
INFORMS JOURNAL ON COMPUTING
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000
issn 0899-1499 |eissn 1526-5528 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

The Recoverable Robust Two-Level Network Design
Problem

Eduardo Álvarez-Miranda
Departamento de Modelación y Gestión Industrial, Universidad de Talca, Curicó, Chile,

ealvarez@utalca.cl

Ivana Ljubić
Department of Statistics and Operations Research, University of Vienna, Vienna, Austria,

ivana.ljubic@univie.ac.at

S. Raghavan
Smith School of Business and Institute for Systems Research, University of Maryland, College Park, MD, USA,

raghavan@umd.edu

Paolo Toth
Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione, Università di Bologna, Bologna, Italy,

paolo.toth@unibo.it

We consider a network design application which is modeled as the two level network design problem under

uncertainty. In this problem, one of the two available technologies can be installed on each edge and all

customers of the network need to be served by at least the lower level (secondary) technology. The decision

maker is confronted with uncertainty regarding the set of primary customers, i.e., the set of nodes that

need to be served by the higher level (primary) technology. A set of discrete scenarios associated with the

possible realizations of primary customers is available. The network is built in two stages. In the first-stage

the network topology must be determined. One may decide to install the primary technology on some of

the edges in the first stage, or one can wait to see which scenario will be realized, in which case, edges

with the installed secondary technology may be upgraded, if necessary to primary technology, but at higher

recovery cost. The overall goal then is to build a “recoverable robust” spanning tree in the first stage that

serves all customers by at least the lower level technology, and that minimizes the first stage installation

cost plus the worst-case cost needed to upgrade the edges of the selected tree, so that the primary customers

of each scenario can be served using the primary technology. We discuss the complexity of the problem,

provide mixed integer programming models and develop a branch-and-cut algorithm to solve it. Our extensive

computational experiments demonstrate the efficacy of our approach.

Key words : network design, robust optimization, mixed integer programming, branch-and-cut

History : Accepted by Karen Aardal, Area Editor for Design and Analysis of Algorithms; received

November 2012; revised October 2013; accepted March 2014.

1. Introduction

In many real-world settings, when planning an expansion of a telecommunication or power distri-

bution network, a network has to be built even before the set of customers is known with complete

1

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
2 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

certainty. In addition, if different services are offered to customers, uncertainty could be present

regarding the type of service that each of the customers needs. Usually, complete information

regarding the underlying demand patterns becomes available much later in the planning process.

In that case, applying standard deterministic optimization by considering only one of the possible

realizations of the input data leads towards solutions that might not be optimal, or for that matter

even feasible, for the final data realization. A wait-and-see approach might also be unacceptable

from the economical perspective, since the infrastructure cost might significantly increase as time

progresses.

Two-stage stochastic optimization and robust optimization (RO) are two possible approaches

to deal with these kind of problems. In two-stage stochastic programming (Birge and Louveaux

2011), the solution is built in two stages. In the first phase, a partial network is built which is later

on completed, upon the realization of the uncertain data. The objective is to minimize the cost of

the first-stage decisions plus the expected cost of the recourse (second-stage) decisions. However,

this approach relies on the accuracy of the random representation of the parameter values (such

as probability distributions) that allow one to estimate the second-stage expected cost. When

such accuracy is not available, the use of deterministic uncertainty models arises as a suitable

alternative (Kouvelis and Yu 1997, Bertsimas and Sim 2003, Ben-Tal et al. 2010). In these models

no assumptions are made about the distribution of the uncertain input parameters. Consequently,

in these RO approaches, single-stage decisions are made and solutions are sought that are immune

in a certain sense to all possible realizations of the parameter values. Clearly, such solutions may

be over conservative, since the networks constructed minimize the investment costs for the worst

possible data realization.

Two-Stage Robust Optimization (2SRO) is a modeling approach that combines classical two-

stage optimization with robust optimization. In this case, probability distributions are unknown, so

the cost of the second-stage decisions is calculated by looking at the worst-case realization of data.

The goal is to find a first-stage solution that minimizes the first-stage costs plus the worst-case

second-stage costs across all possible data outcomes. For references on different models of 2SRO

we refer the reader to Ben-Tal et al. (2004), Atamtürk and Zhang (2007), Thiele et al. (2009), Zhao

and Zeng (2012).

Recoverable Robustness is an approach that falls within the framework of 2SRO (Liebchen et al.

2009). Recalling our practical context, assume that the network is built in two stages and we are

required to find a first-stage solution that should be robust against many possible realizations

(scenarios) of the input data in a second-stage. Robustness in this context means that the first-

stage solutions are expected to provide a reasonable performance in terms of optimality and/or

feasibility, for any possible realization of the uncertain data. For this model, it is instructive to

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 3

think there is a possibility to recover the solution constructed in the first stage in a second stage

(i.e., to modify the previously defined network in order to make it feasible and/or cheaper) once

the uncertainty is resolved. The set of allowed recovery actions and their cost may be known in

advance for each of the possible data/scenario realizations. These recovery actions are limited, in

the sense that the effort needed to recover a solution may be algorithmically (in terms of how

a solution may be modified) and economically (in terms of the cost of recovery actions) limited.

Therefore, instead of looking for a solution that is robust against all possible scenarios without

allowing any kind of recovery (which is the case for many RO approaches, see Ben-Tal et al. 2010)

we want a solution robust enough so that it can be “recovered” promptly and at low cost once

the uncertainty is resolved. This balance between robustness and recoverability is what defines a

recoverable robust optimization problem.

The Two-Level Network Design (TLND) problem (Balakrishnan et al. 1994a,b) models the design

of telecommunication and power distribution networks, in which two types of customers (requiring

two different levels of service) are taken into account. Primary customers require a higher level

of service and are required to be connected using a higher level (primary) technology; secondary

customers can be connected either by the primary or a secondary, and cheaper, technology. The

difference between the cost of the primary and secondary technology is often called the upgrade

cost.

In the deterministic version of the TLND problem the set of primary customers and its comple-

ment, the set of secondary customers, are known in advance. However, when long term decisions

need to be made (i.e., when the topology of the network needs to determined), there is not always

complete knowledge about the set of primary customers. The topology of the network needs to be

determined well before a precise knowledge of the demand is available because of the long lead times

involved in constructing physical links (edges) in telecommunications and power distribution net-

works (for example in telecommunications networks fiber cables need to be installed underground

which can take a significant period of time). Further, even if some rough idea of demand is known,

changes in demographic, socio-economic, or political factors can lead to changes in the structure of

the demand during the planning horizon. Under these conditions, a decision maker needs to find a

first-stage solution (a spanning tree comprised by secondary and primary technology edges) that

can be recovered in the second stage, and turned into a feasible one, once the actual set of primary

nodes becomes known. For this case the recovery action is the late upgrade of a given edge from

secondary to primary technology. (In telecommunications networks once a fiber link is in place it

can be relatively quick to upgrade the capacity/technology on a link by changing the equipment at

the end points of the link.) For each possible scenario, this upgrade incurs an extra cost, recovery

cost, defined as the sum of all late upgrades that are needed to ensure that all primary nodes

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
4 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

are connected by the primary technology. The Recoverable Robust TLND (RRTLND) problem

searches for a solution that minimizes the sum of the first-stage cost and the recovery cost of the

second stage defined as the worst case recovery cost over all possible scenarios.

1.1. Our Contribution and Outline of the Paper

The RRTLND problem is a new problem not studied previously in the literature. We first study the

problem on trees: we show that the RRTLND problem is NP-Hard even on a star (a star is a tree

where all nodes except the central one have degree 1) with uniform upgrade and recovery costs; we

then propose a preprocessing procedure and a Mixed Integer Programming (MIP) model with a

linear number of variables for solving the RRTLND problem on trees to optimality. In the second

part of the paper we propose a MIP formulation for the problem on general networks and develop

a branch-and-cut algorithm to solve it. We develop problem-dependent techniques for efficiently

separating the underlying inequalities within the branch-and-cut framework. In addition, we use a

primal heuristic that relies upon the ideas of matheuristics and uses an embedded MIP for solving

the problem on trees. Finally, an extensive set of computational experiments are carried out in

order to assess (1) the performance of the proposed algorithm and its dependence on the problem

parameters, and (2) the nature and characteristics of the solutions obtained. The analysis includes

a qualitative study of the solutions in terms of Robustness and Recoverability and an assessment of

the algorithmic performance. To complement this analysis, we also consider a Steiner-tree variant

of the TLND problem and adapt the algorithm to solve its recoverable robust counterpart.

In §1.2, the TLND problem is formally defined and a review of the main literature presented.

In §2 the concept of Recoverable Robustness is discussed further, and the RRTLND problem is

formally defined. Results regarding the computational complexity of the RRTLND problem on trees

are discussed therein and a new MIP model is shown. A MIP formulation for the RRTLND problem

on general graphs together with the elements of our branch-and-cut approach is described in §3.

In §4 the Steiner tree variant of the TLND problem, the Two-Level Steiner Tree (TLStT) Problem,

is defined and a MIP formulation is presented for its Recoverable Robust counterpart (RRTLStT).

In §5 we present and analyze the computational results obtained for two sets of instances for the

RRTLND problem and for the RRTLStT problem. Concluding remarks are provided in §6.

1.2. The Two-Level Network Design Problem

In this section we provide a formal definition of the TLND problem and give a review of the

previous literature on this problem.

The Two-Level Network Design Problem We are given an undirected connected graph G=

(V,E), |V |= n, |E|=m, with a set P ⊆ V , which corresponds to the set of primary nodes. On each

edge e∈E one of two given technologies (primary or secondary) can be installed. Correspondingly,

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 5

primary and secondary edge costs, ae and be are associated with each edge e∈E, ae ≥ be ≥ 0, where

ue = ae − be; ue is referred to as the upgrade cost as it can be viewed as the cost of upgrading a

secondary edge to a primary one. Let X∈ {0,1}|E| be a binary vector such that Xe = 1 if edge e∈E

is used in the spanning tree and Xe = 0 otherwise; and let Y ∈ {0,1}|E| be a binary vector such

that Ye = 1 if on edge e ∈ E primary technology is installed and Ye = 0 otherwise. Consequently,

if Xe = 1 and Ye = 0, secondary technology is installed in e. Let E(X) and E(Y) represent the

subsets of edges associated with X and Y, respectively. The TLND problem consists of finding

(X∗,Y∗) such that

f (X∗,Y∗) = min
(X,Y)∈D

 ∑
e∈E(X)

be +
∑

e∈E(Y)

ue

 (1)

where D= {(X,Y)∈ {0,1}|E|×{0,1}|E|} such that E(X) is a spanning tree in G, E(Y) is a Steiner

Tree connecting P , and Y≤X.

Literature Review The history of the TLND problem begins with the introduction of the

Hierarchical Network Design problem (HND) (see Current et al. 1986), which is a special case of

the TLND problem with |P | = 2. Duin and Volgenant (1989) present structural properties and

reduction tests for the HND problem; Pirkul et al. (1991) develop a Lagrangian-relaxation based

heuristic; Sancho (1995) proposes a dynamic programming procedure; and recently, Obreque et al.

(2010) present a branch-and-cut algorithm.

