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Abstract

Recent rapid technological advances (including high-capacity fiber-optic cables) in the tele-
communications industry have introduced numerous opportunities for services other than
traditional voice transmission. Disruptions in service for these high capacity systems can
be (and have been) disastrous. For these reasons, network reliability is critical. This thesis
studies the problem of topological design of survivable networks, that is, networks capable
of maintaining communication capabilities in response to equipment failure.

We study structural properties and develop strong formulations for a general Network
Design Problem with Connectivity Requirements (NDC) and for special cases. Using these
strong formulations, we devise dual-ascent methods that provide good lower bounds and
heuristic solutions with performance guarantees on their degree of suboptimality. In par-
ticular:

1. We develop a dual-ascent algorithm for a very general NDC problem. This algorithm
optimally solves special cases including the k-edge-disjoint path problem and the k-
node-disjoint path problem. The algorithm is the most general heuristic procedure of
this kind.

2. We investigate the polyhedral structure of a flow formulation for the unitary NDC
problem. By projecting out the flow variables, we show that the flow-based formula-
tion implies three new classes of valid inequalities—partition, odd-hole, and combina-
torial design—for a well-known cutset formulation of the problem.

3. Using this strong formulation, we devise and empirically test a dual-ascent solution
approach for the network design problem with low connectivity requirements. This
algorithm requires (on average) 950 seconds of CPU time on a Sun SPARCstation 10
workstation to solve problems with up to 300 nodes and 3000 edges. The algorithm
generates solutions known to be within 4 percent of optimality for typical telecom-
munication applications, and within 1 percent of optimality for classical Steiner tree
problems.

4. We develop a new (directed) formulation for the NDC Problem.

The results in this theses demonstrate the value of good problem formulations and the
effectiveness of dual-ascent solution procedures that exploit a problem’s special structure.

Thesis Supervisor: Thomas L. Magnanti
Title: George Eastman Professor of Management Science
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Chapter 1

Introduction

1.1 Motivation

In the past few years the telecommunications industry—its technology and its services—has

undergone drastic changes. Rapid technological advances have made it possible to provide

services other than the traditional voice transmission. The magazine Telephony, as cited

in [SP93], has estimated that US telecommunication companies (telcos) invested $23 billion

in telecommunication equipment alone in 1992. For the seven Baby Bells and GTE, this

investment accounted for approximately 15.8 percent of total revenues. Effective network

design and management are critical for assuring that the telcos are poised to meet future

demand and are profitable. Standard and Poor’s industry surveys [SP93] have attributed,

in part, the increased profits of telcos in 1992 (up to $11.1 billion in 1992 from $8.76 billion

in 1991 for the seven Baby Bells and GTE) to efficiencies resulting from effective network

upgrades and management.

Traditional voice transmission is now only part of the telcos’ overall offerings. The

market for data traffic has been growing at a rate of 20 percent per year, as opposed to

6 percent per year for voice, and is expected to grow at an even faster rate in the future. Data

transmission requires higher capacity lines: in anticipation of this demand, the telcos have

been installing high capacity fiber-optic cables1 in some metropolitan areas. Fiber-optic

cables, because of their high capacity, can provide a wide variety of services including video

on demand (e.g., movies, music videos etc.), video conferencing, distance learning, remote

medical imaging and diagnoses, and telecommuting. Indeed, the potential capabilities of the

fiber-optic networks are so staggering (and futuristic) that the Vice President of the United

1Fiber-optic cables have the capability to carry orders of magnitude more traffic than the traditional
copper cable technology. A three inch thick copper cable contains 1200 pairs of copper wire and is capable
of carrying 14,400 calls. A 1/2-inch thick fiber optic cable contains 72 pairs of fiber, each capable of carrying
32,256 calls, and is capable of carrying approximately 4.5 million calls.

11



12 Introduction

States, Albert Gore, advocates building a fiber-optic information superhighway to bring

the US into the information age and increase its global competitiveness. The Governor

of the State of New York, Mario Cuomo, has said, “The American dream is riding on

Telecommunications.”

Fiber-optic cables are one of the fastest growing segments of the network equipment

market. For most telcos, upgrading their networks, including the part connecting the main

telecommunications network to residential customers, is a priority (providing fiber-optic

based service to residential customers is popularly called “fiber to the home” and “fiber

to the curb”). Standard and Poor estimates [SP94] that the major US telcos will spend

approximately $125 billion in coming years on the implementation of fiber-optic systems and

other related infrastructure. New Jersey Bell expects to spend $1 billion over seven years,

starting in 1993, to fully upgrade their network to a fiber-optic system. In November 1993,

Pacific Bell announced a $16 billion plan to install fiber-optic systems in their network

to bring fiber to the home in the urban areas of California. Similarly, Southern New

England Telephone has announced plans to invest $4.5 billion over the next fifteen years

in its Connecticut network to bring fiber to the home. The Japanese telephone company

Nippon Telephone and Telegraph has made fiber to the home a goal by the year 2015 and

expects to spend approximately $400 billion to achieve this goal. Further investments in

fiber-optic systems are anticipated when and if the telecommunications industry becomes

less regulated.

In the future, since society is likely to rely heavily on the varied services offered by

fiber-optic networks and other high bandwidth technologies, their reliability is critical. Dis-

ruptions in service, even now, are disastrous and not uncommon. For example, in 1991 a

major network outage created a queue of at least 35 planes in the three airports around

New York City (La Guardia, Kennedy and Newark), blocked 471,000 international calls,

and blocked more than 4.5 million domestic calls [TEM93a]. In 1990, a software malfunction

halted 50 percent of AT&T’s switched traffic [TEM93b] for nine hours. Banks, brokerage

firms and credit card firms rely on continuous error-free transmission of financial data val-

ued at millions of dollars per minute. The banking industry alone estimates a loss of more

than $100 million (see [TEM94]) during a snow storm on the East Coast of the US in 1993

that brought a nationwide network of automatic teller machines to a standstill.

Network survivability is defined as the ability of a network to maintain its communication

capabilities in the face of equipment failure. In a communication network, failures can be of

many types. Failures can occur because of software bugs in the network routing software,

or the loss of a facility in the network. For example, cables (links in the network) that carry

traffic, or switching equipment (nodes in the network) can fail.

Usually the equipment itself is quite reliable, but it fails because of natural disasters
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or human error. For example, the Network Reliability Council estimated [TEM93a] that

dig-ups (i.e., accidental cuts of cables) create 58 percent of fiber-optic cable failures. Cable

failures arise in several other ways: vehicle collisions with utility poles (7.5 percent), pro-

cedural errors (6.9 percent), and electric power lines contacting aerial cables (4.4 percent).

Other causes are rodent damage, sabotage, fire, firearms, floods, and excavations, each of

which was less than 4 percent. Since a single cable-sheath can carry as many as 4.5 million

calls, the consequences of a cut can be very damaging. Switching equipment failure, though

rare, does occur, at times because of fires (switches use very high DC voltages) and at times

because of floods. The consequences of switching equipment failure are usually more severe

than cable cuts, since many cables feed into the same switching equipment which is capa-

ble of processing millions of calls. The consequences of failure of an entire Central Office,

which usually contains many switches and processes the calls for a geographic region, can

be catastrophic.

Network survivability is an important issue for the telcos. In 1992 AT&T launched

a $600 million program to improve network survivability [TEM93b]. The telcos advocate

building alternate fiber routes to provide alternate routing capabilities in the case of cable

cuts or loss of switching equipment. In fact, there is a growing trend by the telcos to

build (bidirectional) ring networks. Ring networks provide the capability to detect and

reroute traffic in the case of failure of a single fiber-optic link or single intermediate routing

equipment. Currently, most telcos believe it is important to protect against single link and

single node failures in the network.

The telecommunications industry is also a rich field for network design problems other

than network survivability. The industry needs to make decisions ranging from facilities

upgrading, traffic routing, and network construction. Developing nations like China, India,

and Indonesia have a phone penetration rate of only 2 lines per 100 people (as opposed to 58

lines per 100 people in the US) and are making massive investments2 to build telecommuni-

cation infrastructure to provide telephone service. Efficient network design and management

provide fast investment returns for the telcos and less expensive phone service for the public.

1.2 Problem Description and Thesis Objectives

This thesis studies the problem of topological design of survivable networks. Given a set

of nodes (offices, switches), possible links, costs for each link, and either the number of

permitted link or node failures (in a way we shall make more precise shortly) between each

2A case in point is China. China is planning to reach a phone penetration rate of 40 lines per 100 people
by the year 2020. Given China’s population, this means adding approximately 15–17 million lines per year
for the next 25 years. China is spending $6 billion on telecommunications equipment in 1994 and is expected
to spend about $90 billion on telecommunications equipment over the next 6 years.
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pair of nodes, we want to design a cost effective communication network. We refer to this

problem as the Network Design Problem with Connectivity Requirements (NDC).

Our model considers only costs associated with the topology of a network. The cost of

installing a cable between a pair of nodes typically will include the cost of digging trenches

and placing the fiber-optic cable into service. Other considerations, such as what facilities3

to install on each link are ignored. Our sole focus on topological design (i.e., if a link is in the

network or not) might appear to be myopic. However, there are two major justifications

for this viewpoint. First, currently network planners (see [CMW89]) use a hierarchical

approach, first deciding the topological design and then the facilities to install on these

links. Second, if we include demand considerations, the problem becomes very complicated.

Developing good methods to solve the NDC problem provides us a solid foundation (e.g.,

subroutines) to build upon when tackling the problem with demands.

As fiber-optic penetration increases, network planners will need to solve very large NDC

problems, that is, problems with up to several hundred nodes and several thousand links.

In this thesis our objective is to study the NDC problem and develop solution methods that

can solve large-scale versions of the NDC problem.

1.2.1 Formal Problem Description

We will now formulate the NDC problem more precisely, introducing notation and termi-

nology we need along the way.

We represent the network as a graph G with nodes N that represent switches and edges

E that represent cables. We consider two types of models: those permitting at most one

edge and those permitting parallel edges between a pair of nodes. (In practice, the model

used by network planners at Bell Communications Research [CMW89] permits at most one

edge between a pair of nodes.)

We say that a set of paths P1, . . . , Pk between a pair of nodes s and t are edge disjoint

if they have no edge in common. If the set of paths P1, . . . , Pk have no node in common

other than s and t (and so they have no edge in common), then we say the paths are node

disjoint.

An important result in graph theory, Menger’s theorem [Men27], relates edge (resp.

node) survivability between any pair of nodes to the number of edge-disjoint (resp. node-

disjoint) paths between these nodes.

Theorem 1.2.1 (Menger) In a graph:

1. The maximum number of edge-disjoint paths between node s and node t equals the

minimum number of edges whose removal from the graph disconnects them.

3The type of facility (i.e., the number of fibers) to install depends upon the traffic estimates (demands).
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2. If the graph does not contain the edge {s, t}, the maximum number of node-disjoint

paths between node s and node t equals the minimum number of nodes whose removal

from the graph disconnects them.

Thus, ensuring k edge-disjoint paths between nodes s and t guarantees that the communi-

cation between them survives the failure of up to k − 1 edges. Similarly, ensuring k node-

disjoint paths between nodes s and t guarantees the communication between nodes s and t

survives k− 1 node failures. In practice (see [CMW89]) planners usually specify survivabil-

ity requirements as the number of edge- or node-disjoint paths between various nodes in

the network.

We now formally state the network design problem with connectivity requirements.

Network Design Problem with Connectivity Requirements (NDC): We are given

an undirected graph G = (N,E), with node set N and edge set E, and a cost vector c ∈ R
|E|
+

on the edges E. We are also given a symmetric |N |×|N | matrix R = [rij] that prescribes the

number of edge- or node-disjoint paths needed between each pair of nodes: rij represents the

required number of edge- or node-disjoint paths between nodes i and j (if the requirement

is for node-disjoint paths, then we use a superscript [n] to denote that the paths must be

node disjoint). We wish to select a set of edges that satisfy these requirements at minimum

cost, as measured by the sum of costs of edges we choose.

We refer to the requirements rij as connectivity requirements, using the notation edge

connectivity if the paths must be edge disjoint and node connectivity if the paths must be

node disjoint. Note that for all pairs of nodes s and t we either specify edge-connectivity

requirements or node-connectivity requirements, but not both. In Chapter 4 we will discuss

a modeling extension that permits both edge- and node-connectivity requirements.

The NDC problem is an important combinatorial optimization problem. It is very general

and many network design problems can be cast as special cases of it. For example, the

Survivable Network Design Problem (SND) is a special case of the NDC problem. The SND

problem arises in a telecommunications problem in the Regional Bell Operating Companies

(RBOCs) (see [CMW89]). Each node v in the graph has a connectivity requirement rv.

For each distinct pair {s, t} of nodes, the network must contain at least rst = min{rs, rt}

disjoint s–t paths. The SND problem does not permit both edge- and node-connectivity

requirements. Therefore, all nodes have either an edge- or a node-connectivity requirement

(once again we denote node-connectivity requirements by the superscript [n]). Note that

the SND problem is an NDC problem with connectivity requirements rst = min{rs, rt}.

We now briefly describe other well-known network design problems, and show how to

represent them as NDC problems.

Minimum Spanning Tree: Design a minimum cost network that connects (spans) all
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the nodes in a network. The minimum spanning tree problem is an SND problem in

which each node has connectivity requirement 1.

Steiner Tree Problem: We are given a set T of terminal nodes in a graph that we wish

to connect. Find a minimum cost network to connect the nodes in T . Note that

the network design can use nodes from N not in T . The minimum cost Steiner tree

problem is an SND problem in which the nodes in T have a connectivity requirement

of 1 and all the other nodes have a connectivity requirement 0.

Disjoint Path Problems: The k-edge-disjoint path problem requires that we find, at

minimum total cost, k edge-disjoint paths between a prespecified pair, say s and t, of

nodes. To specify the problem as an SND problem, we set the connectivity require-

ments of nodes s and t as k and the connectivity requirement of all other nodes as

zero. Similarly, for the k-node-disjoint path problem, we wish to find, at minimum

total cost, k node-disjoint paths between a prespecified pair of nodes (say s and t).

To formulate this problem as an SND problem, we set the requirements of nodes s

and t as k
[n] and the requirements of all other nodes as zero.

Minimum Cost k-Edge-Connected Spanning Subgraph Problem: A graph is k-edge

connected if it remains connected after deleting fewer than k edges. Whitney [Whi32]

showed that a graph is k-edge-connected if and only if it contains k edge-disjoint

paths between every pair of nodes. Consequently, the minimum cost k-edge-connected

spanning subgraph problem is an SND problem in which each node has connectivity

requirement k.

Minimum Cost k-Node-Connected Spanning Subgraph Problem: A graph is k-node

connected if it remains connected after deleting fewer than k nodes. Whitney [Whi32]

showed that a graph is k-node-connected if and only if it contains k node-disjoint

paths between every pair of nodes. As a result, the minimum cost k-node-connected

spanning subgraph problem is an SND problem in which each node has requirement

k
[n]. Similarly, we can formulate Steiner versions of these problems (i.e., some of the

nodes need not be in the network) as SND problems.

Network Design with Low Connectivity Requirements (NDLC): For this special

case of the SND problem, which is of particular interest to the RBOCs, the connec-

tivity requirements rv are restricted to either {0, 1, 2} or {0, 1, 2[n]} (corresponding to

edge- and node-connectivity versions of the NDLC problem).

Point to Point Connection Problem: Given a set of sources {s1, s2, . . . , sP } and a set

of destinations {t1, t2, . . . , tP }, we wish to find a minimum cost graph that has a path
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from si to ti for i = 1 to P . We model the problem as an NDC problem as follows.

An element rij in the requirements matrix R is 1 if the node corresponding to row i

and node corresponding to column j are a source destination pair. All other entries

in R are 0.

Steiner Forest Problem: Given a graph G = (N,E) and node sets T1, T2, . . . , TP with

Ti∩Tj = φ for all node set pairs i, j, design a graph at minimum cost that connects the

nodes in each node set. To formulate the Steiner forest problem as an NDC problem,

set rij in the requirements matrix R to value 1 if the node corresponding to row i

and the node corresponding to column j are in the same node set (say Tk). All other

elements of R are 0. Notice that the point to point connection problem is a special

case of the Steiner forest problem with Ti = {si, ti} for i = 1 to P .

These problems arise in many diverse settings in telecommunications, transportation, and

VLSI circuit design. These special cases show that the NDC problem models a wide variety

of connectivity problems on graphs. Therefore, methods for solving NDC problems have

many potential applications.

We classify NDC problems in two ways. If the connectivity requirements imply that all

nodes with a connectivity requirement must be connected, we say the problem is a unitary

NDC problem. Otherwise, it is a nonunitary NDC problem. For example, the SND problem

is a unitary NDC problem, and the Steiner forest problem is a nonunitary NDC problem.

In the next section we will briefly review different solution methods for combinatorial

optimization problems and motivate the solution methodology that we pursue.

1.2.2 Solution Methods

Because special cases of the NDC problem, like the Steiner tree problem [Kar72] and the

point to point connection problem [LMSL92], are NP-hard, the NDC problem is an NP-

hard problem. For a comprehensive treatment of computational complexity theory and

recent developments in this problem domain, see the textbook by Papadimitriou [Pap94].

From a lay perspective, the fact that the NDC problem is NP-hard implies it is a very

difficult problem to solve: no one knows of a polynomial time algorithm that optimally

solves the problem. (The research community widely believes that there is no polynomial

time algorithm for NP-hard problems). Loosely speaking, by a polynomial time algorithm

we mean an algorithm whose worst-case running time is bounded by a polynomial in the

size of problem parameters. This means that all known algorithms that optimally solve the

problem, require in the worst case, an exponential number of operations.

Researchers approach NP-hard combinatorial optimization problems in many ways.

Often, they sacrifice optimality and focus on finding good solutions. These methods are
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called heuristics and can be quite effective. For example, Johnson [Joh90] reported solutions

within 1 percent of optimality for 10,000 city Traveling Salesman Problems4 (TSP) and

Bentley [Ben92] reported solutions within 4 percent of optimality for million city TSPs,

using local search algorithms. However, a heuristic, by itself, does not usually provide

information on the quality of the solution.

In order to assess the quality of a heuristic it is important to provide lower bounds5 on

the value of the optimal solution. One approach to providing lower bounds to combinatorial

optimization problems is to formulate them as Integer Linear Programming (IP) problems.

Solving the continuous relaxation (that is, the Linear Programming (LP) relaxation) of the

IP yields a lower bound on the value of the optimal solution. If solving the LP relaxation

provides an integer solution, then we have also found the optimal solution. Often the

solutions provided by the LP relaxation are fractional and the bounds they provide are

weak. In order to improve the LP bound we can add valid inequalities to the model,

inequalities that eliminate the LP fractional optimal solution but do not eliminate any

integer feasible solution. Methods that iteratively add such valid inequalities are called

cutting plane methods. Gomory [Gom63] in the early sixties first developed a general theory

for these methods. The best valid inequalities to add to a formulation are those that are in a

certain sense the deepest, ones that lie on the face of the convex hull6 of the integer feasible

solutions to the problem. Such inequalities are called facets.7 The polyhedral approach

attempts to describe by linear inequalities the convex hull of the feasible integer solutions

to a combinatorial optimization problem.

For NP-hard problems, describing the convex hull by linear inequalities is itself an NP-

hard problem. However, often even a partial description of the convex hull is very useful: in

many cases, solving the linear program based on the partial description provides an integer

solution. Even if they do not provide integer solutions, LP relaxation bounds frequently are

close enough to the optimal objective value that a branch and bound procedure finds the

optimal solution reasonably quickly. Polyhedral combinatorics is the branch of mathematical

programming that studies the linear inequality representations of the convex hull of the

integer feasible solutions to combinatorial optimization problems. Many early efforts with

the polyhedral method have studied the TSP (see [GP85]). Recently, using the polyhedral

4The traveling salesman problem is to find a minimum cost tour (sequence of edges) in a graph that visits
every node (city) exactly once.

5Without loss of generality, we assume the problem is a minimization problem.
6x is a convex combination of a set of points x1,x2, . . . ,xl if x =

∑l

i=1
λix

i for some vector λ =

(λ1, λ2, . . . , λl) with
∑l

i=1
λi = 1 and λi ≥ 0 for i = 1, . . . , l. The convex hull of a set S is the set of all

points that are convex combinations of points in S.
7To be more precise, a valid inequality F , for a polyhedron P , is facet-defining if it is a face of the

polyhedron P whose dimension is one less than the dimension of P . Consequently, a facet belongs to the set
of inequalities that are essential (nonredundant) to the linear inequality description of the polyhedron P .
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method, researchers have been able to solve to optimality a TSP with as many as 7397 cities

[ABCC94]. Following up on the success of the polyhedral method for the TSP, researchers

have studied the polyhedral structure of many other combinatorial optimization problems

(see Nemhauser and Wolsey [NW88], Hoffman and Padberg [HP85]).

Although the polyhedral approach has met with some success after many years of effort

on the TSP, in general the polyhedral approach can be computationally intensive. There

are three main ingredients to the polyhedral method. (i) Finding classes of facet-defining

inequalities for the combinatorial optimization problem. This can be quite a challenging

task by itself. (ii) Solving the so called separation problem. Most combinatorial optimiza-

tion problems have exponentially many facet-defining inequalities. Instead of adding all

of these inequalities explicitly to the LP, researchers add the inequalities only if required.

Therefore, given a fractional solution to an LP relaxation of the problem, and a class of

facet-defining inequalities, we need to either produce a violated inequality or show that the

solution satisfies all the inequalities. This is the separation problem. For NP-hard combi-

natorial optimization problems, often the associated separation problem for given classes

of facet-defining inequalities is NP-hard. (iii) Implementing cutting plane methods (e.g.,

determining which facets to use, how to generate them, and how to combine facets with

an LP solver) based on the the results of the first two steps. This step is very much an

art and is often problem and instance dependent. Therefore, polyhedral methods have not

been particularly successful as a generic solution approach for quickly solving large-scale

problems. Another disadvantage is that the polyhedral method can take a very long time

to solve large-scale problems. If we terminate it before it obtains the optimal solution, the

method provides only a fractional solution. Thus, the polyhedral method, although very

useful to find provably optimal solutions and useful for several important classes of special

applications, is unable to provide a good solution for a given problem when it terminates,

perhaps because of running time limitations, before it finds the optimal solution.

Two other methods, Lagrangian relaxation and dual-ascent have been effective for solving

many large-scale combinatorial optimization problems. Lagrangian relaxation methods are

typically used in formulations that have a set of relatively easy constraints and a set of

complicating constraints. By relaxing the complicating constraints and penalizing violations

to them in the objective function, we obtain a simpler problem, called the subproblem, to

solve. The objective value to the subproblem is a lower bound on the optimal objective

value. The Lagrangian dual problem seeks the choice of Lagrange multipliers (the penalties

for violating the constraints) that provide the best lower bound; that is, the choice of

Lagrange multipliers that provides the largest objective value when we solve the subproblem.

Lagrange multiplier theory shows that the bound provided by the solution of the Lagrangian

dual is always as large as the objective value of the linear programming relaxation of the
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problem. Lagrange multiplier methods have proven to be quite effective in practice. In a

seminal paper, Held and Karp [HK70] used Lagrangian relaxation on the subtour elimination

formulation of the TSP to provide a lower bound on an optimal tour. In practice, these

bounds are within 2 percent of the optimal solution [Joh90].

Linear programming theory shows that solving a linear program is equivalent to solving

its dual. Sometimes instead of solving the LP relaxation of a problem, we might solve the

dual, perhaps because it exhibits some special structure that we can exploit. Dual-ascent

methods operate on the LP dual. They choose the dual variables iteratively, improving the

dual objective (maximization) at each step. Dual-ascent methods also arise in Lagrangian

relaxation: in this setting, we iteratively adjust the Lagrange multipliers on the relaxed

constraints in a way that increases the objective value of the subproblem (dual objective) at

each step. Of course, since we are not solving the dual optimally, the dual-ascent procedure

need not give the best possible bound. However, it is often an extremely quick method

for finding a lower bound and has proven to be very effective in practice for a number

of problems. For example, Erlenkotter [Erl78] used a dual-ascent procedure to develop

a solution procedure for the uncapacitated facility location problem.8 In computational

experiments the lower bounds produced by his dual-ascent algorithm were always within

1 percent of the optimal integer solution. Wong [Won84] devised a very successful dual-

ascent algorithm for the Steiner tree problem. He reported an average gap of less than

1 percent between the upper and lower bounds that his dual-ascent algorithm produces.

Balakrishnan, Magnanti and Wong [BMW89] generalized this approach for uncapacitated

fixed charge network design problems,9 solving problems with up to 45 nodes and 500 edges

to within 4 percent of optimality. Balakrishnan, Magnanti and Mirchandani [BMM94b]

used a dual-ascent approach to solve large-scale two-level network design problems,10 solving

problems with up to 500 nodes and 5000 edges to within 1 percent of optimality.

Another approach to formulating combinatorial optimization problems is to introduce

additional continuous variables. Such formulations are called extended formulations. For

8The uncapacitated facility location problem can be described as follows. Let I = {1, . . . , n} denote
possible locations for a distribution facility, and let ci denote the cost of opening (locating) a facility at
location i. Let J = {1, . . . , m} denote customers, and let dij denote the cost of satisfying customer j’s
demand from a facility at location i. The problem is to determine, at minimum cost, which facilities to
open, and for each customer, the facility that satisfies its demand.

9In the uncapacitated fixed-charge network design problem, we are given a set of nodes, a set of un-
capacitated edges (arcs), and, between selected pairs of nodes, a required flow that must be routed over
the network. Each edge (arc) has two types of costs: a per unit flow cost and a fixed cost for using the
edge (arc). The problem is to select a subset of edges (arcs) that minimizes the sum of the routing costs
and the fixed-charge costs.

10In the two-level network design problem, we are given a network with two possible facility types for each
edge—primary and secondary—and a partition of the nodes into two types—primary nodes and secondary
nodes. In this scenario, primary edges are more expensive than secondary edges. We wish to design a
minimum cost connected network that connects the primary nodes to each other by primary edges.
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example, network design problems can often be formulated with integer variables to repre-

sent the edges (the natural11 variables) and with continuous variables interpreted as flows in

the network. Extended formulations can be compact (i.e., they have a polynomial number

of variables and constraints) and represent an exponential set of constraints in the space of

the natural variables. For example, Wong [Won80] presented a compact multicommodity

flow formulation of the TSP that has the same LP relaxation as the well-known (exponen-

tial) subtour elimination formulation. In many problem settings, it is easier to solve these

extended formulations or use their structure, since they often have network flow variables,

to devise Lagrangian or dual-ascent methods. For example, Wong’s dual-ascent procedure,

which is one of the most successful algorithms for the Steiner tree problem to date, is based

on an extended flow-based formulation.

Dual-ascent methods can be attractive for another reason: for certain problems the dual

information they provide can be used to devise a heuristic solution to the combinatorial

optimization problem. These methods might be attractive because the heuristics are based

on the dual variable information and therefore in a certain sense have some basis from

optimization theory. Whenever the dual-ascent method operates on the dual of an LP

relaxation, the best bound it provides can only be as good as the LP itself. Therefore, it is

important to use strong formulations, in a polyhedral sense,12 when developing dual-ascent

methods (and Lagrangian methods).

In this thesis our goal is to study formulations and methods to solve large-scale NDC

problems. We study flow-based extended formulations for the NDC problem and examine

the strength of different flow-based formulations. For special cases of the NDC problem, we

show how to improve the flow-based formulation. In developing solution methodologies, we

focus mainly on a dual-ascent approach. We seek dual-ascent methods that provide good

lower bounds and heuristic solutions to the NDC problem. We concentrate on two issues:

• How to improve formulations for the NDC problem or special cases of the problem,

and

• How to use strong formulations to devise dual-ascent methods that provide good lower

bounds and heuristic solutions.

11A formulation is a natural formulation if it has one variable for each member of its “ground set”. For
example, a natural formulation for the NDC problem would contain one binary (or integer) decision variable
for each edge in the graph.

12There might be more than one way to model an integer program. Although these formulations are
equivalent as integer programs, when solved as LPs, one formulation might be better—i.e., consistently
provide a better solution—than the others because it contains many facet-defining inequalities, or because
it most closely approximates the convex hull of the integer feasible points. Such a formulation is called a
strong formulation.
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1.3 Formulations for the NDC Problem

1.3.1 Notation

In this thesis we work with undirected graphs and directed graphs. We refer to an undirected

graph as a graph and a directed graph as a digraph. In order to distinguish between directed

and undirected edges, we use edge to refer to an undirected edge and arc to refer to a

directed edge. We also use braces to denote an edge between nodes i and j, i.e., {i, j}, and

parentheses to denote a directed arc from node i to node j, i.e., (i, j). For a directed arc

(i, j), we refer to node i as the tail of the arc and node j as the head of the arc. If one

endpoint of an edge is node i, we say that the edge is incident to node i. Similarly, if the

head or tail of an arc is node i, we say that the arc is incident to node i.

We refer to the set of node-connectivity requirements in the matrix R as R[n]. At times,

we will refer to connectivity requirements of a set of nodes. Let

econ(T ) := max{rij |j ∈ T ; i ∈ N\T};

ncon(T ) := max{rij |rij ∈ R[n]
j ∈ T ; i ∈ N\T}.

Econ(T ) is the maximum edge-connectivity requirement between any node in T and its

complement. Similarly, ncon(T ) is the maximum node-connectivity requirement between

any node in T and its complement.

In models that permit parallel edges, we let G = (N,E) represent the underlying graph

and bij represent the number of parallel edges allowed between nodes i and j. For example,

if a model permits two edges between nodes i and j, then the graph G contains the edge

{i, j} and bij = 2.

We will also consider graphs obtained by deleting nodes or edges from a graph G. We

let G−Z denote the graph obtained by deleting a set Z (of nodes, edges, or combinations of

nodes and edges). In deleting any node, we also delete all the edges incident to that node.

In an undirected graph, any set of nodes T defines a cut {N\T}–{T} = {{i, j} : i ∈

N\T, j ∈ T}. We let δ(T ) denote the set of edges in this cut and refer to δ(T ) as a

cut. We use δG(T ), in case of possible ambiguity, to indicate which graph the cut T is

defined on. Similarly, any set of nodes T in a directed graph defines a dicut {N\T}–

{T} = {(i, j) : i ∈ N\T, j ∈ T}. We let δ
−(T ) denote the set of arcs in this dicut, that

is the set of arcs directed into T . Also, let δ
+(T ) denote the set of arcs directed out of T .

An s–t cut is a cut, say δ(T ), with s 6∈ T and t ∈ T . Similarly, an s–t dicut is a dicut, say

δ
−(T ), with s 6∈ T and t ∈ T .

Sometimes, we will contract a set of nodes in a graph or digraph. To contract a set of

nodes T in a graph
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1. Add a single node, say t, to the graph (digraph).

2. Replace an edge {i, j} in δ(T ) with j ∈ T by the edge {i, t}. (For a digraph (i, j) in

δ
−(T ) [resp. (i, j) in δ

+(T )] by the arc (i, t) [resp. (t, j)].) If this operation creates

parallel edges (arcs) between nodes, delete all but the smallest cost parallel edge (arc).

3. Delete the nodes in T and all edges (arcs) incident to them.

The capacity of a cut δ(W ) is defined as the sum of the capacity of the edges in the cut.

The capacity of a dicut δ
−(W ) is defined as the sum of the capacity of the arcs in the dicut.

Sometimes we will want to eliminate the variables from an “extended” formulation of a

problem. Let A and B be two given matrices and b be a column vector, all with the same

number of rows. Consider the polyhedron P = {(x, f) : Ax + Bf ≤ b}. The polyhedron

Q = {x : Ax + Bf ≤ b for some vector f} obtained by eliminating the f variables is called

the projection of the the polyhedron P .

If two formulations for a problem provide, for all objective function coefficients, the same

optimal objective value when solved as LPs, we say the two formulations are equivalent.

We say that adding an inequality I strengthens a formulation of a (mixed) integer

programming problem if it is valid and adding it to the formulation improves the objective

value of the LP relaxation of the formulation for some choice of the objective function

coefficients. We say that a formulation P1 is stronger than a formulation P2 if, when solved

as LPs, the objective value of P1 is always better than the objective value of P2, and

sometimes is strictly better than the objective value of P2.

Throughout this thesis, we use some complexity notions as applied to network design

problems. Typically, the network problems we consider have the following associated data

parameters: number of nodes |N |, number of edges |E|, costs, and sometimes, capacities

on the edges. We represent the largest cost by C and the largest edge capacity by U . An

algorithm is said to be a polynomial time algorithm if its worst-case running time is bounded

by a polynomial in the size of the problem parameters. For network design problems, this

means the worst-case running time is bounded by a polynomial in |N |, |E|, log U , and

log C. A polynomial time algorithm is said to be strongly polynomial if its worst-case

running time is bounded by a polynomial function in the number of nodes |N | and the

number of edges |E|. Otherwise, we say the polynomial algorithm is weakly polynomial. An

algorithm is psuedopolynomial if its worst-case running time is bounded by a polynomial in

|N |, |E|, and C, and U .

1.3.2 Formulation

In Section 1.2.1 we stated Menger’s theorem in terms of paths and edges (or nodes) whose

deletion destroys these paths. Another equivalent statement of Menger’s theorem relates
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paths and edges across cutsets:

Theorem 1.3.1 The maximum number of edge-disjoint paths between nodes s and t in a

graph equals the minimum number of edges across every s–t cut.

Menger’s theorem permits us to state the following well-known “cutset” formulation for

the NDC problem. Let xij be an integer variable that represents the number of copies of

edge {i, j} in the network.

Cutset formulation for the NDC problem:

Minimize
∑

{i,j}∈E

cijxij (1.1a)

subject to:
∑

{i,j}∈δ(T )

xij ≥ rst
for all pairs s, t ∈ N , s 6= t and

for all T with s ∈ N\T , t ∈ T ;
(1.1b)

∑

{i,j}∈δG−Z (T )

xij ≥ rst − |Z|

if rst ≥ 2 with rst ∈ R[n], and

for all pairs s, t ∈ N , s 6= t and

for all Z ⊂ N\{s, t} with 0 < |Z| < rst,

and for all T ⊂ N\Z; with s 6∈ T , t ∈ T ;

(1.1c)

xij ≤ bij for all {i, j} ∈ E; (1.1d)

xij ≥ 0 and integer, for all {i, j} ∈ E. (1.1e)

Constraint (1.1b) says that if the desired design must contain either rst edge- or node-

disjoint paths between nodes s and t, then the network contains at least rst edges across

each s–t cut. Moreover, if the paths between nodes s and t are to be node disjoint, then

deleting any subset of k ≤ rst nodes should leave at least rst − k paths between s and t.

Constraint (1.1c) represents this condition. Constraint (1.1d) says that the network can

contain at most bij copies of edge {i, j}. For models that do not permit parallel edges,

bij = 1. For models that permit parallel edges, bij represents the maximum number of

parallel edges between nodes i and j.

Note that we could model the node-connectivity requirements with fewer constraints

of type (1.1c) since if a network contains rst node-disjoint paths between nodes s and t,

then if we delete any rst − 1 nodes, the network will still contain a path between nodes s

and t. To model this condition requires the use of constraint (1.1c) for only those sets Z

containing rst−1 nodes. Therefore, in the integer programming model the other constraints

of type (1.1c) are redundant.

As shown by the example in Figure 1-1, however, the additional constraints can improve

(strengthen) the LP relaxation of this model. In this example, we want to find, at minimum
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Figure 1-1: Example to show that constraints (1.1c) can strengthen the formulation. We
wish to find 3 node-disjoint paths between nodes s and t: (a) Costs of the edges, (b) Optimal
LP solution for the LP model that contains constraint (1.1c) only for those sets Z containing
2 nodes. This solution is not feasible for the LP model that contains all constraints of
type (1.1c).

cost, 3 node-disjoint paths between nodes s and t. Figure 1-1a shows the edge costs and

Figure 1-1b shows the (fractional) optimal solution (cost 36 units) to the LP relaxation of

the model that contains constraint (1.1c) only for those sets Z containing rst−1 = 2 nodes.

Note that deleting any two of the nodes a, b, c, d, e and f satisfies constraint (1.1c).

On the other hand, this solution is not feasible to the LP relaxation of the model that

contains all constraints of type (1.1c). The solution violates constraint (1.1c) when T = {t}

and Z = {c}. The lefthand side of this constraint xdt + xet + xft has value 1.5 and the

righthand side rst − 1 has value 2.

By deleting redundant constraints in the LP relaxation of the cutset formulation, we

obtain the following formulation.

Cutset formulation (II) for the NDC problem:

Minimize
∑

{i,j}∈E

cijxij

subject to:
∑

{i,j}∈δ(T )

xij ≥ econ(T ) for all T with φ 6= T 6= N ;

∑

{i,j}∈δG−Z(T )

xij ≥ nconG−Z(T ) − |Z|

for all T ⊂ N\Z with φ 6= T 6= N\Z,

and for all Z ⊂ N

with 0 < |Z| < nconG−Z(T );

xij ≤ bij for all {i, j} ∈ E;
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xij ≥ 0 and integer, for all {i, j} ∈ E.

Consider an alternative way to formulate the problem. We can enforce the connectivity

requirements of the matrix R using commodity flows. For each pair {s, t} of nodes, with

rst ≥ 1, create a commodity, arbitrarily choosing one of the nodes as the origin of the

commodity and the other node as the destination. Let K denote the set of commodities

and let qk, for each k ∈ K, denote the edge- or node-connectivity requirement between the

origin and destination of commodity k. Let K
[n] denote the subset of commodities that

correspond to node-connectivity requirements. For example, if rst = 3 then qk = 3 for the

commodity k corresponding to the node pair {s, t}. The following Mixed Integer Program,

with xij representing the number of copies of edge {i, j} in the network and f
k
ij flows, is a

valid formulation for the NDC problem.

