid for
the node-connectivity version of the unitary NDC problem,
and in some instances they can be facet defining. For
instance, Stoer [32] shows that under certain conditions, the
partition inequalities are facet defining for the node-connec-
tivity version of the SND problem.

In a related article [25] we consider the NDLC problem
and derive a dual-ascent algorithm using a directed flow
model on a directed graph. Computational experiments re-
ported in that article show that the dual ascent algorithm
applied to the directed flow model is able to solve problems
with up to 300 nodes and 3000 edges to within a few percent
of optimality, indicating that the linear programming relax-
ation of the improved flow formulation provides a good
approximation to this mixed integer program model.
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