The TLND problem was introduced by Duin and Volgenant (1991) where two heuristics and

preprocessing procedures are proposed. Several network flow based models for the TLND problem

have been proposed and compared in Balakrishnan et al. (1994b). The authors also propose a

composite heuristic that provides an approximation ratio of 4
4−ρ if the embedded Steiner tree is

solved with an approximation ratio of ρ < 2. In Balakrishnan et al. (1994a), the authors provide

a dual ascent method derived from a flow-based model presented in Balakrishnan et al. (1994b).

More recently, Gouveia and Telhada (2008) discuss alternative MIP formulations for the problem

and solve them using Lagrangian relaxation approaches. Some extensions of the TLND problem

combine it with the facility location problem (see Current 1988, Gollowitzer et al. 2013). In addition

to telecommunication applications the TLND problem appears in the design of Internet Protocol

networks (Chamberland 2010) and electrical power distribution systems (Costa et al. 2011).

The Multi-Level Network Design Problem (MLND) corresponds to the more general case in

which L types of customers and L technologies are available, and the goal is to find a subtree that

enables each node at level ` to communicate with other node of the same type, by using a tree built

of edges of type at most `, for each 1≤ `≤L, L≥ 2. The problem has been defined by Mirchandani

(1996), who called the problem the Multi-Tier Tree Problem and provided a heuristic based on the

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
6 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

one proposed for the TLND problem in Balakrishnan et al. (1994a). In Chopra and Tsai (2002), a

branch-and-cut approach derived on a layered graph formulation of the problem has been applied

to problems with three to five levels.

2. The Recoverable Robust TLND (RRTLND) Problem

In this section we provide references to the recent applications of the recoverable robust optimiza-

tion, define the RRTLND problem and study the properties of the problem on trees.

Recent Applications of Recoverable Robust Optimization In Liebchen et al. (2009) the

authors introduce the Recoverable Robust Optimization (RRO) concept and provide a general

framework for optimization problems affected by uncertainty, while focusing on the applications

arising in the railway scheduling. Recently, the concept of RRO has also been applied to other

application areas as well. The recoverable robust knapsack problem considering different models of

uncertainty is studied in Büsing et al. (2011). Formulations and algorithms for different variants

of the recoverable robust shortest path problem are given in Büsing (2012). Finally, in Cicerone

et al. (2012) a more general framework of the RRO is studied in which multiple recovery stages

are allowed. The authors apply the new model to timetabling and delay management applications.

As other robust optimization approaches the RRO approach allows different models of the uncer-

tainty set, e.g., interval, polyhedral and discrete. In this paper, as in Büsing et al. (2011), we use

the discrete set model of uncertainty.

2.1. The Recoverable Robust TLND Problem

Suppose that in a given application of the TLND problem it is not known exactly which elements

comprise the set of primary customers P . Instead, we are given a finite set of scenarios K such

that, for each k ∈K, there is a set P k ⊆ V of nodes corresponding to the primary customers if

scenario k is realized. Additionally, motivated by the practical applications, we are given a root

node r such that r ∈ P k for all k ∈K. We note that while the application typically has a root node

(the root represents, for example, a central office, i.e., a connection to the backbone network), if

this is not the case it is easy to modify the formulations and procedures described in this paper to

address the situation.1

The decision maker needs to determine the topology of the spanning tree connecting the nodes

in the network in the first stage. He/she may decide to install the primary technology on edge

e∈E in the first stage, or to recover the edge in the second (recovery) stage by upgrading it from

the secondary to the primary technology (in case scenario k is realized and set P k requires it).

1 Simply create a fictitious root node that has an edge to every node in the graph, and either (i) make these new
edges have zero cost and add the requirement that the degree of the root node is 1, or (ii) give a sufficiently large
cost to these new edges so that only one of them will be in the optimal solution.

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 7

Hence, for each edge e and for each scenario k, we also define the late upgrade (or recovery) cost

rke ≥ ue = ae− be that needs to be paid if secondary technology is upgraded on edge e in the second

stage when scenario k is realized; as opposed to ue being the regular (or first-stage) upgrade cost.

In our problem, for each scenario k ∈K, each of the customers v ∈ P k is to be served by the

primary technology, i.e., there exists a path between r and v along that tree, consisting of solely

primary edges. These primary edges can either be installed in the first stage, or recovered in

the second stage. Further, in the practical application (for administrative reasons generally) it is

required that the primary edges form a connected network (i.e., there can be no isolated primary

edges). Our goal is to find a spanning tree (along with a prescription of which edges should be

installed as primary in the first stage) that minimizes the overall installation cost in the first stage

(given as the sum of the costs of primary and secondary edges), plus the worst recovery costs,

calculated over all scenarios k ∈K.

More formally, let X ∈ {0,1}|E| be a binary vector as defined in §1.2. Let Y0 ∈ {0,1}|E| be a

binary vector such that Y 0
e = 1 if on edge e the primary technology is installed in the first-stage

and Y 0
e = 0 otherwise. Let Yk ∈ {0,1}|E|×|K| be a binary vector such that Y k

e = 1 if the secondary

technology that was installed in the first-stage on edge e is upgraded into the primary one in

scenario k ∈K.

Given a scenario k ∈K and a first-stage solution (X,Y0) (X associated to a spanning tree of G

and Y0 ≤X), the recovery cost is the minimum total upgrade cost needed to provide feasibility to

(X,Y0) by recovery actions Yk. This cost can be expressed as

min
Yk∈Y(X,Y0,k)

 ∑
e∈E(Yk)

rke

 ,

where Y (X,Y0, k) is the set of all possible late upgrades for pair (X,Y0) and the set of primary

customers P k. In other words, vector Yk expresses how to recover the solution (X,Y0) in scenario

k in order to make it feasible. For each k ∈K, the set of all feasible recoveries is given as:

Y
(
X,Y0, k

)
= {Yk ∈ {0,1}|E|×|K| |E(Y0)∪E(Yk) is a Steiner tree spanning P k,

Yk ≤X−Y0}.

Note that because of the requirement that the final network (after the uncertainty is resolved)

does not allow for isolated primary edges (i.e., E(Y0)∪E(Yk) is connected), it is easy to see that

E(Y0) must be connected if rke ≥ ue. Notice that, given the first stage decision, for each k ∈K,

the optimal recovery solution can be found in O(n) time. The following second-stage objective

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
8 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

(a) Instance of the RRTLND problem. (b) Recovery costs are re = 1.5 ∀e∈E. (c) Recovery costs are re = 3 ∀e∈E.

Figure 1 Instance and optimal solutions for the RRTLND problem.

Note. Node with symbol N corresponds to r, nodes denoted by ♦ are primary nodes in scenario k = 1 and nodes

denoted by © are primary nodes in scenario k = 2. For each e ∈E, its primary and secondary costs are ae = 2 and

be = 1, respectively. Dotted, bold, dashed and dot-dashed edges correspond to E(X), E(Y0), E(Y1) and E(Y2),

respectively.

function, R(X,Y0), expresses the robust recovery cost (which is the maximum recovery cost over

all scenarios k ∈K):

R(X,Y0) = max
k∈K

min
Yk∈Y(X,Y0,k)

 ∑
e∈E(Yk)

rke

 .

The Recoverable Robust TLND (RRTLND) problem is defined as follows

OPTRR = min{
∑

e∈E(X)

be +
∑

e∈E(Y0)

ue+R(X,Y0) | (X,Y0)∈ {0,1}|E|×{0,1}|E|, (2)

E(X) is a spanning tree on G,

Y0 ≤X and E(Y0) is connected }.

In Figure 1(a) an instance of the RRTLND problem with two scenarios is shown. In Figures 1(b)

and 1(c) optimal solutions for different cost structures are presented. In the first case, recovery

(i.e., late upgrade) costs are 50% more expensive than regular upgrade costs while in the second

case the difference goes to 200%. This difference in the cost structure explains why in the solution

shown in 1(b) there are edges that are recovered in a second stage for each of the scenarios, while

in the solution shown in 1(c) no recovery is performed since it is cheaper to install primary edges

in the first stage than recover edges in a second stage. The cost of the first solution is given by

OPTRR = 1× 9 + 1× 4 + max{1× 1.5,1× 1.5}= 14.5 and the cost of the second solution is given

by OPTRR = 1× 9 + 1× 6 + max{∅}= 15.

A first-stage solution (X,Y0) is robust because, regardless of which scenario is realized, it ensures

that the second-stage actions will be efficient (due to the minimization of the worst case) and easy

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 9

to implement (because only upgrades are needed). In this sense, the more scenarios we take into

account to find (X,Y0), the more robust the solution is; because we are foreseeing more possible

states of the future uncertainty. Along the same line, recoverability is the capability of a first-stage

solution to become feasible by means of second-stage actions.

We wish to emphasize that in this two-stage setting the classical single-stage RO approaches

such as those proposed in Kouvelis and Yu (1997) or Ben-Tal and Nemirovski (2000) are not good

models, and can be overconservative. In intuitive terms, because the typical RO approaches are

single-stage approaches without the possibility of recovery in the second stage, they require the

constructed solutions to be feasible for all scenarios!

In RRO the first-stage solution lies between two extremes: an absolute robust (AR) solution and

a pure wait-and-see (W&S) solution. The first case corresponds to a solution for which no recovery

is allowed, i.e., E(Y0) spans P̌ =
⋃
k∈K P

k, so the solution is feasible for all scenarios (this solution

in the first case can be viewed as one that would be obtained under the classical single-stage RO

approach). On the contrary, the second case corresponds to a solution for which E(Y0) = ∅, so a

complete primary Steiner tree should be constructed (but only the most expensive one is considered

in the total cost) in the second-stage for each P k, k ∈K (the solution in the second case can be

viewed as one with maximum recovery as it requires each primary edge to be obtained via recovery).

Both solutions can lead to very high total costs, either because unnecessarily many primary edges

have to be installed in the first-stage or because the second-stage primary costs are considerably

higher than those of the first stage. The Gain of Recovery (GoR) is defined as the relative difference

between OPTRR and the cost of these two solutions, i.e., GoR(AR) = OPTAR−OPTRR
OPTAR

× 100% and

GoR(W&S) = OPTW&S−OPTRR
OPTW&S

× 100%, where OPTAR and OPTW&S are the costs of the optimal

AR and W&S solutions respectively.

2.2. The RRTLND Problem on Trees

In this section we consider the RRTLND problem on trees.

2.2.1. Complexity of the RRTLND Problem on Trees

Theorem 1. Solving the RRTLND problem is NP-hard even if the input graph G is a tree, and

all regular and late upgrade costs are uniform.

Proof. Because the input graph is a tree, every edge in the graph will have at least secondary

technology installed. Therefore the optimization only needs to consider regular and late upgrade

costs.

We will show the result by a transformation (the main idea in this transformation is similar to

Garg et al. 1997) from the minimum vertex cover problem. Given a graph H = (VH ,EH), VH =

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
10 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

{v1, . . . , vn}, a set of vertices such that each edge of the graph is incident to at least one vertex of

the set is called a vertex cover. In the minimum vertex cover problem we wish to find a vertex cover

of smallest cardinality. Given an instance of a vertex cover on the graph H, construct an instance

of the RRTLND problem with K scenarios as follows. First, construct a star graph S = (VS,ES)

from H as follows. Let VS = v0 ∪ VH , and ES =
⋃
i=1...,n{v0, vi}. Let the upgrade costs in the first

stage be ue = 1, for all e ∈ ES, and let M = n/2 be the uniform second-stage upgrade cost, i.e.,

rke =M , for all e∈ES, k ∈K. For each edge {uk, vk} in EH , create a scenario k ∈K in S, by setting

P k = {v0, uk, vk}.