Undirected flow formulation for the NDC problem:

Minimize
∑

{i,j}∈E

cijxij (1.2a)

subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−qk

qk

0

if i = O(k);

if i = D(k); for all i ∈ N and k ∈ K

otherwise;

(1.2b)

f
k
ij

f
k
ji

}

≤ xij for all {i, j} ∈ E and k ∈ K (1.2c)

∑

l∈N

f
k
il ≤ 1 for all k ∈ K

[n] and all i 6= O(k),D(k) (1.2d)

f
k
ij, f

k
ji ≥ 0 for all {i, j} ∈ E and k ∈ K (1.2e)

xij ≤ bij for all {i, j} ∈ E; (1.2f)

xij ≥ 0 and integer, for all {i, j} ∈ E. (1.2g)

Constraint (1.2c) in this formulation permits us to send flow on an edge only if it is in

the design. The number of units of flow of a commodity we can send on an edge equals

the number of copies of that edge in the graph. This capacity constraint, together with

the flow balance constraints (1.2b), enforce the edge-connectivity requirements. Consider

for example the model that does not allow parallel edges (that is, each bij = 1). If we

want to send 3 units of flow from node s to node t, then the formulation forces us to send

this flow on 3 edge-disjoint paths between these nodes. Suppose the requirements are for

node-disjoint paths. Then constraint (1.2d) ensures that at most one unit of a commodity

flows into (and out of due to flow balance constraint (1.2b)) any node that is not the source

or destination of the commodity. This ensures that the network will contain the required
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number of node-disjoint paths.

Note that the solution in Figure 1-1b has no feasible flow satisfying constraint (1.2d).

The only feasible flow, with the values of the edge variables shown in Figure 1-1b, that

sends 3 units of flow from s to t has fsc = fac = 1, and fsa = fac = fcb = fbt = fsd =

fdt = fse = fet = fsf = fft = 1/2. (This solution sends one unit of flow on the path s-c-t,

and half a unit of flow on the paths s-a-c-b-t, s-d-t, s-e-t and s-f -t). However, this solution

has 1.5 units of flow flowing into node c, violating constraint (1.2d). (This formulation also

provides the integer optimal solution for the problem in Figure (1-1).)

We will come back to the cutset and undirected flow formulation in Chapter 4, where

we will show that they are equivalent. We will then describe a dual-ascent algorithm for

the NDC problem based on the undirected flow formulation.

1.4 Organization of the Thesis

In Chapter 2 we review the NDC problem literature. We discuss heuristics as well as

exact algorithms. We also introduce a directed network design problem with connectivity

requirements and review its literature.

In Chapter 3 we describe the basic principles underlying the dual-ascent method. We

illustrate the method by considering the minimum spanning tree problem and the more

general minimum cost branching problem.13 Our discussion shows how to use the dual-

ascent approach to derive Edmonds’ algorithm [Edm67] for the minimum cost branching

problem. We then provide a Lagrangian duality interpretation of Edmonds’ algorithm.

Finally, we show how to extend these ideas to derive Wong’s algorithm [Won84] for the

Steiner branching problem.

In Chapter 4 we consider the network design problem with connectivity requirements.

We compare the flow-based formulation to the traditional cutset formulation. We then

provide a dual-ascent algorithm that generates both a feasible heuristic solution and a

lower bound for the problem. For the k-edge-disjoint path problem and the k-node-disjoint

path problem, the dual-ascent algorithm provides the optimal solution. We also compare

our method with that of Goemans et al. [GGW93, WGMV93, GGP+94] and describe

similarities and differences between the two algorithms. We then consider several modeling

extensions to the NDC model. These extensions permit connectivity requirements of the

following type: the network design must contain k edge-disjoint paths between nodes s

13The minimum cost branching problem can be described as follows. Given a digraph D = (N, A) and a
designated root node r, design a minimum cost network that contains a directed path from the root node
to all other nodes. In the Steiner version of this problem, the minimum cost Steiner branching problem, we
are also given a set T (r 6∈ T ) of terminal nodes. We need to design a minimum cost network containing a
directed path from the root node r to every node in T .
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and t, of which at least l must be node disjoint. We also show how to modify the dual-

ascent algorithm for the NDC problem so that it applies to directed network design problems

with connectivity requirements.

In Chapter 5 we consider the unitary network design problem with connectivity require-

ments. Motivated by a result due to Nash-Williams [NW60], we show how to to strengthen

the flow-based formulation (1.2) for the unitary NDC problem. We investigate the poly-

hedral structure of the improved formulation by projecting out the flow variables, and

show that the improved flow-based formulation implies three classes of valid inequalities—

partition, odd-hole, and combinatorial design—for the cutset formulation in the space of the

edge variables (these inequalities are generalizations of known inequalities for the Steiner

tree problem). Each of these three classes of valid inequalities is new for the unitary NDC

problem.

In Chapter 6 we consider the network design problem with low connectivity require-

ments. We use the improved formulation described in Chapter 5 to devise a new dual-

ascent algorithm for this problem. We then study the computational performance of the

dual-ascent algorithm. When applied to problems with up to 300 nodes and 3000 edges, the

dual-ascent procedure generates solutions known to be within about 4 percent of optimality.

In Chapter 7 we develop an improved flow-based model for the NDC problem (i.e., both

unitary and non-unitary). We first consider the Steiner forest problem and introduce a

flow-based formulation on a directed network that is stronger than Formulation (1.2). We

then generalize this directing procedure and develop an improved flow model for all NDC

problems. To our knowledge the literature does not contain a directed model for the Steiner

forest problem.

In Chapter 8 we summarize this thesis.



Chapter 2

Literature Review

In this chapter we review the extensive literature on the network design problem with

connectivity requirements (NDC). In later chapters, we elaborate on some of these results.

Part of the material in this chapter draws on references cited in [Sto92] and [Fra94].

The NDC problem is a special class of the general network design problem. Network

design is a fertile field with many different problem variants that are not restricted to the

design of physical networks, and include many transportation planning and production

planning problems. For surveys of network design problems, see the papers by Magnanti

and Wong [MW84] and by Minoux [Min89]. A good collection of recent research results

on network design problems is the book Network Models edited by Ball, Magnanti, Monma

and Nemhauser [BMMN95].

One special case of the NDC problem—the Steiner tree problem—is well studied. For

this reason, we will not review the Steiner tree problem in detail. For a comprehensive

survey of this problem, see the recent book by Hwang, Richards and Winter [HRW92].

In this chapter, unless otherwise specified we assume the NDC model does not permit

edge replication. Usually (if this is not the case we will explicitly mention it), algorithms

for the model that does not permit edge replication also apply to the model that permits

edge replication. To apply these algorithms replace each edge by min(bij , rmax) copies of

the edge. On the other hand, algorithms designed for the model that allows (unlimited)1

edge replication usually do not apply to the model that does not permit edge replication.

The plan for the rest of this chapter is as follows. We first describe polynomially solvable

cases of the NDC problem. Next, we describe heuristics for the NDC problem, and then

describe exact (not polynomial) algorithms for the NDC problem. Finally, we describe a

directed version of the NDC problem and review its literature.

1In this chapter every model with edge replication permits unlimited edge replication. Therefore, the
constant bij in model (1.2) is equal to rmax.

29
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2.1 Polynomially Solvable Cases

The NDC problem is polynomially solvable for certain restricted choices of edge costs cij ,

connectivity requirements rij , or structures of the underlying graph G.

2.1.1 Graph Augmentation Problems

In these problems the underlying graph is complete and the edge costs are either 0 or 1.

These problems have the following interpretation. Starting from the graph defined by the

zero-cost edges, add the fewest possible edges (augment the graph) to satisfy the connec-

tivity requirements. If all edge costs are 1, these problems are also referred to as uniform

cost problems. Observe that uniform cost problems are graph augmentation problems with

an empty starting graph.

Uniform Cost Problems: Harary [Har62] first considered problems of this type in the

context of the k-node-connected spanning subgraph problem. He constructively showed

that the minimum number of edges in a k-node-connected graph on |N | nodes is
⌈

k|N |
2

⌉

.

Chou and Frank [CF70] considered the edge-connectivity version of the NDC model

with edge replication. They constructively showed how to find the optimal solution to

this problem. The running time of their algorithm grows linearly with rmax, the highest

connectivity requirement; therefore, the algorithm is psuedopolynomial. Sridhar and Chan-

drasekaran [SC92] described a strongly polynomial algorithm that solves the same problem.

They modify the Gomory-Hu [GH61] network synthesis algorithm2 so that it provides inte-

ger capacities for the edges. Frank and Chou [FC70, FC69] described an algorithm to solve

the edge-connectivity version of the NDC problem without edge replication.

Edge-Connectivity Augmentation: Eswaran and Tarjan [ET76] introduced graph aug-

mentation problems. They showed how to solve the 2-edge-connected augmentation prob-

lem. Cai and Sun [CS89] and Watanabe and Nakamura [WN87] solved the general k-edge-

connected augmentation problem with edge replication. Frank [Fra92] generalized these

results by showing how to solve the edge-connectivity version of the NDC augmentation

problem with edge replication. It is an important open problem to find algorithms for the

model without edge replication. Taoka, Takafuji and Watanabe [TTW93] have recently

2In the network synthesis problem we are given a symmetric requirement matrix R whose entries can
be fractional. We need to decide on capacities bij for the edges so that for every pair of nodes s and t, the
network can send at least rst units of flow. This can be considered as the fractional version of the uniform
cost problem. Gomory and Hu [GH61] described an algorithm for this problem. Even if all entries in R are
integer, the Gomory-Hu algorithm can give fractional solutions.
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taken a step in this direction. They showed how to solve the k-edge-connected augmenta-

tion problem for the model without edge replication when k ≤ 5 (this algorithm does not

apply to the model that permits edge replication).

Node-Connectivity Augmentation: The node-connectivity augmentation problem is

quite difficult. In fact, at present, it is not known if the problem is NP-hard or whether

it is polynomially solvable (even for the model that permits edge replication). As a conse-

quence, results for the node-connectivity version are limited. Eswaran and Tarjan [ET76]

showed how to determine the exact number of edges to be added to make a graph 2-node

connected. Using Eswaran and Tarjan’s result Rosenthal and Goldner [RG77] provided an

O(|N |+ |E|) algorithm (here E is the set of zero-cost edges) for the problem of constructing

2-node-connected graphs. Watanabe and Nakamura [WN88] described an algorithm for

constructing 3-node-connected graphs. Recently, Jordán [Jor94] showed how to augment

a (k − 1)-node-connected graph to a k-node-connected graph using at most max(0, k − 3)

more edges than the optimal augmentation. Other than these results, not much is known

about node-connectivity augmentation problems.

2.1.2 Restricted Connectivity Requirements

The following special cases of the NDC are polynomially solvable.

• The minimum spanning tree problem. In this case, ri = 1 for all nodes in the SND

model. Kruksal’s [Kru56] and Prim’s [Pri57] algorithms are well-known algorithms

for solving this problem.

• The k-edge-disjoint or k-node-disjoint path problem. This problem can be formulated

as a minimum cost flow problem, which is polynomially solvable. Suurbaale [Suu74]

has devised a specialized algorithm for this problem.

• The Steiner tree problem when either the number of terminal nodes or the number

of Steiner nodes is bounded. Dreyfus and Wagner [DW71], Lawler [Law76], and

Levin [Lev71] have given dynamic programming algorithms for this problem.

2.1.3 Restricted Graphs: Series-Parallel Graphs

Researchers have studied versions of the NDC problem on special graphs called series-

parallel graphs (or 2-trees). These graphs can be constructed by a recursive construction

process. As a result, many problems that are NP-hard on general graphs are polynomi-

ally solvable, using a dynamic programming algorithm, on series-parallel graphs. This is

formalized in various ways by Arnborg and Proskurowski [AP89], and Bern, Lawler and
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Wong [BLW87]. Although the basic algorithm design philosophy for problems on series-

parallel graphs is quite easy, deriving a linear time algorithm is not so straightforward. For

example, to prove the correctness of a linear time algorithm for the edge-connectivity ver-

sion of the NDLC on series-parallel graphs, Raghavan [Rag92] has considered 110 different

cases. We now summarize the polynomial algorithms for various special cases of the NDC

problem on series-parallel graphs. Wald and Colbourn [WC83] described a linear time al-

gorithm for the Steiner tree problem on series-parallel graphs. Winter [Win87] described

linear time algorithms for the Steiner 2-node-connected and Steiner 2-edge-connected span-

ning subgraph problems on series-parallel graphs. Raghavan [Rag92] described linear time

algorithms for both the edge- and node-connectivity versions of the NDLC problem on

series-parallel graphs.

Other researchers have focused on providing complete polyhedral descriptions for special

cases of the NDC problem on series-parallel graphs. This characterization is important

because valid inequalities for a problem on a series-parallel graph are usually valid for general

graphs. Consequently, a formulation that provides a complete polyhedral description of the

problem on series-parallel graphs is often a strong formulation for the problem on general

graphs (for example, the Steiner branching problem).

Goemans [Goe94b] and Margot, Prodon and Liebling [MPL94] independently provided

polyhedral descriptions for the node weighted Steiner tree problem on series-parallel graphs—

that is, a Steiner tree problem with a fixed cost (in addition to the cost of its incident edges)

for selecting a Steiner node in the network design. These formulations are extended formu-

lations for the Steiner tree problem on series-parallel graphs.

Coullard, Rais, Rardin and Wagner [CRRW91a] provided a complete polyhedral descrip-

tion of the Steiner 2-node-connected spanning subgraph polytope on series-parallel graphs.

Bäıou and Mahjoub [BM93] described the Steiner 2-edge-connected spanning subgraph

polytope on series-parallel graphs.

Chopra [Cho89] studied the minimum cost k-edge-connected spanning subgraph prob-

lem. He provided a complete linear inequality description of the polytope associated with

the k-edge-connected spanning subgraph problem on an outerplanar graph3 when k is odd.

Researchers have studied two other classes of decomposable graphs (i.e., graphs that can

be constructed recursively): the so called W4-free graphs and Halin graphs. Coullard, Rais,

Rardin and Wagner [CRRW91b] studied the Steiner 2-node-connected subgraph problem

on W4-free graphs. They described a linear time algorithm for this problem and provide a

complete polyhedral description of this problem. Winter [Win85] described linear time al-

gorithms for the Steiner 2-node-connected and Steiner 2-edge-connected spanning subgraph

problems on Halin graphs.

3An outerplanar graph is a special type of series-parallel graph.
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Recently, Margot and Schaffers [MS91, MS94] reported on a general theory to derive

complete polyhedral descriptions for problems on graphs that can be constructed recursively.

With this unifying theory, they provide alternate proofs for many of the results cited in this

section.

It is interesting to note that although there is a linear time algorithm to solve the

Steiner tree problem on series-parallel graphs, no one has been able to provide a complete

polyhedral description of the Steiner tree problem on series-parallel graph in the space of

the natural edge variables. Perhaps, the recent results by Margot and Schaffers will provide

some clues as to how to solve this open problem.

2.2 Heuristics for the NDC Problem

Steiglitz, Weiner, and Kleitman [SWK69] seem to have been the first to consider the NDC

problem. They considered problems with node-connectivity requirements, describing a

heuristic algorithm that works in two steps. It first incrementally adds edges to the graph

and creates a feasible solution. Then, it makes local improvements, using pairwise exchanges

of edges until no more local improvements are possible. They applied their heuristics to two

real-world problems. Their heuristic required approximately 12 minutes of running time on

a UNIVAC 1108 for a 6-node-connected spanning subgraph problem on a 58 node graph

(the larger of the two problems).

Monma and Shallcross [MS89] described heuristics for the network design problem with

low connectivity requirements (NDLC). Their heuristic method also has two parts. It first

constructs a feasible solution and then applies a number of local interchange heuristics.

Their heuristics were designed to work well on sparse underlying graphs. For some sparse

telephone network design problems with 116 nodes, their heuristics required up to 156 sec-

onds of running time on an IBM-PC/AT.

Using similar ideas to those used by Monma and Shallcross, Ko and Monma [KM89] have

proposed heuristics for designing k-edge-connected and k-node-connected graphs. They

tested their method on random problems. Running times, on a VAX 8650, for their heuristic

varied from 13 seconds for problems with 20 nodes and k = 3, to 120 seconds for problems

with 40 nodes and k = 5.

Goemans and Talluri [GT91] studied the k-edge-connected spanning subgraph problem.

They showed that if k is even or 1 and G is a k-edge-connected graph, then replacing any

two nonadjacent edges (a, c) and (b, d) in G by either the edges (a, d) and (c, b), or the

edges (a, b) and (c, d) produces a k-edge-connected graph. As a result, 2-opt4 is a feasible

4A 2-opt heuristic starts with a feasible network. It then replaces two edges contained in the solution by
two edges that are not, if the solution remains feasible and its cost decreases. It continues in this fashion



34 Literature Review

heuristic for the Steiner k-edge-connected spanning subgraph problem when k is even or 1.

2.2.1 Approximation Algorithms for the NDC Problem

An approximation algorithm is an algorithm that provides a heuristic solution with a prov-

able worst-case ratio between the value of the heuristic solution and the value of an optimal

integer solution. An α-approximation algorithm, or an algorithm with a worst-case ratio

of α, is an algorithm that provides a heuristic solution that is always guaranteed to have

a solution value that is at most α times the optimal (integer) solution value. For the

general NDC problem no approximation algorithms are known. However for special cases

researchers have been able to provide approximation algorithms.

One of the earliest approximation results was for the Steiner tree problem. Several

authors (see El-Arbi [EA78], Kou et al. [KMB81], Plesnik [Ple81], and Takahashi and Mat-

suyama [TM80]) independently proposed a minimum spanning tree heuristic that has a

worst-case ratio of 2 − (2/|T |) (recall that T denotes the set of required nodes). This

algorithm can be described as follows:

Minimum spanning tree heuristic (Takahashi and Matsuyama)

1. Select an arbitrary node i ∈ T as the initial tree B. Let T
′ = {i}.

2. While T\T ′ 6= φ

• determine a node j ∈ T closest to B (break ties arbitrarily),

• update B by adding the shortest path joining node j to B,

• T
′ = T ∪ {j}.

Zelikovsky [Zel93] described a 11
6 -approximation algorithm for the Steiner tree problem

that runs in O(|T |(|E| + |N ||T | + |N | log |N |)) time. Berman and Ramaiyer [BR92] build

upon Zelikovsky’s ideas and proposed a 16
9 -approximation algorithm for the Steiner tree

problem that runs in O(|N |7/2) time. Currently, this is the best worst-case bound of any

approximation algorithm for the Steiner tree problem.

Frederickson and JáJá [FJ81] described a 3-approximation algorithm for the 2-edge-

connected spanning subgraph problem. Khuller and Vishkin [KV92] improved upon this

worst-case ratio by giving a 2-approximation algorithm for the k-edge-connected spanning

subgraph problem. Their algorithm replaces each undirected edge {i, j} by two directed

arcs, (i, j) and (j, i), each with the same cost as {i, j}. It then arbitrarily selects one of

the nodes as a root node and solves the minimum cost k-branching problem. That is, it

until no further improvement is possible.



2.2 Heuristics for the NDC Problem 35

designs a digraph that contains k arc-disjoint branchings rooted at the root node. Since

the k-branching problem is a matroid intersection problem (see Section 2.4.1), it is solvable

optimally in polynomial time [Edm79]. Next, they showed that the network designed by

selecting an edge {i, j} if at least one of the arcs (i, j) or (j, i) is in the solution to the

k-branching problem is a k-edge-connected subgraph whose cost is no more than twice that

of the optimal solution.

Balakrishnan, Magnanti and Mirchandani [BMM94a] described a tree completion heuris-

tic that is a 2-approximation algorithm for the k-path Steiner tree problem. In the k-path

Steiner tree problem we are given a set T of terminal nodes we wish to connect. In addition

we require that two prespecified nodes in T , say s and t, are connected by k edge-disjoint

paths. The tree completion heuristic can be described as follows:

Tree completion heuristic for k-path Steiner tree problem

1. Solve the k-edge-disjoint path problem between nodes s and t. Set B to be the edges

in these k edge-disjoint paths. Set T
′ to be the set of terminal nodes that are incident

to edges in B.

2. While T\T ′ 6= φ (continue with Step 2 of the minimum spanning tree heuristic)

• determine a node j ∈ T closest to B (break ties arbitrarily),

• update B by adding the shortest path joining node j to B,

• T
′ = T ∪ {j}.

Goemans and Bertsimas [GB93] were the first researchers to devise an approximation

algorithm for the SND problem. They described a tree heuristic for the edge-connectivity

version of the SND problem that permits edge replication. Its simplicity makes it worth

describing.

Tree heuristic

1. Compute, for all pairs of nodes i, j, the shortest path lengths c
′
ij with respect to the

cost vector c.

2. Prepare a sorted list L = {0 = ρ0 < ρ1 < ρ2 < . . . < ρp} consisting of all distinct

connectivity types.

3. Set x = 0.

4. For k = 1 to p do

• Let Nk = {i ∈ N : ri ≥ ρk}.
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• Compute Tk = (Nk, Ek), the minimum spanning tree with respect to c′ of the

complete graph induced by Nk.

• Let xij = xij + (ρk − ρk−1) for all edges {i, j} ∈ Ek.

5. If xij > 0, replace each edge {i, j} in the complete graph on N by xij copies of the

shortest path from node i to node j.

Goemans and Bertsimas showed that the worst-case ratio θ1 of the tree heuristic is

(

2 −
2

|T |

)( p
∑

k=1

ρk − ρk−1

ρk

)

.

In this expression, T denotes the nodes with connectivity requirement greater than 0. When

applied to the Steiner tree problem the tree heuristic reduces to the well-known minimum

spanning tree heuristic. In proving the worst-case ratio of the tree heuristic, Goemans

and Bertsimas actually showed that θ1 is the ratio between the tree heuristic’s solution

and the optimal linear programming value of a cutset model for the SND problem (see

Formulation (1.1) on page 24). As a result, they bounded the ratio between the optimal

IP solution and optimal LP solution for the cutset model. Goemans and Bertsimas also

showed that if ρ1 = 1 and p ≥ 2, the worst-case ratio of the tree heuristic improves by a

unit to θ1 − 1.

Goemans and Bertsimas described another algorithm called the improved tree heuris-

tic for the edge-connectivity version of the SND problem that allows edge replication.

This heuristic improves upon the tree heuristic when there is a gap in the connectivity

requirements—that is, when two consecutive values of ρ differ by more than 1. Suppose

the two consecutive values of ρ differ by 2. The improved tree heuristic adds to the current

solution (i) one copy of the minimum spanning tree Tk computed by the tree heuristic, and

(ii) a minimum weight matching Mk, with respect to the edge cost vector c′, on the odd

degree vertices of Tk. Since the union of Tk and Mk is Eulerian,5 it is 2-edge connected.

Therefore, the resulting network has at least 2 more edge-disjoint paths between the nodes

in Tk∪Mk (when applied to the 2-edge-connected spanning subgraph problem, the improved

tree heuristic is Christofides’ heuristic [Chr76] for the TSP without its short-cutting step).

In general, if the gap in the connectivity requirement is even, the improved tree heuristic

adds (ρk − ρk−1)/2 copies of the tree Tk and the matching Mk to the solution. If the gap

in the connectivity requirement is odd, it adds (ρk − ρk−1 + 1)/2 copies of the tree Tk and

5An Eulerian graph is a connected graph whose nodes all have even degrees. In 1736, in a result that
many researchers believe is the origin of graph theory, Euler [Eul36] showed that it is possible to start from
any any node in an Eulerian graph, traverse all edges in the graph and return to the start node without
traversing any edge twice. As a result, an Eulerian graph is 2-edge connected.
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(ρk − ρk−1 − 1)/2 copies of the matching Mk to the solution. Goemans and Bertsimas

showed that the worst-case ratio θ2 of the improved tree heuristic is

p
∑

k=1

f(ρk − ρk−1)

ρk
.

In this expression, f(l) = 3
2 l if l is even and f(l) = 3

2 l+ 1
2 if l is odd. For the Steiner k-edge-

connected subgraph problem, their algorithm gives a worst-case ratio of 3/2 when k is even

and 3/2+1/(2k) when k is odd. Again, in proving the worst-case ratio of the improved tree

heuristic, Goemans and Bertsimas actually showed that θ2 is the ratio between the value of

the improved tree heuristic’s solution and the optimal LP value of the cutset model for the

SND problem, thereby bounding the ratio between the optimal IP and optimal LP values

for the cutset model. Goemans and Bertsimas also showed that if ρ1 = 1 and p ≥ 2, the

worst-case ratio of the improved tree heuristic improves by a unit to θ2 − 1.

Building upon the work of Goemans and Bertsimas, Goemans and Williamson [GW92]

described an algorithm for network design problems that can be formulated as integer

programs with a certain type of cut constraint. This class of problems include the edge-

connectivity version of the NDC problem with edge replication. Suppose that rst assumes

at most p different nonzero values, 0 = ρ0 < ρ1 < ρ2 < . . . < ρp. Then their algorithm has

a worst-case ratio of θ1.
6 That is,

θ1 =

(

2 −
2

|T |

)( p
∑

k=1

ρk − ρk−1

ρk

)

.

In this expression, T is the set of nodes that need to be connected. In proving the worst-case

ratio of this heuristic, Goemans and Williamson showed that θ1 is the ratio between the

value of the heuristic’s solution and the optimal LP solution to the cutset model for the

NDC problem, and therefore a bound on the ratio between the optimal IP and optimal

LP values for the cutset model. Although Goemans and Williamson do not show this,

arguments similar to those used by Goemans and Bertsimas will reduce the worst-case ratio

of the heuristic by 1 to θ1 − 1 when ρ1 = 1 and p ≥ 2. A reduced ratio does not apply to

the optimal IP to optimal LP ratio of the cutset model.

Williamson, Goemans, Mihail and Vazirani [WGMV93] and Gabow, Goemans and

Williamson [GGW93] described an approximation algorithm for a class of problems that in-

clude the edge-connectivity version of the NDC problem without edge replication (their

algorithm is the first approximation algorithm for the edge-connectivity version of the

6Goemans and Williamson stated a worst-case ratio of 2
(
∑p

k=1

ρk−ρk−1

ρk

)

. However, their paper implies

this ratio.
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NDC problem without edge replication). They described an approximate version of the

primal-dual7 method for combinatorial optimization problems that can be formulated as

IPs. Using this approximate version of the primal-dual method, they derived a worst-case

guarantee for their algorithm. If rmax is the maximum value of rst, their algorithm has a

worst-case bound of 2rmax, and a running time of O(|N |rmax(|N |rmax +
√

|E| log log |N |)).

Goemans, Goldberg, Plotkin, Shmoys, Tardos and Williamson [GGP+94] made a simple

modification to [WGMV93]’s algorithm and improved the worst-case ratio to 2H(rmax),

where H(rmax) = 1 + 1
2 + 1

3 + . . . + 1
rmax

. Again, this ratio also bounds the ratio be-

tween the optimal IP and optimal LP values to the cutset model for the NDC problem.

When edge replication is not permitted, the approach that Goemans and Bertsimas used

to improve the worst-case ratio for problems with ρ1 = 1 and p ≥ 2 (same notation as Goe-

mans and Williamson) does not work. In fact, the algorithm achieves its worst-case ratio

for the k-edge-disjoint path problem (a polynomially solvable problem, see Section 2.1.2).

The underlying methodology for all these algorithms ([GW92], [WGMV93], [GGW93], and

[GGP+94]) applies to many other problems. For example, Ravi and Williamson [RW93]

used the approximate version of the primal-dual method to derive the first approximation

algorithm for the minimum cost k-node-connected spanning subgraph problem.

Balakrishnan, Magnanti and Mirchandani [BMM94a] introduced a new extended for-

mulation for the edge-connectivity version of the NDC problem, that we refer to as the

enhanced cutset model. They strengthened the results of Goemans and Bertsimas and

Goemans and Williamson (for the edge-connectivity version of the NDC problem) by show-

ing that the improved worst-case ratios of θ1 − 1, θ2 − 1 and θ3 − 1 also apply to the ratio

between the values of the heuristics and the optimal LP solution of the enhanced cutset

model.

So far, we have described approximation results for edge-connectivity versions of the

NDC problem. We now describe some approximation results for the node-connectivity

version of the NDC problem, and an approximation result for a uniform cost problem

where the underlying graph is not complete.

Node Connectivity: There are very few approximation results for node-connectivity

problems. Frederickson and JáJá [FJ81] described a 3-approximation algorithm for the

2-node-connected spanning subgraph problem that runs in O(|N |2) time. Khuller and

Thurimella [KT93] showed how to improve this algorithm so that it runs in O(|E| +

7A primal-dual method for solving a linear program can be viewed as a special case of the dual-ascent
method. It starts with a dual feasible solution and an infeasible solution to the primal that together satisfy
the linear programming complementary slackness conditions. At each subsequent iteration, the method
alternately improves the feasibility of the primal and the value of the dual solution (thereby providing
ascent). The method maintains complementary slackness and terminates when the primal solution becomes
feasible.
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|N | log |N |) time. Ravi and Williamson [RW93] described a 2H(k)-approximation algorithm

for the minimum cost k-node-connected spanning subgraph problem.

Uniform Cost Problem when the Underlying Graph is not Complete: Khuller

and Vishkin [KV92] considered the 2-edge- and 2-node-connected spanning subgraph prob-

lem when the underlying graph is arbitrary, edge replication is prohibited, and all edge

costs are 1. This problem is NP-hard [KV92] (recall that when the graph is complete,

this problem is polynomially solvable). They described a 3/2-approximation algorithm for

the 2-edge-connected spanning subgraph problem and a 5/3-approximation algorithm for

the 2-node-connected spanning subgraph problem. They also showed that it is NP-hard to

approximate the optimal solution to within an additive constant (i.e., find a solution whose

cost is no more than C units more than the optimal solution, where C is a constant).

2.2.2 Cost Function Satisfies Triangle Inequality

Some researchers have concentrated on the version of the NDC problem applied to complete

graphs whose edge costs satisfy the triangle inequality (i.e., cik ≤ cij + cjk). In this section,

unless specified otherwise, we assume that the edge costs satisfy the triangle inequality and

the underlying graph is complete.

Frederickson and JáJá [FJ82] showed that when the cost function satisfies the triangle

inequality, a 2-edge-connected graph can be made 2-node connected without increasing

(and possibly decreasing) its cost. As a result, any algorithm that applies to the Steiner

2-node-connected spanning subgraph problem also applies to the Steiner 2-edge-connected

spanning subgraph problem and vice versa. Consequently, we will not distinguish between

the Steiner 2-node-connected and Steiner 2-edge-connected subgraph problems.

By viewing the solution to the NDLC problem as a 2-node-connected network with

trees attached to it, Frederickson and JáJá’s result extends to the NDLC problem. Thus,

for the NDLC problem, the optimal objective value of the edge-connectivity model is equal

to the optimal objective value of the node-connectivity model. In other words, the edge-

connectivity version of the NDLC problem is equivalent to the node-connectivity version

of the NDLC problem. As a result, we do not make distinctions between the edge- and

node-connectivity versions of the NDLC problem.

Frederickson and JáJá [FJ82] showed that Christofides’ heuristic [Chr76] for the TSP

is a 3/2-approximation algorithm for the 2-node-connected spanning subgraph problem.

They also described a slight modification of Christofides’ heuristic, and showed that it is

a 3/2-approximation algorithm whose solution is guaranteed to be no worse (and in some

cases better) than Christofides’ heuristic.

A similar argument to the one used by Frederickson and JáJá [FJ82], regarding the
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equivalence of 2-edge-connected and 2-node-connected graphs, establishes the following re-

sult.

Proposition 2.2.1 When costs satisfy the triangle inequality, it is possible to transform,

with no increase in cost, any 2-edge-connected graph that contains 3 or more nodes and con-

tains replicated edges, into a 2-node-connected graph without replicated edges. Furthermore,

this transformation can be done in polynomial time.

As a consequence, Proposition 2.2.1 and Goemans and Bertsimas’ result regarding the

worst-case ratio of the improved tree heuristic (which for the Steiner 2-edge-connected sub-

graph problem is Christofides’ heuristic without the short-cutting step [assuming there are

more than 3 required nodes]) shows that Christofides’ heuristic is also a 3/2-approximation

algorithm for the Steiner 2-node-connected problem in the model without edge replica-

tion. Note that if the problem has exactly two nodes with connectivity requirement 2,

Christofides’ heuristic will give a solution that contains two parallel edges between the two

required nodes. But, when only two nodes have connectivity requirement 2, the problem is

the 2-edge-disjoint path problem which is optimally solvable in polynomial time.

Monma, Munson and Pulleyblank [MMP90] studied structural properties of 2-node-

connected graphs. They showed that when the cost function satisfies the triangle inequality,

in some optimal solution, the degree of each node is either 2 or 3. They also showed that

the optimal TSP tour is a 4/3-approximation algorithm for the 2-node-connected spanning

subgraph problem. For the Steiner 2-node-connected subgraph problem, they showed that

the worst-case ratio of the minimum cost 2-node-connected network over the required nodes

(that is a 2-node-connected network on the graph induced by the required nodes) to the

minimum cost Steiner 2-node-connected network is 4/3.

Balakrishnan, Magnanti and Mirchandani [BMM94a] used Frederickson and JáJá’s re-

sult to develop a tree completion heuristic that has a worst-case ratio of 5/2 for the NDLC

model without edge replication. Their algorithm first applies Frederickson and JáJá’s algo-

rithm on the graph defined by the nodes with connectivity requirement 2. It then sets B

to be the set of edges in this solution, and sets T
′ to be the set of terminal nodes that are

incident to edges in B. It continues with Step 2 of the minimum spanning tree heuristic

(tree completion stage) to obtain a feasible solution for the problem. Their algorithm as-

sumes at least three nodes have a connectivity requirement of 2. If only two nodes have a

connectivity requirement of two, we can apply the tree completion heuristic for the k-path

Steiner tree problem to obtain a heuristic with a worst-case ratio of 2. If no node has a

connectivity requirement of 2, we obtain the Steiner tree problem for which the minimum

spanning tree heuristic gives a worst-case ratio of 2.

We can improve upon Balakrishnan, Magnanti and Mirchandani’s result by using Propo-

sition 2.2.1 to provide a 2-approximation algorithm for the NDLC problem. In the previous
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paragraph we showed how to find a solution whose cost is no more than twice the cost of

the optimal solution when two or fewer nodes have a connectivity requirement of 2. If three

or more nodes have a connectivity requirement of 2, we apply Goemans and Bertsimas’

tree heuristic. The solution of this heuristic contains a 2-edge-connected component with

trees attached to it. Using Proposition 2.2.1 we can convert, with no increase in cost, the

2-edge-connected component that has replicated edges to a 2-node-connected component

without replicated edges. Since Goemans and Bertsimas’ tree heuristic has a worst-case

ratio of 2, this heuristic also has a worst-case ratio of 2.

Using a simple doubling argument, Balakrishnan, Magnanti and Mirchandani [BMM94a]

showed that optimally solving the NDLC problem (without edge replication) on a graph

that contains only the required nodes is no more than twice as expensive as an optimal

solution. Their result can be viewed as a generalization of a similar result for the Steiner

tree problem. When the costs satisfy the triangle inequality, the solution of Goemans

and Bertsimas’ tree heuristic contains only edges between required nodes. Therefore, if

the number of nodes with connectivity requirement 2 is not equal to 2, Proposition 2.2.1

together with the worst-case bound of Goemans and Bertsimas’ tree heuristic constructively

proves Balakrishnan, Magnanti and Mirchandani’s result.8

Bienstock, Brickell and Monma [BBM90] showed that a generalization of Monma, Mun-

son and Pulleyblank’s result is not true. They showed that the optimal cost of the k-

edge-connected spanning subgraph problem does not equal the optimal cost of the k-node-

connected spanning subgraph problem. They also showed that in the optimal solution to

the k-edge-connected spanning subgraph each node has degree k or k + 1. This statement

regarding the degree of a node in the optimal solution is also true for the k-node-connected

spanning subgraph problem if the number of nodes in the graph is greater than 2k.

2.3 Exact Algorithms for the NDC Problem

The first exact algorithm for the SND problem is due to Christofides and Whitlock [CW81].

They described a cutting plane algorithm combined with branch and bound. The cutting

plane algorithm is based on the cutset formulation. If the solution obtained by the cutting

plane algorithm is not integer, they apply a branch and bound procedure. They reported

successfully solving problems with more than 100 nodes.

Grötschel, Monma and Stoer [GMS92a, GMS92b, GMS92c, GMS95, Sto92] considered

a polyhedral approach for the SND problem. They described valid inequalities and facets

for the problem, incorporated them in a cutting plane routine, and reported on successful

8Actually, it establishes a stronger result. It shows that a heuristic solution on the terminal nodes is no
more than twice as expensive as the optimal solution.
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computations for some real-world problems. Their cutting plane algorithms perform well

for low-connectivity problems. The largest NDLC problem they solve (after preprocessing

to reduce the size of the graph) has 39 nodes and 86 edges. The cutting plane algorithm

required 21 seconds on a SUN 4/50 IPX (a 28.5 MIPS machine) for this problem. The

largest SND problem they solve has 461 nodes, 1096 edges and rmax = 3[n]. The cutting

plane algorithm required 10122 minutes, on a SUN 4/50 IPX workstation, to solve this

problem (by applying some heuristics to reduce the size of this graph they were able to

bring down the running time to 426 minutes). Grötschel, Monma and Stoer [Sto92] stated

that in their experience the cutset formulation used by Christofides and Whitlock is weak,

except for the Steiner k-edge-connected and Steiner k-node-connected spanning subgraph

problems when k is large. Conceivably,9 the test problems of Christofides and Whitlock are

of this type.

Chopra [Cho92b] considered a version of the NDLC problem that permits edge replica-

tion. Based on a result due to Robbins [Rob39], he directed the network and introduced

a directed cut formulation. He then developed a cutting plane algorithm for this formula-

tion. In his computational studies, he solved four types of problems—sparse graphs with

Euclidean edge costs, sparse graphs with random edge costs, complete graphs with Eu-

clidean edge costs, and complete graphs with random edge costs. The largest sparse graph

problem he solved contains 100 nodes and 200 edges. The cutting plane algorithm required

25 minutes to solve this problem on a VAX 8700 computer. The largest complete graph

problem he solved had 50 nodes and 1225 edges, and required a running time of 5.6 minutes

(336 seconds) on a VAX 8700 computer. Chopra reported that the lower bounds provided by

solving the LP relaxation of the directed cut formulation were consistently within 1 percent

of the optimal objective value.