We now show that the optimal solution of the RRTLND problem on S provides us the minimum

vertex cover on H. Without loss of generality, assume that the value of the vertex cover, C, on H

is such that C ≤ n−1
2

.2 Consider the possible values for the maximum recovery cost R∗: (i) If there

exists k ∈K, such that the edges {uk, v0} and {v0, vk} were not purchased in the first stage, then

the maximum recovery cost will be R∗ = 2M . (ii) If for all k ∈K at least one of the two edges

is purchased in the first stage, but there also exists k̂ such that exactly one of the two edges is

purchased, then R∗ =M . Since for each scenario k ∈K, at least one of the edges {uk, v0},{v0, vk}

need to be installed in the first stage, the minimum cost first-stage solution that satisfies this

property corresponds to the minimum vertex cover on H (edge {v0, vk} installed in the first stage

(on S) corresponds to node vk in the vertex cover on H). Therefore, the total cost of such a

constructed solution is upper bounded by C +M . (iii) Finally, if for all k ∈ K, both edges are

purchased in the first stage, R∗ = 0, but the first-stage cost is equal to n. It is not difficult to see

that the second solution will be the optimal one (recall that we chose H such that C <n/2) since:

C +M < 2M and C +M <n. �

2.2.2. A MIP Model for the RRTLND Problem on Trees We now provide a MIP

formulation for the RRTLND problem on trees for which it is necessary to perform an O (nK)

preprocessing. For constant K this formulation is of compact size. Furthermore, it involves only

binary variables associated with the installation of the primary technology in the first stage. Due

to the preprocessing, this model does not involve the variables associated with the second-stage

decisions.

Preprocessing: Given G that has a tree structure, for each scenario k ∈K we first solve the

Steiner tree problem with the set P k being the terminal nodes of that tree. We assume that on all

edges in G secondary technology is installed in the first stage, so that all edges of the Steiner Tree

2 Given a graph H we can create another graph H ′ by duplicating the set of nodes and add an additional node (i.e.,
VH′ = VH ∪ v0 ∪ {vn+1, . . . , v2n}). The set of edges EH′ in this new graph includes the previous edges and an edge
from v0 to each node vi, i= 1, . . . ,2n. It is easy to see that the minimum vertex cover on VH′ is the union of v0 and
the minimum vertex cover on VH , and satisfies our assumption on the size of the vertex cover.

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 11

need to be recovered in the second stage. Therefore, to find the optimal Steiner tree, we consider

the edge cost defined by rke , for each e∈E, for each k ∈K. Let Pk be the set of edges corresponding

to the optimal Steiner tree, for k ∈K, and let ωk =
∑

e∈Pk
rke be the recovery cost for that tree,

assuming that there were no primary edges in the first stage. Obviously, finding the optimal Steiner

trees can be done in O(n) time, for each k ∈K. We now state a useful property concerning the

structure of RRTLND problem solutions on trees.

Property 1. Let P =
⋂
k∈K Pk 6= ∅ denote the set of edges for which the recovery is needed over

all scenarios k ∈K. Given that for all e∈E, k ∈K we have rke ≥ ue, there always exists an optimal

solution to the RRTLND problem on trees such that the primary edges are installed in the first

stage along all edges in P. Further, the subgraph induced by P is connected.

Hence, the optimal primary subtree of the first stage is a rooted subtree of G which is a superset

of P and a subset of E. Therefore, if P 6= ∅, we can shrink all the edges of P into the root node

and continue solving the problem on the shrunken tree. Consequently, we can assume w.l.o.g. that

P = ∅. Given that G is a tree with a pre-specified root node, for each edge e : {u, v} ∈E (u, v 6= r),

we can uniquely determine the predecessor edge e′ on the path between r and e. Let s ∈ {0,1}|E|

be a binary vector such that se = 1 if a primary technology is installed in the first stage and se = 0

otherwise. The following formulation allows us to solve the RRTLND problem on trees:

f (s∗) = min
∑
e∈E

uese +λ (T.1)

s.t. se′ ≥ se ∀e∈E, e′ is predecessor of e : {u, v}, u, v 6= r (T.2)

λ≥ ωk−
∑
e∈Pk

rkese ∀k ∈K (T.3)

s∈ {0,1}|E|, λ≥ 0 (T.4)

In the formulation (T.1)-(T.4) we only have one set of binary variables, s, and O(n + K)

constraints. Therefore, for a constant number of scenarios, this is a compact formulation. Con-

straints (T.2) force first-stage primary edges to form a connected component rooted at r. Inequal-

ities (T.3) model the nested maximization problem associated with the robust recovery cost; if

primary technology is installed on edge e in the first stage, then its recovery cost is subtracted from

ωk for those sets for which e is supposed to be upgraded in the second stage (i.e., for e∈Pk). This

MIP model will be used in a matheuristic fashion for finding feasible solutions of the RRTLND

problem in general graphs. This will be the core of the primal-heuristic embedded into a branch-

and-cut approach framework that we discuss in §3.2.

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
12 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

3. MIP Model and Branch-and-Cut Algorithm

Before we provide a MIP model for the RRTLND problem, we observe that for every feasible

solution of the problem, we can associate a rooted spanning arborescence consisting of a rooted

primary sub-arborescence embedded into the secondary one. In addition, for each k ∈ K, edges

from E(Yk) can uniquely be oriented, so that the set of directed primary edges from the first-stage

solution, plus the set of directed edges from E(Yk) builds a Steiner arborescence spanning P k.

Henceforth, instead of dealing with MIP models containing binary variables associated with edges

of the graph G, we will consider its bidirected counterpart, GA = (V,A), where A = {(r, i) | e :

{r, i} ∈E}∪ {(i, j), (j, i) | e : {i, j} ∈E, i, j 6= r}.

3.1. MIP formulation for the RRTLND Problem

The MIP formulation investigated in this paper is based on directed cut-set inequalities. The LP-

relaxation of this model usually accomplishes good quality lower bounds, since many facet-defining

inequalities can be projected out of the directed model for tree problems (see Grötschel et al. 1992).

Let x ∈ {0,1}|A| be a binary vector such that xij = 1 if arc (i, j) ∈ A belongs to the spanning

arborescence and xij = 0 otherwise, let y0 ∈ {0,1}|A| be a binary vector such that y0ij = 1 if primary

technology is installed in arc (i, j)∈A in the first stage and y0ij = 0 otherwise. Let yk ∈ {0,1}|A|×|K|

be a binary vector such that ykij = 1 if the secondary technology installed on arc (i, j) ∈ A is

upgraded into the primary one in scenario k ∈ K and ykij = 0 otherwise. We use the following

notation: A set of vertices S ⊆ V (S 6= ∅) and its complement S̄ = V \S, induce two directed cuts:

δ+ (S) =
{

(i, j) | i∈ S, j ∈ S̄
}

and δ− (S) =
{

(i, j) | i∈ S̄, j ∈ S
}

; we write x (A′) =
∑

(i,j)∈A′ xij for

any subset A′ ⊂A.

Vector x is associated with a directed spanning tree of GA (spanning arborescence) rooted at r

if it satisfies the following set of inequalities

x
(
δ− (S)

)
≥ 1 ∀S ⊆ V \{r} , S 6= ∅, (3)

a vector y0 is associated with a directed arborescence of GA rooted at r if it satisfies

y0
(
δ− (S)

)
≥ y0

(
δ− (i)

)
∀i∈ S, ∀S ⊆ V \{r} , S 6= ∅, (4)

and a vector of recovery actions yk along with a vector y0 are associated with a directed Steiner

arboresence of P k for all scenarios k ∈K if they fulfil

(
y0 +yk

) (
δ− (S)

)
≥ 1 ∀S ⊆ V \{r} , S ∩P k 6= ∅, ∀k ∈K. (5)

Constraints (3), (4) and (5) are called x-cuts, y0-cuts and scenario-cuts, respectively. As we

will describe in detail later, our branch-and-cut performs at a given node of the branch-and-bound

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 13

tree a separation procedure of x-cuts, y0-cuts and scenario-cuts by means of (i) the resolution of

a max-flow problem on a support graph induced by the Linear Programming (LP) relaxation and

(ii) a combinatorial enumeration of those cuts on a support tree also induced by the current LP

relaxation.

The MIP model for the RRTLND problem then reads as follows:

min
∑
e∈E

beXe +
∑
e∈E

ueY
0
e +ω

s.t. ω≥
∑
e∈E

rkeY
k
e ∀k ∈K (6)

(3), (4), (5)

Xe = xij +xji Y 0
e = y0ij + y0ji Y k

e = ykij + ykji ∀e : {i, j} ∈E,∀k ∈K (7)

Xe, Y
0
e , Y

k
e ∈ {0,1} ∀e∈E,k ∈K (8)

Before concluding this section we note that it is possible to also write a compact formulation using

three sets of flow variables—to model the three sets of connectivities imposed by constraints (3), (4)

and (5). However, given the number of scenarios, this model blows up rapidly and is not a compu-

tationally viable approach for the problem.

3.2. Branch-and-Cut Algorithm

The MIP formulation based on cut-set inequalities for the RRTLND problem cannot be solved

directly, even for small instances, since there are an exponential number of x-, y0- and scenario-

cuts. In this section we describe a branch-and-cut approach used for solving the problem. We

first explain different schemes designed to separate the directed cut-set constraints (i.e., (3), (4)

and (5)). Next, the initialization performed to improve the quality of the lower bounds of the initial

MIP model is described. Finally, we provide a description of the primal heuristic embedded within

the branch-and-cut framework that helps in establishing high-quality upper bounds early in the

search process.

3.3. Separation of Cut-set Inequalities

Cut-set inequalities are usually separated using maximum-flow algorithms. Basic ideas of this

separation for the RRTLND problem are provided below. In addition, we also explain two advanced

separation mechanisms that are called mixed and combinatorial cuts separation. The latter approach

uses the problem-specific structure to speed-up the separation process and improves lower bounds

in the earlier phase of the search process.

Basic Separation Procedures (Max-Flow Based Cuts) Violated cut-set inequalities can be

found in polynomial time using a maximum-flow algorithm on the support graph with arc-capacities

given by the current fractional solution (x̃, ỹ0, ỹk). When separating x-, y0- and scenario-cuts, the

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
14 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

capacities of the support graph are set to be equal to the values of x̃, ỹ0 and (ỹ0 + ỹk), respectively.

For finding the maximum flow in a directed graph, we used an adaptation of Cherkassky and

Goldberg (1995) maximum flow algorithm.

The separation is performed in the following order: First, we randomly select a node from V \{r}
and if there is a violated x-cut separating v from r, we insert it into the LP (together with the

corresponding set of nested and backward cuts, see the explanation below). We resolve the LP and

continue as long as such violated cuts are found. After that, we attempt to find violated y0-cuts.

This time, we perform the maximum-flow calculation between r and each i ∈ V \ {r}, such that

y0(δ−(i))> 0. In the final phase, when no more violated x-cuts and y0-cuts can be found, we search

for violated scenario-cuts. For each scenario k ∈ K, we perform the maximum-flow calculation

between r and each i∈ P k.