Boyd and Hao [BH93] studied the polytope associated with the minimum cost 2-edge-

connected spanning subgraph problem. They introduced a class of valid inequalities for

this polytope and described necessary and sufficient conditions for these valid inequalities

to define facets. Although they do not provide computational results, they indicate that

these inequalities will be useful in a cutting plane method.

2.4 Directed Network Design Problems with Connectivity

Requirements

For the most part, the problems we consider in this thesis are defined on undirected graphs.

In some telecommunications applications, the medium transporting data cannot carry traffic

9The original paper by Christofides and Whitlock, as cited in [CW81], does not appear to be published.
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in both directions, and so the connectivity requirements are specified on directed graphs

(digraphs). In his Ph.D. thesis, Dahl [Dah92] described several real-world applications of

the directed network design problem with connectivity requirements (DNDC). Formally, we

can describe the problem as follows.

Directed Network Design Problem with Connectivity Requirements: Given a

digraph D = (N,A) with node set N , arc set A, cost vector c ∈ R
|A|
+ on the arcs A, and

a |N | × |N | matrix R = [rij ] that prescribes the number of arc- or node-disjoint paths10

needed between each pair of nodes, select a set of arcs that satisfy these requirements at

minimum cost.

We now briefly describe other well-known network design problems, and show how to

represent them as DNDC problems.

Minimum Cost Branching Problem: Given a root node r, we wish to design a mini-

mum cost network that has a directed path from the root node to every other node.

The minimum cost branching problem is a DNDC problem in which rri = 1 if i 6= r

and is 0 otherwise.

Minimum Cost k-Branching Problem: Given a root node r, we wish to design a min-

imum cost network that has k arc-disjoint branchings rooted at node r. Edmonds

[Edm73] showed that a graph contains k arc-disjoint branchings rooted at a given

node r if and only if it contains k arc-disjoint directed paths from node r to every

other node. Consequently, the minimum cost k-branching problem is a DNDC prob-

lem in which rri = k if i 6= r and is 0 otherwise. Similarly we could formulate Steiner

versions of the problem.

Disjoint Path Problems: The k-arc-disjoint path problem requires that we find at mini-

mum total cost k arc-disjoint paths between a prespecified pair, say s and t, of nodes.

To specify the problem as a DNDC problem, we set rst = k and set all other entries

in the connectivity matrix R to zero. Similarly, for the k-node-disjoint path problem,

we wish to find at minimum total cost k node-disjoint paths between a prespecified

pair of nodes (say s and t). To formulate this problem as a DNDC problem, we set

rst = k
[n] and set all other entries in the connectivity matrix R to zero.

Minimum Cost k-Arc-Connected Spanning Digraph Problem: A digraph is k-arc

connected if between every pair of nodes it contains at least k arc-disjoint paths.11

10This is a generalization of the problem described in Dahl [Dah92]. He permits either arc-connectivity
requirements or node-connectivity requirements in the matrix R but not both.

11A digraph is strongly connected if it contains a directed path from each node to every other node.
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The minimum cost k-arc-connected spanning digraph problem is a DNDC problem in

which rst = k for every pair of nodes in N .

Minimum Cost k-Node-Connected Spanning Digraph Problem: A digraph is k-node

connected if between every pair of nodes it contains at least k node-disjoint paths.

The minimum cost k-node-connected spanning digraph problem is a DNDC problem

in which rst = k
[n] for every pair of nodes in N . Similarly, we can formulate Steiner

versions of these problems as DNDC problems.

2.4.1 Polynomially Solvable Cases

Like the NDC problem, various special versions of the DNDC problem with specialized

costs, connectivity requirements, or graphical structure are polynomially solvable.

Digraph Augmentation Problems

In these problems, the arc costs are either 0 or 1. In addition, unless otherwise specified

the underlying digraph is complete and the model permits arc replication.

Uniform Cost Problems: Fulkerson and Shapley [FS71] solved the problem of con-

structing a k-arc-connected spanning digraph on |N | nodes with the minimum number of

arcs. It is interesting to note that the Steiner version of this problem (i.e. when some nodes

are not required to be in the k-arc-connected network) is NP-hard [Fra92].

Arc-Connectivity Augmentation: Eswaran and Tarjan [ET76] solved the problem of

constructing 1-arc-connected spanning digraphs (strongly connected digraphs). Kajitani

and Ueno [KU86] solved the problem of constructing k-arc-connected spanning digraphs

when the starting digraph is a branching. Frank [Fra92] generalized these results by solving

the augmentation problem for the k-arc-connected spanning digraph problem.

Node-Connectivity Augmentation: Eswaran and Tarjan [ET76] showed how to solve

the 1-node-connected spanning digraph problem. (Note that a 1-arc-connected digraph

is also a 1-node-connected digraph and vice versa. Consequently, the 1-node-connected

spanning digraph problem is identical to the 1-arc-connected spanning digraph problem.)

As cited in [Fra94], several other problems are polynomially solvable. Masuzawa, Hagihara

A digraph is k-arc connected if deleting fewer than k arcs creates a strongly connected digraph. Again,
Whitney [Whi32] showed that a digraph is k-arc connected if and only if it contains at least k arc-disjoint
paths between each pair of nodes. Similarly, a digraph is k-node connected if deleting fewer than k nodes
creates a strongly connected digraph. Whitney’s result implies that a digraph is k-node connected if and
only if it contains at least k node-disjoint paths between each pair of nodes.
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and Tokura showed how to solve the k-node-connected spanning digraph problem when

the starting digraph is a branching. Frank and Jordán described an algorithm for the 3-

node-connected spanning digraph problem when the starting digraph is a 2-node-connected

spanning digraph. Frank and Jordán described a necessary and sufficient condition on the

number of arcs to add to an arbitrary digraph to make it k-node connected. Unfortunately,

this result is of a theoretical nature and does not provide a combinatorial algorithm for

the k-node-connected spanning digraph augmentation problem. The result can be used

to provide an algorithm for the problem by using the ellipsoid algorithm as a subroutine

(which is not very practical).

Restricted Connectivity Requirements

The following restricted connected requirements are optimally solvable.

• The minimum cost branching problem. Edmonds [Edm67] described an algorithm for

this problem, which we will see in Chapter 3.

• The k-arc-disjoint or k-node-disjoint path problem on a digraph. This problem can

be formulated as a minimum cost flow problem, which is polynomially solvable. Su-

urbaale [Suu74] has devised a specialized algorithm for this problem.

• The minimum cost k-branching problem. This is a matroid intersection problem.12

Consequently, it can be solved optimally [Edm79]. The most efficient implementation

of an algorithm for the minimum cost k-branching algorithm is due to Gabow [Gab91].

• The node-disjoint version of the k-branching problem. In this problem we wish to

find k node-disjoint directed paths between the root node and every other node in

the graph. Using a tricky reduction to submodular flows, Frank and Tardos [FT89]

described an algorithm for this problem.

Restricted Graphs: Series-Parallel Graphs

Prodon, Liebling and Gröflin [PLG85] described a dicut model for the Steiner branching

problem and showed that it provides a complete polyhedral description (of the dominant) on

12Edmonds [Edm70] showed how to formulate the problem as the intersection of two matroids: (i) a
partition matroid in which a set is independent if it contains at most k arcs directed into any node i 6= r;
and (ii) the k-fold sum of a graphic matroid. A set is independent in a graphic matroid if it contains no
cycle. Matroid theory tells us that the matroid sum of k matroids defined on the same set S is a matroid
in which the independent sets are all subsets of S that can be partitioned into k subsets, the ith subset
being independent in the ith matroid. If the k matroids are identical, their matroid sum is called a k-fold
sum. Consequently, a set is independent for the k-fold sum of a graphic matroid if it can be partitioned into
k subsets, none of which contain a cycle.
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series-parallel graphs (a digraph is called series-parallel if the graph obtained by replacing

the directed arcs by undirected edges is series-parallel).

Chopra [Cho92a] described a dicut model for the minimum cost 1-arc-connected span-

ning digraph problem and showed that it provides a complete polyhedral description (of

the dominant) of the problem on series-parallel graphs.

2.4.2 Heuristics

The only heuristic that we are aware of for a DNDC problem is Wong’s algorithm for the

Steiner branching problem (which we shall see in Chapter 3).

Heuristics for the DNDC problem appear not to have generated much research and so

this topic seems to be an open area for research.

2.4.3 Exact Algorithms

Chopra [Cho92b] considered the minimum cost 1-arc-connected spanning digraph problem.

He studied the problem from a polyhedral point of view and described several classes of

valid inequalities and facets for the dicut model.

Dahl [Dah92] studied a more general version of the DNDC problem. He presented

two models for the DNDC problem: one, a natural directed cut (dicut) model and the

other a directed flow formulation. For the dicut model, he presented several classes of

strong valid inequalities and described a cutting plane solution algorithm. He investigated

the performance of the cutting plane algorithm on two types of problems: the Steiner

k-branching problem and the k-node-connected spanning digraph problem.

In computational experiments, reported in his thesis, Dahl solved several Steiner k-

branching problems on sparse graphs. The largest Steiner k-branching problem contained

178 nodes and 880 arcs with k = 1. His cutting plane algorithm required 126 seconds to

solve this problem on a SUN SPARC SLC (a 12 MIPS machine) workstation.

Dahl [Dah94] also solved several Steiner 2-arc-connected digraph problems with the

cutting plane algorithm. The largest problem he solved had 70 nodes and 2386 arcs, and

the cutting plane algorithm required 1194 seconds on a Solbourne workstation.13

Dahl’s results indicate that the dicut model and the directed flow model are strong

formulations for both problems.

13Dahl does not indicate the speed of the workstation. A comparable workstation (same chip) is the Sun
SPARCstation 10, which is a 90 MIPS machine.
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2.5 Concluding Remarks

In this chapter we have reviewed previous work on the NDC and the DNDC problem. The

NDC problem has attracted considerable attention in recent years (of the 86 papers cited

in this chapter, 40 are from the past five years, i.e., 1990–94).

We categorized research efforts on the NDC problem into three main areas: polyno-

mially solvable cases, heuristics, and exact algorithms. Early research efforts on the NDC

problem focused on characterizing polynomially solvable cases. More recently, researchers

have focused on devising approximation algorithms for the NDC problem (or its special

cases) and have used a polyhedral approach to optimally solve this problem.

There are several potential avenues for future research. The research community has

shown considerable interest in finding better approximation algorithms for the NDC prob-

lem, and a significant number of researchers in the computer science community are working

on this problem. DNDC problems have attracted little attention from the research com-

munity. Designing and analyzing heuristics for them seems a promising avenue of research.

(It is interesting to note that no approximation algorithms are known for the directed

connectivity problems.)

As is evident from the discussion in this chapter, other than for the Steiner tree and

Steiner branching problem, to our knowledge, research on dual-ascent algorithms for the

NDC and DNDC problem appears to be quite limited. The success of the dual-ascent

method for the Steiner tree problem suggests that this approach might be a promising

avenue for future research.

Much of the research on the NDC problem has focused on special cases of the problem,

and on the edge-connectivity version of the NDC problem. For example, Goemans et al.’s

[GGP+94] approximation algorithm does not apply to the node-connectivity version of

the problem. Further research is needed to develop models and algorithms for the node-

connectivity version of the NDC problem. In the polyhedral approach, again much of

the work focuses on special cases of the NDC problem. Typically, strong formulations for

optimization problems lead to better solution algorithms. One important research area is

to develop better (stronger) models for the NDC problem.

In this thesis we address some of the these potential research directions. We design

dual-ascent algorithms for the NDC and DNDC problem (and their special cases). These

algorithms apply to the most general case of the NDC and DNDC problem. Throughout

the course of this thesis, we address modeling issues. We discuss alternative modeling

approaches and show how to strengthen models for the NDC problem.
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Chapter 3

Dual-Ascent for Network Design

In the first part of this chapter, we introduce some of the basic ideas of dual-ascent as applied

to network design, using the minimum spanning tree (MST) problem as an example. Since

the MST problem is a NDC problem, we can model it using either of the two formulations

presented in Chapter 1. We first present slightly different versions of the cutset and flow

formulation. Next we show how to strengthen the flow formulation by directing the model.

As we will see in several points in this thesis, directing an undirected model often provides

better models for network design problems. Finally, we use the improved formulation to

develop a dual-ascent algorithm that also provides a feasible tree solution to the problem.

The arguments in this chapter show that this algorithm also solves the more general min-

imum cost branching problem. This dual-ascent algorithm, although derived in a different

manner, is identical to a combinatorial algorithm developed by Edmonds [Edm67].

As an aid to our later development, we next present a Lagrangian duality interpreta-

tion of dual-ascent. This interpretation will will prove invaluable in deriving a dual-ascent

algorithm for the NDC problem (see Chapter 4).

Finally, we show how to extend the ideas underlying the branching problem to the

Steiner branching problem. As a result, we derive Wong’s dual-ascent algorithm [Won84].

Our derivation provides a different interpretation of the root component rule in Wong’s

algorithm. The ideas presented in this section will be useful later as we develop a dual-

ascent algorithm for the network design problem with low-connectivity requirements (see

Chapter 6).

Much of the material presented in this chapter is fairly well-known (for example, see

Magnanti and Wolsey [MW95] for a survey on formulations and algorithms for tree opti-

mization problems). This chapter contributes to the thesis (and literature) in several ways.

First, it synthesizes results for the (spanning tree and) branching problem in the context

of dual-ascent. Second, it provides a different way to interpret Wong’s algorithm. This

interpretation will prove to be useful when we consider the network design problem with

49
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low connectivity requirements. Third, the chapter presents several efficient algorithms for

implementing Wong’s algorithm.

3.1 Formulations for the Minimum Spanning Tree Problem

When specialized, the cutset formulation (1.1) for the NDC problem becomes a well-known

integer programming model for the minimum spanning tree problem. This formulation has

the decision variables

xij =

{

1 if edge {i, j} is in the minimum spanning tree;

0 otherwise.

Cutset formulation for the MST problem:

Minimize
∑

{i,j}∈E

cijxij (3.1a)

subject to:
∑

{i,j}∈δ(T )

xij ≥ 1 for all T , φ ⊂ T ⊂ N ; (3.1b)

xij ≥ 0 and integer. (3.1c)

This formulation is based upon the fact that any feasible tree must contain at least

one edge joining every set T and its complement. Notice, the model imposes no capacity

constraint on xij. Since all costs are nonnegative, any feasible integer solution with xij > 1

can be converted to one with xij = 1 without increasing its cost and yet retaining feasibility.

Consequently, model (3.1) always has an optimal solution with unreplicated edges, and thus

requires no capacity constraint on the xij variables.

Alternatively, we can formulate the problem with flow variables to impose the connec-

tivity requirements. As a notational convenience, we assume the nodes of the graph are

numbered 0, 1, . . . , |N | − 1. Arbitrarily select one of the nodes in the graph, which we call

the root node and, without loss of generality, assume that it is node 0. For each node i,

other than the root node, create a commodity i with the origin as the root node and node i

as the destination node. Since a minimum spanning tree contains a path between every pair

of nodes, it has a path from the root node to every other node. Thus, if we can send flow

on an edge only if it belongs to the minimum spanning tree, then in a minimum spanning

tree it is possible to send one unit of commodity i from the root node to node i for every

node i other than the root node in the graph. Consequently, we can formulate the minimum

spanning tree problem in the following equivalent way.
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Undirected flow formulation for the MST problem:

Minimize
∑

{i,j}∈E

cijxij (3.2a)

subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−1

1

0

if i = 0;

if i = k; for all i ∈ N and k ∈ K

otherwise;

(3.2b)

f
k
ij

f
k
ji

}

≤ xij for all {i, j} ∈ E and k ∈ K (3.2c)

f
k
ij, f

k
ji ≥ 0 for all {i, j} ∈ E and k ∈ K (3.2d)

xij ≥ 0 and integer; for all {i, j} ∈ E. (3.2e)

Notice that this formulation is similar to Formulation (1.2), except that it has fewer

commodities and does not impose a capacity constraint on the edge choice variables xij.

The celebrated max-flow min-cut theorem [FF56] is an invaluable tool for comparing

formulations of network design models.

Theorem 3.1.1 (Max-Flow Min-Cut Theorem) The maximum value of the flow from

an origin node s to a destination node t in a capacitated network equals the minimum

capacity among all s–t cuts.

The max-flow min-cut theorem implies that the previous two formulations are equivalent.

That is, if we consider xij as edge capacities for the flow formulation, then xij is feasible

for this formulation if and only if it is feasible for the cutset formulation. Moreover, since

the flow costs are zero, the objective value is the same in both models.

Our discussion shows that the projection of the feasible region of the LP relaxation of

the undirected flow formulation for the MST problem onto the space of the x variables (that

is, {x : (x, f) is feasible for the LP relaxation of model (3.2)}) is the feasible space of the

LP relaxation of the cutset formulation.

Notice that the cutset formulation has an exponential number of constraints while the

undirected flow formulation has a polynomial number of constraints (as a function of the

number of edges and number of nodes). Therefore, the undirected flow formulation is a

compact formulation that is equivalent to the exponentially sized cutset formulation.

However, solving the LP relaxation of either the undirected flow or cutset formulation

need not provide an optimal solution. For example, in Figure 3-1 the LP relaxation of the

undirected flow model provides a solution value of 2.5 whereas the optimal solution has

cost 4.

Why does the solution in Figure 3-1 give us fractional solutions? Notice that the optimal

solution sends flow on edge {2, 3} in both directions. However, in any feasible minimum
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Figure 3-1: The LP relaxation of the minimum spanning tree has a fractional solution.
(a) Graph G with all edge costs equal to 1. (b) Fractional solution. Send 1 unit of flow
from node 0 to any other node by sending by 1/2 a unit of flow clockwise and 1/2 a unit of
flow anticlockwise around the cycle. (c) An optimal minimum spanning tree.

spanning tree, we can send flow from the root node to every other node without sending flow

on any edge in both directions. This observation shows that we can replace inequality (3.2c)

in the undirected flow formulation for the MST problem by the stronger valid inequality

f
k
ij + f

h
ji ≤ xij for all commodity pairs k and h (as shown by Balakrishnan, Magnanti and

Wong [BMW89] and Martin [Mar86]). Doing so, we obtain the following formulation:

Improved undirected flow formulation for the MST problem:

Minimize
∑

{i,j}∈E

cijxij (3.3a)

subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−1

1

0

if i = 0;

if i = k; for all i ∈ N and k ∈ K

otherwise;

(3.3b)

f
k
ij + f

h
ji ≤ xij for all {i, j} ∈ E and k, h ∈ K (3.3c)

f
k
ij, f

k
ji ≥ 0 for all {i, j} ∈ E and k ∈ K (3.3d)

xij ≥ 0 and integer; for all {i, j} ∈ E. (3.3e)

We can also formulate the MST problem on a digraph. To convert the undirected graph

to a digraph D = (N,A), we replace each undirected edge {i, j} by two directed arcs (i, j)
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and (j, i), each with the same cost as the undirected edge {i, j}. In the directed flow

formulation, let yij be 1 if arc (i, j) is in the design and be 0 otherwise. The directed flow

formulation is

Directed flow formulation for the MST problem:

Minimize
∑

(i,j)∈A

cijyij (3.4a)

subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−1

1

0

if i = 0;

if i = k; for all i ∈ N and k ∈ K

otherwise;

(3.4b)

f
k
ij ≤ yij for all (i, j) ∈ A and k ∈ K (3.4c)

f
k
ij ≥ 0 for all (i, j) ∈ A and k ∈ K (3.4d)

yij ≥ 0 and integer for all (i, j) ∈ A. (3.4e)

For the minimum spanning tree problem, the improved undirected flow formulation (3.3)

and the directed flow formulation (3.4) are equivalent. That is, they provide the same

optimal objective value when solved as LPs. To see this result, note that we can convert

any optimal solution (y, f ) to the LP relaxation of the directed flow formulation into a

feasible solution, with the same cost, to the LP relaxation of the improved undirected flow

formulation by setting xij = yij + yji, and f
k
ij = f

k
ij, for all i, j, and k. Similarly, to convert

an optimal solution to the LP relaxation of the improved undirected flow formulation to a

feasible solution, with the same cost, to the LP relaxation of the directed flow formulation

set yij = maxk∈K{fk
ij}, and yji = xij − yij. The constraint f

k
ij + f

h
ji ≤ xij implies that

maxk∈K{fk
ji} ≤ yji. Thus, we satisfy all the constraints of the directed flow formulation

without any change in the objective function value.

The directed flow formulation actually models the more general minimum cost branching

problem. Recall that in a minimum cost branching problem, we are given a digraph D =

(N,A) and a root node. We need to find a minimum cost network that has a directed

path from the root node to every other node. Note that in the minimum cost branching

problem, the arc costs need not be symmetric. Moreover, no feasible branching will contain

arcs directed into the root. Therefore, without loss of generality, we assume the digraph D

contains no arcs directed into the root node.

3.2 Dual-Ascent for the Minimum Spanning Tree Problem

We will describe an algorithm that solves the dual to the LP relaxation of the directed flow

formulation for the branching problem. From this algorithm, we will also obtain a feasi-
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ble solution to the branching problem that has the same objective value, thereby proving

(i) the algorithm solves the minimum cost branching problem, and (ii) for all nonnegative

cost vectors, the LP relaxation of the directed flow formulation for the branching prob-

lem provides integer optimal solutions (later we show that the algorithm also solves the

branching problem for arbitrary cost vectors).

Dual of directed flow formulation for the MST problem:

Maximize
∑

k∈K

v
k
k (3.5a)

subject to: v
k
j − v

k
i ≤ w

k
ij for all (i, j) ∈ A and k ∈ K (3.5b)

∑

k∈K

w
k
ij ≤ cij for all (i, j) ∈ A (3.5c)

w
k
ij ≥ 0 for all (i, j) ∈ A and k ∈ K. (3.5d)

In this dual linear program, v
k
j is the dual variable for the flow balance constraint (3.4b)

at node j for commodity k (we refer to the v
k
j variables as node potentials), and w

k
ij is the

dual variable for constraint (3.4c). Since for each commodity k, one flow balance constraint

in the primal problem (3.4) is redundant, we can choose an arbitrary value for one dual

variable v
k
j . We set v

k
0 = 0 for each commodity k ∈ K.

One way to provide a lower bound on the cost of the optimal branching is to find a

dual feasible solution. Notice that for given values of the w variables, the dual problem

separates by commodity. The subproblem corresponding to commodity k is the dual to the

(directed) shortest path problem from node 0 to node k with arc lengths w
k
ij. If we prescribe

feasible values for the w variables, it is easy to calculate the shortest path lengths for each

subproblem and thereby obtain a dual solution for that choice of w.

To maintain dual feasibility, we need to ensure the solution satisfies constraints (3.5c)

and 3.5d. Let sij be the slack in constraint (3.5c) (i.e., sij = cij −
∑

k∈K w
k
ij). If sij = 0,

constraint (3.5c) is tight and we say the arc (i, j) is tight. We refer to the network defined

by the tight arcs as the auxiliary network.

How do we select values for the w variables? If the auxiliary network contains no

directed path from the root node to any node k, then by Menger’s theorem,1 some directed

1The following directed version of Menger’s theorem is similar to the undirected version as described in
Theorem 1.2.1:

Theorem 3.2.1 (Menger) In a directed graph,

1. The maximum number of arc-disjoint paths from node s to node t equals the minimum number of arcs

whose removal from the digraph eliminates all the paths from node s to node t.

2. If the digraph does not contain the arc (s, t), the maximum number of node-disjoint paths from node

s to node t equals the minimum number of nodes whose removal from the digraph eliminates all the
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cut (dicut) between the root and node k contains no arcs. In this case, we can improve

the dual objective by simultaneously increasing w
k
ij for all the arcs (i, j) in this dicut in the

original network and thus the length of the shortest path from the root to node k. The

maximum increase is constrained by the minimum slack among the arcs in the dicut, since

as we increase w
k
ij for all arcs in the dicut, the slack sij decreases until one of the arcs

becomes tight. At this point, we cannot increase the w
k
ij values for all arcs in the dicut

while maintaining dual feasibility. We refer to a dicut that contains no tight arc as a loose

dicut and the procedure of increasing the w
k
ij values for all arcs in a loose dicut, until the

slack on one of the arcs becomes zero, as a basic dual-ascent step.

Consider the example shown in Figure 3-2a. The digraph provides dual variable values

for a commodity whose origin is node a and destination is node d. (For simplicity we have

dropped the superscript k.) The bold arcs are in the auxiliary network. The figure shows

the values of v
k
i next to the nodes and the values of w

k
ij and sij next to the arcs. The a–d

dicut, with the arcs (b, c) and (g, f), contains no bold arcs, and is therefore a loose dicut.

The maximum increase in w
k
ij for this a–d dicut is the minimum slack, of value 2 on arc

(g, f). After we have incremented the w
k
bc and w

k
gf values by 2, the new shortest path length

to node d, i.e. v
k
d , increases by 2 units from 5 to 7. The new auxiliary network contains the

additional arc (g, f). As shown in Figure 3-2b, we have identified a new loose a–d dicut.

The dual-ascent algorithm we develop identifies a commodity k satisfying the property

that the auxiliary network contains no path from the commodity’s origin (node 0) to its

destination (node k). The algorithm then finds a loose 0–k dicut and performs a basic

dual-ascent step. Thus at each step, we examine the auxiliary network and see if it contains

a branching, i.e., a feasible solution to the primal problem. If it does not, we find a violated

constraint and improve the dual solution. When the algorithm terminates, it has generated

both primal and dual-feasible solutions. These basic steps constitute the essence of most of

the algorithms we describe in this thesis.

At the outset of our discussion we assume all arc costs are strictly positive (later we relax

this assumption). As a result, the auxiliary network is initially empty. For each commodity

1 to |N | − 1, set N(k) = {k}. Then for each commodity k, δ
−(N(k)) is a dicut. Since we

have assumed all costs are positive, for each commodity k the dicut δ
−(N(k)) is a loose

dicut. Therefore, we can perform a basic dual-ascent step for each commodity k. After

paths from node s to node t.

Similarly, there is a directed version of the max-flow min-cut theorem:

Theorem 3.2.2 (Max-Flow Min-Cut) The maximum value of the flow from an origin node s to a des-

tination node t in a capacitated directed network equals the minimum capacity among all s–t dicuts.
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Figure 3-2: An example of a basic dual-ascent step.
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doing so, we examine the auxiliary network.

Recall that a set of nodes S in a digraph is strongly connected if the digraph contains a

directed path between every (ordered) pair of nodes in S. A strongly connected component

is a maximal strongly connected set of nodes. That is, if we add any node to this set, the

nodes in the set will no longer be strongly connected.

Claim 3.2.3 If a digraph contains no branching, then some strongly connected component

has no incoming arc.

Proof: Suppose not. Note that each node in the digraph must have an incoming arc;

otherwise, this node defines a strongly connected component with no incoming arc. Contract

each strongly connected component in the digraph into a single node. By assumption, every

node, other than the root, in the reduced digraph has an incoming arc. Any such digraph

must contain either a branching or a directed cycle C. This is true because, if the digraph

does not contain a branching, it has a dicut δ
−(T ), with the root 6∈ T , containing no arcs.

Since every member of T has an incoming arc, it contains a cycle.

A branching on the reduced digraph can be extended to a branching in the digraph.

Therefore, the reduced digraph must contain a cycle C. But, the nodes on a directed cycle

belong to the same strongly connected component and so the reduced digraph has a strongly

connected component. This result, however, implies that the nodes from the original net-

work that we have contracted into nodes in C are all strongly connected, contradicting our

assumption that each node in C corresponds to a strongly connected component in the

original network.

We apply this result to the auxiliary network. For each strongly connected component

with no incoming arc, we select any node i that it contains, and set N(i) to be the set of

all nodes in this strongly connected component. Corresponding to every strongly connected

component with no incoming tight arc, we have identified a commodity (commodity i)

and its associated loose dicut δ
−(N(i)). We perform the basic dual-ascent step for each

loose dicut. We then repeat the procedure, terminating when every strongly connected

component has an incoming arc.

At termination, the auxiliary network contains a branching. However, it could have

more edges than required in a branching. Therefore, we can delete some arcs and still

obtain a feasible solution. We sequentially consider the arcs in the opposite order that they

became tight (i.e., opposite order that the algorithm adds them to the auxiliary network).

We refer to this deletion scheme as the LIFO dropping rule.
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The dual-ascent algorithm for the branching problem can be described as follows.

Dual-ascent algorithm for the branching problem

1. Initialization. Set

(a) w
k
ij = 0 for all (i, j) ∈ A and k ∈ K,

(b) sij = cij for all (i, j) ∈ A,

(c) Z = {(i, j) : (i, j) ∈ A; sij = 0} (the set of zero-slack arcs),

(d) v
k
i = 0 for all i ∈ N and k ∈ K,

(e) L =
∑|N |−1

k=1 v
k
k (the lower bound).

2. While the digraph DZ = (N,Z) induced by the arcs in Z contains a strongly connected

component with no incoming arc

(a) Select a node k that is in this strongly connected component, and set N(k) to

be the set of nodes in this strongly connected component.

(b) Find minimum slack.

• ǫ = min
{(i,j):(i,j)∈δ−(N(k))}

sij.

(c) Update relevant dual variables, slacks, the auxiliary network DZ , and the lower

bound L.

• w
k
ij = w

k
ij + ǫ ∀ (i, j) ∈ δ

−(N(k)),

• sij = sij − ǫ ∀ (i, j) ∈ δ
−(N(k)),

• v
k
i = v

k
i + ǫ ∀ i ∈ N(k),

• L = L + ǫ,

• Z = Z ∪ {(i, j) : (i, j) ∈ δ
−(N(k)) and sij = 0}.

3. The network defined by the arcs in Z (i.e., DZ) contains a minimum cost branching.

Construct a branching by applying the LIFO dropping rule on DZ .

When it has terminated, the dual-ascent algorithm has in hand feasible values v,w for

the dual linear program (3.5). The algorithm has also found a feasible solution (y, f) to the

primal problem (3.4), defined as follows. Let yij = 1 if the final auxiliary network contains

arc (i, j) and set yij = 0 otherwise. Set f
k
ij = 1 if arc (i, j) lies in the unique path in the

auxiliary network connecting the root node and node k. Set f
k
ij = 0 otherwise.

We now show the dual-ascent algorithm solves the branching problem.

Theorem 3.2.4 The dual-ascent algorithm solves the minimum cost branching problem.
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Proof: To prove this result, we will first establish a simple property concerning the structure

of the solution the algorithm generates.

Claim 3.2.5 The solution determined by the dual-ascent algorithm satisfies the following

property: every loose dicut used (in a basic dual-ascent step) contains exactly one directed

arc.

Proof: Since we perform the LIFO dropping rule, we will consider dropping other arcs before

we consider dropping the tight arcs in any strongly connected component. Feasibility implies

that the strongly connected component has at least one incoming arc. There is at most

one because our dropping scheme will eliminate all but one arc directed into the strongly

connected component.

Consider the complementary slackness conditions for the linear programming relaxation

of the directed flow formulation (3.4):

yij > 0 =⇒
∑

k∈K

w
k
ij = cij ;

f
k
ij > 0 =⇒ v

k
j − v

k
i = w

k
ij;

and w
k
ij > 0 =⇒ f

k
ij = yij .

By design, the algorithm satisfies the first two (so called primal) complementary slack-

ness conditions. The solution also satisfies the dual complementary slackness condition

w
k
ij(yij − f

k
ij) = 0. Consider any loose dicut that the algorithm uses in a dual-ascent step.

If the algorithm chooses commodity k while considering this dicut, then by Claim 3.2.5

the final solution has exactly one arc, say (s, t), in the dicut and the flow from the root

to node k must flow across this arc. Therefore, for all arcs in the dicut f
k
ij = yij (with

f
k
st = yst = 1 and f

k
ij = yij = 0 otherwise). Since the algorithm increases w

k
ij from value

0 only for loose dicuts, this observation implies that the final solution satisfies the dual

complementary slackness conditions as well.

We have exhibited a feasible primal solution and a feasible dual solution that satisfy

complementary slackness. Therefore, our primal and dual solutions are optimal.

Now that we know the dual-ascent algorithm finds an optimal solution, we can interpret

the steps of the algorithm combinatorially. Recall that we assumed all arc costs cij are

greater than zero.

Combinatorial algorithm for branching problem

Step 1. Set Z = {φ}.
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Step 2. For each node, other than the root, decrease the cost of all arcs into the node

by the cost of the smallest cost arc directed into that node. If the cost of any arc

becomes zero, add it to Z.

Step 3. Identify all strongly connected components in the network defined by zero-cost

arcs. Contract each strongly connected component in the digraph. If the contraction

creates parallel arcs between nodes, delete all but the smallest cost parallel arc.

Step 4. If some node, other than the root, in the digraph has no incoming tight arc go

to Step 2.

Step 5. Expand the digraph. The network defined by the arcs in Z contains a minimum

cost branching. Construct a minimum cost branching by applying the LIFO dropping

rule to Z.

Even if the digraph contains some zero-cost arcs, this combinatorial algorithm (and the

dual-ascent algorithm) still solves the minimum cost branching problem. We will see shortly

how to apply this combinatorial algorithm to a problem that has some negative-cost arcs.

Example

Figure 3-3 illustrates the algorithm. Initially, Z = {φ}. In Step 2 for each node other than

root node 0, subtract the cost of the minimum arc into the node from every arc directed into

it. For example, the cost of the minimum arc into node 4 is 1. Therefore, we subtract 1 from

the cost of arcs (7, 4), (5, 4) and (2, 4). Figure 3-3b shows the zero-cost arcs in bold. We add

the arcs (0, 1), (0, 2), (5, 8), (8, 5), (7, 4), (6, 7), (3, 6) and (4, 3) to the list Z. We now apply

Step 3. Nodes 3, 4, 6 and 7 form one strongly connected component and nodes 5 and 8 form

another strongly connected component. Contracting these strongly connected components

gives the digraph shown in Figure 3-3c. Since none of the nodes in Figure 3-3c have an

incoming tight arc, we proceed to Step 2 of the algorithm. In Step 2 we subtract 2 from the

cost of arcs into node {3, 4, 6, 7} and 4 from the cost of arcs into node {5, 8}, resulting in

the digraph shown in Figure 3-3d. Add arcs (5, 4) and (7, 8) to the list Z. Nodes {3, 4, 6, 7}

and {5, 8} form a strongly connected component. By contracting the strongly connected

component, we create the digraph shown in Figure 3-3e. Since node {3, 4, 5, 6, 7, 8} has

no incoming tight arc, we subtract 1 from the cost of the arcs into node {3, 4, 5, 6, 7, 8},

obtaining the digraph shown in Figure 3-3f. Add arc (2, 3) to the list Z. The resulting

network has no strongly connected component and every node has an incoming tight arc.

Therefore, we apply Step 5 of the algorithm. The arcs of Z in LIFO order are (2, 3), (5, 4),

(7, 8), (0, 1), (0, 2), (5, 8), (8, 5), (7, 4), (6, 7), (3, 6) and (4, 3). If we delete arc (2, 3), the

network defined by the arcs in Z contains no path from the root node to nodes 3, 4, 5, 6,
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Figure 3-3: Minimum cost branching algorithm.
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7 and 8. Therefore, we retain arc (2, 3). Proceeding in this fashion, we find the optimal

solution shown in Figure 3-3g.

Extension to Negative-Cost Arcs

The earlier definition of a branching was valid for networks with no negative-cost arcs. The

precise definition of a branching is as follows. Given a digraph D = (N,A) and a root

node r, a branching is a digraph that contains |N | − 1 arcs (i.e., the network obtained by

replacing the directed arcs by undirected edges is a tree) and has a directed path from

the root node to every other node. When costs are nonnegative, it is easy to convert any

solution that contains more than |N | − 1 arcs and has a path from the root node to every

other node to a solution that contains |N | − 1 arcs. Therefore, in our prior definition of the

branching problem we omitted this condition. (Similarly, in our definition of the minimum

spanning tree problem, we omitted the condition that a spanning tree contains |N |−1 edges

because we assumed edge costs are nonnegative.)

The combinatorial algorithm will solve the minimum cost branching problem if the

digraph has some negative-cost arcs. Suppose the network has negative-cost arcs. We can

convert this problem to an equivalent problem with nonnegative arc costs. Consider any

node i, other than the root node, that has negative-cost arcs directed into it. Suppose we

subtract any constant ti from all arcs into node i. Since, each node (except the root) in a

branching has exactly one incoming arc,2 any feasible solution to the transformed problem

costs ti less than that of the same solution in the original problem. Thus, the transformed

problem and the original problem have the same optimal solutions. By subtracting the cost

of the smallest incoming arc into each node from all arcs directed into that node, we obtain

a problem with nonnegative arc costs. Now we can apply the combinatorial algorithm.

The combinatorial algorithm we have presented for the minimum cost branching is

identical to Edmonds’ algorithm [Edm67], as developed and analyzed in another way by

Magnanti and Wolsey [MW95]. Our discussion shows how linear programming duality

can provide a way to derive combinatorial algorithms for solving certain combinatorial

optimization problems.

3.3 Lagrangian Duality Interpretation of Dual-Ascent

In this section we provide a Lagrangian duality interpretation of the dual-ascent algorithm

presented in Section 3.2. We consider this interpretation not only for its pedagogical value

but, more importantly, because it provides deeper insight into the dual-ascent algorithm.

2This result follows from the fact that a branching contains |N |− 1 arcs and every node, except the root,
in a branching has at least one arc directed into it.
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The Lagrangian dual problem to the directed flow formulation can be obtained by a

standard procedure in duality theory. Relax all the constraints, except nonnegativity, and

consider the Lagrangian dual of the directed flow formulation for the MST problem. For

each commodity k, view v
k
i as the Lagrange multiplier associated with the flow conservation

constraint for node i, and w
k
ij ≥ 0 as the Lagrange multiplier associated with the constraint

f
k
ij ≤ yij. Let d

k
i denote the demand of commodity k at node i. For the model (3.2), we are

considering, for each commodity k, d
k
k = 1, d

k
0 = −1, and d

k
j = 0 for j 6= k.