By following this order in the separation procedure, we avoid inserting cuts that have a greater

likelihood of being weak (i.e., dominated by others) and thus reduce the computational effort of

the separation. For example, for a given set S and i∈ S such that y0(δ−(i)) = 1, the corresponding

y0-cut dominates all scenario-cuts associated with the same S.

Mixed Separation Because y0 ≤ x, if a set S ⊆ V \{r} induces a violated x-cut then it might

also induce a violated y0-cut, if there exist i ∈ S such that y0(δ−(S))< y0(δ−(i)). Because yk ≤
x−y0, if there exists a scenario k ∈K, such that S∩P k 6= ∅, the same set S also induces a violated

scenario-cut. Hence, within the separation process applied to x-cuts we can also separate y0-cuts

and scenario-cuts without solving another max-flow problem. We use these facts to develop a

separation procedure that we refer to as mixed separation. The outline of this procedure is given in

Algorithm 1. In this procedure, we call the maximum-flow algorithm MaxFlow (GA, x̃
′, r, v,Sr, Sv)

that, for a given directed graph GA, calculates the maximum flow between r and v with capacities

x̃′. The algorithm returns two subsets of nodes: Sr, r ∈ Sr and Sv, v ∈ Sv, such that the edges of the

cut δ+ (Sr) and δ−(Sv) induce the maximum flow. Inequalities associated with the set Sr and Sv

are called forward and backward cuts, respectively. Then, we continue recalculating maximum flows

on the same graph GA, on which the capacities of the edges from the two previously found cut-sets

δ+ (Sr) and δ−(Sv) are set to one. That way, we detect disjoint cuts and we reuse the previous

maximum flow computation to speed up the overall separation. The latter strategy is known as the

nested cuts approach (see Ljubić et al. 2006). Variable MAX-CUTS denotes the number of cuts to

be inserted before the LP is resolved. In our implementation MAX-CUTS was set to 25.

Finally, we apply two variants of the mixed cut separation. The first one is described in Algo-

rithm 1: whenever we detect a violated x-cut, we also add corresponding violated y0-cuts and

scenario-cuts. On the other hand, when performing the separation of y0-cuts in a later phase, we

basically use the same idea to add violated scenario-cuts, whenever a violated y0-cut is detected.

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 15

Algorithm 1 Mixed Separation

Input: Graph GA = (V,A), fractional solution
(
x̃, ỹ0, ỹk

)
1: Choose a random node v from V \ {r}
2: x̃′ = x̃
3: repeat
4: f = MaxFlow(GA, x̃

′, r, v,Sr, Sv)
5: Detect the cut δ+ (Sr) such that x̃′

(
δ+ (Sr)

)
= f , r ∈ Sr

6: if f < 1 then
7: Insert violated cut x

(
δ+ (Sr)

)
≥ 1 into the LP

8: ĩr = arg maxi/∈Sr ỹ
0
(
δ− (i)

)
9: if ỹ0

(
δ+ (Sr)

)
< ỹ0

(
δ−
(
ĩr
))

then
10: Insert violated cut y0

(
δ+ (Sr)

)
≥ y0

(
δ−
(
ĩr
))

into the LP
11: for all k ∈K, S̄r ∩P k 6= ∅ do
12: Insert the violated cut

(
y0 +yk

) (
δ+ (Sr)

)
≥ 1 into the LP

13: x̃′ij = 1, ∀(i, j)∈ δ+ (Sr)
14: Detect the cut δ− (Sv) such that x̃′

(
δ− (Sv)

)
= f , v ∈ Sv

15: if Sv 6= S̄r then
16: Insert the violated cut x

(
δ− (Sv)

)
≥ 1 into the LP

17: ĩv = arg maxi∈Sv ỹ
0
(
δ− (i)

)
18: if ỹ0

(
δ− (Sv)

)
< ỹ0

(
δ−
(
ĩv
))

then
19: Insert the violated cut y0

(
δ− (Sv)

)
≥ y0

(
δ−
(
ĩv
))

into the LP
20: for all k ∈K, Sv ∩P k 6= ∅ do
21: Insert the violated cut

(
y0 +yk

) (
δ− (Sv)

)
≥ 1 into the LP

22: x̃′ij = 1, ∀(i, j)∈ δ− (Sv)
23: until f ≥ 1 or MAX-CUTS constraints added

24: Resolve the LP

Combinatorial Cuts The separation of combinatorial cuts relies on the following idea: if we

knew the structure of the optimal spanning tree built in the first stage, to find the optimal recov-

erable robust solution it is sufficient to consider the cut-sets associated with the edges of that tree.

Let T̃ = (Ṽ , Ã) denote the rooted spanning arborescence associated with x-variables of the optimal

solution. Observe that the removal of an arc (j, `)∈ Ã separates T̃ into two components. Let V` be

the set of nodes of the sub-arborescence rooted at `, and K` be the set of relevant scenarios, i.e.,

K` = {k ∈K | V` ∩ P k 6= ∅}. The values of the variables y0 and yk could then be determined by

solving the following Integer Program (IP):

min
∑

(i,j)∈Ã

uijy
0
ij+ max

k∈K
min

∑
(i,j)∈Ã

rkijy
k
ij (9)

s.t. (y0 +yk)(δ− (V`))≥ 1 ∀(j, `)∈ Ã, ∀k ∈K` (10)

y0(δ−(V`))≥ y0(δ−(i)) ∀i∈ V`, ∀(j, `)∈ Ã (11)

y0 ∈ {0,1}|Ã|,yk ∈ {0,1}|Ã| ∀k ∈K (12)

Obviously, in this model there are only O(nK) constraints, and the associated sets V` can be

determined in O(n) time using a dynamic programming procedure. Furthermore, formulation (9)-

(12) is equivalent to formulation (T.1)-(T.4).

Since we do not know the structure of the optimal arborescence in the first stage, we try to

heuristically approximate it and generate cut-sets of type (10) and (11) on graph G (with the

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
16 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

Algorithm 2 Combinatorial Cuts

Input: Graph GA = (V,A), T̃ =
(
Ṽ , Ã

)
a spanning arborescence of GA, fractional solution

(
x̃, ỹ0, ỹk

)
1: L =

{
v ∈ Ṽ | δ+ (v) = ∅

}
2: for all `∈L do
3: V` = {`}
4: K` =

{
k ∈K | `∈ P k

}
5: repeat
6: Chose `∈L
7: Let j be the parent of ` in T̃ , i.e., (j, `)∈ Ã
8: if ỹ0j` < 1 then
9: for all k ∈K` do

10: if
(
ỹ0 + ỹk)(δ−(V`))

)
< 1 then

11: Insert the violated cut
(
y0 +yk)(δ−(V`))

)
≥ 1 into the LP

12: Kj =K` ∪{k ∈K | j ∈ P k}
13: Vj = V` ∪{j} ; L = L\{`}; L = L∪{j}

14: until L = {r}

heuristic tree) and insert them into the model. Thus, we are able to insert O(nK) cuts into the

LP, in O(mK) running time. For good approximations of T̃ , these combinatorial cuts can bring

a significant speed-up to the separation procedure, especially in the early stages of the cutting

plane algorithm. In Algorithm 2 the outline of the procedure is presented. The main idea of the

algorithm is to recursively generate sets V` and K` and insert the violated cuts into the current

LP. We start with the leaf nodes of T̃ and process the arborescence in a bottom-up fashion until

we reach the root node. Whenever we process an arc of T̃ , we insert violated cuts into the current

LP. In total, each edge from G is “visited” at most twice and therefore, the total running time of

this procedure is at most O(mK).

Combinatorial cuts are separated together with y0-cuts and before the (more time consuming)

separation of scenario-cuts is performed. To approximate the tree T̃ , we run the minimum spanning

tree algorithm on G with edge weights set to

we = bemin{(1− x̃ij) , (1− x̃ji)} for each e : {i, j} ∈A, (13)

where x̃ is the value of the current fractional solution. Combinatorial cuts are also added, whenever

in the current LP, x is a binary vector.

3.4. MIP Initialization

In our branch-and-cut approach we first drop all x-, y0- and scenario-cuts, and add them in an

iterative fashion only when violated. However, to improve the quality of the lower bounds we

incorporate additional constraints to the initial model. Since for the RRTLND problem the x

variables should construct a spanning arborescence of G, the following in-degree constraints

x
(
δ−(i)

)
= 1, ∀i∈ V, (14)

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 17

Algorithm 3 Primal Heuristic

Input: Graph GA = (V,A), fractional solution
(
x̃, ỹ0, ỹk

)
, cost vectors a, b, u = a−b and r.

Output: A feasible solution
(
x̂, ŷ0, ŷk

)
for the RRTLND problem

1: T̃ = (VT̃ ,E (x̃)) =spanningTree(G,w), where w is defined by (13).
2: for all k ∈K do
3: Pk = steinerTree

(
P k, T̃

)
4: ωk =

∑
(i,j)∈Pk

rkij
5: Solve problem (T.1)-(T.4) with T̃ as input graph, cost vectors u and r, and vectors Pk and ωk.

6: Let s∗ be an optimal solution for (T.1)-(T.4) and A (x̃) be the arcs of E (x̃) oriented away from r. A feasible

solution
(
x̂, ŷ0, ŷk

)
for the RRTLND problem is defined by x̂ij = 1 if (i, j)∈A (x̃) and x̂ij = 0 otherwise, ŷ0ij = 1

if s∗ij = 1 and ŷ0ij = 0 otherwise, ŷkij = 1 if (i, j)∈ Pk and s∗ij = 0 and ŷkij = 0 otherwise.

are valid inequalities that stress the tree-like topology of the corresponding solution. We also include

the constraints

(
y0ij + ykij

)
+
(
y0ji + ykji

)
≤ 1, ∀(i, j)∈A, ∀k ∈K, (15)

that correspond to subtour elimination constraints of size 2 for arcs with primary technology.

Finally, we also use combinatorial cuts described above as part of the initialization of the MIP

model. The arborescence T̃ is approximated by the minimum spanning tree considering edge weights

be, ∀e∈E. This initialization provides good initial lower bounds since many important cut-sets are

inserted into the model at an early stage of the cutting plane procedure without the resolution of

a maximum flow problem.

3.5. Primal Heuristic

An important component of our branch-and-cut is the embedded Primal Heuristic, whose pseudo-

code is given in Algorithm 3. The core of the heuristic is to solve an instance of the RRTLND

problem on an induced spanning arborescence T̃ of GA to optimality. For constructing the span-

ning arborescence T̃ we use LP-values of x variables from the current LP relaxation. We run the

minimum spanning tree algorithm on G with edge weights defined by (13) (Step 1 of the algorithm).

In the loop (2-4) the preprocessing described in §2.2.2 is applied. We find the optimal Steiner Tree

(constructed by recovered edges) on T̃ considering terminal set P k; ωk denotes the corresponding

total recovery cost for each scenario. The main step of the algorithm is Step 5, where the MIP

problem (T.1)-(T.4) is solved. The feasible primal solution (x̂, ŷ0, ŷk) of our problem is obtained

by mapping the solution s∗ and the structure of T̃ as shown in Step 6. All arcs in T̃ define the

spanning arborescence associated with x̂. The values of ŷ0 correspond to the values of s∗ and the

values of ŷk are calculated by a simple inspection using the information contained in Pk, ∀k ∈K,

and s∗.