The corresponding Lagrangian function is

L(y, f ,v,w) =
∑

(i,j)∈A

cijyij +
∑

i∈N

∑

k∈K

(dk
i −

∑

j∈N

f
k
ji +

∑

l∈N

f
k
il)v

k
i +

∑

(i,j)∈A

∑

k∈K

(fk
ij − yij)w

k
ij .

Rearranging the terms we obtain

L(y, f ,v,w) =
∑

k∈K

∑

i∈N

d
k
i v

k
i +

∑

(i,j)∈A

(cij −
∑

k∈K

w
k
ij)yij +

∑

(i,j)∈A

∑

k∈K

(vk
i − v

k
j + w

k
ij)f

k
ij .

The value of the Lagrangian dual function Z(v,w) for any vector (v,w) is

Z(v,w) = min
(y,f)

{

L(y, f ,v,w)|
yij ≥ 0 and integer for all (i, j) ∈ A,

f
k
ij ≥ 0 for all (i, j) ∈ A and k ∈ K.

}

.

Because the Lagrangian function L(y, f ,v,w) is separable in the arc flows and arc variables,

its minimization decomposes by arc for the arc variables y, and by arc and commodity for

the flow variables f. If cij −
∑

k∈K w
k
ij ≥ 0, then yij = 0, and if cij −

∑

k∈K w
k
ij < 0, we

can make Z(v,w) as small as desired by setting yij to an arbitrarily large integer value.

Similarly, if v
k
i − v

k
j + w

k
ij ≥ 0, then f

k
ij = 0, and if v

k
i − v

k
j + w

k
ij < 0, then Z(v,w) is

unbounded from below. Therefore,

Z(v,w) =







∑

k∈K

∑

i∈N d
k
i v

k
i

if cij −
∑

k∈K w
k
ij ≥ 0, and

v
k
i − v

k
j + w

k
ij ≥ 0 for all (i, j) ∈ A;

−∞ otherwise.

The Lagrangian dual problem is to find a set of Lagrange multipliers that maximize the

dual function. That is,

Maximize Z(v,w)

subject to: w ≥ 0

v unrestricted in sign.
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Suppose we are given a node potential vector v̄. Then, if (i) v̄
k
i −v̄

k
j +w

k
ij ≥ 0, and (ii) cij−

∑

k∈K w
k
ij ≥ 0, for all (i, j) ∈ A, the dual function Z(v̄,w) is equal to

∑

k∈K

∑

i∈N d
k
i v̄

k
i .

The first condition together with w
k
ij ≥ 0 can be stated as w

k
ij ≥ max(0, v̄k

j − v̄
k
i ). Now

observe that satisfying this condition at equality does not change the value of the Lagrangian

function. Therefore, we can restrict our attention to solutions (v,w) of the form w
k
ij =

max(0, vk
j − v

k
i ) for all (i, j) ∈ A and k ∈ K. Consequently, we can write the Lagrangian

dual problem as a maximization problem over the node potentials v. The Lagrangian dual

problem is

Maximize Z(v)

subject to no constraint on v

with

Z(v) =







∑

k∈K

∑

i∈N d
k
i v

k
i

if cij −
∑

k∈K max(0, vk
j − v

k
i ) ≥ 0

for all (i, j) ∈ A;

−∞ otherwise.

Since the sum of demands over all the nodes for any commodity is zero, increasing all

the node potentials by the same amount does not change the value of the dual function.

Therefore, for each commodity we can fix the node potential for one node at any desired

value. We will set v
k
0 = 0 for all commodities. We can transform any dual solution with v

k
0

nonzero to one with v
k
0 zero by subtracting v

k
0 from v

k
j for each node j in the digraph.

Let us make a few observations concerning the Lagrangian dual problem. Consider

any solution (v,w) to the Lagrangian dual problem with w
k
ij = max(0, vk

j − v
k
i ) for all

(i, j) ∈ A. If the value of the Lagrangian dual function is bounded for this (v,w) pair,

then (v,w) is a feasible solution to Formulation (3.5) with the same objective value as

Z(v). Note that any feasible solution (v,w) to Formulation (3.5) defines a feasible solution

v to the Lagrangian dual problem with the same objective value. Therefore, the LP dual

and the Lagrangian dual problems are equivalent if the Lagrangian dual problem is bounded

from below. (If the Lagrangian-dual problem is unbounded from below, then for all node

potentials, cij −
∑

k∈K max(0, vk
j − v

k
i ) < 0 for some arc (i, j) ∈ A, and so the LP dual is

infeasible.) Because of this equivalence, from now on we refer to Lagrangian dual function

and the Lagrangian dual problem as the dual function and dual problem respectively.

Let us now interpret the dual-ascent algorithm of the previous section. Starting with

a feasible dual solution (v,w) = (0,0), the dual-ascent algorithm sequentially updates the

values of v and w at each iteration. The dual-ascent algorithm selects a loose dicut δ
−(T )

and a commodity k and performs a basic dual-ascent step. It increases w
k
ij for all arcs in

the loose dicut δ
−(T ) and the node potentials for commodity k for all nodes in T by an

equal amount, leaving all the other variables w
k
ij and node potential values unchanged.
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We now show that starting with the solution (v,w) = (0,0), the dual-ascent algorithm

for the minimum cost branching problem, described in Section 3.2, maintains the property

w
k
ij = max(0, vk

j − v
k
i ).

First, observe that the algorithm couples any increase in w
k
ij with an equal increase in v

k
j ,

keeping v
k
i fixed. Moreover, once a node j ∈ N(k), it is always in N(k). The strongly

connected components become larger in each iteration, implying that if we increase w
k
ij ,

we never change the value of w
k
ji (it stays at value zero) and so throughout the algorithm

v
k
j ≥ v

k
i , and w

k
ij = v

k
j − v

k
i = max(0, vk

i − v
k
j ) and w

k
ji = 0 = max(0, vk

i − v
k
j ). We can

therefore interpret the dual-ascent algorithm solely in terms of node potential changes.

Mathematically, each iteration of the dual-ascent algorithm involves a node potential

change along a direction of the form γ
k
T = (0, . . . , 0, γk

0 , γ
k
i , . . . , γ

k
|N |−1, 0, . . . , 0), with

γ
l
j =

{

1 if j ∈ T and l = k;

0 otherwise.

In this equation, T is a subset of nodes and k is a commodity. We refer to such a direction

as a basic direction.

The direction γ
k
T improves the dual function Z(v) if γ

k
T is a direction of ascent. That

is, if the directional derivative of the the dual function Z(v) in the direction γ
k
T is positive.

The directional derivative is given by,

Z
′(v; γk

T ) = limα↓0
Z(v+αγk

T )−Z(v)
α

=







∑

j∈T d
k
j

if for all (i, j) with j ∈ T, i 6∈ T ,

cij −
∑

k∈K max(0, vk
j − v

k
i ) > 0;

undefined otherwise.

(3.6)

The quantity cij −
∑

k∈K max(0, vk
j −v

k
i ) for the dual-ascent algorithm is cij −

∑

k∈K w
k
ij ,

which equals the slack sij for arc (i, j). Also, observe that in the dual-ascent algorithm all

the arcs in a loose dicut, say δ
−(N(k)), have a positive slack. Furthermore, only node k, the

destination of commodity k, in the set N(k) has positive demand, of 1 unit, for commodity

k. Therefore, equation (3.6) shows that the loose dicut δ
−(N(k)) corresponds to an ascent

direction γ
k
N(k). The value of the directional derivative for a loose dicut is 1. Thus, every

unit increase in the node potentials for all the nodes in the set N(k) increases the objective

function by 1. This result is consistent with the shortest path interpretation, that is, every

unit increase in w
k
ij for all arcs in the loose dicut increases the shortest path length, and

thus the dual objective function, by 1.
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This discussion shows that we can interpret the dual-ascent algorithm as a search for

basic directions that successively improve the dual function. By a judicious choice of these

basic directions, for the special case of the minimum cost branching problem, we were able

to obtain the optimal solution to the dual problem. The Lagrangian duality interpreta-

tion provides a slightly different framework for considering the dual-ascent algorithm. In

Chapter 4 we will develop a dual-ascent algorithm for the network design problem with

connectivity requirements based on this interpretation.

Our development of the Lagrangian duality interpretation of dual-ascent closely follows

the approach in the book by Bertsekas [Ber91], which describes the dual-ascent approach

for single commodity minimum cost network flow problems. Our description shows that the

same approach is effective for solving other combinatorial optimization problems.

3.4 Dual-Ascent for the Steiner Branching Problem

In this section we generalize the ideas presented in the dual-ascent algorithm for the branch-

ing problem. We characterize the loose dicuts used in the dual-ascent algorithm for the

branching problem, and apply this characterization to derive Wong’s dual-ascent algorithm

for the Steiner branching problem. Our derivation of Wong’s algorithm is significantly dif-

ferent than the one originally presented in [Won84]. Finally, we discuss several different

implementations of Wong’s algorithm.

3.4.1 Formulation for the Steiner Branching Problem

The Steiner branching problem is a generalization of the branching problem. Given a

directed graph D = (N,A), a root node r, and a set T (r 6∈ T ) of terminal nodes, we wish

to design a minimum cost network that contains a directed path from the root node r to

every node in T .

We can formulate this problem as a variation of the directed flow formulation (3.4) for

the branching problem. In this directed flow formulation, let yij be 1 if arc (i, j) is in the

design and be 0 otherwise. For each node i ∈ T , create a commodity k with the origin

as the root node and node i as the destination node (i.e., D(k) = i), and require that the

network design have the capability to flow a unit of flow of each commodity from the root

node to this node. (Observe that the number of commodities in K is equal to the number of

terminal nodes, i.e., the number of nodes in T .) The following mixed integer programming

problem models these requirements.



3.4 Dual-Ascent for the Steiner Branching Problem 67

Directed flow formulation for the Steiner problem:

Minimize
∑

(i,j)∈A

cijyij (3.7a)

subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−1

1

0

if i = 0;

if i = D(k); for all i ∈ N and k ∈ K

otherwise;

(3.7b)

f
k
ij ≤ yij for all (i, j) ∈ A and k ∈ K (3.7c)

f
k
ij ≥ 0 for all (i, j) ∈ A and k ∈ K (3.7d)

yij ≥ 0 and integer for all (i, j) ∈ A. (3.7e)

We will apply the dual-ascent algorithm to the following dual of the linear programming

relaxation of this formulation.

Dual of directed flow formulation for the Steiner branching problem:

Maximize
∑

k∈K

v
k
D(k) (3.8a)

subject to v
k
j − v

k
i ≤ w

k
ij for all (i, j) ∈ A and k ∈ K (3.8b)

∑

k∈K

w
k
ij ≤ cij for all (i, j) ∈ A (3.8c)

w
k
ij ≥ 0 for all (i, j) ∈ A and k ∈ K. (3.8d)

3.4.2 Dual-Ascent Algorithm

Notice again that if we are given values for the w variables, the dual problem separates

by commodity. The subproblem corresponding to commodity k is the dual to the directed

shortest path problem between the root node and node D(k), with arc lengths w
k
ij . This

observation suggests a simple dual-ascent strategy. For any one of the commodities k ∈ K,

identify and perform a basic dual-ascent step on a loose O(k)–D(k) dicut. Continue in this

fashion until for every commodity k, every O(k)–D(k) dicut contains a tight arc. Each step

of this strategy improves the dual objective value and at termination the auxiliary network

contains a Steiner branching (because it contains a path from the root node to every node

in T ).

For the branching problem we identified a particular type of loose dicut and showed

that by performing basic dual-ascent steps on these loose dicuts, we solve the branching

problem optimally. The Steiner branching problem is NP-hard. Therefore, we will not

be able to describe a dual-ascent algorithm that solves the problem optimally. Instead we

use the dual-ascent algorithm to develop a heuristic solution to the problem and a lower
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bound on the cost of an optimal Steiner branching (and so, a guarantee on the degree of

suboptimality of the heuristic solution).

Let Z denote the set of tight arcs in the digraph. If δ
−(S) is a loose O(k)–D(k) dicut

for some commodity k, we refer to S as an ascent set (that is, a set on which it is possible

to perform a basic dual-ascent step).

In the dual-ascent algorithm for the branching problem, we performed basic dual-ascent

steps on loose dicuts in the auxiliary network associated with strongly connected compo-

nents with no incoming arc. Let S denote a strongly connected component with no incoming

arc (an ascent set) and δ
−(S) its loose dicut. Observe that the auxiliary network contains at

least one arc directed into every subset of S (i.e., for all R ⊂ S, δ
−(R)∩Z 6= φ). Therefore,

no subset of S defines a loose dicut. This observation suggests the following definition. A

set of nodes S is a minimal ascent set, if S is an ascent set and no subset of S is an ascent

set.

We will design a dual-ascent algorithm for the Steiner branching problem that uses

minimal ascent sets. Start by setting (v,w) = (0,0) and set Z to be the set of arcs with

zero slack. Consider the auxiliary network (i.e., DZ) and identify a minimal ascent set S.

Perform a basic dual-ascent step on the loose dicut δ
−(S) and update the auxiliary network.

Continue in this fashion until the digraph contains no ascent sets. At the conclusion of

the ascent steps, the auxiliary network contains a feasible Steiner branching and the dual

solution provides a lower bound on the optimal Steiner branching. We can obtain a feasible

Steiner branching by applying the LIFO drop rule to the auxiliary network (we refer to this

method as the LIFO drop heuristic). The dual-ascent algorithm has the following formal

description.

Dual-ascent algorithm for the Steiner branching problem (Wong’s Algorithm)

1. Initialization. Set

(a) w
k
ij = 0 for all (i, j) ∈ A and k ∈ K,

(b) sij = cij for all (i, j) ∈ A,

(c) Z = {(i, j) : (i, j) ∈ A; sij = 0} (the set of zero-slack arcs),

(d) v
k
i = 0 for all i ∈ N and k ∈ K,

(e) L =
∑

k∈K v
k
D(k) (the lower bound).

2. While the digraph contains3 a minimal ascent set S,

3We show how to identify minimal ascent set and consider other implementation issues in Section 3.4.3.
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(a) Select a node l ∈ T ∩ S and identify the commodity k associated with it (i.e.,

D(k) = l). Set N(k) to be the set of nodes in DZ that have a directed path to

node l.

(b) Find minimum slack.

• ǫ = min
{(i,j):(i,j)∈δ−(N(k))}

sij.

(c) Update relevant dual variables, slacks, the auxiliary network DZ , and the lower

bound L.

• w
k
ij = w

k
ij + ǫ ∀ (i, j) ∈ δ

−(N(k)),

• sij = sij − ǫ ∀ (i, j) ∈ δ
−(N(k)),

• v
k
i = v

k
i + ǫ ∀ i ∈ N(k),

• L = L + ǫ,

• Z = Z ∪ {(i, j) : (i, j) ∈ δ
−(N(k)) and sij = 0}.

3. The network defined by the arcs in Z contains a Steiner branching. Construct a

Steiner branching by applying the LIFO dropping rule to Z.

Our development and presentation of Wong’s algorithm is quite different from Wong’s

original development [Won84]. His dual-ascent procedure uses a root component rule to

identify ascent sets on which to perform basic dual-ascent steps.4 We show that the ascent

sets that the root component rule identifies are minimal ascent sets.

To describe the root component rule, we introduce some notation. If the auxiliary

network contains a directed path from node i to node j and no directed path from node j

to node i, then we say that node i dangles from node j. A strongly connected component R

is a root component if it contains a member of T and no member of T ∪ {0} dangles from a

member of R. Let SR = {j : there is a directed path in DZ from node j to a node in R}.

Wong’s algorithm performs a basic dual-ascent step on the dicut δ
−(SR) associated with a

root component R.

Suppose R is a root component. Observe that every node in T ∩ SR is also in R;

otherwise, this node dangles from a member of R, and thus R is not a root component.

Moreover, no subset of SR is an ascent set since every subset of SR that contains a node

in T has an incoming tight arc (if the subset of SR does not contain a node in T , then it

cannot be an ascent set because it does not define an O(k)–D(k) dicut for any commodity).

Therefore, SR is a minimal ascent set.

Suppose R is not a root component. Then some node i ∈ T dangles from a member

of R. Let Si = {j : there is a directed path in DZ from node j to node i}. Because node i

4For convenience, we use the phrase “perform a basic dual-ascent step on an ascent set S” to mean
“perform a basic dual-ascent step on the loose dicut δ−(S).”
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dangles from a member of R, every node in Si is also in SR and every member of R is not

in Si (i.e., Si ⊂ SR). As a result, SR is not a minimal ascent set.5

We note that Wong’s dual-ascent algorithm satisfies the property that for each com-

modity and arc in the network

w
k
ij = max(0, vk

j − v
k
i ).

Observe that the algorithm couples any increase in w
k
ij with an equal increase in v

k
j , keeping

v
k
i fixed. Moreover, once a node j ∈ N(k), it is always in N(k) since the set N(k) is defined

as the set of nodes in DZ that have a directed path to D(k) in the auxiliary network and

the algorithm never drops any arc from DZ (until Step 3). We can, therefore, interpret

the dual-ascent algorithm solely in terms of node potential changes. Consequently, we need

not maintain values of the w variables. Furthermore, if our interest is only in the value of

the dual objective, that is the lower bound, we need not store the node potentials. The

slacks on the arcs provide the necessary information to update the lower bound, auxiliary

networks and slack (see Step 2 of Wong’s algorithm).

Wong’s dual ascent algorithm has proven to be very effective for the undirected Steiner

tree problem. To apply the algorithm to this problem, we first convert the undirected

Steiner tree problem to a (directed) Steiner branching problem in exactly the same way

we converted the minimum spanning tree problem to a branching problem.6 In his com-

putational experiments, Wong solved Steiner tree problems with up to 60 nodes and 120

edges, with an average gap of less than 1 percent between the upper and lower bounds of

the dual-ascent algorithm. In Section 3.4.3 we describe several implementations of Wong’s

algorithm and some preliminary computational experience with a particular implementa-

tion of the algorithm. In these experiments, we solved problems with as many as 300 nodes

and 6000 edges (12000 arcs) to within 1 percent of optimality. These experiments confirm

the effectiveness of Wong’s algorithm, with the LIFO drop heuristic, as a heuristic method

for Steiner tree problems.

5Observe that all minimal ascent sets are defined by the ascent sets associated with root components. To
see this, consider any minimal ascent set Q. By definition, a minimal ascent set has no incoming tight arcs
and contains at least one node, say i, from T . Let R denote the strongly connected component that node
i belongs to and define SR = {j : the network contains a directed path in DZ from node j to a node in R}.
We claim SR = Q. This result is true because SR is an ascent set and is a subset of Q (since the network
has no arcs directed into Q, SR only contains nodes from Q). But Q is a minimal ascent set, and therefore
SR = Q.

6An interesting question is whether the choice of the root node in this conversion affects the optimal
objective value of the LP relaxation of the directed flow formulation (3.7). Goemans and Myung [GM93]
proved that in converting an undirected Steiner tree problem to a Steiner branching problem, the choice
of the root node does not change the optimal objective value of the LP relaxation of this formulation.
Therefore, we can arbitrarily choose any one of the nodes as the root node without affecting the quality of
the solution.
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Example

To illustrate Wong’s dual-ascent algorithm, we consider the example shown in Figure 3-4.

Figure 3-4a shows the arc costs, node 0 is the root node, and T = {3, 5, 7, 8}. Initially,

Z = {φ}, (v,w) = (0,0), and L = 0.

The sets {3}, {5}, {7} and {8} are minimal ascent sets. The algorithm first performs

a basic dual-ascent step on {3}. As a result, arc (1, 3) becomes tight and is added to Z.

The dual objective increases by 1 unit to L = 1. The algorithm then performs a basic

dual-ascent step on the minimal ascent set {5}.7 As a result, arc (8, 5) becomes tight and is

added to Z. The dual objective increases by 1 unit to L = 2. The algorithm then performs

a basic dual-ascent step on the minimal ascent set {7}. Arcs (3, 7) and (5, 7) become tight

and are added to Z. The dual objective increases by 5 units to L = 7. The algorithm then

performs a basic dual-ascent step on the minimal ascent set {8}. As a result, arc (5, 8)

becomes tight and is added to Z, and the dual objective increases by 1 unit to L = 8.

Figure 3-4b shows the digraph at the conclusion of the first four iterations.

At this point, sets {3, 1} and {5, 8} are minimal ascent sets. The dual-ascent algorithm

performs a basic dual-ascent step on the minimal ascent set {3, 1}. As a result, arc (4, 3)

becomes tight and is added to Z. The dual objective increases by 3 units to L = 11. The

algorithm then performs a basic dual-ascent step on the minimal ascent set {5, 8}. At the

conclusion of this step, arc (2, 5) becomes tight and is added it to Z. The dual objective

increases by 2 units to L = 13. Figure 3-4c shows the digraph at the conclusion of these

two iterations.

At this stage, {3, 1, 4} and {5, 8, 2} are minimal ascent sets. The algorithm performs a

basic dual-ascent step on the ascent set {3, 1, 4}. As a result, arc (0, 1) becomes tight and the

algorithm adds it to Z. The dual objective increases by 6 units to L = 19. The algorithm

then performs a dual-ascent step on the minimal ascent set {5, 8, 2}. The arc (0, 2) become

tight and the algorithm adds it to Z. The dual objective increases by 6 units to L = 25.

Figure 3-4d shows the resulting digraph.

At this point, the network has no ascent set. Therefore, we apply the LIFO drop

heuristic. The arcs of Z in LIFO order are (1, 3), (8, 5), (3, 7), (5, 7), (5, 8), (4, 3), (2, 5),

(0, 1), and (0, 2). If we delete arc (0, 2) the network defined by the arcs in Z contains no path

from the root node to terminal nodes 5 and 8. Therefore, we retain arc (0, 2). Proceeding

in this fashion, we find the solution shown in Figure 3-4e. The cost of this feasible solution

is 25 units. Since the lower bound is 25 units, we have obtained an optimal solution to the

7In Section 3.4.3 we prove the following property. Suppose S is a minimal ascent set. Then after a
sequence of basic dual-ascent steps, S is either a minimal ascent set or no longer an ascent set (i.e., it has
a tight arc directed into it). Consequently, {5} is a minimal ascent set because it has no tight arc directed
into it (it is still an ascent set).
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Figure 3-4: Wong’s algorithm.
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Steiner branching problem.

This example illustrates the effectiveness of performing dual-ascent steps only on min-

imal ascent sets. Suppose the algorithm performed a basic dual-ascent step on the set

S = {1, 2, 3, 4, 5, 7, 8} in Figure 3-4c. Note that S is not a minimal ascent set because it

contains two ascent sets—{3, 1, 4} and {5, 8, 2}. At the conclusion of a basic dual-ascent

step on S, both arcs (0, 1) and (0, 2) become tight and the dual objective increases by 6 units

to L = 19. No more ascent is possible since the resulting network has no ascent set. The

primal solution obtained by performing the LIFO drop heuristic has cost 25, but the dual

lower bound is only 19.

3.4.3 Identifying Minimal Ascent Sets: Alternative Implementations of

the Dual-Ascent Algorithm

In this section we first show how to identify minimal ascent sets (actually root compo-

nents). We then describe four different implementations of the dual-ascent algorithm. The

first three implementations rely on explicit identification of minimal ascent sets. The fourth

implementation (by Balakrishnan, Magnanti and Wong [BMW89]) does not explicitly iden-

tify minimal ascent sets but nevertheless simulates the minimal ascent set rule. Finally, we

report on some (limited) computational experiments with the last implementation.

In this section we assume that the reader is familiar with elementary graph algorithms

and data structures. For completeness, in Figure 3-5 we describe the following three algo-

rithms from Cormen, Leiserson and Rivest [CLR90]:

• Depth first search,

• Identifying strongly connected components in a digraph, and

• Topological sort of a digraph.8

All three algorithms run in O(|A|) time.

The DFS algorithm produces the following output. The pred array defines the depth

first search forest Dpred = (N,Apred), with

Apred = {(pred[i], i) : i ∈ N andpred[i] 6= −1}.

Each component of the forest is a rooted tree. The forest contains a directed path from the

root of each tree to all the nodes in that tree. The color array keeps track of nodes scanned.

8A digraph can be topologically sorted if its nodes can be ordered in such a way that the tail of an arc
appears on the sorted list before the head of that arc. A well-known result in graph theory is that a digraph
can be topologically sorted if and only if it is acyclic.
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DFS(D)
1. for i ∈ N

2. pred[i] = −1;
3. color[i] = green;
4. time = 0;
5. for i ∈ N

6. if (color[i] = green)
7. then DFS-Visit(i);

DFS-Visit(i)
1. color[i] = yellow.
2. time = time + 1;
3. start[i] = time;
4. while i’s adjacency list is nonempty
5. select a node j from i’s adjacency list;
6. if (color[j] = green)
7. then pred[j] = i;
8. DFS-Visit(j);
9. color[i] = red;
10. time = time + 1;
11. finish[i] = time;

Strongly-Connected-Components(D)
1. call DFS(D) to compute finishing times finish[i] for each node i.
2. compute D

T , the transposea of digraph D.
3. call DFS(DT ), but in the main loop of DFS (line 5 of DFS), consider

the nodes in order of decreasing finish[i] (as computed in line 1).
4. output the nodes of each tree in the depth first forest of step 3 as a

separate strongly connected component.

Topological-Sort(D)
1. call DFS(D) to compute finishing times finish[i] for each node i.
2. as each node is finished, insert it onto a linked list.
3. return the linked list of vertices.

aDT , the transpose of D, is the digraph DT = (N, AT ) defined by the arc set AT =
{(i, j) : (j, i) ∈ A}.

Figure 3-5: Graph algorithms: Depth first search, Strongly connected components, Topo-
logical sort.
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(Color[i] is green if node i is unscanned, color[i] is yellow if the algorithm is in the process

of scanning from node i, and color[i] is red if node i has been scanned.) The start array

indicates the order in which the DFS algorithm first examined the nodes (i.e., indicates order

in which the color of a node becomes yellow). The finish array indicates the order in which

the algorithm finished scanning the adjacency list of the nodes (i.e., indicates order in which

the color of a node becomes red). The start and finish array satisfy some useful properties

which prove to be useful in reasoning the correctness of Strongly-Connected-Components

and Topological-Sort.

A Linear Time Algorithm to Identify Root Components

We now provide a linear time algorithm to identify all root components in the auxiliary

network DZ . We will use this algorithm in three implementations of the dual-ascent al-

gorithm. We note that since the nodes in a root component are strongly connected, it is

sufficient to identify root components on the digraph obtained by contracting all strongly

connected components. If a strongly connected component in DZ contains a terminal node,

then it is a terminal node in the contracted network.

Observe that a digraph with no strongly connected components is acyclic, and therefore

can be topologically sorted. Consequently, we show how to identify root components on a

topologically sorted digraph (i.e., for any arc (i, j) in this digraph i < j) in which the root

node is first in the topological order.9

The algorithm for identifying root components is an adaptation of the depth first search

algorithm and its correctness relies on the fact that the digraph is topologically sorted. In

this algorithm, req[i] = 1 if node i is a terminal node or the root node; otherwise, req[i] = 0.

The output of this algorithm is the array root. Except for the root node, root[i] = 1 if

node i is a root component, and is 0 otherwise (root[i] is always 1 for the root node).

Theorem 3.4.1 The algorithm Root-Components described in Figure 3-6 correctly identi-

fies root components in linear time.

Proof: Lines 1 through 4 of the algorithm are the initialization. Line 5 performs depth

first search from the root node and identifies all nodes in DZ that the root node reaches.10

Any node that the root node reaches cannot be a root component. We now argue that any

node that the algorithm considers in line 7 (besides the root node) is a root component.

This is true because the algorithm initiates depth first search only from required nodes

9Recall the root node has no incoming arc, so in some topological ordering, the root node has the lowest
index. To obtain such an ordering, topologically sort the network obtained by deleting the root node and
append the root to the front of the topological order.

10If the network contains a directed path from node i to node j, we say node i reaches node j.
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Root-Components
1. for i = 0 to |N | − 1
2. pred[i] = −1;
3. color[i] = green;
4. root[i] = 0;
5. for i = 0 to |N | − 1
6. if ((color[i] = green) and (req[i]=1))
7. then root[i] = 1;
8. DFS-Visit(i);

Figure 3-6: Algorithm to find root components.

(i.e., req[i] = 1). As a result, any node the algorithm considers in line 7 is not reachable

from any lower numbered required node. Furthermore, because the nodes are in topological

order, no such node is reachable from any higher numbered node. Therefore, the node is a

root component.

The algorithm for identifying root components is a depth first search algorithm. Con-

sequently, Root-Components is an O(|A|) procedure.

We also note that we can reduce the size of the digraph D in the dual-ascent procedure,

by contracting every strongly connected component in the auxiliary network DZ to a single

node in the digraph D. If this contraction creates parallel arcs, we retain the arc with the

smallest slack. Although contraction does not improve the complexity analysis of any of the

implementations we discuss, it might prove to be useful in practice, especially when solving

large-scale problems.

We now briefly describe four different algorithms that implement the minimal ascent set

rule, but perform their dual-ascent steps in different ways.

Implementation 1

This implementation first identifies a single root component and performs a basic dual-

ascent step on the minimal ascent set associated with it. The algorithm continues in this

fashion (i.e., again identifies a root component [it could be the same root component or

another one] and performs a basic dual-ascent step on the minimal ascent set associated

with it) until no more ascent is possible. By performing depth first search from the root
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component on the transpose11 of DZ , we can identify the minimal ascent set associated

with a root component in O(|A|) (since Z ⊆ A) time. Note that we can terminate the

algorithm for finding root components after finding the first root component, because this

implementation performs ascent on a single root component. Performing a basic dual-ascent

step requires identifying the arc with minimum slack that is directed into the minimal

ascent set, a computation that requires O(|A|) time if we sequentially scan all the arcs in

the digraph.

We provide two arguments to deduce the complexity of this algorithm. Identifying a

minimal ascent set S in the digraph requires O(|A|) time, and identifying the minimum

slack arc in δ
−(S) requires O(|A|) time. The dual-ascent algorithm performs at most |A|

iterations because, after |A| iterations all the arcs in the original digraph D are tight. This

argument shows the dual-ascent algorithm is an O(|A|2) procedure. The second argument

is as follows. At the conclusion of an iteration of the dual-ascent algorithm, one additional

node can reach a node in T (that is, some node not in the minimal ascent set S can

reach the terminal nodes in S). Therefore, after at most |T ||N | iterations the auxiliary

network contains a path from every node in the network to every node in T . This analysis

leads to a bound of O(|T ||N ||A|) operations. Combining these two arguments shows that

Implementation 1 is an O(|A|min(|T ||N |, |A|)) algorithm.

Implementation 2

In this implementation, we find the minimal ascent sets, S1, . . . , Sp, corresponding to all

root components. We then sequentially perform a basic dual-ascent step on each of the

sets S1, . . . , Sp. We continue by again finding all minimal ascent sets and sequentially

performing basic dual-ascent steps on each set. (The example in Figure 3-4 is similar to

this implementation). The correctness of this implementation follows from the following

property that we mentioned earlier.

Proposition 3.4.2 Suppose S is a minimal ascent set. Then after a sequence basic dual-

ascent steps, S is either a minimal ascent set or no longer an ascent set (i.e., it has a tight

arc directed into it).

Proof: By definition, no subset of a minimal ascent set is an ascent set. Therefore, if S has

no tight arc directed into it, it is still a minimal ascent set.

Consequently, if the dual-ascent algorithm attempts to perform a basic dual-ascent step

on S, and S is not an ascent set, then it finds that the minimum slack of an arc in the dicut

δ
−(S) is zero and makes no change to the dual variables and lower bound.

11See Figure 3-5 for the definition of transpose.
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We can identify the minimal ascent sets corresponding to the root components by per-

forming depth first search from each root component in the transpose of D
∗
L.12 If the

network contains p root components, we can obtain all minimal ascent sets in O(p|A|)

steps. The algorithm now performs p basic dual-ascent steps, one for each of the p sets,

each requiring O(|A|) steps. Therefore, p iterations require O(|A| + p|A| + p|A|) steps. So

on the average, each of the p iterations requires O(|A|) steps. Now, arguing similarly as in

Implementation 1, we can prove that this implementation requires O(|A|min(|T ||N |, |A|))

time.

Implementation 3

In this implementation we consider all minimal ascent sets simultaneously, and perform an

ascent step on them simultaneously. For example, suppose S1 and S2 are the only minimal

ascent sets. Then, this implementation increases w
k
ij and w

h
ij , for a commodity k with

destination in S1 and a commodity h with destination in S2, for all arcs in δ
−(S1) and

δ
−(S2) simultaneously. Suppose we increase w

k
ij by ǫ for all arcs in δ

−(S1), and w
h
ij by

ǫ for all arcs in δ
−(S2). Observe that the dual objective increases by 2ǫ, the slack of an

arc in δ
−(S1) ∩ δ

−(S2) decreases by 2ǫ, while the slack of an arc in in {δ−(S1)\δ
−(S2)} or

{δ−(S2)\δ
−(S1)} decreases by ǫ.

In general if S1, . . . , Sp are minimal ascent sets, this procedure decreases the slack of

arcs (at varying rates) until one of the arcs in δ
−(S1)∪· · ·∪ δ

−(Sp) is tight. If arc (i, j) is in

exactly l of the dicuts δ
−(S1), · · · , δ

−(Sp), then the algorithm decreases its slack at l times

the rate of an arc that is in exactly one of the dicuts δ
−(S1), . . . , δ

−(Sp). In a dual-ascent

step of this implementation, we say the effective slack of an arc (i, j) contained in exactly

l of the dicuts δ
−(S1), . . . , δ

−(Sp) is sij/l. A dual-ascent step finds the arc with minimum

effective slack in δ
−(S1) ∪ δ

−(S2) ∪ . . . ∪ δ
−(Sp). Suppose the minimum effective slack is ǫ.

The dual-ascent algorithm decreases the slack of each arc, decreasing the slack of an arc

that is in exactly l dicuts by lǫ, and increases the dual objective L by pǫ.

We can determine all minimal ascent sets in O(|T ||A|) steps (the maximum number of

root components is |T |). To determine the arc that first becomes tight, for each arc we need

to determine the rate at which its slack decreases. We can do so by sequentially scanning

the arcs and determining how many minimal ascent sets an arc is directed into. Therefore,

12Observe that the only nodes that can have a directed path to a root component are the nodes with
req[i] = 0 and color[i] = green at the conclusion of Root-Components. Why? Any node i with color[i] =
red is either a required node or a Steiner node that can be reached from a root component. If the network
contains a path from a node with color[i] = red to a root component, then either it has a strongly connected
component, which is not possible by assumption, or the root component dangles from another required node.
This outcome is also not possible because our algorithm is correct. Therefore, we can reduce the size of the
graph on which to perform depth first search.
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each iteration requires O(|T ||A|) time. Arguing similarly as in Implementation 1 shows that

this implementation is an O(|T ||A|min(|T ||N |, |A|)) procedure.

Implementation 4

Balakrishnan, Magnanti and Wong [BMW89] described another implementation of the min-

imal ascent set rule, that we call the round robin rule.

This dual-ascent set procedure operates in a very simple, yet special way. Initially, for

each commodity the dual-ascent algorithm sets N(k) = {D(k)}. In a dual-ascent step on

commodity k, the algorithm identifies the arc (i∗, j∗) in δ
−(N(k)) with minimum slack (in

case of ties, it selects any one of the arcs with minimum slack). The algorithm then adds

exactly one node, the node i
∗, to the set N(k). We say that a commodity k is active if the

root node is not in N(k); otherwise, commodity k is inactive. Note that for an inactive

commodity k, the auxiliary network contains a path from the root node to D(k).

The algorithm considers the commodities in a fixed order and cycles through the com-

modities, performing dual-ascent steps for active commodities, in this fixed order. For

example, if the commodities are sorted from 1, . . . , |K| then the algorithm considers com-

modity k + 1 after it considers commodity k, and considers commodity 1 after it considers

commodity |K|.

Balakrishnan, Magnanti and Wong showed that the round robin rule implicitly satisfies

the root commodity rule. They showed that the round robin rule simulates the minimal

ascent set rule, in the sense that if it ever attempts to perform a dual-ascent step on a

set N(k) that is not a minimal ascent set, it does not change the dual variables in that

dual-ascent step (i.e., a tight arc is directed into N(k)).

Each dual-ascent step of this algorithm can be implemented in O(|A|) time, since we

need to sequentially scan the arcs to find the arc with minimum slack and to update the slack

for each arc in δ
−(N(k)). After at most |N | ascent steps for a commodity, the commodity

is inactive because after at most |N | ascent steps the root must belong to N(k). Since the

number of commodities is |T |, the algorithm performs at most |N ||T | dual-ascent iterations.

Consequently, the dual-ascent algorithm with Balakrishnan, Magnanti and Wong’s round

robin rule is an O(|T ||N ||A|) procedure.

Comment on the Implementations

In this section we showed how to identify all root components in linear time (and how

to identify a single minimal ascent set in linear time). We showed that it is possible to

contract the digraph D during the course of the dual-ascent algorithm. We then gave some

simple implementations of the dual-ascent algorithm. Our analysis of the running times

of these algorithms was not very sophisticated and we believe that it is possible, by using
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Size Terminal Trials Ave Max Optimally Ave Max
(|N |, |E|) Nodes Gap Gap Solved Time Time

25 10 0.43% 2.10% 6 7.03 10.55
(100,2000) 50 10 0.21% 1.20% 8 13.03 24.61

75 10 0.15% 1.22% 8 20.97 37.17

50 10 0.88% 3.40% 1 41.81 90.78
(200,4000) 100 10 0.26% 0.92% 5 83.67 190.50

150 10 0.11% 0.76% 8 136.22 255.34

75 10 0.23% 1.25% 1 114.43 309.61
(300,6000) 150 10 0.18% 0.71% 4 320.57 589.67

225 10 0.00% 0.04% 9 342.02 883.18

Table 3.1: Computational Experience with Wong’s Algorithm: Euclidean edge costs. Time
is in seconds on a Sun SPARCstation 10 (Model 41).

more sophisticated data structures and analysis, to improve the running times of these

algorithms.

If we do not store the dual variables v and w, all four implementations require O(|N |+

|A|) space to store the adjacency lists of the digraph, the auxiliary network, and the slacks.

Implementations 2, 3, and 4 need to simultaneously keep track of O(|T |) dicuts, and require

O(|T ||N |) space to do so (we can keep track of the nodes S that define a dicut δ
−(S) by

using a 0–1 array of dimension |N |). Therefore, Implementation 1 requires O(|N | + |A|)

space and Implementations 2, 3, and 4 need O(|T ||N | + |A|) space.

In assessing the running times, we did not make use of the fact that the contracted aux-

iliary digraph is smaller than the original digraph. Therefore, in practice these algorithms

might perform much better than their worst-case running time complexity.

In order to examine the performance of Wong’s algorithm with the LIFO dropping rule,

we coded Implementation 4. Tables 3.1 and 3.2 summarize some computations with this

implementation; the first table is for instances with Euclidean edge costs, and the second is

for instances with random edge costs. The columns Ave Gap and Max Gap measure the gap

between the upper and lower bounds, calculated as Upper bound − Lower bound
Lower bound

× 100.

The Time columns are in CPU seconds on a Sun SPARCstation 10 (Model 41) workstation

(a 96 MIPS machine).

The random examples in Tables 3.1 and 3.2 were generated on a 100 × 100 grid (see

Chapter 6 for more details about the random problem generator). In these tests, the average

gap between the upper and lower bounds was 0.21 percent and the maximum gap was

3.4 percent. Furthermore, Wong’s algorithm, with the LIFO dropping rule, optimally solved

121 out of the 180 instances. The running time of Implementation 4 increases with problem

size (i.e., number of nodes and edges) and also with the number of terminal nodes. The

algorithm performs slightly better on problems with random edge costs than on problems
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Size Terminal Trials Ave Max Optimally Ave Max
(|N |, |E|) Nodes Gap Gap Solved Time Time

25 10 0.77% 1.68% 4 8.51 13.09
(100,2000) 50 10 0.00% 0.00% 10 12.06 22.89

75 10 0.00% 0.00% 10 11.94 25.34

50 10 0.25% 1.08% 6 23.24 61.76
(200,4000) 100 10 0.04% 0.22% 8 81.35 171.82

150 10 0.00% 0.00% 10 90.94 208.22

75 10 0.24% 0.96% 4 197.04 314.13
(300,6000) 150 10 0.02% 0.15% 9 250.63 578.77

225 10 0.00% 0.00% 10 502.70 860.23

Table 3.2: Computational Experience with Wong’s Algorithm: Random edge costs. Time
is in seconds on a Sun SPARCstation 10 (Model 41).

with Euclidean edge costs. It optimally solved 71 out of 90 problems with random edge

costs, and 50 out of 90 problems with Euclidean edge costs. The average gap between the

upper and lower bounds for problems with random edge costs was 0.15 percent, compared

with 0.27 percent for problems with Euclidean edge costs.

In these computations, Implementation 4 performs a large number of dual-ascent itera-

tions that do not improve the lower bound. That is, it attempts to perform a large number

of basic dual-ascent steps on sets that have a tight arc directed into them (we will elaborate

more on this issue in Chapter 6). Consequently, we believe the first three implementa-

tions might provide better running times, especially Implementations 1 and 3, where every

dual-ascent step strictly increases the lower bound.

3.5 Concluding Remarks

This chapter provides a glimpse at the simplicity, yet effectiveness of dual-ascent methods

for network design. We first introduced the basic concepts of dual-ascent using the mini-

mum spanning tree problem as an example. We discussed several models for the minimum

spanning tree problem and obtained a better model by directing it. We then developed

a dual-ascent algorithm that optimally solves the minimum spanning tree13 and branch-

ing problem. Later, we interpreted the dual-ascent algorithms in the Lagrangian duality

framework. This interpretation will prove to be invaluable in Chapter 4.

In the latter part of this chapter, we developed a dual-ascent algorithm for the NP-

hard Steiner branching problem by generalizing the dual-ascent algorithm for the branching

13Although we have not proved the following result in this thesis, we note that it is possible to interpret
two well known algorithms for the minimum spanning tree problem, Prim’s algorithm [Pri57] and Kruksal’s
algorithm [Kru56], as special cases of the dual-ascent algorithm.
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problem. As a result, we rederived Wong’s algorithm, and provided a different interpretation

of his root commodity rule. We then discussed several implementations of Wong’s algorithm,

and our computational experience with a particular implementation of Wong’s algorithm.

Our results indicate that Wong’s algorithm, with the LIFO dropping heuristic, is a very

effective method for finding near optimal solutions for large Steiner tree problems. For

reasons we discuss further in Chapter 6, we believe that using Implementation 1, 2, or 3

would lead to better running times.

In the next chapter we study the NDC problem and the DNDC problem, and discuss

a dual-ascent approach for them. In Chapter 5 we consider the unitary NDC problem and

show how to improve the flow formulation presented in Chapter 1 by directing the model.

After that, in Chapter 6 we use the improved formulation presented in Chapter 5 to develop

a dual-ascent algorithm for the NDLC problem. We will use many of the ideas developed

in this chapter for this algorithm. Finally, in Chapter 7 we develop a directed model for

the Steiner forest problem. Based on ideas introduced for this model, we then show how

to improve the undirected flow model presented in Chapter 1 for the NDC problem (both

unitary and nonunitary).

To conclude this discussion of dual-ascent for the branching and Steiner branching prob-

lem, we mention some recent research results concerning the Steiner tree problem and plans

for future research.

Empirical evidence indicates that the directed flow formulation for the Steiner tree

problem is very tight. This experience has generated interest in bounding the ratio between

the values of the optimal IP solution and the optimal LP solution of the directed flow

formulation. Recently, Goemans [Goe94a] showed that for the Steiner tree problem with 3

terminal nodes, the IP solution is no more than 6/5 times the optimal solution of the LP

relaxation of the directed flow formulation (3.7). This bound is not tight, and the worst IP

to LP ratio example that we are aware of is 16/15 [Goe94a].

Recently, we showed [Rag94] that for Steiner tree problems, i.e., Steiner branching

problems with cij = cji, Implementation 3 can be implemented in a very simple way. We

showed that every strongly connected component that contains a terminal node is a root

component. Consequently, Implementation 3 can be implemented without the algorithm to

identify root components.

In our future research we plan to continue to study various implementations of Wong’s

algorithm, aiming to solve very large Steiner tree problems to near optimality.



Chapter 4

A Dual-Ascent Algorithm for the

Network Design Problem with

Connectivity Requirements

In this chapter we consider the general network design problem with connectivity require-

ments (NDC). We first show that the cutset and flow formulations introduced in Chapter 1

are equivalent. Then we describe a dual-ascent algorithm, based on the flow formulation,

that provides a lower bound and a heuristic solution for the edge-connectivity version of

the NDC problem. Later we show how to modify the dual-ascent algorithm to handle

node-connectivity problems. We also describe several extensions to the NDC problem and

show how to modify the dual-ascent algorithm for these extensions. Next, we show that the

dual-ascent algorithm solves any single commodity (in the flow formulation) NDC problem.

Thus, the algorithm solves two special cases of the NDC problem: the k-edge-disjoint path

problem, and the k-node-disjoint path problem. We also compare the dual-ascent algorithm

with Goemans et al.’s algorithm [WGMV93, GGW93, GGP+94] (the GW algorithm) for

the edge-connectivity version of the NDC problem and show that in some cases (the k-edge-

disjoint path problem) the dual-ascent algorithm provides both a better lower bound and a

better heuristic solution than the GW algorithm. Finally, we summarize the contributions

of this chapter.

4.1 Comparison of Cutset and Flow-Based Formulations

In Chapter 1 we described two formulations for the NDC problem: a natural cutset for-

mulation (1.1) and an extended flow-based formulation (1.2). In this section we (i) show

the equivalence of the cutset and flow-based formulations, and (ii) describe methods for

83
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reducing the number of commodities in the flow formulation. For convenience we restate

the two formulations.

Cutset formulation for the NDC problem:

Minimize
∑

{i,j}∈E

cijxij (4.1a)

subject to:
∑

{i,j}∈δ(T )

xij ≥ rst
for all pairs s, t ∈ N , s 6= t and

for all T with s ∈ N\T , t ∈ T ;
(4.1b)

∑

{i,j}∈δG−Z (T )

xij ≥ rst − |Z|

if rst ≥ 2 with rst ∈ R[n], and

for all pairs s, t ∈ N , s 6= t and

for all Z ⊂ N\{s, t} with 0 < |Z| < rst,

and for all T ⊂ N\Z; with s 6∈ T , t ∈ T ;

(4.1c)

xij ≤ bij for all {i, j} ∈ E; (4.1d)

xij ≥ 0 and integer, for all {i, j} ∈ E. (4.1e)

Undirected flow formulation for the NDC problem:

Minimize
∑

{i,j}∈E

cijxij (4.2a)

subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−qk

qk

0

if i = O(k);

if i = D(k); for all i ∈ N and k ∈ K

otherwise;

(4.2b)

f
k
ij

f
k
ji

}

≤ xij for all {i, j} ∈ E and k ∈ K (4.2c)

∑

l∈N

f
k
il ≤ 1 for all k ∈ K

[n] and all i 6= O(k),D(k) (4.2d)

f
k
ij, f

k
ji ≥ 0 for all {i, j} ∈ E and k ∈ K (4.2e)

xij ≤ bij for all {i, j} ∈ E; (4.2f)

xij ≥ 0 and integer, for all {i, j} ∈ E. (4.2g)

Notice that the cutset formulation is of exponential size. The flow formulation is com-

pact: it has |K| commodities, |K||N | flow balance constraints, 2|K||E| constraints of

type (4.2c), at most |K|(|N | − 2) constraints of type (4.2d), 2|K||E| nonnegativity con-

straints for the flow variables, |E| constraints of type (4.2f), and |E| nonnegativity and

integrality constraints for the edge variables.
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i i1 i2
1

Figure 4-1: Splitting node i into two nodes i1 and i2.

4.1.1 Equivalence of Cutset and Flow Formulations

For the minimum spanning tree problem, the max-flow min-cut theorem easily establishes

the equivalence of the cutset formulation and the flow formulation. For more general models,

the cutset and the flow formulation are also equivalent. However, the result does not

immediately follow from the max-flow min-cut theorem on the undirected graph G, but is

based on the max-flow min-cut theorem on a related digraph.

Theorem 4.1.1 The projection of the feasible space of the LP relaxation of the undirected

flow formulation for the NDC problem onto the space of the edge variables is the feasible

space of the LP relaxation of the cutset formulation for the NDC problem.

Proof: For problems with only edge-connectivity requirements, this result is easy to estab-

lish (the argument is similar to that in Section 3.1). For problems with node-connectivity

requirements, we first show that if (x, f) is feasible for the LP relaxation of the flow for-

mulation, then x is feasible for the cutset formulation. Consider a pair of nodes s and t

with node-connectivity requirement rst. We want to show that the flow formulation implies

constraint (4.1c). Because of constraint (4.2d), deleting any subset of p nodes can decrease

the flow sent from node s to node t by at most p units. Using the max-flow min-cut theorem

on the network obtained by deleting the p nodes gives the result.

Now we show the converse. That is, if x is feasible to the cutset formulation, then for

some choice of flows f , (x, f) satisfies the flow formulation. Suppose not. Transform the

undirected network into the following directed network. Replace each edge {i, j} by two

arcs (i, j) and (j, i) each with capacity xij. Next perform the following well-known node

splitting operation (see Figure 4-1). Replace each node i by two nodes i1 and i2. Arcs

directed into node i are now directed into node i1 and arcs directed out of node i are now

directed out of node i2. To complete the node splitting operation, add the arc (i1, i2) with

capacity 1. This arc ensures that no more than 1 unit of flow of a commodity flows through

node i. Denote the nodes and arcs of the transformed directed network D
′ by N

′ and A
′

respectively. Note that we can send t units of flow of commodity k from node O(k) to node

D(k) in D
′ if and only if we can send t units of flow of commodity k from O(k) to D(k) in

the undirected network G with (i) xij as edge capacities, (ii) constraint (4.2d) satisfied.
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i2

1

W

i1

Figure 4-2: Minimum dicut δ
−(W ) can be transformed into a dicut such that, if i1 ∈ W ,

then i2 ∈ W by transferring either i2 to W or i1 out of W .

By assumption, for some commodity k, the maximum amount of flow that can be

sent from node O(k) to node D(k) in the undirected network, while satisfying conditions

(i) and (ii), is strictly less than qk. The max-flow min-cut theorem on the directed network

implies that the capacity of the minimum dicut between O(k) and D(k) is strictly less than

qk units. Let δ
−(W ) be the minimum dicut. We claim that some minimum dicut δ

−(W )

satisfies the property that if i1 ∈ W , then i2 ∈ W . If some minimum dicut has i1 ∈ W and

i2 6∈ W , then either by transferring i2 to W or by transferring i1 out of W , we obtain a

dicut whose capacity is no larger than that of δ
−(W ) (see Figure 4-2).

Consider the arcs in the dicut δ
−(W ) that enforce node capacities (that is, those of the

form (i1, i2)). Let Z be the set of nodes in the original network G that created, by the

node splitting operation, these arcs. The sum of the capacities of the arcs in δ
−(W ) other

than those that enforce node capacities is strictly less than qk − |Z|. Nodes created by

performing the node splitting operation on nodes in G − Z are either both in W , or both

in W ’s complement. Define T as follows: if j1 and j2 both belong to W , then j ∈ T . The

nodes s = O(k) and t = D(k), together with the sets T and Z, violate constraint (4.1c).

This contradiction establishes the theorem.

Figure 4-3 illustrates the cut transformation procedure described in the proof of The-

orem 4.1.1. In the example, node s is the origin and node t is the destination of the

commodity. The connectivity requirement rst between node s and node t is 2[n], and so the

requirement for the commodity between nodes s and t is 2 units. Figure 4-3b shows the

transformed directed network and the minimum dicut δ
−(W ). The minimum dicut δ

−(W )

has a capacity of 1.5 units. (b1, b2) is the only arc in the dicut δ−(W ) that enforces node

capacities. Thus Z = {b}. Since t1, t2 and c1, c2 belong to W , T = {c, t}.
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Figure 4-3: (a) The undirected network and edge capacities. Node s is the origin and node t

is the destination. (b) The transformed directed network and its minimum dicut δ
−(W ).

W and the dicut δ
−(W ) are in bold. (c) Using the dicut δ

−(W ) to determine the sets Z

and T in the undirected network.
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4.1.2 Decreasing the Number of Commodities in the Flow Formulation

The flow formulation for the NDC problem has O(|K|(|E|+|N |)) constraints and O(|K||E|)

variables. A simple, and naive, way to determine the number of commodities in the flow

formulation is to create a commodity for every pair of nodes that have a connectivity re-

quirement. As an example, consider the minimum cost k-node-connected spanning subgraph

problem. Suppose the underlying graph has 20 nodes and 200 edges. If the connectivity

requirements are enforced by creating a commodity for every node pair, then the model

has 190 commodities. Consequently, the model will contain 190 × 20 = 3, 800 flow balance

constraints, 190× 200× 2 = 76, 000 constraints of type (4.2c), 190× 18 = 3, 520 constraints

of type (4.2d), 76,000 nonnegativity constraints for the flow variables, 200 constraints of

type (4.2f), and 200 nonnegativity and integrality constraints for the edge variables.

As this example shows, the flow formulation can be quite large. By using fewer com-

modities, if possible, we could reduce the size of the formulation. We now describe some

edge-connectivity and node-connectivity properties that enable us to decrease the number

of commodities needed to model the connectivity requirements.

Edge Connectivity

First consider edge-connectivity problems. Gomory and Hu [GH61] established the following

result for the network synthesis problem.1 Given the connectivity requirements matrix R,

create a “requirement” graph G
R on the node set N as follows: if rij = w and rij is an

edge-connectivity requirement, then G
R has an edge of weight w between node i and node j.

Gomory and Hu showed that it is sufficient to consider the connectivity requirements only

for the edges on the maximum spanning tree of this graph. It is easy to verify this result

using the max-flow min-cut theorem and the maximum spanning tree optimality conditions.

The path optimality condition for the maximum spanning tree states that a spanning tree

is a maximum spanning tree if and only if it satisfies the following condition: For every

nontree edge {k, l} of G
R, rij ≥ rkl for every edge {i, j} contained in the (tree) path P

on the maximum spanning tree connecting nodes k and l. As a result, if we satisfy the

requirements of the maximum spanning tree, the network designed has sufficient capacity

to satisfy the requirements of nontree edges. (By the max-flow min-cut theorem, the network

has sufficient capacity to connect nodes k and l if every cut in the network design separating

these nodes has capacity at least rkl. Since some pairs i, j of nodes on the path P must lie

on opposite sides of this cut, it must have capacity at least rij ≥ rkl.)

1Recall, in the network synthesis problem we are given a symmetric requirement matrix R whose entries
can be fractional. We need to decide on capacities bij for the edges so that for every pair of nodes s and t,
the network can send at least rst units of flow.
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Gomory and Hu’s result permits us to model the edge-connectivity requirements in any

NDC problem with |N | − 1 or fewer commodities. We compute the maximum spanning

tree of the requirement graph and create commodities only for those edges of the maximum

spanning tree with nonzero weight. Since the spanning tree has |N | − 1 edges and finding

it requires O(|E| + |N | log |N |) time, this procedure creates at most |N | − 1 commodities

(we will not create commodities for zero weight edges of the maximum spanning tree) and

requires O(|E| + |N | log |N |) time.

Node Connectivity

We now describe a result that enables us to decrease the number of commodities required

to model node-connectivity requirements in the undirected flow formulation.

Theorem 4.1.2 The minimum cost k-node-connected spanning subgraph problem can be

modeled with ⌈k|N |/2⌉ commodities.

Proof: Let G = (N,E) be the given graph and let G
∗ be any arbitrary k-node-connected

graph on the nodes N . We will choose commodities in the flow formulation (4.2) (on

G = (N,E)) as follows. For every edge {i, j} ∈ G
∗ create a commodity l in K

[n] between

nodes i and j with a demand of k units, arbitrarily choosing one of them as the origin

and the other as the destination. Suppose that as a solution to model (4.2) we find a

minimum cost subgraph G
′ of G that satisfies the connectivity requirements imposed by

these commodities. We claim that G
′ is k-node connected. Suppose not. Then deleting

some set S of k − 1 or fewer nodes disconnects G
′. Let i and j be any two disconnected

nodes in G
′−S. Now consider G

∗. Since G
∗ is k-node connected, the graph G

∗−S contains

a path P from node i to node j. Because there is a commodity for every edge in G
∗, the

endpoints of any edge on the path P remain connected in G′ − S. But this implies i and j

are connected in G
′ − S, contradicting our assumption. Therefore, G

′ is k-node connected.

We now show that modeling the minimum cost k-node-connected spanning subgraph

problem in this manner does not change the objective value of its LP relaxation. That

is, if instead of defining a commodity for each pair of nodes in G, we define a commodity

only for every node pair i, j corresponding to an edge in G
∗, the objective value of the

LP relaxation of model (4.2) does not decrease. Consider the solution (x, f) obtained by

solving the LP relaxation of the undirected flow formulation with commodities by the edges

in G
∗. We show that it is possible to send k units of flow from any node s to any other

node t in the graph G with edge capacity vector x, so that no more than one unit flows into

any intermediate node. By Theorem 4.1.1, this is possible if for every set of nodes Z, with

|Z| < k and s, t 6∈ Z, the value of the minimum s–t cut in the network G−Z is greater than

or equal to k − |Z|. Suppose we delete a set Z of p < k nodes, other than s and t, from
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the graph G. Then, because G
∗ is k-node connected, G

∗ contains k − p node-disjoint paths

from node s to node t. Consider any one of these paths P . Then, in the network G − Z

with edge capacity xij for each edge {i, j}, it is possible to send k− p units of flow between

the endpoints of every edge of the path P . By the max-flow min-cut theorem, every s–t

cut in G − Z has capacity greater than k − p. Therefore, it is possible to send k − p units

of flow between node s and node t while observing the edge capacities xij in G − Z. As a

result, the objective value of the LP relaxation remains unchanged.

This argument shows that we can model the minimum cost k-node-connected spanning

subgraph problem on a graph G = (N,E), by considering any arbitrary k-node-connected

graph G
∗ on the nodes N and creating a commodity for each edge in G

∗. The fewest

possible commodities, with this approach, depends on the minimum number of edges in

a k-node-connected graph on the nodes N . Observing that the degree of each node in a

k-node-connected graph is at least k, a trivial lower bound on the number of edges in a |N |

node k-node-connected graph is ⌈k|N |/2⌉. A very nice result due to Harary [Har62], that

we mentioned in Chapter 2, constructively shows how to achieve this bound.

We now state Harary’s result that permits us to construct a k-node-connected graph

on |N | nodes with exactly ⌈k|N |/2⌉ edges. Harary [Har62] or the textbook by Bondy and

Murty [BM76] contains a proof of this result.

Theorem 4.1.3 (Harary) The minimum number of edges in a |N | node k-node-connected

graph is equal to ⌈k|N |/2⌉.

Construct k-node-connected graphs on N nodes, with ⌈k|N |/2⌉ edges, as follows.

1. If k is even, construct a graph H(k, |N |) with nodes 0, 1, . . . , |N | − 1. The graph

contains an edge between nodes i and j if i − (k/2) ≤ j ≤ i + (k/2) (addition and

subtraction are modulo (k/2)). Figure 4-4a shows H(4, 8).

2. If k is odd and |N | is even, construct H(k, |N |) from the graph H(k−1, |N |) by adding

edges between node i and node i + (|N |/2), for i = 1, . . . , |N |/2. Figure 4-4b shows

H(5, 8).

3. If k is odd and |N | is odd, then construct H(k, |N |) from H(k − 1, |N |) by adding

edges joining node 0 to nodes |N |−1
2 and |N |+1

2 , and node i to node i + |N |+1
2 , for

1 ≤ i ≤ |N |−1
2 . Figure 4-4c shows H(5, 9).

The following lemma describes another useful property.

Lemma 4.1.4 Suppose A is a k-node-connected set of nodes2 and B is a l-node-connected

set of nodes, and k > l. If |A ∩ B| = l, then A ∪ B is l-node connected.

2We say a set of nodes is k-node-connected if a network contains k node-disjoint paths between every
pair of nodes in the set.
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Figure 4-4: Harary’s construction. (a) H(4, 8), (b) H(5, 8), and (c) H(5, 9).

Proof: Let a1, a2, . . . , al denote the nodes in A ∩ B. Consider any node i in A\B and any

node j in B. Since A is k-node connected, deleting a set S of l−1 nodes in the graph leaves

a path between i and one of the nodes a1, a2, . . . , al, say at. Since B is l-node connected,

deleting S leaves a path between at and j.

This lemma helps decrease the number of commodities because it implies that whenever

|A ∩ B| ≥ l, instead of considering all the nodes in A ∩ B, we can choose any l nodes in A,

and ensure that these l nodes along with the nodes in B\A are l-node connected.

Survivable Network Design Problem

We now show how to model the node-connectivity version of the survivable network design

problem (SND) using O(|N |) commodities, assuming a fixed upper bound on the maximum

connectivity requirement. Recall that in the node-connectivity version of the SND problem,

each node v in the graph has a node-connectivity requirement rv. For each distinct pair

{s, t} of nodes, the network must contain at least rst = min{rs, rt} node-disjoint s–t paths.

Therefore, in the SND problem, all nodes with rv ≥ k must be k-node connected. Let

Nk denote the set of nodes with connectivity requirement k. Let q = rmax. Observe that

the nodes in Nq need to be q-node connected. Model these requirements as described in

Theorem 4.1.3. Next find Np, the highest indexed nonempty set in N1, . . . , Nq−1. If |Nq| > p

arbitrarily choose any p nodes in Nq and add these nodes to Np. Otherwise, add all nodes in

Nq to Np. Set q = p and continue until the connectivity requirements of the lowest indexed

nonempty set Ni have been modeled.

This procedure creates |Nrmax | commodities for the set of nodes with the highest con-

nectivity requirement. It adds at most p nodes to the set of nodes3 Np. Therefore, the

3We let Np denote the set of nodes with connectivity requirement rv = p.
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procedure creates at most

⌈
rmax|Nrmax |

2

⌉

+
∑

{i:i6=rmax,|Ni|>0}

⌈
i(Ni + i)

2

⌉

commodities. For a constant value of rmax the number of commodities is O(|N |).

Let us illustrate this procedure on a 30 node SND problem. Suppose 20 nodes have

a connectivity requirement of 5 and 10 nodes have a connectivity requirement of 3. The

procedure first creates ⌈5 × 20/2⌉ = 50 commodities to model the connectivity require-

ments between nodes with rv = 5. Then, since N3 is the highest indexed nonempty set in

N1, . . . , N4, it arbitrarily adds any 3 nodes in N5 (nodes with connectivity requirement 5)

to N3. N3 now has 10 + 3 = 13 nodes and the procedure creates ⌈3× 13/2⌉ = 20 commodi-

ties to model the three connectivity requirements in N3, giving a total of 70 commodities

to model the connectivity requirements. (Compare with 30 × 29/2 = 435 commodities to

model the connectivity requirements with the naive approach.) Suppose we design a net-

work that satisfies these requirements. Then, in this network all nodes with a connectivity

requirement of five are 5-node connected and all nodes with a connectivity requirement of

three are 3-node connected. Furthermore, because N3 included three nodes from N5, by

Lemma 4.1.4 the network contains at least 3 node-disjoint paths between any node with a

connectivity requirement of 5 and any node with a connectivity requirement of 3.

General NDC Problem

Consider node-connectivity requirements. Let G
R[n]

be the graph defined by the node-

connectivity requirements in R as follows. G
R[n]

has an edge of weight w between node

i and node j if rij = w
[n]. Let G

R[n]

q denote the subgraph defined by the edges of G
R[n]

with weight q. In order to effectively use the reduction procedures to model the node-

connectivity requirements of general NDC problems, we need an algorithm to identify the

q-node-connected components of G
R[n]

q . Unfortunately, to our knowledge, efficient algo-

rithms to recognize q-node-connected subgraphs of a graph are known4 only for q = 1, 2, 3.

Therefore, it seems that although Theorem 4.1.3 and Lemma 4.1.4 are very useful in de-

creasing the number of commodities, an efficient algorithm to find a k-node-connected

subgraph of a graph is needed in order to devise a general procedure to reduce the number

of commodities to model node-connectivity requirements in NDC problems.

We now show how to use Theorem 4.1.3 and Lemma 4.1.4 once we have identified the

4A 1-node-connected component is a tree. Consequently, a breadth first search or a depth first search
algorithm finds the 1-node-connected components. The textbook by Even [Eve79] gives an algorithm (based
on depth first search) to identify 2-node-connected components of a graph. [FRT89] studies the problem of
finding 3-node-connected subgraphs of a graph.



4.1 Comparison of Cutset and Flow-Based Formulations 93

q-node-connected subgraphs of G
R[n]

q for q = 1, . . . , rmax. Set q = rmax. For each q-node-

connected component select commodities as described in Theorem 4.1.3. For every edge

{i, j} in G
R[n]

q whose endpoints are not in the same q-node-connected component, create a

commodity in the graph G with connectivity requirement q choosing one of the endpoints

as the origin and one of the endpoints as the destination. Set q = q − 1. Continue as

before, except use Lemma 4.1.4 to decrease the number of nodes in each q-node-connected

component in G
R[n]

q .

We have discussed one approach for decreasing the size of the flow model. Another

approach decreases the size of both the flow and cutset formulation by decomposing the NDC

problem into smaller problems that can be solved in a certain order or independently of each

other. Typically, these decomposition procedures are useful and effective on sparse graphs.

Grötschel, Monma and Stoer [GMS92a, Sto92] describe some decomposition procedures for

SND problems. By combining the decomposition procedures described in [GMS92a, Sto92]

and the commodity reduction procedures described in this section, we might be able to

significantly decrease the size of the flow formulation for the SND problem.

4.1.3 Summary

In this section we showed the equivalence of the cutset and flow formulation. We also

described methods for minimizing the number of commodities in the flow formulation. We

showed

• how to model the edge-connectivity version of the NDC problem with |N | − 1 com-

modities,

• how to model the node-connectivity version of the SND problem with a linear number

of commodities, and

• how to minimize the number of commodities in the general NDC problem.

Note, however, that for large-scale problems, even if the number of commodities is linear

in the number of nodes, the flow formulation can be fairly large. For the general NDC

problem, assuming the number of commodities is a linear function of the number of nodes

in the graph, the flow model has O(|N |2+|N ||E|) constraints and O(|E||N |) variables. Since

the flow formulation can be fairly large, solving even its LP relaxation poses a significant

computational challenge. However, due to the structure of the problem, dual-ascent (and

Lagrangian relaxation) might be an attractive method for obtaining lower bounds and

heuristic solutions.

In the next section we discuss a dual-ascent algorithm for the NDC problem. We first

restrict our attention to problems with only edge-connectivity requirements, and then show

how to handle node-connectivity requirements and other extensions.
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4.2 A High-Level View of the Dual-Ascent Algorithm

Consider the undirected flow formulation (on page 84) for the NDC problem. Since flow

costs are zero, there is no advantage in sending flow around a cycle. Therefore, we can

replace constraint (4.2c) by f
k
ij + f

k
ji ≤ xij (for all (i, j) ∈ E and k ∈ K). Although this

change in the model does not alter the LP relaxation of the undirected flow formulation,5

the dual-ascent algorithm is simpler for the modified model since it has only one dual

variable, instead of two, for each f
k
ij, f

k
ji pair. Consider the dual to the LP relaxation of the

undirected flow formulation for the NDC problem.

Dual to undirected flow formulation for the NDC problem:

Maximize
∑

k∈K

qkv
k
D(k) −

∑

{i,j}∈E

bijuij (4.3a)

subject to:
v

k
j − v

k
i

v
k
i − v

k
j

}

≤ w
k
ij for all {i, j} ∈ E (4.3b)

∑

k∈K

w
k
ij − uij ≤ cij for all {i, j} ∈ E (4.3c)

uij ≥ 0 for all {i, j} ∈ E (4.3d)

w
k
ij ≥ 0 for all {i, j} ∈ E. (4.3e)

In this model, uij is the dual variable for the constraint xij ≤ bij, v
k
j is the dual variable

for constraint (4.2b) at node j for commodity k, and w
k
ij is the dual variable for the f

k
ij+f

k
ji ≤

xij constraint. As before, since one of the flow balance constraints is redundant, we set

v
k
O(k) = 0.

Given any values for w and u, the dual separates by commodity as {max qkv
k
D(k), subject

to v
k
j −v

k
i ≤ w

k
ij , v

k
i −v

k
j ≤ w

k
ij , for all {i, j} ∈ E}. If qk is 1, the subproblem for commodity

k is the dual to a shortest path problem between the nodes O(k) and D(k) on a graph G

with edge costs w
k
ij . If qk exceeds 1, the optimal solution to the subproblem for commodity

k is simply qk times the shortest path length.

Let sij be the slack in the constraint
∑

k∈K w
k
ij−uij ≤ cij (i.e., sij = cij+uij−

∑

k∈K w
k
ij).

As before, if the slack is zero, we say the edge is tight. We also define the auxiliary network

by the tight edges.

Our subsequent development will use the dual, as viewed in the context of the following

5We can convert any solution to the undirected flow formulation to one that satisfies this constraint with
no change in objective function value. Suppose (x, f) is a feasible solution to the undirected flow formulation.
Then (x, f̄), with f̄k

ij = max(0, fk
ij − fk

ji) and f̄k
ji = max(0, fk

ji − fk
ij) for all {i, j} and k ∈ K, is a feasible

solution to the undirected flow formulation that satisfies the constraint f̄k
ij + f̄k

ji ≤ xij . Since only the edge
variables, which we do not modify, have associated costs, (x, f̄) has the same cost as (x, f).
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Lagrangian duality approach. Let v
k
i , w

k
ij and uij be Lagrange multipliers for the flow

balance constraint, the f
k
ij + f

k
ji ≤ xij constraint, and the xij ≤ bij constraint of the

undirected flow formulation for the NDC problem; we obtain the following Lagrangian

function:

L(x, f ,v,w,u) =
∑

{i,j}∈E

cijxij +
∑

i∈N

∑

k∈K

(dk
i −

∑

j∈N

f
k
ji +

∑

l∈N

f
k
il)v

k
i +

∑

{i,j}∈E

∑

k∈K

(fk
ij + f

k
ji − xij)w

k
ij +

∑

{i,j}∈E

(xij − bij)uij .

In this equation, d
k
i denotes the demand for commodity k at node i. Rearranging the terms,

we obtain

L(x, f ,v,w,u) =
∑

i∈N

∑

k∈K

d
k
i v

k
i −

∑

{i,j}∈E

bijuij +
∑

{i,j}∈E

(cij + uij −
∑

k∈K

w
k
ij)xij +

∑

{i,j}∈E

∑

k∈K

((vk
i − v

k
j + w

k
ij)f

k
ij + (vk

j − v
k
i + w

k
ij)f

k
ji). (4.4)

We obtain the value Z(v,w,u) of the Lagrangian dual function for any vector (v,w,u)

by minimizing the Lagrangian function.

Z(v,w,u) = min
(x,f)

{

L(x, f ,v,w,u)|
xij ≥ 0 and integer for all {i, j} ∈ E,

f
k
ij, f

k
ji ≥ 0 for all {i, j} ∈ E and k ∈ K.

}

.

Because the Lagrangian function L(x, f ,v,w,u) is separable in the flow and edge vari-

ables, its minimization decomposes by edge for the edge variables x and by edge and

commodity for the flow variables f . If cij + uij −
∑

k∈K w
k
ij ≥ 0, then xij = 0, and

if cij + uij −
∑

k∈K w
k
ij < 0, then Z(v,w,u) is unbounded from below. Similarly, if

v
k
i − v

k
j + w

k
ij ≥ 0 and v

k
j − v

k
i + w

k
ij ≥ 0, then f

k
ij = 0 and f

k
ji = 0. Otherwise, if ei-

ther v
k
i − v

k
j + w

k
ij < 0 or v

k
j − v

k
i + w

k
ij < 0, then Z(v,w,u) is unbounded from below. The

Lagrangian dual problem is

Maximize Z(v,w,u)

subject to: w ≥ 0;

u ≥ 0;

v unrestricted in sign.

Suppose we are given a node potential vector v̄. Observe that by setting w
k
ij ≥ max(v̄k

j −

v̄
k
i , v̄

k
i − v̄

k
j ) and, once the value of w is chosen, by setting uij ≥ max(0,

∑

k∈K w
k
ij − cij),

we ensure that the Lagrangian function is bounded. Furthermore, since uij has a negative
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coefficient in the objective function of the Lagrangian function, and the minimum value

of uij depends upon the w
k
ij values (once w

k
ij is sufficiently large, uij increases linearly

with respect to w
k
ij), we obtain the optimal value of the Lagrangian function by setting

w
k
ij and uij to their minimum possible values. Therefore, w

k
ij = max(v̄k

j − v̄
k
i , v̄

k
i − v̄

k
j )

and uij = max(0,
∑

k∈K w
k
ij − cij). Substituting the expression for the optimal value of

w
k
ij (given v) in the equation for the optimal value of uij (given w), we obtain uij =

max(0,
∑

k∈K(max(v̄k
j − v̄

k
i , v̄

k
i − v̄

k
j )) − cij). Therefore, we can write the Lagrangian dual

problem as a maximization problem over the node potentials v. The Lagrangian dual

problem is

Maximize Z(v)

subject to no constraint on v

with

Z(v) =
∑

k∈K

∑

i∈N

d
k
i v

k
i −

∑

{i,j}∈E

bij

uij
︷ ︸︸ ︷

max(0,
∑

k∈K

(max(vk
j − v

k
i , v

k
i − v

k
j )

︸ ︷︷ ︸

w
k
ij

) − cij) . (4.5)

Observe that for any commodity, increasing all node potentials by the same amount does

not change the value of the Lagrangian dual function. Therefore, for each commodity we

fix the value of the node potential for one node. We set v
k
O(k) = 0 for all commodities. With

slight modifications, our derivation in Section 3.3 shows the LP dual and the Lagrangian

dual problems are equivalent. So, as before, we refer to Lagrangian dual function and the

Lagrangian dual problem as the dual function and dual problem respectively.

4.2.1 Fundamental Ideas

In designing the dual-ascent algorithm, we consider the complementary slackness conditions:

xij > 0 =⇒
∑

k∈K

w
k
ij − uij = cij ;

f
k
ij > 0 =⇒ v

k
j − v

k
i = w

k
ij;

uij > 0 =⇒ xij = bij ; (4.6)

and w
k
ij > 0 =⇒ f

k
ij + f

k
ji = xij.

By design, the dual-ascent algorithm will maintain the first two complementary slackness

conditions, which we refer to as the primal complementary slackness conditions. The first
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complementary slackness condition permits the primal solution to include only tight edges

in the auxiliary network. The second condition introduces a commodity-based notion of

direction for the edges of the network. If commodity k flows on an edge {i, j} from node i

to node j, then v
k
j − v

k
i = w

k
ij . Since w

k
ij ≥ 0, this condition states that commodity k can

flow along edge {i, j} from node i to node j only if v
k
j ≥ v

k
i . Therefore, the node potentials

effectively direct the edges. If v
k
j > v

k
i , commodity k can flow on edge {i, j} only in the

direction i to j. Similarly, if v
k
i > v

k
j , then commodity k can flow on edge {i, j} only in the

direction j to i. Note that since different commodities can send flow on edges in opposite

directions, the direction of an edge is commodity dependent.