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
18 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

Although we know that the problem is NP-Hard, in practice the computational effort to solve

the problem is remarkably little (usually only a fraction of a second or a couple of seconds). This

makes the primal heuristic very effective since feasible solutions are quickly computed.

4. The Recoverable Robust Two-Level Steiner Tree Problem

In some real-world instances of the TLND problem, in addition to the customer nodes, there are

additional nodes in the network (corresponding to street intersections, for example) that do not

require any service. The definition of the TLND problem can be extended correspondingly. In this

variant of the TLND problem that we refer to as the Two-Level Steiner Tree (TLStT) problem,

we are given a set R ⊂ V representing the customers that have to be served either by primary

or secondary technology. The set of primary customers, P , is such that P ⊆ R. The goal is to

find a minimum-cost Steiner tree in G spanning all nodes from R and such that all nodes from P

are connected with each other using the primary technology. Using the notation presented before,

binary vector X instead of being associated with a spanning tree of G is now associated with a

Steiner tree connecting nodes from R. The remaining conditions remain the same (Y is associated

with a Steiner Tree connecting P , Y≤X, and the objective function is given by (1)). Those nodes

that do not belong to R but that are spanned by a solution given by a pair (Y,X) are called

Steiner-nodes.

The RRTLStT Problem For the Recoverable Robust counterpart of the TLStT problem

(RRTLStT) the set R ⊂ V is given at the outset, while the set of primary customers is only

determined after the uncertainty is resolved (i.e., the scenarios are such that P k ⊆R, ∀k ∈K).

The MIP formulation provided for the RRTLND problem can be easily adapted for the RRTLStT

problem by imposing that feasible values of vector x instead of being associated with a spanning

arborescence of GA, have to instead be associated with a Steiner arborescence of set R. This is

expressed by replacing x-cuts by

x
(
δ− (S)

)
≥ 1, ∀S ⊆ V \{r} , S ∩R 6= ∅. (16)

This set of constraints, which we call xR-cuts, ensures that there is a directed path from r to every

node in R\{r}.

In the algorithmic framework outlined in §3.2 some procedures should be adapted for solving the

RRTLStT problem. In the MIP initialization, the “=” sign in (14) should be replaced by “≤”. In the

separation described in Algorithm 1, xR-cuts are separated instead of x-cuts; in this case instead

of selecting a random node v in V \{r} and performing the separation from r to v, the separation

is performed from r to every node in v ∈ R\{r}. When applying Combinatorial-Cuts, instead of

giving as input a spanning arborescence T̃ of GA, we give as input a Steiner arborescence which

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 19

spans all nodes in R; this arborescence is found by means of an algorithm that succesively solves

shortest-path problems from r to v ∈R\{r} with arc costs given by (13) and merges these paths

to conform an arborescence of GA spanning R. The same idea is used in our primal heuristic, in

which instead of finding an spanning arborescence of GA we find a Steiner arborescence connecting

nodes in R.

5. Computational Results

In this section we report on our computational experience on two sets of instances that are used

to test the branch-and-cut algorithm for both, the RRTLND problem and the RRTLStT problem.

All the experiments were performed on an Intel CoreTM i7 (2600) 3.4GHz machine with 16 GB

RAM, where each run was performed on a single processor. The branch-and-cut was implemented

using CPLEXTM 12.3 and Concert Technology framework. All CPLEX parameters were set to their

default values, except the following ones: (i) All cuts were turned off, (ii) heuristics were turned off,

(iii) preprocessing was turned off, (iv) time limit was set to 1800 seconds, and (v) higher branching

priorities were given to y0 variables. We have turned these CPLEX features off in order to make

a fair assessment of the performance of the techniques described in §3.2.

Interestingly, and somewhat to our surprise, it turns out that turning on CPLEX cuts and

heuristics actually slows down the performance of our algorithm. With regards to the branching

priorities, notice that whenever a variable, say y0` , is fixed to one, variables x` and yk` , ∀k ∈K can

be immediately fixed as well (x` = 1 and yk` = 0 ∀k ∈K). Furthermore, we know that only a few

y0 variables (at most n− 1) will, at the end of the optimization, take the value of 1. Therefore,

we give higher branching priorities to these variables, as they mostly influence the overall solution

structure and reduce the underlying search space.

5.1. Instances

We consider two classes of randomly generated instances, that we refer to as G and SC instances.

Their topologies resemble different geographic local structures of communication and distribution

networks.

G Instances This group of instances is generated following a similar scheme as Johnson et al.

(2000) (where the authors intended to generate instances that coincide with the street maps of

real-world instances). Here n nodes are randomly located in a unit Euclidean square. An edge e

between two nodes is created if the Euclidean distance between them is no more than α/
√
n, for

a fixed α> 0. Coordinates are generated with five significant digits. The secondary cost of an edge

be corresponds to the Euclidean distance between its end points multiplied by 104 and rounded to

the closest integer; the primary cost ae is calculated as (1 +β) be, where β ∈ [0,1] is a pre-defined

parameter and the recovery cost re = rke is assumed to be equal for all k ∈K and is set to (ε+β) be,

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
20 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

(a) G instance with α= 0.6. (b) Scale-free tree with n= 250. (c) SC instance with α= 0.2.

Figure 2 Examples of the generated instances.

for a fixed ε∈ [0,1]. Both, primary and recovery costs are rounded to the nearest integer value. A

single node is randomly selected and chosen to be the root node r. For the RRTLND problem, in

each scenario k ∈K, π% of nodes are uniformly randomly selected from V to constitute the set of

primary nodes P k. For the RRTLStT problem, the set R of all potential customers is constructed

by uniformly randomly selecting ϕ% of all nodes from V . Similarly as for the RRTLND problem,

π% of all nodes from R are then uniformly randomly selected to build the set P k, for each k ∈K.

In our experiments we consider the following parameter settings: β, ε∈ {0.5,1.0,2.0,3.0} (which

produces re/ue ∈ {7/6, . . . ,7}), π ∈ {10%,20%,30%}, and ϕ= 50%. Four instances were generated

for each combination of those parameters. Graphs of different size are considered as well. We

choose n∈ {50,75,100,250} and set α= 0.6. The value of α is incremented in steps of 0.001 until a

connected graph is obtained (in only one case, for n= 250, 0.6 was not enough to define a connected

graph and the real value of α was 0.613). This leads to 192 instances for a given n. Figure 2(a)

illustrates an example of a graph with 250 nodes and α= 0.6 (which produces 1134 edges).

SC Instances These instances are generated on the basis of the well-known scale-free net-

works (see Barabasi and Albert 1999). Scale-free networks frequently appear in the context of

complex systems, including the World Wide Web, the internet backbone, infrastructure networks,

airline connections, cellular networks, wireless networks, electric-power grids and many other con-

texts. Using the igraph library package (see igraph Project 2012) a scale-free graph of n nodes

is created using default settings. This actually produces a tree since linear preferential attachment

(power-law equal 1) is the default parameter for the generation. The resulting graph is simply

an array of binary relations. We then use the yEd Graph Editor software (see yWorks 2012) and

draw the tree using the “organic” layout. This layout determines node coordinates which are then

used to add additional edges and augment the tree. A new edge between two nodes is added if its

Euclidean distance is no more than α/
√
n. The root node corresponds to the node with label 0 in

the scale-free tree. Edge costs (ba, ae, re) and scenarios for both the RRTLND problem and the

RRTLStT problem are generated identically as the G instances.

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 21

(a) β = 0.5, ε = 3, OPTRR = 50982, |E(y0)| = 187,

|E(yk)|/ |K|= 4.

(b) β = 3, ε = 0.5, OPTRR = 96795, |E(y0)| = 95,

|E(yk)|/ |K|= 34.

Figure 3 Examples of the solution of the RRTLND problem for a G instance with 250 nodes and with different

values of β and ε.

Note. α= 0.6, |K|= 20. Bold edges correspond to first-stage primary edges, dashed edges are secondary edges that

might be recovered in some scenarios.

In Figure 2(b) we show a scale-free tree with a layout fixed by yEd and in Figure 2(c)

the same instance augmented with a set of complementary edges (922 in total). For n =

50,75,100,250,500,750,1000 we use α = 0.1,0125,0.15,0.2,0.3,0.35,0.4 respectively. The other

parameters were set as in the case of the G instances. Four instances were generated for each

combination of the parameters n, π, β and ε. This leads to 192 instances for a given n.

5.2. Robustness and Recoverability

In our computations we consider up to 30 scenarios which are created in advance. By doing this,

when considering problems with 10 scenarios, we simply use the first 10 scenarios out of those 30.

The same applies when considering 20 scenarios. The scenarios are identical for the different values

of β and ε. By proceeding in this way, it is easier to measure the impact of considering a larger

number of scenarios.

The way that robust first-stage solutions and the corresponding recovery actions are calculated

depends not only on the scenario structure but also on the cost structure; the relations between ae,

be and re. If the recovery costs re are high compared to the first-stage upgrade costs ue = ae− be,

then the solutions of the RRTLND problem are more likely to have a larger first-stage primary

tree. On the contrary, if recovery is relatively cheap, then the optimal solutions will be comprised

by a smaller first-stage primary tree and more recovery actions will be performed (as in a wait-

and-see approach). This can be seen when comparing the solutions in Figures 3(a) and 3(b) of a

250 nodes G instance with 20 scenarios. In the first case, recovering an edge in the second stage

is seven times more expensive than installing a primary technology in the first stage (which is

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
22 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

Table 1 Solution characteristics and algorithm performance averages for different values of |K| for classes G and
SC.

Class n m |K| Gap(%) Time(s) |E(y0)| |E(yk)|/ |K| PH(%) #BBN’s #(3) #(4) #(5) #Opt

10 0.00 31.27 17 5 7.62 367 25 131 1459 64

50 163 20 0.01 222.60 17 5 6.79 837 30 207 4314 63
30 0.00 230.31 18 5 7.5 642 28 181 5554 64

10 0.00 53.11 24 6 7.91 471 50 151 1986 64

75 257 20 0.09 540.85 25 6 7.02 1197 54 272 6407 56
30 0.24 1004.85 25 6 6.78 1416 57 264 9292 40

G 10 0.01 458.67 35 9 7.54 1491 105 292 4136 62

100 356 20 0.36 1470.20 35 10 6.61 1056 105 344 9066 23
30 0.83 1780.54 36 10 6.95 434 103 271 11426 2

10 0.86 † 90 23 9.81 237 64 172 6861 0
250 1114 20 6.10 † 111 23 11.26 15 36 37 7497 0

30 10.67 † 119 23 15.28 5 24 13 6995 0

10 0.00 32.31 11 6 5.93 198 2 38 409 64
50 175 20 0.00 81.68 11 6 7.48 439 1 63 1162 64

30 0.00 150.98 12 6 6.45 769 1 84 2167 64

10 0.01 196.53 17 8 7.04 4016 15 109 1202 63
75 287 20 0.02 470.32 18 9 7.05 1460 15 151 3126 61

30 0.08 820.36 18 9 7.23 1486 15 185 5446 49
10 0.01 452.42 23 11 7.45 2490 13 149 1540 61

100 410 20 0.08 878.75 25 11 7.75 2731 11 179 3559 42

30 0.14 1177.93 24 12 7.7 1779 10 212 6096 32
10 0.07 1778.68 60 29 5.76 1313 59 288 3826 1

SC 250 932 20 0.17 † 62 32 5.63 518 55 217 6342 0

30 0.26 † 63 32 5.54 228 53 121 6896 0
10 0.06 † 124 58 5.44 385 36 243 5689 0

500 2345 20 0.26 † 126 63 5.26 16 20 93 7706 0

30 1.53 † 142 65 5.36 1 15 68 9289 0
10 0.08 † 189 87 5.39 132 38 210 7095 0

750 3460 20 0.95 † 209 94 5.39 4 20 94 10051 0

30 3.50 † 241 94 6.38 1 11 50 10622 0
10 0.16 † 261 114 5.58 65 36 201 8792 0

1000 4658 20 2.34 † 308 125 5.83 1 16 88 11970 0

30 6.64 † 367 124 8.34 0 7 33 9911 0

Note. RRTLND problem, π= 10%, β, ε∈ {0.5,1,2,3}. †: Time limit of 1800 seconds reached.

50% more expensive than secondary technology), consequently the first-stage primary tree (bold

edges, E (y0)), spans a large portion of the graph (186 nodes) and only a few recovery actions are

needed per scenario (|E(yk)|/ |K|= 4). The opposite occurs in the second case, when the recovery

cost is slightly more expensive than the upgrade cost (which is four times more expensive than

secondary cost); in this case, the E (y0) component is smaller, spanning only 94 nodes, and much

more recovery actions take place in each scenario (|E(yk)|/ |K|= 37). The differences in the value

of the objective functions, OPTRR, can be explained similarly.

In Table 1 we report average values of the experimental results obtained for the RRTLND prob-

lem for classes G and SC considering different number of nodes and different number of scenarios

(columns Class, n and |K| respectively). The presented statistics concern the solution character-

istics as well as indicators of the algorithmic performance. Column m corresponds to the average

number of edges among the instances created for each value of n. Column Gap(%) shows the aver-

age gap obtained after the time limit of 1800 seconds is reached. This average is calculated over

64 instances per each group. The corresponding average running times are shown in seconds in

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 23

Table 2 Running times and gap statistics of all instances of classes G and SC for different values
of |K|.

Running times statistics (t≤ 1800s) Gap (%) statistics (t > 1800s)

Class |K| # Min Median Mean Max # Min Median Mean Max

10 190 0.30 40.11 164.00 1690.00 66 0.02 0.25 0.84 12.39
G 20 142 2.56 189.40 372.80 1605.00 114 0.07 0.62 3.68 22.98

30 106 6.79 216.80 360.00 1594.00 150 0.07 0.78 5.01 29.60
10 189 0.72 60.00 194.20 1787.00 259 0.01 0.05 0.10 1.14

SC 20 167 4.60 125.60 278.70 1758.00 281 0.03 0.22 0.87 6.39
30 145 5.59 222.20 364.80 1535.00 303 0.03 0.90 2.56 13.86

Note. RRTLND problem, π= 10%, β, ε∈ {0.5,1,2,3}.

column Time(s). The average size of the first-stage primary subtree of the optimal, or best known

feasible solution, is indicated in column |E(y0)|. The mean number of recovery actions performed

in each scenario can be expressed by |E(yk)| divided by |K|; the average values of this measure,

for the optimal or best known solution, are reported in column |E(yk)|/ |K|. In column #Opt the

number of problems that can be solved to optimality (out of 64 for each row) is shown.

A first-stage solution is expected to be more robust with respect to data perturbations if more

scenarios (possible data realizations) are taken into account. However, this robustness is not for

free. On the one hand the difficulty of the problem increases since a larger search space should be

considered; while on the other hand, the cost of the solutions, OPTRR, increases due to a possible

enlargement of the first-stage primary component or because a new worst-case scenario induces a

higher robust recovery cost. The first phenomenon is what we call the Effort for Robustness. Table 1

demonstrates this phenomenon. Increasing the number of scenarios results in a deterioration of

the algorithmic performance for both classes of instances: (i) the average running times increase

(this is more apparent in the case of small instances, which could be solved to optimality within

the time limit); (ii) the average gap of the obtained solutions deteriorates; and, therefore, (iii) the

number of solution for which the proof of optimality is obtained decreases. From the perspective of

the solutions structure and the corresponding cost, from columns |E(y0)| and |E(yk)|/ |K| we can

see the size of the first-stage primary tree is almost constant for a given n, as well as the average

number of recovery actions performed by scenario. The fact that the average values are almost

constant for a given n means that our recoverable robust solutions are protected against data

perturbation and are able to balance robustness and recoverability: the robust first-stage solutions

and their corresponding recovery actions depend more on the cost structure (as shown in the

Figure 3 example) than on the level of uncertainty. Nevertheless, the absolute number of recovery

actions (|E(yk)|) increases proportionally to |K|, which means that the cost of the corresponding

solutions is also likely to increase due to the augmentation of the worst-case recovery cost induced

by a new scenario.

Table 2 provides further analysis on the the impact of |K| on the algorithmic performance. We

report the statistics (the number of instances (#), min, median, mean and max values) of the

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
24 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

Table 3 Gain of Recovery with respect to the Absolute Robustness and the
Wait-and-See approaches for instances of classes G and SC.

GoR with respect to AR GoR with respect to W&S

Class n |K| Min Median Mean Max Min Median Mean Max

10 0.00 13.56 13.45 29.89 3.58 16.58 18.48 44.04
75 20 1.01 19.35 18.77 37.15 3.52 17.09 19.27 45.16

G 30 0.84 20.89 19.84 39.39 3.62 17.46 18.98 44.82
10 0.00 13.15 13.57 31.44 2.39 16.97 18.54 45.35

100 20 0.79 19.28 18.77 36.68 3.18 18.66 19.92 45.27

30 0.96 19.79 19.50 37.58 4.85 19.26 20.29 47.55
10 0.00 13.23 13.65 33.71 3.25 15.37 17.32 43.53

75 20 0.00 17.56 17.38 38.08 3.28 15.60 17.60 44.46

SC 30 1.01 20.22 19.23 38.43 1.70 15.85 17.73 43.56
10 0.39 13.81 13.86 31.18 4.31 19.04 21.14 49.02

100 20 0.71 16.57 16.14 32.26 3.44 19.88 21.36 48.09

30 1.03 17.85 17.44 34.24 3.00 19.31 20.87 47.44

Note. RRTLND problem, π= 10%, β, ε∈ {0.5,1,2,3}.

running times of those problems that are solved to optimality and the statistics of the gaps of

those problems that cannot be solved within 1800 seconds; these statistics are summarized for all

values of n, β, ε and π, for the two classes of instances. Hence, each row summarizes statistics

over 256 instances of each group. As observed before, increasing the number of scenarios, |K|,

clearly deteriorates the performance of the algorithm: the median and mean running times of those

problems that are solved to optimality increase notably; while the median, mean and maximum

gaps of those problems that cannot be solved within the time limit, and their quantity also increases.

In Table 3 we report basic statistics (Min, Median, Mean, Max) of the values of the Gain of

Recovery of the recoverable robust solutions with respect to the AR and W&S approaches for a

subset of instances of classes G and SC. The economical advantage of the RR solutions is clearly

shown by the reported values: both AR and W&S solutions are, in general, more than 15% more

expensive than the recoverable robust ones. Moreover, the AR solutions can be 39% more expensive,

while the W&S solutions 49% more expensive! This means that the recoverable robustness approach

is able to provide economically robust solutions by means of balancing first-stage and second-stage

actions depending on the cost and scenario structure.

5.3. Algorithmic Performance

More specific performance measures are presented in the remaining columns of Table 1. In column

PH(%) we report the average gap between the initial upper bound (obtained by running Algorithm 3

in which w = b in Step 1) and the optimal, if known, or the best lower bound attained within the

time limit. The average number of nodes of the branch-and-bound tree is shown in column #BBN’s.

In columns #(3), #(4) and #(5) we summarize the average number of x-, y0- and scenario-cuts,

respectively, that are added during the optimization process.

As discussed in §3.2, one of the main features of our branch-and-cut is the embedded primal

heuristic. From column PH(%) we observe that, in most cases, this average value is below 10%,

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 25

which reinforces our conviction that this procedure is crucial as part of the algorithmic approach.

These initial upper bounds can be obtained in a couple of seconds or even fractions of a second for

small instances.

For small instances (50 and 75 nodes for G instances, and 50 nodes for SC instances), we notice

that the number of nodes of the branch-and-bound tree increases with the number of scenarios.

However, for larger instances the situation is the opposite: an increased number of scenarios implies

a reduced value of #BBN’s. The more scenarios we consider, the more complex the problem is. In

some cases, especially for the largest instances, only a few nodes are explored or, even worse, no

branching is performed and the optimization terminates while cutting planes are still being added

at the root node.

With respect to the separation of x-, y0- and scenario-cuts, the first observation is that, for small

and medium size instances, when increasing the number of scenarios the number of x- and y0-cuts

that are added is approximately constant and, the number of scenario-cuts increases proportionally.

Additionally, as might be expected, for a given n and a given |K|, more scenario-cuts are added

than y0-cuts, and more y0-cuts are added than x-cuts. These behaviors are not verified for larger

instances, which is probably due to the fact that in this case the separation is mainly performed

at the root node, while it is actually during branching that the separation reaches a more stable

behavior. Despite the differences, it is interesting to notice that, in general, not many cutting planes

are needed to obtain strong lower bounds, which is the case for a large percentage of instances.

In Figure 4(a), we show the cumulative percentage of problems of class G, for different values of

|K|, for which we reach less than a given gap (%) within the time limit (for each number of scenarios

there are 256 problems to be solved in class G). This complements the information presented in

Tables 1 and 2 about the average gap in relation to the number of scenarios. For 10 scenarios, we

notice that more than 95% of problems can be solved with less than a 2% gap within the time

limit, and only a few outliers present gaps greater than 5%. When considering problems with 20

scenarios approximately 85% of the instances are solved to within a 2% gap in the time limit. In

this case, almost 10% of the instances present a gap larger than 10%, which can be even higher

than 20% for a few cases (less than 2% of the problems). However, when considering |K| = 30,

the quality of the solutions significantly deteriorates. More than 15% of the instances present gaps

greater than 10% when reaching the time limit, and these gaps are even higher than 25% for a few

problems.

Figure 4(b) considers the group of instances with 250 nodes of class G (considering |K| =

{10,20,30} and π = 10%) and provides the cumulative percentage of problems (%), for four com-

binations of β and ε, for which we reach less than a given gap (%) within the time limit. It follows

that when the recovery costs are significantly higher than the upgrade costs the problem turns out

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
26 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

gap[%]

C
um

ul
at

iv
e

%
 o

f I
ns

ta
nc

es
 w

ith
 g

ap
 [%

]

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●
●●
●●
●●● ● ●●

● ●●
●●●

●●● ● ● ● ●●●
● ● ●●●●●

●●●
● ●●●

● ● ●● ●●● ● ● ●

0 2 4 6 8 10 15 20 25 30

70
80

90
10

0

●

Scenarios

10
20
30

(a) All instances of group G for different values of |K| (π= 10%,

β, ε∈ {0.5,1,2,3}, RRTLND problem)).

gap [%]

C
um

ul
at

iv
e

%
 o

f I
ns

ta
nc

es
 w

ith
 g

ap
 [%

]

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0
20

40
60

80
10

0

●

(beta, epsilon), r_e/u_e

(3.0, 0.5), 7/6
(2.0, 2.0), 2.0
(1.0, 2.0), 3.0
(0.5, 3.0), 7.0

(b) Influence of β and ε in the algorithm performance for

the 250 nodes group of class G (|K| = {10,20,30}, π = 10%,

RRTLND problem).