To simplify our notation, for each commodity we consider directed graphs D
k = (N,A

k)

for k = 1, . . . ,K, each defined on the same node set N . To obtain the set of arcs A
k, we

replace each edge {i, j} by two directed arcs (i, j)k and (j, i)k, each with the same sij , w
k
ij

and uij values as the undirected edge {i, j}. We say that an arc (i, j)k is active if v
k
j ≥ v

k
i

and sij = 0. We refer to any arc that is not active as inactive. For any commodity k, we

define its active network by the active arcs of D
k.

Note that if an arc (i, j)k is active, we can set xij > 0 and f
k
ij > 0 in a primal solution and

satisfy the primal complementary slackness conditions (Recall w
k
ij = max(vk

j − v
k
i , v

k
i − v

k
j ).

Thus if v
k
j −v

k
i ≥ 0, w

k
ij = v

k
j −v

k
i ). Observe that if arc (i, j)k is inactive and f

k
ij > 0, then the

primal and dual solutions violate either the first, second or both the primal complementary

slackness conditions. Thus, we can state primal complementary slackness in the following

equivalent way, which will prove to be useful in our subsequent discussion.

Equivalent Definition of Primal Complementary Slackness: Every inactive arc for com-

modity k (that is an arc (i, j)k with a positive slack or v
k
i > v

k
j ) has zero flow.

A Better Understanding of the Dual Function

Let us now consider the dual function Z(v). First consider the effect of changing the

node potential v
k
j of a single commodity k at a single node j on the term uij of the dual

function (uij = max(0,
∑

k∈K(max(vk
j − v

k
i , v

k
i − v

k
j )) − cij)). Let s

k
ij denote the term

cij −
∑

l 6=k max(vl
j − v

l
i, v

l
i − v

l
j). Note that s

k
ij remains fixed if we fix all the node potentials

except v
k
j . Consequently, uij = max(0,max(vk

j − v
k
i , v

k
i − v

k
j ) − s

k
ij) and sij = max(0, sk

ij −

max(vk
j −v

k
i , v

k
i −v

k
j )). Figure 4-5 shows the value of uij as a function of v

k
j with all the other

node potentials held fixed. Notice that when v
k
j is very small, uij is positive since v

k
i − v

k
j >

v
k
j − v

k
i and v

k
i − v

k
j > s

k
ij. As v

k
j increases, the value of uij decreases linearly as a function

of v
k
j until either (a) v

k
j = v

k
i , or (b) uij becomes zero (at v

k
j = v

k
i − s

k
ij). In case (a), s

k
ij ≤ 0

and at v
k
j = v

k
i , uij = −s

k
ij ≥ 0. Since the slack sij = max(0, sk

ij −max(vk
j − v

k
i , v

k
i − v

k
j )), at

v
k
j = v

k
i the slack is equal to zero and any further increase in v

k
j increases uij. Figure 4-5a
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Figure 4-5: uij as a function of node potential v
k
j . (a) Case (a): s

k
ij ≤ 0; (b) Case (b):

s
k
ij > 0.

shows case (a). In case (b), s
k
ij > 0. The value of uij is equal to zero when v

k
j − v

k
i ≤ s

k
ij

and v
k
i − v

k
j ≤ s

k
ij. From v

k
j = v

k
i − s

k
ij any further increase in v

k
j increases the slack,

maintaining uij = 0, until v
k
j = v

k
i . After v

k
j = v

k
i any further increase in v

k
j decreases the

slack, maintaining uij = 0, until v
k
j = v

k
i + s

k
ij where the slack is zero. From this point on,

uij increases linearly as a function of v
k
j . Figure 4-5b illustrates case (b).

In Figure 4-5a arc (i, j)k is active when v
k
j ∈ [vk

i ,∞) and arc (j, i)k is active when

v
k
j ∈ (−∞, v

k
i ]. In Figure 4-5b arc (i, j)k is active when v

k
j ∈ [vk

i + s
k
ij,∞) and arc (j, i)k

is active when v
k
j ∈ (−∞, v

k
i − s

k
ij]. We further categorize an active arc into two types.

When arc (i, j)k is active, sij = 0, v
k
j ≥ v

k
i , and uij ≥ 0. We will say that an active arc is

strongly active when the dual solution v satisfies last two conditions as strict inequalities

and is weakly active otherwise.

The following display summarizes the different states of an arc in the directed network

associated with commodity k.

(i, j)k active =⇒ sij = 0, vk
j ≥ v

k
i , uij ≥ 0;

(i, j)k weakly active =⇒ sij = 0; vk
j ≥ v

k
i , uij = 0, or

sij = 0, vk
j = v

k
i , uij > 0; (4.7)

(i, j)k strongly active =⇒ sij = 0; vk
j > v

k
i , uij > 0;

(i, j)k inactive =⇒ sij > 0 or v
k
j < v

k
i .



4.2 A High-Level View of the Dual-Ascent Algorithm 99

Note that when arc (i, j)k is strongly active, v
k
j −v

k
i can decrease by some small amount

δ > 0 and the arc remains active. When arc (i, j)k is weakly active, it becomes inactive for

any decrease in v
k
j −v

k
i . In Figure 4-5a arc (i, j)k and arc (j, i)k are both weakly active when

v
k
j = v

k
i (notice the condition sij = 0, v

k
j = v

k
i , uij > 0 is symmetric). In Figure 4-5b arc

(i, j)k is weakly active when v
k
j = v

k
i +s

k
ij, and arc (j, i)k is weakly active when v

k
j = v

k
i −s

k
ij.

Notice that over the region where an arc is active, it is weakly active at the limit points of

the region and is strongly active otherwise.

The notion of a directed network associated with each commodity is conceptual. An

algorithm need not explicitly construct the directed network associated with each commod-

ity. Rather, to decide whether arc (i, j)k is active, an algorithm needs only to check that

{i, j} is an edge in the graph G, sij = 0, v
k
j ≥ v

k
i , and uij ≥ 0. These computations can be

done on the fly.

The effect on the dual function Z(v) of increasing the node potential v
k
j for a single

node and a single commodity is the sum of a linear function d
k
j v

k
j and the piecewise linear

functions −bijuij for each edge {i, j} that is incident to node j. Therefore, the dual function

is piecewise linear. Its breakpoints, as a function of v
k
j , are the breakpoints of the piecewise

linear function uij for edge {i, j}. In other words the breakpoints of Z(v) as a function of

v
k
j occur when some arc directed into node j, (i, j)k, is weakly active, or some arc directed

out of node j, (j, i)k, is weakly active.

Figure 4-6 shows the dual function Z(v) for a 2-edge-disjoint path problem on a three

node graph. Figure 4-6a shows the capacity and costs of the edges. For convenience, since

the problem is a single commodity problem, we drop the superscript k in this discussion.

The demand of node c is 2 units and the demand of node a is −2 units. Figure 4-6b shows

the dual objective value Z(v) as a function of vc. For this example, va is zero and vb is 4.

The figure shows the breakpoints of the dual function: at vc = −5, vc = 1, vc = 5, and

vc = 7, corresponding to points where the arcs (c, a), (c, b), (a, c), and (b, c) are weakly

active. Figure 4-6c shows the dual objective value Z(v) as a function of vb, when both va

and vc are zero. The breakpoints of the dual function are at vb = −4, vb = −3, vb = 3,

and vb = 4 corresponding to points where the arcs (b, a), (b, c), (c, b), and (a, b) are weakly

active.

In general, the dual function is piecewise linear as a function of the dual variables.

Figure 4-7 shows a plot of the dual objective as a function of the node potentials vb and

vc for the example of Figure 4-6. In the triangular region, the dual function attains its

maximum value.
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Figure 4-6: (a) Network for 2-edge-disjoint problem on 3 node graph. (b) Dual objective as
a function of vc with vb and va fixed. (c) Dual objective as a function of vb with vc and va

fixed.
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Figure 4-7: Dual function Z as a function of vb and vc.

Basic Ascent Directions

To obtain a good lower bound for the NDC problem, we try to find the maximum value of

the dual function Z(v). Any dual-ascent algorithm starts with some feasible dual solution

v and iteratively finds ascent directions that improve the dual function. In our quest for

a good lower bound, we restrict our attention to basic directions. Recall, from Chapter 3,

that a set T and a commodity k define a basic direction γ
k
T when

γ
l
j =

{

1 if j ∈ T and l = k;

0 otherwise.

At each step, after finding a basic ascent direction γ
k
T , the algorithm changes the current

value of the node potential from the current value v to v+αγ
k
T for an appropriate step size

(scalar) α.

Calculating the directional derivative of the dual cost for any basic direction of the form
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γ
k
T , with the aid of Figure 4-5 (and equation (4.5)), we obtain:

Z
′(v; γk

T ) =
∑

i∈T

d
k
i +

∑

(j,i)k :strongly active
i6∈T,j∈T

bji −
∑

(i,j)k:active
i6∈T,j∈T

bij. (4.8)

The dual-ascent algorithm is an iterative procedure that uses a basic ascent direction,

i.e., a basic direction γ
k
T with Z

′(v; γk
T ) > 0, to perform an ascent step that increases the

dual function. This algorithm design naturally leads to the following two issues: How can we

find basic ascent directions? At the conclusion of the dual-ascent algorithm, is the auxiliary

network feasible for the NDC problem?

The following lemma helps answer these questions.

Lemma 4.2.1 Suppose that for some commodity’s active network, the maximum flow from

node O(k) to node D(k) with arc capacities bij is less than qk; then, there is a basic ascent

direction for the function Z(v).

Proof: If the maximum flow for commodity k in its active network is less than qk, then

by the max-flow min-cut theorem the network has an O(k)–D(k) dicut T with capacity

less than qk. Then, in equation (4.8) the first term is qk (qk = d
k
D(k)). The second term is

always nonnegative. Since the third term is just the capacity of the dicut T in commodity

k’s active network, it is less than qk. Therefore Z
′(v; γk

T ) > 0.

We might note that the converse of Lemma 4.2.1 is not necessarily true.

Lemma 4.2.1 implies that if there is no basic ascent direction, then every O(k)–D(k)

dicut has a capacity greater than qk. Since bij represents the number of copies of an

edge permitted in the model, this conclusion assures us that when there is no basic ascent

direction, installing bij copies of each edge in the auxiliary network will be a feasible design

(we might be able to use fewer copies of some edges and still be feasible).

An immediate consequence of this lemma is a method for finding basic ascent directions.

Consider the active network for each commodity. Using any max-flow algorithm on com-

modity k’s active network, find a dicut with capacity less than qk. Any such dicut gives a

basic ascent direction. Figure 4-8 illustrates this fact. In the problem shown in Figure 4-8,

we wish to construct, at minimum cost, two edge-disjoint paths between node s and node t.

All edge capacities are 1. For this single commodity problem, node s is the origin and node t

is the destination. Figure 4-8a shows the digraph associated with the commodity, and a

dicut in the active network with fewer than two active arcs. This dicut provides a basic

ascent direction. Figure 4-8b shows the digraph associated with the commodity at the end

of the dual-ascent step (in this example the dual-ascent step ends when arc (e, f) becomes

active, i.e., we reach a breakpoint of the dual function).

Another method for choosing a basic ascent direction is the steepest ascent approach:
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Figure 4-8: If the max-flow in the active network is less than the flow requirement, then
there is a basic direction of ascent. Active arcs are in bold. (a) Dual variables before making
an ascent along the basic direction. (b) Dual variables after the dual-ascent step.

choose a basic ascent direction that maximizes the rate of ascent. The steepest basic ascent

direction appears to be an attractive choice for a search direction because it gives the

greatest increase in the dual objective function per unit change in the dual variable.

Identifying the Steepest Basic Ascent Direction

To find the steepest basic ascent direction, over all commodities, we compare the steepest

basic ascent direction for each commodity and select the ascent direction with the highest

ascent rate.

For a given commodity k, we need to identify the set T with the greatest value of

∑

i∈T

d
k
i +

∑

(j,i)k:strongly active
i6∈T,j∈T

bji −
∑

(i,j)k:active
i6∈T,j∈T

bij . (4.9)

To solve this problem, we transform it to a related problem called the max-floor problem.

In the max-floor problem, we are given nonnegative lower and upper bounds, lij and uij ,

on the flow on arc (i, j). The floor of an s–t dicut6 δ
−(T ) is defined as

∑

(i,j)∈δ−(T ) lij −
∑

(i,j)∈δ+(T ) uij . Network flow theory tells us that if the problem is feasible, i.e., it is possible

to send flow from node s to node t that satisfies flow balance at intermediate nodes and

satisfies the lower and upper bound constraints on the flow on an arc, the max-floor of an

s–t dicut is equal to the minimum flow from node s to node t (see Exercise 6.18 in Ahuja,

Magnanti and Orlin [AMO93]). We can find the max-floor (of an s–t dicut) by applying

6Although our notation does not show this, in the max-floor problem, the dicut contains the arcs in
δ+(T ) in addition to those in δ−(T ).
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any max-flow algorithm twice: first to find a feasible flow from node s to node t, and then

to decrease this feasible flow to its minimum possible value (see [AMO93]).

We will find the steepest basic ascent direction by solving (at most) three max-floor

problems. Consider commodity k’s active network. Set the lower bound lij of a weakly

active arc (i, j)k to 0 and its upper bound uij to bij . Also, set both the lower and upper

bound, lij and uij, of a strongly active arc (i, j)k to bij . Let U =
∑

(i,j)k :active bij. Now solve

the following problems:

Problem 1: Add two nodes s
′ and t

′ to the active network. For each node i, other than

s
′ and t

′, add an arc from s
′ to i with lower bound lij equal to 0 and upper bound

uij equal to U , and add an arc from i to t
′ with lower bound lij equal to 0 and upper

bound uij equal to U . Now find the max-floor of an s
′–t′ dicut.

Problem 2: For each node i 6= O(k) or D(k), add arc (D(k), i) with lD(k)i = 0 and

uD(k)i = U , and arc (i, O(k)) with liO(k) = 0 and uiO(k) = U . Find the max-floor of a

D(k)–O(k) dicut.

Problem 3: For each node i 6= O(k) or D(k), add arc (O(k), i) with lO(k)i = 0 and

uO(k)i = U , and arc (i,D(k)) with liD(k) = 0 and uiD(k) = U . Find the max-floor of a

O(k)–D(k) dicut.

Observe that in each of these three problems, the arcs added to the problem ensure the

problem is feasible7 without affecting the value of the floor of a dicut. Also note that

adding additional arcs might create parallel arcs in the network. However, this does not

create any problem since all the max-flow algorithms apply to networks that contain parallel

arcs (the algorithms replace parallel arcs between a pair of nodes by a single arc whose lower

bound is the sum of the lower bounds of the parallel arcs and whose upper bound is the

sum of the upper bounds of the parallel arcs).

Let ν
i
max denote the max-floor of Problem i, and let S

i be the set of nodes on the

destination side of the dicut (i.e., t
′ ∈ S

1
, O(k) ∈ S

2, and D(k) ∈ S
3). Let

i
∗ = argmaxi=1,2,3






ν

i
max +

∑

i∈N\Si

d
k
i






.

7This result follows from Hoffman’s circulation feasibility condition [Hof60] which states that a circulation
problem is feasible if and only if for every set S of nodes

∑

(i,j)∈δ−(S)

lij ≤
∑

(i,j)∈δ+(S)

uij .

To check feasibility, we could convert the problem to a feasible circulation problem by adding an arc from
the destination node to the origin node with lower bound 0 and upper bound uij = ∞.
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Then the steepest basic ascent direction for commodity k is given by the set T
∗ = {N\Si∗}.

To see that this result is valid observe that only nodes O(k) and D(k) have nonzero demands.

Therefore, the first term in equation (4.9) is nonzero only when one of the nodes O(k)

and D(k) is in T . Problem 2 ensures that D(k) is in T and O(k) is not in T (note that

T = N\S2). Problem 3 ensures that O(k) is in T and D(k) is not in T (note that T = N\S3).

Problem 1 does not restrict either O(k) or D(k), and it finds the set (T = N\S1) that

maximizes the latter two terms of equation (4.9). By comparing these three solutions, we

obtain T
∗ that defines the steepest basic ascent direction γ

k
T ∗ for commodity k.

Note that if we solve Problem 1 first, then in some cases we need not solve Problems 2

and 3. If in the solution to Problem 1, i.e., the s
′–t

′ dicut, O(k) ∈ S and D(k) 6∈ S, then

the set T = N\S1 defines the steepest basic ascent direction for commodity k. Why? We

have found the set T that maximizes the latter two terms of equation (4.9). If T contains

D(k) but does not contain O(k), it maximizes the first term of equation (4.9). Therefore,

the set T defines the steepest basic ascent direction for commodity k. Also note that if in

the solution to Problem 1, O(k) 6∈ S and D(k) ∈ S, then the solution to Problem 1 is also

the solution to Problem 3, in which case we need not solve Problem 3.

Although we have shown how to find the steepest basic ascent direction, we will not

pursue this approach for two reasons. First, in this approach we potentially solve six max-

flow problems (two for each max-floor problem) for each commodity in order to identify

the steepest basic ascent direction. This is an excessive computational burden. Second,

following the steepest basic ascent direction is not guaranteed to provide the best lower

bound. For example, following the steepest basic ascent direction does not solve the q-edge-

disjoint path problem.8 In the next section we describe a different approach for finding a

basic ascent direction, which does not always find the steepest basic ascent direction, but

nevertheless solves the q-edge-disjoint path problem.

4.2.2 An Alternate Method for Identifying Basic Directions

The dual-ascent algorithm we develop follows a somewhat different approach for finding

basic ascent directions from that suggested by Lemma 4.2.1. It maintains a dual feasible

solution (v,w,u) and a primal solution (not necessarily feasible) (x, f) that satisfy the

primal complementary slackness conditions. Every infeasible primal solution guides the

search for basic directions, providing a basic ascent direction.

8To be more specific, arbitrarily choosing a steepest basic ascent direction does not solve the q-edge-
disjoint path problem. A particular choice of the steepest basic ascent direction solves the q-edge-disjoint
path problem. The alternate method described in the next section does not always find the steepest basic
ascent direction. However in one case, the q-edge disjoint path problem, it chooses the “right” steepest basic
ascent directions and solves the problem.
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At any intermediate step in the algorithm, let d̄
k
i represent the residual demand of

commodity k at node i. That is,

d̄
k
j = d

k
j − (

∑

i∈N

f
k
ij −

∑

l∈N

f
k
jl).

The residual demand for any set T and commodity k is

∑

j∈T

d̄
k
j =

∑

j∈T

(dk
j − (

∑

i∈N

f
k
ij −

∑

l∈N

f
k
jl)).

Using equation (4.8) to substitute for
∑

j∈T d
k
j in this equation, we obtain

∑

j∈T

d̄
k
j = Z

′(v, γ
k
T ) −

∑

(j,i)kstrongly active
i6∈T,j∈T

(bji − f
k
ji) +

∑

(j,i)kweakly active
i6∈T,j∈T

f
k
ji +

∑

(j,i)kinactive
i6∈T,j∈T

f
k
ji +

∑

(i,j)kactive
i6∈T,j∈T

(bij − f
k
ij) −

∑

(i,j)kinactive
i6∈T,j∈T

f
k
ij.

If the primal-dual pair (x, f) and (v,w,u) satisfy the primal complementary slackness

conditions (4.6), we can drop the summations over inactive arcs (they will have no flow).

Doing so, and rearranging terms, we obtain

Z
′(v, γ

k
T ) =

∑

j∈T

d̄
k
j +

∑

(j,i)kstrongly active
i6∈T,j∈T

(bji − f
k
ji) −

∑

(j,i)kweakly active
i6∈T,j∈T

f
k
ji −

∑

(i,j)kactive
i6∈T,j∈T

(bij − f
k
ij). (4.10)

This equation shows that any set T of nodes with

1. positive residual demand for some commodity k,

2. no active arc (i, j)k directed into T with f
k
ij < bij ,

3. no weakly active arc (j, i)k directed out of T with f
k
ji > 0, and

4. no flow of commodity k on any inactive arc (i, j)k directed into or out of T

provides a basic ascent direction. We refer to any such set T as an ascent set.9 Note that

any primal-dual pair (x, f) and (v,w,u) satisfying primal complementary slackness also

satisfy condition 4. Figure 4-9 displays the types of arcs that might be directed into and

out of an ascent set.

9Note that the definition of an ascent set is different from the one we used in Chapter 3.
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weakly active

with no flow

inactive

strongly active

inactive

active with

 flow = capacity

Ascent set T(k)

O(k) ∉ T(k)

D(k) ∈ T(k)

Figure 4-9: In commodity k’s network (i) arcs directed into ascent set T (k) must either be
inactive or active with flow for commodity k equal to capacity, (ii) arcs directed out of ascent
set T (k) must be either inactive, weakly active with no flow for commodity k, or strongly
active. Since the only node with positive residual demand is D(k), and d̄

k
D(k) = −d̄

k
O(k),

D(k) ∈ T (k) and O(k) 6∈ T (k).

Lemma 4.2.2 Suppose (x, f) and (v,w,u) satisfy the primal complementary slackness con-

ditions, and suppose the residual demand of the set of nodes T for commodity k is greater

than zero. Then either the basic direction γ
k
T is an ascent direction, or the network contains

nodes i 6∈ T and j ∈ T satisfying the property that either (i, j)k is active with f
k
ij < bij or

(j, i)k is weakly active with f
k
ji > 0.

Proof: Follows from equation (4.10).

In our approach, typically, each iteration of the algorithm either improves the primal

solution (decreases the residual demand for a commodity k at node D(k)) or finds a basic

ascent direction—that is, an ascent set—and improves the value of the dual function. There

might be several different ways to choose an ascent set. The steepest ascent approach finds

the ascent set that maximizes

∑

j∈T

d̄
k
j +

∑

(j,i)kstrongly active
i6∈T,j∈T

(bji − f
k
ji). (4.11)

It seems to be difficult to find the ascent set with the maximum rate of ascent. The approach

we took to find the steepest basic ascent direction does not apply here. We conjecture that

finding the ascent set with the maximum rate of ascent is NP-hard.

The dual-ascent algorithm we develop uses a heuristic to find the best rate of ascent.

First, it ensures the primal solution (x, f) satisfies the flow balance constraints at all nodes

except the origin and destination of any commodity. Second, it considers the first term in

equation (4.11), the residual demand, as a measure of the rate of ascent. Because the primal

solution satisfies the flow balance constraints at each node except the origin and destination,

it is easy to find an ascent set with maximum residual demand. Consider commodities with
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the maximum value of d̄
k
D(k). For each commodity, the algorithm performs the following

identify-ascent-set procedure, which either finds an ascent set or decreases the commodity’s

residual demand (we refer to d̄
k
D(k) as the commodity k’s residual demand).

Procedure identify-ascent-set(k):

1. Set T (k) = {D(k)}.

2. If an active arc (i, j)k with f
k
ij < bij is directed into the set T (k), add node i to T (k).

3. If a weakly active arc (j, i)k with f
k
ji > 0 is directed out of the set T (k), add node i

to T (k).

4. Repeat Steps 2 and 3 until either O(k) ∈ T (k) or no more nodes can be added to

T (k).

5. If Step 4 terminates with O(k) 6∈ T (k), then T (k) is an ascent set. Otherwise, send

one unit of flow from O(k) to D(k).

Note that when O(k) ∈ T (k) in Step 4, it is possible to send a unit of flow from node

O(k) to node D(k). Steps 2 and 3 add a node i to the set T (k) if arc (i, j)k is active and

f
k
ij < bij, or if arc (j, i)k is weakly active and f

k
ji > 0. This choice implies the existence of

a path from O(k) to D(k) in commodity k’s active network consisting of “forward” arcs,

that is, active arcs that have the same direction as the path, and “reverse” arcs, that is,

weakly active arcs that have the opposite direction than the path. Moreover, on all forward

arcs, f
k
ij < bij , and on all reverse arcs, f

k
ji > 0. Therefore, it is possible to send 1 unit of

flow along this path by increasing the flow of all forward arcs, and decreasing the flow of

all reverse arcs by 1.

If the procedure identify-ascent-set does not find an ascent set, it has reduced the residual

demand for commodity k by 1 unit. We repeat the procedure for commodities with the

highest amount of residual demand until it either finds an ascent set or a primal feasible

solution.10

So far, we have described how to find an ascent set T with the maximum residual

demand. The dual-ascent algorithm now improves the dual function by moving along the

basic ascent direction γ
k
T associated with the ascent set T . Since the algorithm performs

ascent steps using ascent sets, it can increase the dual function along the direction γ
k
T until

T no longer is an ascent set for commodity k. This occurs when an arc (i, j)k directed into

10Note that we do not need to explicitly keep track of x. Given the flow f , the equation xij =
maxk∈K(fk

ij , f
k
ji) permits us to determine the value of x.
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T or an arc (j, i)k directed out of T satisfies the conditions needed to add node i to T (i.e.,

conditions 2 and 3 in identify-ascent-set).

We need to consider one important remaining detail. Recall that the equivalent defi-

nition of primal complementary slackness (on page 97) implies that inactive arcs for every

commodity must have zero flow for that commodity. When we change the node potentials

for commodity k in a dual-ascent step, using an ascent set for commodity k, we maintain

the primal complementary slackness condition for that commodity. (It is easy to see that

this is true by considering Figure 4-9. Since inactive arcs directed into and out of the ascent

set T carry no flow of commodity k, a node potential change does not violate a primal com-

plementary slackness condition for these arcs. Because active arcs directed into the ascent

set T remain active, an ascent step will not violate any primal complementary slackness

condition for these arcs. Active arcs directed out of the ascent set T can become inactive

at the end of an ascent step. If this happens, then the arc carries no flow of commodity k

because otherwise it would have no longer been an ascent set when the arc became weakly

active.) However, the new solution pair (x, f), (v,w,u) might violate this condition for

some other commodity h. How can this happen? Recall that an active arc (i, j)k satisfies

two conditions (i) sij = 0 and (ii) v
k
j ≥ v

k
i . In an ascent step along the basic ascent direction

γ
k
T , when we increase v

k
j for j ∈ T for commodity k, we do not alter the node potentials

for any other commodity h 6= k. So the only way an active arc for commodity h becomes

inactive in an ascent step for commodity k, is when the slack sij becomes positive. This

outcome is possible (see Figure 4-5) only if an arc (j, i)k, directed out of T , were active. As

a result, both arcs (j, i)h and (i, j)h might become inactive (if sij > 0 both are inactive),

violating primal complementary slackness if either f
h
ji > 0 or f

h
ij > 0.

In order to rectify this problem, our dual-ascent algorithm updates the flow so that it

(i) satisfies primal complementary slackness, and (ii) satisfies the flow balance constraints

at all intermediate nodes. Suppose commodity h flows on some inactive arcs. Then we

can change the flow of commodity h to satisfy conditions (i) and (ii) as follows. Solve a

maximum flow problem from node s to node t on commodity h’s active network, setting the

capacity of an arc (i, j)h to f
h
ij. Because we solve the maximum flow problem on commodity

h’s active network, its solution satisfies condition (i) and condition (ii).

This maximum flow computation requires considerable work. However, it is not obvious

whether there is a better method to update the flow. We might note that if the model

does not permit edge replication, i.e., bij = 1, then we could use more efficient versions

of max-flow algorithms (see Chapter 8 of Ahuja, Magnanti and Orlin [AMO93]) for unit

capacity networks. In models that permit edge replication, but have small edge capacities

(i.e., bij is small), or if the maximum flow on any arc is small, we could use a special max-

flow algorithm designed specially for problems with small integer capacities on the arcs (see
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Fernandez-Baca and Martel [FBM89]).

The flow update necessitates a recalculation of the residual demand for commodities

whose flow has been changed. The dual-ascent procedure recalculates the residual demand

for each commodity and continues by considering ascent sets with the highest residual

demand.

In summary, the dual-ascent algorithm for the NDC problem uses three main ideas:

1. It considers ascent sets to improve the dual function.

2. It finds ascent sets by considering commodities with the highest residual demand.

3. It maintains the primal complementary slackness conditions. If a dual-ascent step

causes the primal solution to violate the primal complementary slackness conditions

(by making an active arc with flow on it inactive), we update the primal solution and

the residual demand.

In the next section we investigate in greater detail the implementation of these ideas.

We also show that when the edge costs are integer,11 the dual-ascent algorithm terminates

finitely. Furthermore, at termination it will either prove the problem is infeasible or obtain

a feasible primal solution (x, f).

Before we conclude this section we note that in this presentation each commodity k has

a single source and a single destination. Much of our discussion applies as well to problems

with multiple sources and/or destinations for each commodity.

4.3 Algorithmic Details

In this section we describe in detail the dual-ascent algorithm. We note that many design

decisions will be made in the algorithm (e.g., stepsize rules, order of processing commodi-

ties). Other design choices are possible as well. We provide (intuitive) reasons for our

particular design decisions, but note that an empirical evaluation is required to decide on

the best alternatives.

In the description of the algorithm we will maintain only the flow-node potential pair

(f ,v) because x,w,u, s and Z(v) are defined by the values of f and v. For clarity, we first

recall the equations that define x,w,u, s and Z(v).

xij = max
k∈K

(fk
ij, f

k
ji)

11This assumption is not particularly restrictive. Note that we can always transform rational edge costs
to integer edge costs by multiplying them by a suitably large number. Moreover, in practice, we need to
convert irrational numbers to rational numbers to represent them on a computer.
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w
k
ij = max(vk

j − v
k
i , v

k
i − v

k
j )

uij = max(0, (
∑

k∈K

max(vk
j − v

k
i , v

k
i − v

k
j )) − cij (4.12)

sij = max(0, cij − (
∑

k∈K

max(vk
j − v

k
i , v

k
i − v

k
j )))

Z(v) =
∑

k∈K

∑

i∈N

d
k
i v

k
i −

∑

{i,j}∈E

bij max(0,
∑

k∈K

(max(vk
j − v

k
i , v

k
i − v

k
j )) − cij).

Before we begin the detailed discussion of the algorithm, we once again emphasize that

the notion of directed networks associated with each commodity is conceptual. By storing

the undirected graph G and the dual variables, it is easy to calculate the state of an arc

(i, j)k as needed.

The dual-ascent algorithm consists of two subroutines: update and phase. The subrou-

tine update corrects primal complementary slackness violations. It (i) corrects the flow so

that it satisfies the primal complementary slackness conditions, and (ii) computes the max-

imum residual demand after the flow change. The subroutine phase considers commodities

with the maximum residual demand. We refer to commodities whose residual demand is

equal to the maximum residual demand as active commodities. The subroutine phase per-

forms ascent steps on the ascent sets of active commodities. It ends when either the value

of the maximum residual demand decreases by one, or the flow-node potential pair violates

a primal complementary slackness condition.

To find an ascent set, the subroutine phase could use the procedure identify-ascent-

set described in the previous section. A drawback of this procedure is that it does not

use information about previous ascent sets for commodity k. Each time the algorithm calls

identify-ascent-set, it starts from scratch, i.e., with T (k) = {D(k)}. This could be very time

consuming. The dual-ascent algorithm we describe uses a slightly different procedure, one

that uses the previous ascent set for commodity k to find a new ascent set for commodity k.

At the start of the subroutine phase, it sets T (k) = {D(k)} for each active commodity.

It then calls (the new procedure) find-ascent-set to identify an ascent set for each active

commodity, and selects the ascent set with the maximum ascent rate to perform an ascent

step. In subsequent iterations the subroutine phase calls find-ascent-set and provides it with

the most recent ascent set T (k) for commodity k.

Like identify-ascent-set, the find-ascent-set procedure either identifies an ascent set for

commodity k or increments the flow for commodity k by one unit. It starts with the set

T (k) and adds a node i to the set T (k) only if (i) f
k
ij < bij and (i, j)k is an active arc

directed into T (k), or if (ii) f
k
ji > 0 and (j, i)k is a weakly active arc directed out of T (k).

This choice ensures that the directed network associated with commodity k has sufficient

capacity for every node in T (k) to send a unit of flow to D(k). Moreover, this flow can be
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sent along a path that is contained in T (k) (i.e., both endpoints of each arc on the path

are in T (k)). If O(k) ∈ T (k), then find-ascent-set calls the procedure increment-flow to

increase the flow from O(k) to D(k) by one unit.

The procedure increment-flow first identifies a path P from O(k) to D(k) in T (k) that

has sufficient capacity to send a unit of flow. Next, it checks to ensure that every arc

on the path P is active (i.e., sending one unit of flow on P does not violate the primal

complementary slackness conditions). Why is this check necessary? Because we keep track

of T (k) across iterations, an arc on P might become inactive when the algorithm performs

an ascent step (i.e., changes node potentials) for another commodity h—after the algorithm

has added node i to T (k), but before it has added O(k) to T (k). When i is added to T (k)

either (i, j)k is active or (j, i)k is weakly active. In the ascent step for commodity h, the arcs

(i, j)k and (j, i)k might become inactive. If the arcs (i, j)k and (j, i)k carry no flow, then this

change does not result in a primal complementary slackness violation. However, sending

a unit of flow on this path now will violate a primal complementary slackness condition.

Therefore, along the path P , the procedure increment-flow checks that the forward arcs are

active and the reverse arcs are weakly active. If the check fails, it resets T (k) to {D(k)}

and continues to search for an ascent set. Otherwise, it sends a unit of flow along P .

Actually the check does more than enforce the primal complementary slackness condi-

tions. For example, if a reverse arc on the path P is strongly active, decreasing its flow

will not violate a complementary slackness condition. However, the check will not send flow

on the path, but will reset T (k) to {D(k)} and continue its search for an ascent set. This

stronger condition has the following rationale. Recall that if there is no path from O(k) to

D(k), in commodity k’s active network, consisting of forward arcs with f
k
ij < bij and weakly

active reverse arcs with f
k
ji > 0, find-ascent-set identifies an ascent set. If the reverse arc

(j, i)k on the path P is strongly active, then after resetting T (k), the algorithm might find

an ascent set for commodity k because of this reason.

Ascending on an Ascent Set

The dual-ascent algorithm determines the amount of ascent for an ascent set T (k) by exam-

ining each edge in the cut δ(T (k)). There are five possible cases (see Figures 4-9 and 4-5).

1. (j, i)k is strongly active: We permit the algorithm to increase v
k
j until (j, i)k becomes

weakly active. There are two reasons for doing so. First, the algorithm needs to check

that T (k) is still an ascent set, i.e., whether f
k
ji = 0. Second, assuming T (k) is still an

ascent set, the dual variable change has just decreased the rate of ascent for the set

T (k) because (j, i)k is no longer strongly active (see equation (4.10)). By terminating

the ascent step at this point, the algorithm can compare the ascent sets associated
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with the commodities and select the ascent set with the highest ascent rate. Recall

from Figure 4-5 that in case (a) (j, i)k becomes weakly active when v
k
j = v

k
i , and in

case (b) this occurs when uij decreases to zero. Therefore, the increase is determined

by min(vk
i − v

k
j , uij).

2. (j, i)k is weakly active: If (j, i)k is weakly active, then f
k
ji = 0; otherwise, T (k) is not

an ascent set. Therefore, increasing v
k
j does not violate the primal complementary

slackness condition for commodity k. We determine the maximum ascent by the

value of v
k
j that maximizes the slack on edge {i, j}. That is, when v

k
j = v

k
i . Actually,

we could increase v
k
j beyond v

k
j = v

k
i . However, limiting the ascent to this choice

might create greater ascent for the dual function. Why? Since this change created

an inactive arc from a (weakly) active arc, and made the slack sij > 0, arcs (i, j)h

and (j, i)h for any other commodity h are also inactive. Suppose another commodity

with the same value of residual demand sends flow on this arc. Then because the arc

is inactive it violates primal complementary slackness. Therefore, the algorithm can

send no flow for commodity h along a path that uses this arc. In order to satisfy

primal complementary slackness, the algorithm decreases the flow of commodity h

from O(h) to D(h) by at least one unit. But then its residual demand increases by at

least one unit. Since the dual-ascent algorithm uses the residual demand as a measure

of the rate of ascent, terminating the ascent step when v
k
j = v

k
i is appropriate.

3. (j, i)k is inactive and v
k
i > v

k
j :12 As v

k
j increases, the slack increases until v

k
j = v

k
i .

Then the slack decreases until the slack becomes zero and arc (i, j)k becomes active.

From Figure 4-5b, arc (i, j)k becomes active when v
k
j = v

k
i + s

k
ij . The increase in v

k
j

before the slack becomes zero is v
k
i + s

k
ij − v

k
j . Since sij = s

k
ij −max(vk

i − v
k
j , v

k
j − v

k
i ),

this choice implies that s
k
ij = sij + max(vk

i − v
k
j , v

k
j − v

k
i ). Therefore, the increase in

v
k
j until arc (i, j)k becomes active is sij + 2(vk

i − v
k
j ).

4. (i, j)k is inactive and v
k
j ≥ v

k
i : As v

k
j increases, arc (i, j)k eventually becomes weakly

active and thus T (k) will no longer be an ascent set. The maximum amount of increase

is determined by the value of v
k
j at which (i, j)k becomes weakly active. Therefore,

the maximum increase is the slack.

5. (i, j)k is (weakly or strongly) active. We need not consider these edges since they will

remain active.

12Since {i, j} is really an edge and the directed network a conceptual construction we do not consider
overlapping cases (e.g., (j, i)k is inactive and (i, j)k is active). The five cases considered do not overlap in
Figure 4-5.
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The stepsize is determined by the minimum of these quantities over all edges in the cut. If

no edge in the cut δ(T (k)) satisfies one of the first four cases, then for all edges {i, j} in the

cut δ(T (k)) with i 6∈ T (k) and j ∈ T (k), f
k
ij = bij and f

k
ji = 0. Since the residual demand

of T (k) is greater than zero,

∑

j∈T (k)

d̄
k
j =

∑

j∈T (k)

(dk
j − (

∑

i∈N

f
k
ij −

∑

l∈N

f
k
jl)) > 0.

By rearranging terms we see that

d
k
D(k) −

∑

j∈T (k)

(
∑

i6∈T (k)

f
k
ij −

∑

i6∈T (k)

f
k
ji) > 0;

or
∑

{i,j}∈δ(T (k))

bij < qk.

Therefore, δ(T (k)) is an O(k)–D(k) cut whose capacity is less than commodity k’s re-

quirement, or the problem is infeasible. Another interpretation is as follows. Since the

domain of the minimization is empty, the stepsize is infinite, and the amount of ascent is

unbounded. From linear programming duality, if the dual is feasible and unbounded, the

primal is infeasible.

We now describe another condition that also indicates that the problem is infeasible.

Although the above condition is sufficient to prove a problem is infeasible, it is not obvious

whether the dual-ascent algorithm will always find a cut that proves infeasibility. We claim

that if Z(v) >
∑

{i,j}∈E cijbij , then the problem is infeasible. This is true because were the

problem feasible, then a solution that contains bij copies of each edge would be feasible.

Since a feasible dual solution is always a lower bound on any feasible primal solution this

result follows.

Therefore, if the dual-ascent algorithm terminates (we show it terminates in Section 4.3.2),

it does one of the following:

1. Finds a feasible primal solution and a feasible dual solution that satisfies primal com-

plementary slackness.

2. Shows the problem is infeasible by exhibiting an O(k)–D(k) cut whose capacity is less

than commodity k’s requirement.

3. Shows the problem is infeasible because Z(v) >
∑

{i,j}∈E cijbij .

4.3.1 Formal Description of the Dual-Ascent Algorithm

The dual-ascent algorithm can be described as follows:
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Dual-ascent algorithm for the NDC problem

1. Initialization. Set v = 0, f = 0, and counter = 1.

2. While counter ≤ rmax do

• Perform phase(counter).

• If phase terminated because of a complementary slackness violation, perform

update(flow,counter). Otherwise, set counter = counter + 1 and continue.

The procedure phase can be described as follows:

Phase (counter)

1. Consider all commodities k, called active, whose residual demand d̄
k
D(k) = rmax −

counter + 1. For all commodities, set T (k) = {D(k)}. Mark all nodes as unscanned:

scan[k][j] = 0 for all nodes j ∈ N . All next labels are undefined.

2. For every active commodity (see definition following phase) k, find-ascent-set(T (k)).

If no commodity is active, return.

3. Among the active commodities, select the commodity with the highest ascent rate:

i.e., the ascent set T (k) with the highest rate of ascent, and perform ascent-step(T (k)).

If no commodity is active, return.

4. If as a result of ascent-step, a weakly active arc with flow becomes inactive, return.

Otherwise, go to Step 2.

The subroutine phase (and the procedure find-ascent-set) use an array scan to keep

track of the unscanned arcs into the set T (k). As long as O(k) 6∈ T (k), the procedure phase

tries to find an ascent set for commodity k. The next array is used to identify the path

from O(k) to D(k).

The value of the dual function, i.e., the lower bound provided by the dual-ascent al-

gorithm, is sensitive to the order in which the algorithm considers the commodities. For

example, Sastry [Sas87] shows that dual-ascent can provide a lower bound that is arbitrar-

ily bad for the Steiner branching problem. A good heuristic, proposed by Balakrishnan,

Magnanti and Wong [BMW89] for the uncapacitated fixed charge network design problem,

is to consider commodities in a round robin fashion. That is, order the commodities in some

fashion and then cycle through this list performing a single ascent step for each commod-

ity. We could implement this rule in the dual-ascent algorithm in a couple of ways. One

possibility is to use the round robin rule in the case of ties in Step 3.
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Another possibility is to replace Steps 2 and 3 by a single ascent step for a single

commodity. That is, choose an active commodity, find an ascent set for the commodity (or

decrease its residual demand), and perform an ascent step on this ascent set. The round

robin rule could then be used to select the active commodity.

The subroutine update can be described as follows:

Update(flow,counter)

1. For each commodity k ∈ K solve the maximum flow problem between O(k) and D(k)

on the commodity’s active network with arc capacities f
k
ij. Let maxflow(k) denote

the value of the maximum flow between O(k) and D(k). Replace the flow values f
k
ij

for commodity k by the solution of the maximum flow problem for commodity k.

2. Set t = maxk∈K(dk
D(k) − maxflow(k)).

3. Set counter = rmax − t + 1.

The procedure find-ascent-set can be described as follows:

Find-ascent-set(T (k))

1. If all nodes in T (k) are scanned, T (k) is an ascent set; terminate find-ascent-set.

Otherwise, select an unscanned node j ∈ T (k) and go to Step 2.

2. Add any node i 6∈ T (k) to T (k) if either (j, i)k is weakly active with f
k
ji > 0, or (i, j)k

is active with f
k
ij < bij . For each node i added to T (k), set next[i][k] = j if (i, j)k

is active with f
k
ij < bij, and next[i][k] = −j if (j, i)k is weakly active with f

k
ji > 0.

Mark j as scanned: scan[j][k] = 1. If T (k) does not contain O(k), go to Step 1.

3. T (k) contains O(k). Perform the procedure increment-flow(k). If increment-flow(k)

was unsuccessful (i.e., it did not increase the flow from O(k) to D(k)), go to Step 1.

Otherwise, terminate find-ascent-set.

The procedure increment-flow can be described as follows:

Increment-flow(k)

1. The path from O(k) to D(k) is identified by starting from O(k) and following the

next labels: the node following node i on the path is the absolute value of next[i][k].

Check to see if sending flow on the path satisfies primal complementary slackness

conditions. If for any node i on the path next[i][k] = j and (i, j)k is inactive, or

next[i][k] = −j and (j, i)k is not weakly active; then (i) set T (k) = {D(k)}, (ii) mark
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all nodes as unscanned: scan[k][j] = 0 for all nodes j ∈ N , and (iii) set all next labels

for commodity k, i.e. next[i][k], as undefined; and terminate increment-flow(k) with

a flag to indicate that a flow increase was unsuccessful.

2. (flow increase) Send 1 unit of flow on the path from O(k) to D(k) (doing so will

not violate primal complementary slackness). For every node i is on the path with

next[i][k] = j, set f
k
ij = f

k
ij +1. For every node i on the path with next[i][k] = −j set

f
k
ji = f

k
ji − 1. Terminate increment-flow(k) with a flag to indicate that a flow increase

was successful.

Formally, the procedure ascent-step(T (k)) can be described as follows:

Ascent-step(T (k))

1. The stepsize is given by the following equation:

α = min
i6∈T (k)
j∈T (k)







min(uij , v
k
i − v

k
j ) if (j, i)k is strongly active;

v
k
i − v

k
j if (j, i)k is weakly active;

sij + 2(vk
i − v

k
j ) if (j, i)k is inactive and v

k
i > v

k
j ;

sij if (i, j)k is inactive and v
k
j ≥ v

k
i .







(4.13)

If the domain of the minimization in equation (4.13) is empty, the problem is infeasible.

Stop.

2. Set, v = v + αγ
k
T (k). If Z(v) >

∑

{i,j}∈E cijbij the problem is infeasible. Stop.

3. Add to T (k) all nodes i for which (a) the minimum in equation (4.13) is achieved,

and (b) either (i, j)k is active, or (j, i)k is weakly active with f
k
ji > 0. In the first case

of part (b), set next[i][k] = j and in the second case set next[i][k] = −j. If the node

O(k) is added to T (k), perform increment-flow(k).

Example

To conclude this section, consider the example in Figure 4-10 that illustrates the dual-ascent

algorithm for the 3-edge-disjoint path problem (the paths are between s and t). Figure 4-10a

shows the undirected network, edge costs, and the associated directed network.

Initially, all dual variables are zero, T (k) = {t}, and counter = 1. The dual-ascent

iteration finds that T (k) is an ascent set and increases the node potential v
k
t . The stepsize,
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determined by the minimum slack of the incoming arcs, is 1. The algorithm adds nodes d

and f to T (k) making T (k) = {f, d, t}. next[f ][k] and next[d][k] are set equal to t.

Proceeding in this fashion, the algorithm successively encounters the ascent sets T (k) =

{c, f, d, t} (next[c][k] = d), T (k) = {b, c, f, d, t} (next[b][k] = c), T (k) = {a, b, c, f, d, t}

(next[a][k] = b), and T (k) = {s, e, a, b, c, f, d, t} (next[e][k] = b, next[s][k] = a). Since

node s belongs to T (k), the algorithm performs a flow increase step and sends 1 unit of flow

on the path s-a-b-c-d-t (obtained by the next labels). Figure 4-10b shows these iterations.

(Note that for a single commodity problem, procedure increment-flow need not check for

complementary slackness violations). At the end of the flow increase step, the residual

demand is 2 units and the dual objective is 15 units. The algorithm resets T (k) = {t} and

the next and scan labels. Figure 4-10c shows the dual-ascent iterations performed until

the next flow increase step. The dual-ascent iterations find the path s-e-f -t and send a unit

of flow on the path, in the flow increase step. At the end of the flow increase step, the dual

objective is 21 units and the residual demand is 1 unit. Again, reset T (k) = {t} and the

next and scan labels. Figure 4-10d shows the dual-ascent iterations until the next flow

increase step. The dual-ascent iterations improve the dual objective to 25 units and send

one unit of flow on the path s-d-c-f -e-b-a-t. Since (c, d), (e, f) and (a, b) carried a unit of

flow, the flow increase step decreases their flow to zero. At the end of the flow increase

step, the residual demand is zero and the algorithm terminates. The solution obtained by

the dual-ascent algorithm has the edges (s, a), (a, t), (s, d), (d, t), (s, e), (e, b), (b, c), (c, f)

and (f, t). The solution is feasible (the three paths are s-a-t, s-d-t, and s-e-b-c-f -t) with

a cost of 25 units. Since the dual objective is 25 units, the primal solution is optimal. In

Section 4.6 we will show that the dual-ascent algorithm optimally solves the q-edge-disjoint

path problem.

4.3.2 Finite Termination of the Dual-Ascent Algorithm

We now show that if the edge costs are integer, the algorithm terminates finitely. Recall that

in arguments preceding the description of the algorithm, we showed that if the algorithm

terminates, it either shows the problem is infeasible or finds a pair of primal and dual

solutions (x, f) and (v,w,u) that satisfy the primal complementary slackness conditions.

Theorem 4.3.1 If the edge costs are integer, in a finite number of steps the dual-ascent

algorithm for the NDC problem either finds a pair of primal and dual solutions (x, f) and

(v,w,u) that satisfy the primal complementary slackness conditions, or shows the problem

is infeasible.

Proof: To prove that the algorithm terminates finitely, we first show that whenever the

algorithm performs the procedure ascent-step, it increases the dual objective function by an
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(d) Dual-ascent iterations. Flow is sent on the path s-d-c-f -e-b-a-t.

Figure 4-10: Example of dual-ascent algorithm for the 3-edge-disjoint path problem.
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integer amount. Next, we show that within a finite number of steps, the dual-ascent algo-

rithm either terminates with a feasible solution or calls the procedure ascent-step. Conse-

quently, if the problem is feasible, the dual objective is bounded and so the algorithm finitely

terminates. On the other hand, if the problem is infeasible, once Z(v) >
∑

{i,j}∈E cijbij ,

we have established the problem is infeasible. Thus, if we show that the objective function

strictly increases by an integer amount within a finite number of steps, the algorithm finitely

terminates when the problem is infeasible.

Initially, all the primal and dual variables are zero and thus integer. Because the edge

costs are integer the slacks are also initially integer. First, observe from equation (4.12)

that if the edge costs are integer and v is an integer vector, then w, u and s are also integer

vectors. Next, notice if u, v and s are integer vectors, then equation (4.13) implies that the

stepsize, in procedure ascent-step, is integer. Now, if v is an integer vector and we move

along a basic ascent direction using an integer stepsize, then the new value of v will also be

integer. Since u, v and s are integer at the outset, the stepsize is always integer.

We now argue that the algorithm either terminates or performs the procedure ascent-

step within a finite number of steps. The algorithm performs the subroutine update only

after an ascent step. This procedure performs at most |K| max-flow computations. There-

fore, assuming we use the successive shortest path max-flow algorithm for the max-flow

computation, the procedure requires O(|K||N |2|E|) time. The procedure find-ascent-set

examines the arcs of the directed network associated with commodity k. Because it exam-

ines an arc at most once it terminates in O(|E|) time. Thus, within O(|E|) time, it either

finds an ascent set or adds the origin O(k) to the set T (k). Suppose no ascent steps are per-

formed. Then once the origin O(k) is in the set T (k) the algorithm performs the procedure

increment-flow. Because the algorithm has performed no ascent steps (i.e., no node poten-

tial changes), it will be able to increase the flow without violating complementary slackness.

Increment-flow examines only arcs on the path from node O(k) to node D(k). Hence it

requires O(|E|) time. Consequently, find-ascent-set either identifies an ascent set (and thus

the dual-ascent algorithm performs an ascent step) or decreases the residual demand of a

commodity by a unit in O(|E|) time. Since the sum of the demands (dk
D(k)) is a constant,

the dual-ascent algorithm either terminates with a feasible solution or calls the procedure

ascent-step within O(
∑

k∈K d
k
D(k)|E| + |K||N |2|E|) time.

In this section we described in detail a dual-ascent procedure for the NDC problem

with edge-connectivity requirements. We showed that the dual-ascent procedure termi-

nates finitely and at termination either shows the problem is infeasible or provides primal

and dual solutions, thereby providing a feasible heuristic solution and a lower bound. In

the next two sections we describe how to modify the dual-ascent algorithm to other con-

nectivity problems. First, in Section 4.4 we show how to modify the dual-ascent algorithm
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Figure 4-11: Transformation of a (undirected) NDC problem to a DNDC problem.

to the directed network design problem with connectivity requirements (DNDC). Then, in

Section 4.5 we consider node connectivity. Finally we describe some extensions to the NDC

model and show how to apply the dual-ascent algorithm to them.

4.4 Dual-Ascent for the DNDC Problem

In Chapter 2 we described the directed network design problem with connectivity require-

ments (DNDC), a problem of some interest. As briefly mentioned in Chapter 2, it is possible

to model several real-world telecommunications applications of the DNDC problem. In this

section, we show how to modify the dual-ascent procedure for the DNDC problem.

The NDC problem arises in another way: it is possible to transform an NDC problem

to a DNDC problem by the following familiar graph transformation procedure for directing

undirected multicommodity flow problems (see Exercise 17.21 in Ahuja, Magnanti and

Orlin [AMO93]). Transform the undirected graph to a digraph D = (N,A) as follows. For

every edge {i, j} ∈ E, create two nodes ij and ji in the digraph. Replace edge {i, j} by the

arcs (i, ij), (j, ij), (ij , ji), (ji, j), and (ji, i). The capacity of each of these arcs is equal to

the capacity of edge {i, j}. The cost of arc (ij , ji) is equal to the cost of edge {i, j}, and the

cost of the arcs (i, ij), (j, ij), (ji, j) and (ji, i) are zero. Figure 4-11 shows this construction.

If nodes s and t have a connectivity requirement rst in the NDC problem, then nodes s

and t have a connectivity requirement of rst in the digraph D. The resulting problem

is a DNDC problem. It is easy to see that this directed model is valid for the NDC. The

optimal solution for the NDC problem contains edge {i, j} only if the optimal solution to the

DNDC problem contains arc (ij , ji). Consequently, we could transform any NDC problem

to a DNDC problem and apply the dual-ascent algorithm of this section to the resulting

problem. However, as we shall show shortly, directing the NDC problem does not improve

the model. Moreover, since the transformed network contains 5|E| arcs, and contains 2|E|

more nodes than the original network, the dual-ascent algorithm might be computationally

more expensive on this transformed network than in the original undirected network.

We can formulate the DNDC problem as follows. Let yij represent the number of copies
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of arc (i, j) in the design and let f
k
ij represent the number of units of flow of commodity

k on arc (i, j). As before, for each pair {s, t} of nodes, with rst ≥ 1, create a commodity

k ∈ K, arbitrarily choosing one of the nodes as the origin and the other node as the

destination, with qk = rst. Let K
[n] denote the subset of commodities that correspond to

node-connectivity requirements.

Directed flow formulation for the DNDC problem:

Minimize
∑

(i,j)∈A

cijyij (4.14a)

subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−qk

qk

0

if i = O(k);

if i = D(k); for all i ∈ N and k ∈ K

otherwise;

(4.14b)

f
k
ij ≤ yij for all (i, j) ∈ A and k ∈ K (4.14c)

∑

l∈N

f
k
il ≤ 1 for all k ∈ K

[n] & all i 6= O(k) or D(k)(4.14d)

f
k
ij ≥ 0 for all (i, j) ∈ A and k ∈ K (4.14e)

yij ≤ bij for all (i, j) ∈ A; (4.14f)

yij ≥ 0 and integer, for all (i, j) ∈ A. (4.14g)

This formulation is similar to the undirected flow formulation for the NDC problem (4.2)

except that instead of edge variables, the formulation contains arc variables. Because of

the similarity in the models, the subsequent derivation of the dual-ascent algorithm for the

DNDC problem is nearly identical to the derivation of the dual-ascent algorithm for the

NDC problem. Nevertheless, we provide details of the method to pinpoint the necessary

modifications to the dual-ascent algorithm.

Before describing the dual-ascent algorithm for the DNDC problem, we show that for-

mulating the NDC problem as a DNDC problem does not create a better model. In fact,

the LP relaxation of the undirected flow formulation for the NDC problem (4.2) and the

LP relaxation of the directed flow formulation for the NDC problem (4.14) have the same

optimal objective value. It is rather easy to establish this result; for completeness, we state

and prove it.

Theorem 4.4.1 The optimal objective value of the LP relaxation of the undirected flow for-

mulation for the NDC problem (4.2) equals the optimal objective value of the LP relaxation

of the directed flow formulation for the NDC problem (4.14).

Proof: We begin by converting any feasible solution to the LP relaxation of the undirected

flow formulation for the NDC problem to a feasible solution to the LP relaxation of the
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directed flow formulation for the NDC problem with the same objective value. For each

edge {i, j} ∈ E, set yiij = yjij = yjii = yjij = yijji
= xij. For each edge {i, j} ∈ E and

commodity k ∈ K, set f
k
iij

= f
k
jij

= f
k
ij, f

k
jij

= fjii = f
k
ji, and f

k
ijji

= f
k
ij + f

k
ji (recall from

Section 4.6 we can replace constraint (4.2c) in the undirected flow formulation for the NDC

problem by f
k
ij + f

k
ji ≤ xij [for all (i, j) ∈ E and k ∈ K]).

Converting any feasible solution to the LP relaxation of the directed flow formulation

for the NDC problem to a feasible solution to the LP relaxation of the undirected model for

the NDC problem is easy. For each edge {i, j} ∈ E set xij = yijji
. For each edge {i, j} ∈ E

and commodity k ∈ K, set f
k
ij = f

k
jij

and f
k
ji = f

k
jii

.

We are now ready to derive the dual-ascent algorithm for the DNDC problem. Again,

we first consider only arc-connectivity requirements (so the formulation does not contain

constraint (4.14d)). In the next section we consider node-connectivity requirements. As

before, let sij be the slack in the constraint
∑

k∈K w
k
ij −uij ≤ cij . We say arc (i, j) is tight if

its slack is zero. The auxiliary network is defined by the tight arcs. Viewing v
k
i , w

k
ij and uij

as Lagrange multipliers for constraints (4.14b), (4.14c) and (4.14f), we obtain the following

Lagrangian function:

L(y, f ,v,w,u) =
∑

(i,j)∈A

cijyij +
∑

i∈N

∑

k∈K

(dk
i −

∑

j∈N

f
k
ji +

∑

l∈N

f
k
il)v

k
i +

∑

(i,j)∈A

∑

k∈K

(fk
ij − yij)w

k
ij +

∑

(i,j)∈A

(yij − bij)uij .

Rearranging the terms, we obtain

L(y, f ,v,w,u) =
∑

i∈N

∑

k∈K

d
k
i v

k
i −

∑

(i,j)∈A

bijuij +
∑

(i,j)∈A

(cij + uij −
∑

k∈K

w
k
ij)yij +

∑

(i,j)∈A

∑

k∈K

(vk
i − v

k
j + w

k
ij)f

k
ij.

The value of the Lagrangian dual function Z(v,w,u) for any vector (v,w,u) is given

by

Z(v,w,u) = min
(y,f)

{

L(y, f ,v,w,u)|
yij ≥ 0 and integer for all (i, j) ∈ A,

f
k
ij ≥ 0 for all (i, j) ∈ A and k ∈ K.

}

.

The Lagrangian dual problem is

Maximize Z(v,w,u)

subject to: w ≥ 0; u ≥ 0; v unrestricted in sign.
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An identical argument to the one used in Section 4.2 shows that for a given node

potential vector v̄, we obtain the optimal value of the Lagrangian function by setting w
k
ij =

max(0, v̄k
j − v̄

k
i ) and uij = max(0,

∑

k∈K w
k
ij − cij). Substituting the expression for the

optimal value of w
k
ij (given v) in the equation for the optimal value of uij (given w), we

obtain uij = max(0,
∑

k∈K max(0, v̄k
j − v̄

k
i ) − cij). Therefore, we can write the Lagrangian

dual problem as a maximization problem over the node potentials v. The Lagrangian dual

problem is

Maximize Z(v)

subject to no constraint on v

with

Z(v) =
∑

k∈K

∑

i∈N

d
k
i v

k
i −

∑

(i,j)∈A

bij

uij
︷ ︸︸ ︷

max(0,
∑

k∈K

max(0, vk
j − v

k
i )

︸ ︷︷ ︸

w
k
ij

−cij) . (4.15)

To best understand the modifications needed in the dual-ascent algorithm, it is worth-

while observing the effect of a change in the node potential of a single commodity k at a single

node j, i.e., v
k
j , on the term uij of the dual function. Let s

k
ij denote cij−

∑

l 6=k max(0, vl
j−v

l
i).

As before, s
k
ij remains fixed because we are fixing all node potentials except for v

k
j . Conse-

quently, uij = max(0,max(0, vk
j −v

k
i )−s

k
ij), and sij = max(0, sk

ij−max(0, vk
j −v

k
i )). Figure 4-

12 shows the value of uij as a function of v
k
j with all the other node potentials held fixed.

As long as v
k
j ≤ v

k
i the term max(0, vk

j − v
k
i ) is zero, so uij is either zero (case (b)), or −s

k
ij,

if s
k
ij is negative (case (a)). In case (a), since the slack sij = max(0, sk

ij − max(0, vk
j − v

k
i ))

is equal to zero at v
k
j = v

k
i , any increase in v

k
j increases uij . Figure 4-12a shows case (a).

In case (b) the value of uij is equal to zero when v
k
j − v

k
i ≤ s

k
ij . Any increase in v

k
j beyond

v
k
j = v

k
i decreases the slack, leaving uij = 0, until v

k
j = v

k
i +s

k
ij where the slack is zero. From

this point on, uij increases linearly as a function of v
k
j . Figure 4-12b illustrates case (b).

As before, we associate with each commodity k ∈ K a directed network D
k = (N,A

k),

defined on the nodes N and arcs A
k = A. An arc in the network D

k can either be active,

i.e., weakly active or strongly active, or inactive. Equation (4.7) and Figure 4-12 specify

the conditions for each state (they are the same as for the NDC model). We also define

the active network for commodity k by the active arcs in D
k. Consider the complementary
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(b)

vj
k

(i,j)k strongly
active

(i,j)k weakly
active

uij

(a)

uij

vj
k

(i,j)k weakly
active

(i,j)k strongly
active

sij

uij
sij

-sij
k sij

k

vi +
k sij

k

(vi, 0)k (vi, 0)k

(i,j)k  inactive

(i,j)k  inactive

Figure 4-12: uij as a function of node potential v
k
j . (a) Case (a): s

k
ij ≤ 0; (b) Case (b):

s
k
ij > 0.

slackness conditions.

yij > 0 =⇒
∑

k∈K

w
k
ij − uij = cij ;

f
k
ij > 0 =⇒ v

k
j − v

k
i = w

k
ij;

uij > 0 =⇒ yij = bij; (4.16)

and w
k
ij > 0 =⇒ f

k
ij = yij.

The first two conditions, i.e., primal complementary slackness, permit the primal solution

to include only tight arcs, and permit commodity k to flow on arc (i, j) only if v
k
j −v

k
i = w

k
ij

(or v
k
j ≥ v

k
i ). Therefore, primal complementary slackness again implies every inactive arc

has zero flow.

Restricting our attention to basic directions and calculating the directional derivative

of the dual cost for any basic direction of the form γ
k
T (with the aid of Figure 4-12 and

equation (4.15)), we obtain

Z
′(v; γk

T ) =
∑

i∈T

d
k
i +

∑

(j,i)k :strongly active
i6∈T,j∈T

bji −
∑

(i,j)k:active
i6∈T,j∈T

bij. (4.17)

Notice that this equation is identical to equation (4.8), the directional derivative of the

dual cost of the NDC problem for any basic direction of the form γ
k
T . Since we derived the
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dual-ascent algorithm for the NDC problem from equation (4.8) and the directed network

associated with each commodity, the same dual-ascent algorithm, with a few minor changes

to calculate the values of the dual variables and to calculate the stepsize in the procedure

ascent-step, provides a feasible heuristic solution and a lower bound for the DNDC problem.

To be more specific, we modify the equations that define y,w,u, s and Z(v) as follows.

yij = max
k∈K

f
k
ij

w
k
ij = max(0, vk

j − v
k
i )

uij = max(0,
∑

k∈K

max(0, vk
j − v

k
i ) − cij) (4.18)

sij = max(0, cij −
∑

k∈K

max(0, vk
j − v

k
i ))

Z(v) =
∑

k∈K

∑

i∈N

d
k
i v

k
i −

∑

{i,j}∈E

bij max(0,
∑

k∈K

max(0, vk
j − v

k
i ) − cij)

To determine the amount of ascent in an ascent step, consider the type of arcs directed

into and out of an ascent set (see Figure 4-9 on page 107). Recall, the dual-ascent procedure

determines the stepsize of an ascent direction by moving along that direction until the rate

of ascent changes (the slope of the dual function changes).

1. (j, i)k is strongly active: The algorithm increases v
k
j until (j, i)k becomes weakly active.

At this point the rate of ascent changes. Recall from Figure 4-12 that in case (a),

(j, i)k becomes weakly active when v
k
j = v

k
i , and in case (b), this occurs when uij

decreases to value zero. Therefore, the increase is determined by min(vk
i − v

k
j , uij).

2. (j, i)k is weakly active: As v
k
j increases, the arc will become inactive. Moreover, as v

k
j

increases, the arc cannot become active. Therefore, we need not consider these arcs

(because they cannot change the rate of ascent).

3. (j, i)k is inactive: We need not consider these arcs because increasing v
k
j cannot change

the state of (j, i)k (and so cannot change the rate of ascent).

4. (i, j)k is inactive: We may increase v
k
j until the arc becomes weakly active. This

occurs when v
k
j is increased by sij + max(0, vk

i − v
k
j ).

5. (i, j)k is (weakly or strongly) active: We need not consider these arcs because they

remain active as v
k
j increases.
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Consequently, the following equation specifies the stepsize in the procedure ascent-step:

α = min
i6∈T (k)
j∈T (k)







min(uij , v
k
i − v

k
j ) if (j, i)k is strongly active;

sij + max(0, vk
i − v

k
j ) if (i, j)k is inactive.







(4.19)

By replacing equation (4.13) with equation (4.19) in the procedure ascent-step and equa-

tion (4.6) with equation (4.16), we obtain a dual-ascent algorithm for the DNDC problem

(with arc connectivity requirements).

Arguing as in Section 4.3, we can establish several properties, e.g., finite termination,

of the dual-ascent algorithm. As an example, we show that if no arc in the dicut δ
−(T (k))

satisfies one of the two conditions in equation (4.19), then the problem is infeasible. Because

no arc satisfies the conditions in equation (4.19), for all arcs (i, j) in δ
−(T (k)), f

k
ij = bij and

for all arcs (j, i) in δ
+(T (k)), f

k
ji = 0. Since the residual demand of T (k) is greater than

zero

∑

j∈T (k)

d̄
k
j =

∑

j∈T (k)

(dk
j − (

∑

i∈N

f
k
ij −

∑

l∈N

f
k
jl)) > 0.

Rearranging terms gives

d
k
D(k) −

∑

(i,j)∈δ−(T (k))

f
k
ij +

∑

(i,j)∈δ+(T (k))

f
k
ji > 0;

or
∑

(i,j)∈δ−(T (k))

bij < qk.

Therefore, δ
−(T (k)) is an O(k)–D(k) dicut with capacity less than commodity k’s require-

ment, and so the problem is infeasible.

The results in this section demonstrate the flexibility and adaptability of the dual-ascent

approach. By incorporating a few simple changes, in equation (4.12) and (4.13), the same

dual-ascent algorithm applies to both the NDC and DNDC problem. Therefore, from an

implementation perspective, the same code (with minor modifications) is applicable for both

problems.

4.5 Node-Connectivity Requirements

In this section we show how to modify the dual-ascent algorithm to the NDC model and

the DNDC model that have both edge/arc- and node-connectivity requirements. Later,

we describe several modeling extensions to the NDC and DNDC models, and show how

to apply the dual-ascent algorithm to them. In the subsequent discussion we restrict our
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attention to the DNDC model and explain the necessary modifications to the dual-ascent

algorithm. Modifying the dual-ascent algorithm for the NDC model is similar.

By following the Lagrangian duality approach on Formulation (4.14), we could develop

the dual-ascent algorithm for the DNDC problem with connectivity matrix R that contains

both arc- and node-connectivity requirements. For a more appealing derivation of the

dual-ascent algorithm, we pursue a slightly different approach and develop the dual-ascent

algorithm by considering the DNDC problem on a transformed digraph.

First, we make a slight modification to constraint (4.14d) in the directed flow formulation

for the DNDC (4.14). Replace constraint (4.14d) by

∑

l∈N

f
k
il ≤ b

k for all k ∈ K and all i 6= O(k) or D(k), (4.20)

with b
k = 1 if commodity k models a node-connectivity requirement, and b

k = qk if com-

modity k models an arc-connectivity requirement. Notice that if commodity k models a

node-connectivity requirement, this constraint permits only a unit of flow through any tran-

shipment node (i.e., a node that is not the origin or destination of the commodity) in the

network and thus ensures qk node-disjoint paths. On the other hand, if commodity k models

an arc-connectivity requirement, the constraint imposes no limit (beyond the arc capacity

limits) on the flow of commodity k through any transhipment node in D.

Now apply the node splitting procedure, described in Section 4.1.1, to the digraph

D = (N,A). The node splitting procedure replaces node i by two nodes i1 and i2. Arcs

directed out of node i are now directed out of node i2. Arcs directed into node i are now

directed into node i1. The transformation also introduces arcs of the form (i1, i2). In the

new digraph D̄ = (N̄ , Ā), obtained by the node splitting procedure, let ĀN denote the

set of arcs that represent nodes in the original digraph D (e.g., arcs of the form (i1, i2)),

and let ĀA denote the set of arcs that represent arcs in the original digraph (i.e., Ā\ĀN ).

The capacity and cost of an arc in ĀA, say (i2, j1), is equal to the capacity and cost of its

counterpart in A, i.e., arc (i, j). Since arcs in ĀN correspond to nodes in D, they have zero

cost.

Now translate the directed flow formulation for the DNDC problem (4.14) on D to the

digraph D̄. Suppose node s is the origin and node t is the destination for commodity k

in D; then node s2 is the origin and node t1 is the destination of commodity k in D̄. To

transform constraint (4.20) to the directed flow model on D̄, let b
k
ij denote the maximum

amount of flow of commodity k that can flow on an arc (i, j) in ĀN . If commodity k

models a node-connectivity requirement of D, set b
k
ij = 1 for all arcs in ĀN . Otherwise, if

commodity k models an arc-connectivity requirement in D, set b
k
ij = qk for all arcs in ĀN .

The transformation of the remaining constraints is straightforward. We, therefore, obtain
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the following formulation of the DNDC problem on the transformed digraph D̄.

Directed flow model for the DNDC problem on D̄:

Minimize
∑

(i,j)∈ĀA

cijyij (4.21a)

subject to:
∑

j∈N̄

f
k
ji −

∑

l∈N̄

f
k
il =







−qk

qk

0

if i = O(k);

if i = D(k); for all i ∈ N̄ and k ∈ K

otherwise;

(4.21b)

f
k
ij ≤ yij for all (i, j) ∈ ĀA and k ∈ K (4.21c)

f
k
ij ≤ b

k
ij for all (i, j) ∈ ĀN and for all k ∈ K (4.21d)

f
k
ij ≥ 0 for all (i, j) ∈ ĀA ∪ ĀN and k ∈ K (4.21e)

yij ≤ bij for all (i, j) ∈ ĀA; (4.21f)

yij ≥ 0 and integer, for all (i, j) ∈ ĀA. (4.21g)

Since we obtained this model from Formulation (4.14) and the node-splitting procedure,

it is easy to see that it is a valid representation of the DNDC problem. We can obtain

the optimal solution to the DNDC problem on D from the optimal solution to the DNDC

problem on D̄ as follows: include arc (i, j) ∈ A in the optimal solution to model (4.14)

if the corresponding arc (i2, j1) ∈ ĀA is in the optimal solution to model (4.21). Since

we obtained Formulation (4.21) from Formulation (4.14), these two formulations are also

equivalent as LPs.

Although doing so might be repetitive, to be complete we now briefly derive the dual

problem to Formulation (4.21). Viewing v
k
i , w

k
ij , t

k
ij and uij as Lagrange multipliers for con-

straints (4.21b), (4.21c), (4.21d) and (4.21f), we obtain the following Lagrangian function:

L(y, f ,v,w,u, t) =
∑

(i,j)∈ĀA

cijyij +
∑

(i,j)∈ĀA

∑

k∈K

(fk
ij − yij)w

k
ij +

∑

(i,j)∈ĀA

(yij − bij)uij +

∑

(i,j)∈ĀN

∑

k∈K

(fk
ij − b

k
ij)t

k
ij +

∑

i∈N̄

∑

k∈K

(dk
i −

∑

j∈N̄

f
k
ji +

∑

l∈N̄

f
k
il)v

k
i .

Rearranging the terms, we obtain

L(y, f ,v,w,u, t) =
∑

i∈N̄

∑

k∈K

d
k
i v

k
i −

∑

(i,j)∈ĀA

bijuij −
∑

(i,j)∈ĀN

b
k
ijt

k
ij +

∑

(i,j)∈ĀA

∑

k∈K

(vk
i − v

k
j + w

k
ij)f

k
ij +

∑

(i,j)∈ĀA

(cij + uij −
∑

k∈K

w
k
ij)yij +

∑

(i,j)∈ĀN

∑

k∈K

(vk
i − v

k
j + t

k
ij)f

k
ij.
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An identical argument to the one used in Section 4.2 shows that for a given node potential

vector v̄, we obtain the optimal value of the Lagrangian dual function, Z(v,w, t,u) =

min(y,f){L(y, f ,v,w,u, t)| subject to (4.21e) and (4.21g)}, by setting w
k
ij = max(0, v̄k

j − v̄
k
i ),

t
k
ij = max(0, v̄k

j − v̄
k
i ), and uij = max(0,

∑

k∈K max(0, v̄k
j − v̄

k
i ) − cij). Therefore, we can

write the Lagrangian dual problem as a maximization problem over the node potentials v.

The Lagrangian dual problem is

Maximize Z(v)

subject to no constraint on v

with

Z(v) =
∑

k∈K

∑

i∈N̄

d
k
i v

k
i −

∑

(i,j)∈ĀA

bij

uij
︷ ︸︸ ︷

max(0,
∑

k∈K

max(0, vk
j − v

k
i )

︸ ︷︷ ︸

w
k
ij

−cij)−

∑

(i,j)∈ĀN

∑

k∈K

b
k
ij max(0, vk

j − v
k
i )

︸ ︷︷ ︸

t
k
ij

. (4.22)

Notice, because there is a one-to-one correspondence between the arcs in A and the arcs

in ĀA, and between the constraints defined on A in Formulation (4.14) and the constraints

defined on ĀA in Formulation (4.21), the second term in the dual function is similar to the

second term in the dual function (4.15) (i.e., for arcs A). The third term of the function is

due to the arcs in ĀN and constraint (4.21d).

As before, we associate with each commodity k ∈ K a directed network D̄
k = (N̄ , Ā

k)

defined on the nodes N̄ and arcs Ā
k = Ā. Now, consider the complementary slackness

conditions for Formulation (4.21).

yij > 0 =⇒
∑

k∈K

w
k
ij − uij = cij if (i, j) ∈ ĀA;

f
k
ij > 0 =⇒ v

k
j − v

k
i = w

k
ij if (i, j) ∈ ĀA;

f
k
ij > 0 =⇒ v

k
j − v

k
i = t

k
ij if (i, j) ∈ ĀN ;

uij > 0 =⇒ yij = bij if (i, j) ∈ ĀA; (4.23)

w
k
ij > 0 =⇒ f

k
ij = yij if (i, j) ∈ ĀA;

and t
k
ij > 0 =⇒ f

k
ij = b

k
ij if (i, j) ∈ ĀN .
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The first three conditions are the primal complementary slackness conditions. For arcs in

ĀA, the primal complementary slackness conditions are identical to the primal complemen-

tary slackness condition for arcs (i, j) in A in (4.16). Therefore, we define the states of the

arcs in ĀA, i.e., active, inactive, etc., as in equation (4.7). The third primal complementary

condition permits flow on an arc in ĀN only if v
k
j − v

k
i = t

k
ij , or if v

k
j ≥ v

k
i . For arcs in ĀN

we define (i, j)k as active if v
k
j ≥ v

k
i and inactive otherwise. If v

k
j = v

k
i , we say (i, j)k is

weakly active, and if v
k
j > v

k
i , we say arc (i, j)k is strongly active. Observe again, primal

complementary slackness implies every inactive arc has zero flow.