Figure 4 Cumulative percentage of instances with a given gap (%) obtained within the time limit for the

RRTLND problem.

to be easier to solve. This can be explained by the fact that if recovery costs are expensive, then

the induced solutions tend to be comprised of a larger first-stage primary component (reducing the

number of recovery actions, see Fig. 3(a)). These solutions have a closer resemblance to the easier

deterministic TLND problem with P =
⋃
k∈K P

k. On the other hand, when recovery costs are more

“comparable” to first-stage upgrade costs the structure of solutions has more of a “wait-and-see”

flavor: the first-stage primary component is smaller and a large number of recovery actions is per-

formed in the second stage; this emphasizes the combinatorial nature of the problem and it makes

the optimization task harder.

In all the results analyzed so far, we have considered π= 10% (in each scenario 10% of the nodes

are primary nodes). However, and in order to provide an accurate evaluation of our algorithm we

have performed computations by also considering π = 20% and π = 30%. For both class G and

class SC we selected the group of instances with 100 nodes and tested the developed algorithm for

β, ε ∈ {0.5,1,2,3} and |K|= {10,20,30}, considering π = 20% and π = 30%. For each value of π,

256 problems are solved. In Table 4 we report the statistics regarding the running times of those

instances that are solved to optimality and the statistics of the gaps of those that reached the

time limit before optimality. We observe that increasing the fraction of nodes that are primary in

each scenario results in a fewer number of instances that are solved to optimality. However, the

gap statistics (over the instances not solved to optimality) are similar for different values of π,

in particular the median and mean values remain in all cases below 1%. Hence we may conclude

that the overall quality of the solutions produced by our algorithm is not significantly affected for

different values of π.

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 27

Table 4 Influence of the value of π on the algorithmic performance for instances of both classes G

and SC.

Running times statistics (t≤ 1800s) Gap (%) statistics (t > 1800s)

Class π # Min Median Mean Max # Min Median Mean Max

10% 87 6.01 368.80 555.80 1690.00 105 0.07 0.48 0.73 5.18
G 20% 57 5.85 486.80 605.80 1630.00 135 0.02 0.47 0.60 3.95

30% 64 6.13 506.30 649.10 1790.00 128 0.01 0.37 0.43 1.41
10% 135 12.01 263.60 429.00 1787.00 57 0.03 0.21 0.23 0.67

SC 20% 71 1.23 486.60 520.20 1785.00 121 0.01 0.23 0.32 3.22
30% 62 0.97 369.10 524.00 1744.00 130 0.03 0.20 0.22 0.54

Note. RRTLND problem, 100 nodes instances with β, ε∈ {0.5,1,2,3}, and |K|= {10,20,30}.

Table 5 Impact of the branch-and-cut strategies on the algorithmic performance for instances of class G.

Running times statistics (t≤ 1800s) Gap (%) statistics (t > 1800s)

n Separation Strategy # Min Median Mean Max # Min Median Mean Max

Basic 56 2.51 129.00 290.70 1487.00 136 0.01 0.21 0.25 0.99
50 + Mixed Sep. 186 1.44 153.40 267.50 1550.00 6 0.08 0.24 0.25 0.50

+ Comb. Cuts 191 0.30 62.79 152.80 1589.00 1 0.46 0.46 0.46 0.46
Basic 56 4.23 342.50 463.00 1700.00 136 0.01 0.15 0.27 2.84

75 + Mixed Sep. 142 4.09 275.60 430.10 1712.00 50 0.05 0.45 0.60 3.01
+ Comb. Cuts 160 0.98 128.20 279.50 1594.00 32 0.07 0.45 0.63 3.02

Basic 40 27.13 457.40 650.60 1724.00 152 0.01 0.38 0.59 6.09
100 + Mixed Sep. 64 27.80 527.90 637.50 1773.00 128 0.03 0.59 0.89 5.14

+ Comb. Cuts 87 6.01 368.80 555.80 1690.00 105 0.07 0.48 0.73 5.18
Basic 0 - - - - 192 0.03 16.36 17.70 44.50

250 + Mixed Sep. 0 - - - - 192 0.02 3.69 7.99 30.65
+ Comb. Cuts 0 - - - - 192 0.02 0.99 5.88 29.60

Note. RRTLND problem, β, ε∈ {0.5,1,2,3}, |K|= {10,20,30}, and π= 10%.

To give clear insights about the utility of the specific separation strategies designed for our

algorithmic framework (Mixed Separation and Combinatorial Cuts) Table 5 provides a comparison

scheme that helps to evaluate the improvement of the algorithmic performance when including

these two procedures. We have selected the groups of instances of class G with 50, 75 and 100 nodes

and considered β, ε∈ {0.5,1,2,3}, |K|= {10,20,30}, π= 10%; therefore, 192 problems were solved

for each value of n. Rows denoted by “Basic” correspond to the results obtained without Mixed

Separation and Combinatorial Cuts, rows “+Mixed Sep.” represent those results obtained when

Mixed Separation is included in the separation as described in §3.3, and in rows “+Comb. Cuts”

we report the results obtained when also the Combinatorial Cuts are included. The most important

indicator is the number of instances that can be solved to optimality and the average time needed

to solve them. As can be seen the performance of the algorithm notably improves when mixed

separation and combinatorial cuts are turned on. For the group of instances with 250 nodes, only

the gaps are compared since no instance could be solved to optimality. Before we conclude this

section, we should note that our instances are motivated by real-world applications and are thus

somewhat sparse. It should be clear that as graph density increases the number of variables in our

model will increase and the performance of the branch-and-cut algorithm will deteriorate.

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
28 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

Table 6 Solution characteristics and performance measures for different values of |K| for classes G and SC.

Class n m |K| Gap(%) Time (s) |E(y0)| |E(yk)|/ |K| PH(%) #BBN’s #(16) #(4) #(5) #Opt
10 0.00 24.01 12 3 13.25 677 207 60 330 64

50 163 20 0.00 51.73 13 3 11.32 202 218 98 867 64

30 0.00 80.54 13 3 10.36 288 227 110 1369 64
10 0.00 78.52 18 4 13.62 260 318 125 1496 64

75 257 20 0.14 768.01 18 4 13.49 577 352 220 3973 49

30 0.38 1250.94 19 4 13.81 274 346 195 5470 33
G 10 0.00 341.89 22 6 16.65 637 732 338 1421 64

100 356 20 0.34 1154.46 22 6 16.31 653 726 365 3315 34

30 1.00 1435.43 22 6 17.05 323 687 287 4379 21
10 1.45 † 55 14 19.24 204 505 0 4604 0

250 1114 20 7.58 † 64 14 22.90 8 252 0 5157 0
30 13.24 † 71 14 28.16 1 157 0 5262 0

10 0.00 21.77 7 3 3.93 251 167 27 96 64

50 175 20 0.00 31.07 7 4 4.01 58 165 32 209 64
30 0.00 42.73 8 3 4.15 154 163 47 356 64

10 0.00 62.38 10 5 5.34 124 371 57 302 64

75 287 20 0.00 120.31 10 6 4.63 352 364 77 631 64
30 0.01 155.90 10 5 4.7 282 373 87 1009 63
10 0.01 159.72 12 7 2.87 5192 501 84 318 63

100 410 20 0.01 276.45 12 7 3.09 3372 511 130 728 60
30 0.01 302.83 12 7 3.66 2013 496 136 1142 62
10 0.04 1050.02 29 18 4.15 1581 1782 315 1194 45

SC 250 932 20 0.12 1400.67 28 18 4.16 1025 1786 315 2347 25
30 0.29 1581.26 31 19 4.12 448 1733 245 3151 19
10 0.10 1778.98 61 37 5.98 972 425 0 4179 2

500 2345 20 0.19 † 61 39 5.79 56 188 0 6262 0

30 0.72 † 62 39 5.85 3 125 0 8074 0
10 0.18 † 95 56 5.97 172 454 0 5344 0

750 3460 20 1.15 † 101 57 6.35 1 164 0 8436 0

30 3.75 † 111 60 8.02 0 94 0 10196 0
10 0.59 † 134 68 6.73 95 570 0 7245 0

1000 4658 20 2.37 † 141 76 7.73 1 193 0 11440 0

30 6.52 † 160 81 10.83 0 103 0 12947 0

Note. RRTLStT problem, π= 10%, β, ε∈ {0.5,1,2,3}. †= Time limit of 1800 seconds reached.

5.4. Results for the RRTLStT Problem

For the RRTLStT problem, we performed the same computational experiments as the RRTLND

problem. The corresponding adaptations of the branch-and-cut algorithm were previously described

in §4.

Robustness and Recoverability As expected, for the RRTLStT problem the Effort for

Robustness is paid as well. As for the RRTLND problem, increasing the number of scenarios results

in a deterioration of the algorithmic performance which can be seen from the columns Gap(%),

Time(s) and #Opt of Table 6. In general, the average value of these indicators are slightly better

than for the RRTLND problem.

A deeper analysis can be done on the basis of the results presented in Table 7, where statistics

of the running times and of the gaps are presented for both classes of instances. We observe that

the number of instances that are solved to optimality decreases and the gap of those that are not

solved to optimality increases when increasing |K|. These measures are quite similar to those for

the RRTLND problem in the case of G instances; but it seems that on average for the SC instances

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 29

Table 7 Running times and gap statistics of all instances of classes G and SC.

Running times statistics (t≤ 1800s) Gap (%) statistics (t > 1800s)

Class |K| # Min Median Mean Max # Min Median Mean Max

10 192 2.86 61.07 148.10 1349.00 64 0.10 0.43 1.45 12.08
G 20 147 4.91 126.00 308.40 1728.00 109 0.08 1.39 4.73 22.27

30 118 6.27 136.30 371.60 1750.00 138 0.12 1.51 6.77 27.59
10 238 1.44 46.16 204.40 1708.00 210 0.01 0.08 0.27 3.48

SC 20 213 3.53 54.72 185.40 1552.00 235 0.02 0.31 1.04 6.58
30 208 4.85 78.50 224.70 1730.00 240 0.02 1.56 3.01 16.42

Note. RRTLStT problem, β, ε∈ {0.5,1,2,3}, π= 10%.

the effort for robustness is “lower” than for the RRTLND problem.

As can be seen from the columns |E(y0)| and |E(yk)|/ |K| of Table 6, just like the RRTLND

problem there is a clear balance between the robustness of the first-stage solutions and their

recoverability. In this case, again the cost structure has more influence on the configuration of

solutions than the level of uncertainty.

Algorithmic Performance For the class G the average values of PH(%) in Table 6 are con-

siderably worse than those for the RRTLND problem presented in Table 1 (the values are almost

doubled). Nevertheless, for the case of class SC the first primal solutions are, on average, as good

as for the RRTLND problem. The fact that x, instead of defining a spanning arborescence on GA,

actually defines a Steiner arborescence on R, helps to explain this. The initial secondary Steiner

arborescence on which we calculate the corresponding feasible solution is obtained by means of

a heuristic procedure as explained in §4; while in the case of the RRTLND problem we find the

primal solution on the optimal spanning arborescence with costs equal to be, ∀e∈E.

The average number of explored branch-and-bound nodes (column #BBN’s) has, more or less,

the same order of magnitude and the same dependance on n and |K|, as in the case of the RRTLND

problem. From columns #(16), #(4) and #(5), where the average numbers of inserted xR-, y0- and

scenario-cuts are reported, we notice that the separation process behaves differently from the one

of the RRTLND problem. Since the separation of xR-cuts is performed by solving a max-flow from

r to all nodes in R\{r} (instead of a max-flow from r to a single node in V \{r}), more xR-cuts are

added compared to the number of x-cuts that are added for the RRTLND problem. We observe

that fewer y0-cuts are inserted during the separation than for the RRTLND problem. This can be

explained by the size of the primary subtree built in the first stage which is much smaller for the

RRTLStT problem.

In Figure 5(a) we find further insights about the quality of the solutions for the RRTLStT prob-

lem for class G and its dependence to |K|. The results are analogous to those for the RRTLND

problem. The influence of the cost structure, which depends on β and ε, on the algorithmic per-

formance is outlined in Figure 5(b), where results for the group of instances with 250 nodes are

shown.

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
30 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

gap[%]

C
um

ul
at

iv
e

%
 o

f I
ns

ta
nc

es
 w

ith
 g

ap
 [%

]

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●

●●
●●●

● ● ●●
●●
● ●●

● ●●●●
●●
●●

● ●●
●●●

● ●●●●
● ●●

●●●
● ●●

●●
● ● ● ●●

● ●●●
●●
● ●

0 2 4 6 8 10 15 20 25 28

70
80

90
10

0

●

Scenarios

10
20
30

(a) All instances of group G for different values of |K| for the

RRTLStT problem (β, ε∈ {0.5,1,2,3}, π= 10%)

gap [%]

C
um

ul
at

iv
e

%
 o

f I
ns

ta
nc

es
 w

ith
 g

ap
 [%

]

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 28

0
20

40
60

80
10

0

●

(beta, epsilon), r_e/u_e

(3.0, 0.5), 7/6
(2.0, 2.0), 2.0
(1.0, 2.0), 3.0
(0.5, 3.0), 7.0

(b) Influence of β and ε in the algorithm performance for the

250 nodes group of class G (π= 10%, |K|= {10,20,30}, RRTL-

StT problem)

Figure 5 Cumulative percentage of instances with a given gap (%) obtained within the time limit for the

RRTLStT problem.

6. Conclusions

RRO is a concept that falls within the framework of 2SRO. In a certain sense, RRO can be

viewed as two-stage robust optimization with limited recourse (where the practical recovery action

constitutes the limited recourse available to the decision maker). It models the practical contexts

where a robust solution is desired, but where it is possible to “recover” the solution appropriately

(i.e., make it feasible using the limited set of recourse actions available) once the uncertainty is

resolved. While there has been a lot of work on robust optimization, the work on 2SRO and RRO,

especially in the discrete optimization context is somewhat limited. Our work contributes to the

2SRO and RRO literature in the context of the TLND problem.

The recoverable robust counterpart of the TLND problem studied in this paper addresses uncer-

tainty in the set of primary nodes, which we modeled by means of a set of discrete scenarios. We

showed that when the input instance corresponds to a tree, the problem remains NP-Hard and we

propose a MIP formulation with a linear number of variables for this case. For general networks we

developed a MIP formulation based on cut-set inequalities, and we designed specialized techniques

to solve the problem exactly within a branch-and-cut framework. A Steiner variant of the problem

was also considered and the exact approach was suitably adapted.

Our branch-and-cut approach was tested extensively on two classes of instances for both the

RRTLND and RRTLStT problems. As noted in our experiments the cost structure of the problem

has a significant effect on both the solution structure and the running times. We evaluated the

benefit of RRO against a traditional (one-stage) Robust Optimization approach and a Wait-and-

See approach using a concept termed the Gain of Recovery (used previously by Büsing et al. 2011).

Our computational results clearly demonstrate the significant benefits of the RRO approach.

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 31

Acknowledgments

This work was done during the research visit of E. Álvarez-Miranda and I. Ljubić to the University of

Maryland. Support to E. Álvarez-Miranda from the Institute of Advanced Studies of the Università di

Bologna (where he was a PhD fellow), I. Ljubić from the APART Fellowship of the Austrian Academy

of Sciences (OEAW), and to S. Raghavan from the Smith School Strategic Research Fund are gratefully

acknowledged.

References
Atamtürk, A., M. Zhang. 2007. Two-stage robust network flow and design under demand uncertainty. Oper.

Res. 55 662–673.

Balakrishnan, A., T. Magnanti, P. Mirchandani. 1994a. A dual-based algorithm for multi-level network
design. Management Sci. 40 567–581.

Balakrishnan, A., T. Magnanti, P. Mirchandani. 1994b. Modeling and heuristic worst-case performance
analysis of the two-level network design problem. Management Sci. 40 846–867.

Barabasi, A., R. Albert. 1999. Emergence of scaling in random networks. Science 286 509–512.

Ben-Tal, A., L. El-Ghaoui, A. Nemirovski, eds. 2010. Robust Optimization. 1st ed. Princeton University
Press.

Ben-Tal, A., A. Goryashko, E. Guslitzer, A. Nemirovski. 2004. Adjustable robust solutions of uncertain
linear programs. Math. Programming, Ser.A 351–376.

Ben-Tal, A., A. Nemirovski. 2000. Robust solutions of linear programming problems contaminated with
uncertain data. Math. Programming, Ser.B 411–421.

Bertsimas, D., M. Sim. 2003. Robust discrete optimization and network flows. Math. Programming, Ser.B
49–71.

Birge, J., F. Louveaux. 2011. Introduction to Stochastic Programming . 2nd ed. Springer.

Büsing, C. 2012. Recoverable robust shortest path problems. Networks 59 181–189.

Büsing, C., A. Koster, M. Kutschka. 2011. Recoverable robust knapsacks: the discrete scenario case. Opti-
mization Letters 5 379–392.

Chamberland, S. 2010. On the design problem of two-level IP networks. Proceedings of the IEEE 14th
Symposium on International Telecommunications Network Strategy and Planning . 1–6.

Cherkassky, B., A. Goldberg. 1995. On implementing push-relabel method for the maximum flow problem.
E. Balas, J. Clausen, eds., Proceedings of IPCO IV , LNCS , vol. 920. Springer, 157–171.

Chopra, S., C. Tsai. 2002. A branch-and-cut approach for minimum cost multi-level network design. Discrete
Mathematics 242 65–92.

Cicerone, S., G. Di Stefano, M. Schachtebeck, A. Schöbel. 2012. Multi-stage recovery robustness for opti-
mization problems: A new concept for planning under disturbances. Information Sciences 190 107–126.

Costa, A., P. França, C. Lyra. 2011. Two-level network design with intermediate facilities: An application
to electrical distribution systems. Omega 39 3–13.

Current, J. 1988. Design of a hierarchical transportation network with transshipment facilities. Transporta-
tion Sci. 22 270–277.

Current, J., C. ReVelle, J. Cohon. 1986. The hierarchical network design problem. Eur. J. Oper. Res. 27
57–66.

Duin, C., A. Volgenant. 1989. Reducing the hierarchical network design problem. Eur. J. Oper. Res. 39
332–344.

Duin, C., T. Volgenant. 1991. The multi-weighted steiner tree problem. Annals of Operations Research 33
451–469.

Álvarez-Miranda et al.: The Recoverable Robust Two-Level Network Design Problem
32 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

Garg, N., V. Vazirani, M. Yannakakis. 1997. Primal-dual approximation algorithms for integral flow and
multicut in trees. Algorithmica 18 3–20.

Gollowitzer, S., L. Gouveia, I. Ljubić. 2013. Enhanced formulations and branch-and-cut for the two level
network design problem with transition facilities. Eur. J. Oper. Res. 225 211–222.

Gouveia, L., J. Telhada. 2008. The multi-weighted steiner tree problem: A reformulation by intersection.
Computers & OR 35 3599–3611.

Grötschel, M., C. Monma, M. Stoer. 1992. Facets for polyhedra arising in the design of communication
networks with low-connectivity constraints. SIAM J. Optim. 2 474–504.

igraph Project, The. 2012. The igraph library for complex network research. URL http://igraph.
sourceforge.net/.

Johnson, D., M. Minkoff, S. Phillips. 2000. The prize collecting Steiner tree problem: theory and practice.
Proceedings of the 11th Symposium on Discrete Algorithms. 760–769.

Kouvelis, P., G. Yu, eds. 1997. Robust discrete optimization and its applications. 1st ed. Kluwer Academic
Publishers.

Liebchen, C., M. Lübbecke, R. Möhring, S. Stiller. 2009. The concept of recoverable robustness, linear
programming recovery, and railway applications. R. Ahuja, R. Möhring, C. Zaroliagis, eds., Robust and
Online Large-Scale Optimization, LNCS , vol. 5868. Springer, 1–27.

Ljubić, I., R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, M. Fischetti. 2006. An algorithmic framework
for the exact solution of the prize-collecting Steiner tree problem. Math. Programming, Ser.B 427–449.

Mirchandani, P. 1996. The multi-tier tree problem. INFORMS J. Comput. 8 202–218.

Obreque, C., M. Donoso, G. Gutiérrez, V. Marianov. 2010. A branch and cut algorithm for the hierarchical
network design problem. Eur. J. Oper. Res. 200 28–35.

Pirkul, H., J. Current, V. Nagarajan. 1991. The hierarchical network design problem: A new formulation
and solution procedures. Transportation Sci. 25 175–182.

Sancho, N. 1995. A suboptimal solution to a hierarchial network design problem using dynamic programming.
Eur. J. Oper. Res. 83 237–244.

Thiele, A., T. Terry, M. Epelman. 2009. Robust linear optimization with recourse. Tech. Report TR09-01,
University of Michigan .

yWorks. 2012. yEd Graph Editor. URL http://www.yworks.com/.

Zhao, L., B. Zeng. 2012. An exact algorithm for two-stage robust optimization with mixed integer recourse
problems. Tech. Report - University of South Florida .

http://igraph.sourceforge.net/
http://igraph.sourceforge.net/
http://www.yworks.com/

	Introduction
	Our Contribution and Outline of the Paper
	The Two-Level Network Design Problem

	The Recoverable Robust TLND (RRTLND) Problem
	The Recoverable Robust TLND Problem
	The RRTLND Problem on Trees
	Complexity of the RRTLND Problem on Trees
	A MIP Model for the RRTLND Problem on Trees

	MIP Model and Branch-and-Cut Algorithm
	MIP formulation for the RRTLND Problem
	Branch-and-Cut Algorithm
	Separation of Cut-set Inequalities
	MIP Initialization
	Primal Heuristic

	The Recoverable Robust Two-Level Steiner Tree Problem
	Computational Results
	Instances
	Robustness and Recoverability
	Algorithmic Performance
	Results for the RRTLStT Problem

	Conclusions