Calculating the directional derivative of the dual cost for a basic direction of the form

γ
k
T , we obtain

Z
′(v; γk

T ) =
∑

i∈T

d
k
i +

∑

(j,i)k:strongly active
i6∈T,j∈T,(j,i)∈ĀA

bji −
∑

(i,j)k:active
i6∈T,j∈T,(i,j)∈ĀA

bij +

∑

(j,i)k :strongly active
i6∈T,j∈T,(j,i)∈ĀN

b
k
ji −

∑

(i,j)k:active
i6∈T,j∈T,(i,j)∈ĀN

b
k
ij. (4.24)

Suppose we interpret bij as the “capacity” of an arc (i, j)k when (i, j) ∈ ĀA, and

interpret b
k
ij as the capacity of an arc (i, j)k when (i, j) ∈ ĀN . Then, equation (4.24) is

identical to equation (4.17), the dual function for the DNDC problem, when we interpret

bij as the capacity of an arc (i, j)k in equation (4.17) (bij and b
k
ij are constants). Therefore,

the dual-ascent algorithm for the arc-connectivity version of the DNDC problem can be

applied to the DNDC problem on D̄.

Accordingly, the necessary changes to the dual-ascent algorithm are as follows.

1. For the arcs in ĀN , the variable t
k
ij = max(0, vk

j − v
k
i ). For these arcs, (i, j)k is active

if v
k
j ≥ v

k
i , weakly active if v

k
j = v

k
i , strongly active if v

k
j > v

k
i , and inactive otherwise.

2. Any reference to bij in the dual-ascent algorithm, becomes b
k
ij for arcs in ĀN .

Before we conclude this section, we point out a relationship between the duals of For-

mulations (4.14) and (4.21). Consider the following LP dual to Formulation (4.14).

Dual to Formulation (4.14):

Maximize
∑

k∈K

qkv
k
D(k) −

∑

(i,j)∈A

bijuij −
∑

k∈K

∑

i∈N

t
k
i (4.25a)

subject to: v
k
j − t

k
i − v

k
i ≤ w

k
ij for all (i, j) ∈ A (4.25b)

∑

k∈K

w
k
ij − uij ≤ cij for all (i, j) ∈ A (4.25c)

uij ≥ 0 for all (i, j) ∈ A (4.25d)
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w
k
ij ≥ 0 for all (i, j) ∈ A (4.25e)

t
k
j = 0 if j = O(k),D(k) (4.25f)

t
k
j ≥ 0 if j 6= O(k),D(k). (4.25g)

To transform a feasible solution to the dual of the DNDC model on D̄, i.e., the dual

function (4.22), to a feasible solution of equal cost to this dual, we argue as follows. For

every node i in N and commodity k in K, set v
k
i = v

k
i1

(i1 is the tail of the arc that

represents node i in D̄), and set t
k
i = w

k
i1,i2 . For every arc in A, set w

k
ij = w

k
i2j1 and

uij = ui2j1 (arc (i2, j1) is the counterpart of arc (i, j) in D̄). Then,

v
k
j − t

k
i − v

k
i = v

k
j1 − (vk

i2 − v
k
i1) − v

k
i1 = v

k
j1 − v

k
i2 = w

k
i2j1 = w

k
ij .

Therefore the solution satisfies constraint (4.25b). It is easy to see that it also satisfies the

remaining constraints in Formulation (4.25), and that this dual solution has equal cost in

both models.

Consequently, by interpreting the operations of the dual-ascent algorithm on the di-

graph D, we can obtain a dual-ascent algorithm that operates on the original digraph D.

Since the algorithmic details are rather straightforward, but the description tedious, we

omit them.

For NDC problems with node-connectivity requirements, we could transform the NDC

problem to a DNDC problem and apply this algorithm. Alternatively we could either

interpret this dual-ascent algorithm on the undirected network, or directly derive a dual-

ascent algorithm on the undirected network following the Lagrangian dual approach. Since

both these procedures are relatively easy, and result in a dual-ascent algorithm similar to

the DNDC problem (except for the shape of the uij function, and thus the equations for

the dual variables), we omit the details.

4.5.1 Combined Edge- and Node-Connectivity Requirements Between

Nodes

In some instances, network planners need to protect against both node and edge failures.

Sometimes network planners design networks that survive fewer node failures than edge fail-

ures. We describe two models, introduced by Grötschel and Monma [GM90], for combined

edge- and node-connectivity requirements.

The first model has the following connectivity requirements. For each pair of nodes s

and t, construct rst edge-disjoint paths and pst node-disjoint paths between nodes s and t

(1 ≤ pst ≤ rst). Edge connectivity and node connectivity are two extreme instances of this

model. For edge connectivity, set pst = 1, and for node connectivity set pst = rst. It is easy
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to model these combined requirements in the NDC model (or the DNDC model). Create two

commodities k and k
′, one to model edge connectivity (or arc connectivity for the DNDC

model) and one to model node connectivity, both with origin node s and destination node t,

setting qk = rst and qk′ = pst. Since commodity k
′ models a node-connectivity requirement,

it belongs to the set of commodities K
[n].

In this model, we created two commodities for each pair of nodes. If pst is 1, 2, or rst,

we can decrease the number of commodities by creating only a single commodity between

nodes s and t. It is clear why one commodity is sufficient when pst is 1 or rst. If pst = 2,

create a single commodity k ∈ K
[n] between nodes s and t with qk = rst. In addition,

set the righthand side of constraint (4.2d) in the NDC model (or constraint (4.14d) in the

DNDC model) to rst − 1. This choice ensures that no transhipment node allows more than

rst − 1 units of commodity k to flow through it, which implies that deleting a node will

destroy at most rst − 1 paths leaving one path between nodes s and t intact.

To develop the second model, suppose a network contains rst edge-disjoint paths between

nodes s and t. Network planners might want a certain fraction of the rst paths between

these nodes to survive a single node failure. For example, suppose the network has 10 edge-

disjoint paths between nodes s and t. Subsequent to a node failure, network planners might

want to maintain at least 8 edge-disjoint paths between nodes s and t. This model specifies

connectivity requirements between nodes s and t as a pair (rst, p̄st), with rst the number

of required edge-disjoint paths between nodes s and t, and p̄st the number of required

edge-disjoint paths that would survive a node failure.13 Again edge and node connectivity

are special cases of this model. We can model edge-connectivity requirements by setting

p̄st = 0, and node-connectivity requirements by setting p̄st = rst − 1. This model might

be appropriate in situations when the number of edge-disjoint paths between nodes s and t

reflect the amount of traffic between nodes s and t. Therefore, guaranteeing the network

contains p̄st edge-disjoint paths between nodes s and t after a node failure, ensures p̄st/rst

units of the traffic between nodes s and t survives a node failure.

To model the connectivity requirements in this model, create a commodity k ∈ K
[n],

and set qk = rst, and b
k = rst − p̄st. Then, as in equation (4.20), set the righthand side

of equation (4.2d) to b
k in the undirected flow formulation for the NDC problem (and the

righthand side of equation (4.14d) the directed flow formulation for the DNDC problem).

These two models are similar in three cases. Edge connectivity, node connectivity, and

when pst = 2 in the first model and p̄st = 1 in the second model (we assume that the

rst values are equal in this comparison). In other cases, the two models are different. In

13This model is a special case of a very general model that Grötschel and Monma introduced. Their model
specifies a triplet, (rst, p̄st, q̄st), with rst the number of required edge-disjoint paths between nodes s and t,
and p̄st the number of required edge-disjoint paths that would survive at most q̄st node failures.
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the first model, pst prescribes the number of node-disjoint paths between a pair of nodes.

Consequently, the only way to ensure a large fraction of the paths between s to t survive a

single node failure is to make them node disjoint. This requirement might be a stronger than

necessary, especially if node failures are fairly rare. In the second model, p̄st prescribes the

number of edge-disjoint paths that survive a single node failure. The model will, therefore,

ensure a large fraction of the edge-disjoint paths survive a single node failure. However,

unlike the first model, this model does not consider the consequences of more than a single

node failure.

Since both these models are special versions of Formulation (4.2) (and Formulation (4.14)

for the DNDC problem), the dual-ascent algorithm described earlier in this section is ap-

plicable to these models.

4.5.2 Node Costs

Nodes in telecommunication networks often represent the location of switching equipment.

Switching equipment (and other transmission equipment, like concentrators and repeaters)

is very expensive. The cost of a switch can be as much as several million dollars. Opti-

mization models that permit node costs allow network planners to analyze facility location

decisions (i.e., whether or not to install a switch) in addition to the survivability issues.

To consider NDC and DNDC problems with node costs, we assume that whenever we

select an edge or arc in the network adjacent to any node, we need to install transmission

equipment at that node. Moreover, once the transmission equipment is in place at a node,

it is capable of handling traffic from all edges or arcs incident to it. Nodes that have

connectivity requirements, i.e., those with at least one positive entry in the row or column

corresponding to the node in the connectivity matrix R, must necessarily incur the costs

at the node. Thus, no optimization is necessary for these nodes. Consequently, we assume

these node costs are zero and optimize only over the Steiner nodes in the network.

In this discussion, we consider node costs for the DNDC problem. Modeling node costs

for the NDC is similar. The models and dual-ascent algorithm described in this chapter

can incorporate node costs only if all the connectivity requirements in the DNDC problem

(or NDC problem) are node-connectivity requirements. Then, the node splitting procedure

will permit us to convert the problem to one with only arc-connectivity requirements.

As before, let D̄ = (N̄ , Ā) denote the digraph obtained by the node-splitting procedure,

with ĀN denoting the arcs in Ā that correspond to nodes in D and ĀA denoting the arcs

that correspond to arcs in D. Set the cost and capacity of an arc in ĀA as before. For arcs

in ĀN , set bij = 1 and set cij equal to the cost of the node it models. The resulting problem

is an arc-connectivity problem on D̄. Therefore, we can apply the dual-ascent algorithm for

the DNDC problem with arc-connectivity requirements (described in Section 4.4).
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If the problem contains arc-connectivity requirements, the digraph transformation pro-

cedure to capture node costs is not valid. Because this model permits only a unit of flow

through an arc in ĀN , the procedure converts arc-connectivity requirements in the original

digraph D to node-connectivity requirements. Thus, a different model (and dual-ascent

algorithm) is necessary to model node costs in problems that contain arc-connectivity re-

quirements. In this thesis, besides this discussion, we do not investigate models with node

costs. This topic is an important issue that merits further investigation.

4.6 Single Commodity Problems

In the foregoing discussion, we described a dual-ascent algorithm for NDC and DNDC

problems with general connectivity requirements. The dual-ascent algorithm is a heuristic

method. Does it solve certain special cases of the NDC problem (or DNDC problem)

optimally? In this section we provide a partial answer to this question by showing that

the dual-ascent procedure solves single commodity problems optimally. Actually, we will

show this result only for the q-edge-disjoint path problem. The proofs for the other single

commodity problems14 are similar. We also show that the dual-ascent algorithm is closely

related to the successive shortest path algorithm for the minimum cost flow problem.

Theorem 4.6.1 The dual-ascent algorithm for the q-edge-disjoint path problem either finds

optimal primal and dual solutions (x, f) and (v,w,u) or shows that the problem is infeasible.

Proof: For convenience, we restate the complementary slackness conditions (4.6). Since

this is a single commodity problem, we drop the superscript k.

xij > 0 =⇒ wij − uij = cij ;

fij > 0 =⇒ vj − vi = wij ;

uij > 0 =⇒ xij = bij;

and wij > 0 =⇒ fij + fji = xij .

Recall that we refer to the first two conditions as primal complementary slackness condi-

tions and the last two conditions as dual complementary slackness conditions. Initially, the

solution satisfies all four complementary slackness conditions. The algorithm permits only

14The other single commodity problems are (i) the q-node-disjoint path problem, (ii) the q-node-disjoint
path problem with node costs, (iii) all the problems discussed in Section 4.5.1 that can be formulated with
a single commodity, (iv) the q-arc-disjoint path problem, and directed versions of (i), (ii), and (iii).
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one of the two variables fij and fji to be positive. Since the problem has a single commodity,

the equation xij = max(fij , fji) implies fij +fji = xij for all edges. The solution always sat-

isfies the second dual complementary slackness condition. In our discussion in Section 4.2.2

(on page 109), we showed that a dual-ascent step for a commodity k maintains the primal

complementary slackness conditions for this commodity. Therefore, for a single commod-

ity problem, the dual-ascent algorithm always maintains primal complementary slackness.

Now we show if any arc (i, j) is strongly active, then fij = bij . Observe that before an arc

becomes strongly active, it must have been weakly active. The dual-ascent algorithm adds

node i to T if (i, j) is a weakly active arc directed into T and fij < bij . Therefore, arc

(i, j) can become strongly active only after fij = bij. Also observe that the algorithm (in

the procedure increment-flow) decreases the flow on strongly active arcs. Therefore, for all

strongly active arcs fij = bij. This result implies that xij = bij for all strongly active arcs

(i, j), and so the solution satisfies the first dual complementary slackness condition as well.

Since the final primal and dual solutions are feasible and satisfy all the complementary

slackness conditions, the final primal solution is optimal.

We have shown the dual-ascent algorithm solves the q-edge-disjoint path problem. This

result shows that for all nonnegative-cost vectors, the LP relaxation of the undirected flow

formulation for the q-edge-disjoint path problem has an integer optimal solution. Since the

projection of the LP relaxation of the undirected flow formulation is the LP relaxation of

the cutset formulation, this result implies that the LP relaxation of the cutset formulation

for the q-edge-disjoint path problem also has integer optimal solutions whenever the cost

vector is nonnegative.

Similarly, the LP relaxation of the undirected flow formulation for the q-node-disjoint

path problem has an integer optimal solution and its projection, the LP relaxation of the

cutset formulation for the q-node-disjoint path problem, also has integer optimal solutions

whenever the cost vector is nonnegative. (We can make similar statements for the directed

flow model for the DNDC problem and its projection, a dicut formulation).

4.6.1 Dual-Ascent and the Successive Shortest Path Algorithm for the

Minimum Cost Flow Problem

For a single commodity problem, because xij = max(fij, fji) and all costs are nonnegative,

we can transfer the costs on the edges to the flows. That is, we can cast the problem

as a minimum cost flow problem. Using this transformation, the 3-edge-disjoint problem

in Figure 4-10 becomes the following minimum cost flow problem: send 3 units of flow

from node s to node t when the cost of sending a unit of flow on an edge {i, j} equals

to cij . Therefore, any algorithm for the minimum cost flow problem is capable of solving

the q-edge-disjoint path problem. In this section we show that the algorithm developed in
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Figure 4-13: Residual network. (a) Arc (i, j) has a flow of 2 units and a capacity of 3 units.
(b) Residual arcs. (i, j) has a capacity of 1 unit and (j, i)r has a capacity of 2 units.

Section 4.2 closely resembles the successive shortest path algorithm for the minimum cost

flow problem.

First, let us formulate the q-edge-disjoint path problem as a minimum cost flow problem

on a directed network as follows. Convert the undirected graph to a digraph D = (N,A)

by replacing each undirected edge {i, j} by two directed arcs (i, j) and (j, i). The cost cij of

sending a unit of flow on an arc (i, j) equals the cost of the undirected edge {i, j} and the

capacity bij of each arc equals the capacity of the undirected edge {i, j}. Set the supply of

node s to q units, and the demand of node t to q units.

The successive shortest path algorithm operates on the residual network D(f) corre-

sponding to flow f , defined as follows. Replace arc (i, j) with a capacity bij by two arcs

(i, j) (the forward arc) and (j, i)r (the reverse arc15). Arc (i, j) has cost c(i,j) (= cij) and

residual capacity b
r
(i,j) = bij − fij, and arc (j, i)r has cost c(j,i)r

= −c(i,j) and residual capac-

ity b
r
(j,i)r

= fij. The residual network contains those arcs with positive residual capacity.

Figure 4-13 illustrates a simple residual network.

The successive shortest path algorithm selects a supply node and a demand node (s and t

for the q-edge-disjoint path problem). It then finds the shortest directed path between

nodes s and t in the residual network, sends a unit of flow on this path, and updates

the residual network and demands. It proceeds in this fashion until the demand for the

commodity is zero.

Owing to the presence of reverse arcs, the residual network might contain negative-cost

arcs. The successive shortest path algorithm cleverly transforms the costs of the arcs in the

residual network so that (i) all arc costs are positive, (ii) the shortest path between a pair

of nodes remain unchanged. To transform the costs, it associates with each node in the

residual network a node price vi. The reduced cost of a forward arc (i, j) with respect to a

node price vector v is c
v
(i,j) = cij + vi − vj. The reduced cost of a reverse arc (i, j)r with

respect to node price vector v is c
v
(i,j)r

= −c
v
(j,i). The successive shortest path algorithm

maintains c
v
ij ≥ 0 for all arcs (i, j) in the residual network. The shortest paths with respect

15We use the subscript r to differentiate the reverse arc (j, i) from the forward arc (j, i)
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to the reduced costs are identical to the shortest paths with respect to the original costs.

Therefore, we can apply a shortest path algorithm like Dijkstra’s [Dij59] to the residual

network to find the shortest paths. At termination, the successive shortest path algorithm

obtains a feasible flow f whose residual network has no arcs with negative reduced cost.

These are the optimality conditions for minimum cost flow problems (see Ahuja, Magnanti

and Orlin [AMO93]).

The dual-ascent algorithm for the q-edge-disjoint path problem is identical to the suc-

cessive shortest path algorithm. We establish this result in two parts. First we show that if

fp is the flow vector and vp the node potential vector at the start of subroutine phase(p) in

the dual-ascent algorithm, then all the arcs in the residual network D(fp) with node price

vector equal to the node potential vector vp have positive reduced cost. To show that the

node prices for the residual network are vp, we change our notation slightly and refer to

the residual network as D(fp
,vp). Second, we show that at the conclusion of subroutine

phase(p) the dual-ascent algorithm sends a unit of flow on the shortest path between nodes s

and t in D(fp
,vp).

Before establishing these results, we clarify some notation. To differentiate between the

arc (i, j) in the directed network (in the dual-ascent algorithm) and the arc (i, j) in the

residual network, we add a superscript k to the arcs in the directed network. Now, consider

the directed network at the beginning of subroutine phase(p) in the dual-ascent algorithm.

Observe that:

1. If (i, j)k is inactive, arc (i, j) has no flow. Therefore, D(fp
,vp) contains arc (i, j), but

not (j, i)r . Either vj ≥ vi, in which case sij > 0, and so cij + vi − vj > 0, or vj < vi, in

which case cij +vi−vj > 0. Therefore, arc (i, j) in D(fp
,vp) will always have positive

reduced cost.

2. If (i, j)k is weakly active, then sij = 0. So cij + vi − vj = 0. If fij < bij , then the

forward arc (i, j) is in D(fp
,vp) and its reduced cost is zero. If fij > 0, then the

reverse arc (j, i)r is in D(fp
,vp) and its reduced cost is also zero.

3. If (i, j)k is strongly active, sij = 0 and uij > 0. Therefore, cij + vi − vj < 0.

Because fij = bij (in Theorem 4.6.1 we showed that fij = bij for strongly active arcs),

D(fp
,vp) does not contain arc (i, j), but contains reverse arc (j, i)r . The reduced cost

of arc (j, i)r is −c
v
(i,j) = −cij − vi + vj > 0.

By considering arc (j, i)k, we can similarly show that (j, i) and (i, j)r in D(fp
,vp) have

positive reduced cost. Therefore, all the arcs in D(fp
,vp) have positive reduced cost.

We now show that at the conclusion of subroutine phase(p) the dual-ascent algorithm

sends flow on the shortest path between nodes s and t in D(fp
,vp). We establish this result

with the help of Theorem 4.6.1, which shows the dual-ascent algorithm solves the shortest
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path problem. Therefore, the following (dual-ascent) algorithm finds the shortest (directed)

path from node s to t in a digraph with no negative-cost arcs.

Shortest path algorithm

1. Initially set T = {t} and set di = 0 for all nodes in the digraph.

2. Find the arc (i, j) directed into T with the smallest value of cij + di − dj . Set dk =

dk + (cij + di − dj) for all nodes k in T . Add node i to T and set next[i] = j.

3. If s ∈ T , stop. Otherwise, repeat Step 2.

Backtracking, using the next array, we obtain the shortest path. Note, because the algo-

rithm increases dj only for nodes in T , di = 0 for nodes not in T . Thus, in Step 2 the

algorithm finds the arc (i, j) with the smallest value of cij − dj and adds node i to T .

Let us interpret this algorithm in a way that will make the connection between the

dual-ascent algorithm and the successive shortest path algorithm more transparent. The

shortest path algorithm maintains a dicut δ
−(T ). For each arc (i, j) in the dicut δ

−(T ),

the maximum increase in the node label dj is cij − dj . That is, the value of dj at which

cij + di − dj = 0. The algorithm considers all arcs across the dicut, (i) selects the arc (i, j)

with the minimum value of cij − dj , (ii) increases the node potentials by cij − dj for all

nodes in T , and (iii) adds node i to T .

Some thought shows that this algorithm is similar to a “reverse” implementation of

Dijkstra’s algorithm. That is, it starts by setting T = {t}. Then it finds the least cost arc

(i, j) directed into T , adds node i to T , and sets next[i] = j. It continues in this fashion

until node s is in T .

Suppose we use this algorithm to find the shortest directed path from node s to node t in

the residual network. Then in each iteration, to select the node i to add to T the algorithm

considers the value of c
v
(i,j) − dj for a forward arc (i, j) directed into T , and considers the

value of c
v
(i,j)r

− dj for a reverse arc (i, j)r directed into T . Note that

c
v
(i,j) − dj = cij + vi − vj − dj = cij + vi − (vj + dj)

c
v
(i,j)r

− dj = −cji − vj + vi − dj = −cji + vi − (vj + dj)
(4.26)

The subroutine phase of the dual-ascent algorithm starts with T = {t}. It adds all

nodes i to T , for which (i, j)k is active with fij < bij or (j, i)k is weakly active with fji > 0

and sets next[i][k] = j (ignore the sign for the moment). To show that the dual-ascent

algorithm performs identical steps to the shortest path algorithm on D(fp
,vp), we show

that in subroutine phase(p),

1. Node potentials for any i 6∈ T remain unchanged.
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2. Once a node is added to T , it remains in T until the algorithm calls the procedure

increment-flow(k) (i.e., increases the flow by a unit).

3. The algorithm adds nodes to T in the same order as the shortest path algorithm.

First, by definition, an ascent step changes the node potentials only for nodes in T .

Therefore, the first statement is true. Second, since this is a single commodity problem, no

complementary slackness violations take place in the dual-ascent algorithm. Consequently

the subroutine phase terminates after calling increment-flow(k).

Suppose instead of increasing the node label dj , the shortest path algorithm increases

the node potential vj (i.e., vj = vj + dj). Then, from equation (4.26), in each iteration the

shortest path algorithm will consider the value of cij +vi−vj for a forward arc (i, j) directed

into T and consider the value of −cij + vi − vj for a reverse arc (i, j)r directed into T .

The find-ascent-set procedure of the dual-ascent algorithm adds a node i to T if either

(i, j)k is active with fij < bij , or (j, i)k is weakly active with fji > 0. The former case

corresponds to adding i to T because cij + vi − vj = 0 for arc (i, j) in the residual network,

and the latter case corresponds to adding i to T because −cji + vi − vj = 0 for arc (i, j)r in

the residual network.

Now, if T is an ascent set, consider the five possible cases (see page 112). In each case

j ∈ T, i 6∈ T . Note that the first case is the only one for which there is a reverse arc directed

into T .

1. (j, i)k is strongly active: If (j, i)k is strongly active it implies that fji = bji. The

maximum amount the dual-ascent algorithm increases vj before adding i to T is

min(uij , vi − vj), which is uij . From equation (4.12), uij = −cji + vi − vj. Since

fji = bji the residual network contains the reverse arc (i, j)r . (Note, we need not

consider the arc (i, j).16)

2. (j, i)k is weakly active: In this case fji = 0; otherwise the algorithm would have added

node i to T . Because this is a single commodity problem, in the dual-ascent algorithm

we do not need to stop an ascent step when vj = vi. Instead the maximum increase is

2(vi−vj). Since (j, i)k is weakly active cij = vi−vj . Therefore the maximum increase

2(vi − vj) = cij + vi − vj .

3. (j, i)k is inactive and vj < vi: The maximum increase for vj in this scenario is

sij + 2(vi − vj). This corresponds to considering arc (i, j) in the residual network.

Substituting sij = cij + vj − vi, we find the maximum increase is cij + vi − vj .

16If both (i, j)r and (i, j) are contained in D(fp,vp), then only (i, j)r needs to be considered in the shortest
path algorithm. Why? The reduced cost of arc (i, j), cv

(i,j), is equal to cij + vi − vj , and the reduced cost of

arc (i, j)r, cv
(i,j)r

, is −cji + vi − vj . Because all edge costs are nonnegative −cji ≤ cij , and so cv
(i,j)r

≤ cv
(i,j).
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4. (i, j)k is inactive and vj ≥ vi: The maximum increase for vj in this scenario is sij.

Note sij = cij + vi − vj.

5. (i, j)k is active with fij = bij : There is no limit on the amount of increase in the node

potential. Observe that because fij = bij and fij = 0, arc (i, j) and arc (i, j)r are not

in the residual network.

We have thus shown that if arc (i, j) is directed into T in the residual network, the maximum

amount the dual-ascent algorithm will increase the node potential vj before adding node i

to T is cij + vi − vj . Similarly, if arc (i, j)r is directed into T in the residual network

the maximum amount the dual-ascent algorithm will increase the node potential vj before

adding node i to T is −cij + vi − vj. Therefore the steps of the dual-ascent algorithm in

subroutine phase(p) are identical to the shortest path algorithm on the residual network

D(fp
,vp).

The preceding discussion shows that the dual-ascent algorithm can be considered as a

generalization of Dijkstra’s algorithm. Suurbaale [Suu74] describes an algorithm for the

q-arc-disjoint path problem and the q-node-disjoint path problem (the node-disjoint path

problem can be formulated as a min-cost flow problem by using the node splitting procedure)

where arc replication is not permitted. His algorithm essentially interprets the steps of the

successive shortest path algorithm on the original network. Our discussion also shows

that the dual-ascent algorithm can also be considered as a generalization of Suurbaale’s

algorithm.

The foregoing discussion suggests that one might be able to derive the successive shortest

path algorithm by following a Lagrangian duality approach. This is indeed the case. For a

detailed discussion and derivation of the successive shortest path method as a dual-ascent

method see Bertsekas [Ber91].

4.7 Improvements

The dual-ascent algorithm provides a heuristic solution to the NDC problem. In this section

we discuss two improvements to the algorithm. When the dual-ascent algorithm terminates,

it provides a feasible primal solution (x, f) and a feasible dual solution and an associated

lower bound. The first improvement increases the cost of the dual solution, i.e., the lower

bound. The second improvement decreases the cost of the primal solution, i.e., the cost of

the heuristic solution.

At the conclusion of the dual-ascent procedure, there might still be a basic direction of

ascent that improves the dual objective (i.e., lower bound). In this case we can improve

the lower bound by following a steepest basic ascent procedure. We have previously shown

(on page 103) how to find the steepest basic ascent direction. Although finding a steepest
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basic ascent direction is computationally expensive, it might be worthwhile pursuing this

approach because (i) it has the potential to increase the lower bound, and (ii) we expect

only a few iterations of improvement.

The primal solution x might contain more edges than necessary to satisfy the connectiv-

ity requirements. We can improve the primal solution solution by dropping edges if deleting

them does not create an infeasible primal solution. There are many different ways to con-

sider dropping the edges from the network. For instance, we could maintain an ordered list

of the edges in the network as they became tight, and delete them in LIFO fashion. (Note

that we must exercise care during the course of the algorithm to ensure that only tight

edges are on the list. Consequently, if an edge on the list has positive slack we must delete

it from the list). Another approach drops the edges in greedy fashion. This heuristic would

consider the edges for dropping in order of decreasing cost. Another variation of both these

heuristics uses the auxiliary network (instead of the primal feasible solution x) as the initial

primal feasible network.

This concludes our discussion of the dual-ascent algorithm for the NDC and the DNDC

problem (note that both the improvements can be applied to the DNDC problem). To con-

clude this chapter, we compare our dual-ascent algorithm with Goemans et al.’s algorithm

for the NDC problem, and then summarize the contributions of our discussion.

4.8 Comparison with Goemans et al.’s Algorithm

In this section we describe the Goemans et al.’s algorithm for the NDC problem with

edge-connectivity requirements. Then, we compare the dual-ascent algorithm for the NDC

problem with this algorithm. The Goemans et al.’s algorithm was developed in a sequence

of papers (see [WGMV93], [GGW93], and [GGP+94]). For convenience, we refer to the

algorithm as the GW algorithm (since Goemans and Williamson are the common co-authors

in the three papers [WGMV93], [GGW93], and [GGP+94]). Our presentation mainly follows

the description of these results in Williamson’s Ph.D. thesis [Wil93].

The GW algorithm applies to the class of network design problems that can be formu-

lated as follows:

Minimize
∑

{i,j}∈E

cijxij (4.27a)

subject to:
∑

{i,j}∈δ(S)

xij ≥ f(S) for all S ⊂ N ; (4.27b)

xij ∈ {0, 1} for all {i, j} ∈ E. (4.27c)

The function f(S) satisfies the following “proper” conditions:
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• [Symmetry] f(S) = f(N − S) for all S ⊂ N ; and

• [Maximality] If A and B are disjoint, then f(A ∪ B) ≤ max{f(A), f(B)}.

Also, f(N) = 0 for every proper function f .

Notice that with the choice f(S) = econ(S) of the proper function, Formulation (4.27)

models all NDC problems with edge-connectivity requirements (in the model that does

not permit edge replication). Actually, proper functions model more general problems like

the minimum cost matching and the minimum cost T -join problem.17 However, Formula-

tion (4.27) cannot model node-connectivity requirements and the other generalizations of

the NDC that we described in Sections 4.5.1 and 4.5.2.

4.8.1 Description and Analysis of the GW Algorithm

The GW algorithm is a fairly complicated algorithm. We will explain it in three parts.

First, we give a high-level description of the algorithm. Next, we describe in some detail

one of its key subroutines. Then, we show that the algorithm is a dual-ascent algorithm

that has a worst case ratio of 2H(fmax), where H(fmax) = 1 + 1
2 + 1

3 + . . . + 1
fmax

. It is

instructive to pursue this analysis because it highlights the differences in the underlying

design methodology of the two algorithms.

Let us set some notation that we shall need in describing the algorithm. Let fmax denote

the maximum value of f(S) over all sets S ⊂ N . Suppose X denotes the set of edges in the

integer primal solution (not necessarily feasible). Let ∆(S) = f(S) − |δX(S)| denote the

deficiency of cut δ(S). That is, given a solution X, ∆(S) denotes the minimum number of

edges, in the cut δ(S), that need to be added to X to satisfy constraint (4.27b).

The GW algorithm works in stages. In the first stage, it considers all sets S with

deficiency fmax. It then uses a subroutine called approx-uncrossable to find a solution that

has at least one edge in each such cut δ(S). It adds the edges in the solution obtained

by approx-uncrossable to the primal solution X. Let Xp denote the set of edges in the

primal solution X at the end of stage p. Then in stage p, the GW algorithm considers the

current solution Xp−1 and identifies all maximally deficient cuts, that is, cuts δ(S) with the

maximum value of ∆p(S) = f(S) − |δXp−1(S)| (we use the subscript p in ∆p(S) to denote

stage p). It then calls approx-uncrossable which finds a solution X′ that (i) does not contain

edges in the current solution Xp−1, and (ii) has at least one edge in each maximally deficient

cut δ(S). It adds the edges in X′ to Xp−1, the solution at the end of stage p− 1, to obtain

Xp, the solution at the end of stage p (i.e., Xp = Xp−1 ∪ X′). Notice that at the end of

17Given a graph G = (N, E) and a subset of nodes T , a set of edges E′ ⊆ E is a T -join if, in the subgraph
G′ = (N, E′), the degree of a node i is odd if and only if i ∈ T . The minimum cost T -join is to find a T -join
at minimum cost.
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a stage, the GW algorithm decreases the deficiency of the maximally deficient cuts by at

least 1. Shortly, in the discussion of approx-uncrossable, we will show that the algorithm

decreases the deficiency of at least one maximally deficient cut by exactly one. Therefore,

at the end of stage 1 the maximum deficiency is fmax − 1 and, in general, at the conclusion

of stage p, the maximum deficiency is fmax − p. Consequently, at the conclusion of stage

fmax, the solution Xfmax satisfies all the connectivity requirements.

We now describe the key subroutine of the GW algorithm, approx-uncrossable, in more

detail. In stage p, define

hp(S) =

{

1 if ∆p(S) = fmax − p + 1;

0 otherwise.

In stage p, approx-uncrossable considers the following network design problem on the graph

Gp = (Np, Ep), where Ep = E − Xp−1.

Network design problem for stage p:

Minimize
∑

{i,j}∈Ep

cijxij (4.28a)

subject to:
∑

{i,j}∈δEp(S)

xij ≥ hp(S) for all S ⊂ N ; (4.28b)

xij ∈ {0, 1} for all {i, j} ∈ Ep. (4.28c)

Approx-uncrossable is a dual-ascent algorithm. In order to describe approx-uncrossable,

consider the dual to the LP relaxation of the network design problem for stage p.

Dual to network design problem for stage p:

Maximize
∑

S⊂N

hp(S)wS (4.29a)

subject to:
∑

S:{i,j}∈δ(S)

wS ≤ cij for all {i, j} ∈ Ep (4.29b)

wS ≥ 0 for all S ⊂ N. (4.29c)

Let us now outline a dual-ascent algorithm for the network design problem for stage p

(i.e., model (4.28)). For convenience, we drop the subscript p in the following discussion

(i.e., we refer to hp(S) as h(S), Ep as E, and δEp(S) as δ(S)). Consider the complementary
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slackness conditions for the LP relaxation of Formulation (4.28) and its dual.

xij > 0 =⇒
∑

S:{i,j}∈δ(S)

wS = cij ; (4.30a)

and wS > 0 =⇒
∑

{i,j}∈δ(S)

xij = h(S). (4.30b)

By design, the dual-ascent algorithm maintains primal complementary slackness (4.30a)

and relaxes dual complementary slackness (4.30b). We refer to cij −
∑

S:{i,j}∈δ(S) wS as the

slack sij. As before, if the slack of an edge is zero, we say the edge is tight. We define the

auxiliary network by the tight edges. Initially, set wS = 0 for all S ⊂ N . Consider the

auxiliary network. Suppose we identify a set S with h(S) = 1 that has no tight edge in the

cut δ(S). Then, by increasing wS , we improve the dual objective function. Note that as we

increase wS , the slack for all edges in δ(S) decreases until some edge {i, j} becomes tight.

At this point, the algorithm adds that edge {i, j} to the auxiliary network. We refer to a

set S with h(S) = 1 that has no tight edge as an ascent set.18

A generic dual-ascent algorithm considers the auxiliary network and performs the fol-

lowing steps:

1. Find an ascent set S.

2. Increase wS until an edge becomes tight. If δ(S) contains no edge stop. The problem

is infeasible.

3. Repeat Steps 1 and 2 until every set S with h(S) = 1 has a tight edge in δ(S).

At the conclusion of these steps, the auxiliary network is feasible. However, a solution with

fewer edges might be feasible. Therefore, the dual-ascent algorithm performs a LIFO drop

heuristic.

The GW algorithm is a specialization of this generic dual algorithm. It considers minimal

ascent sets. That is, an ascent set that contains no subset that is also an ascent set. It

then simultaneously increases wS for all minimal ascent sets until some edge {i, j} becomes

tight.

Williamson, Goemans, Mihail and Vazirani [WGMV93] show that if the function h(S)

satisfies a certain technical property (called uncrossable), the algorithm’s solution is no

more than twice the cost of the optimal solution. We state this result without proof.

Theorem 4.8.1 Approx-uncrossable is a 2-approximation algorithm. In particular, the

integer primal solution X′ produced by approx-uncrossable is at most twice the cost of the

18Note this definition of an ascent set is different from the definition of an ascent set earlier in this chapter.
This definition is similar to the definition of an ascent set in Chapter 3.
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dual feasible solution produced by approx-uncrossable. That is,

∑

{i,j}∈X′

cij ≤ 2
∑

S

wS . (4.31)

Recall, the two concepts—minimal ascent sets and the LIFO dropping rule—that we pre-

sented in Chapter 3 in the context of the branching problem. Increasing the dual variables

wS simultaneously for all minimal ascent sets results in a dual-ascent algorithm with a

provable worst-case performance guarantee.

Using the worst-case performance ratio of approx-uncrossable, let us now show that the

GW algorithm is a 2H(fmax)-approximation algorithm.

First, observe that we cannot delete the last edge selected by approx-uncrossable in

stage p and maintain feasibility. This result implies the existence of some set S with

∆p(S) = fmax−p+1 and |δX′(S)| = 1. Because X′ ⊂ E−Xp−1, ∆p+1(S) = fmax−p+1−1.

That is, the algorithm decreases the deficiency of at least one maximally deficient cut by

exactly 1 unit.

Consider the solution to Formulation (4.29) in stage p. We show how to convert this

dual solution to a solution to the dual of Formulation (4.27); that is, a dual solution to the

original problem. Formulation (4.27) has the following linear programming dual.

Dual to Formulation (4.27):

Maximize ZD =
∑

S⊂N

f(S)wS −
∑

{i,j}∈E

uij (4.32a)

subject to:
∑

S:{i,j}∈δ(S)

wS ≤ cij + uij for all {i, j} ∈ E; (4.32b)

wS ≥ 0 for all S ⊂ N ; (4.32c)

uij ≥ 0 for all {i, j} ∈ E. (4.32d)

Given the dual variables constructed by approx-uncrossable in stage p, define uij =
∑

S:{i,j}∈δ(S) wS for all {i, j} in Xp−1, and uij = 0 otherwise. We claim that the vector

(w,u) is feasible to Formulation (4.32). To see this, note that the construction of w by

approx-uncrossable, implies that
∑

S:{i,j}∈δ(S) wS ≤ cij for {i, j} ∈ Ep. Thus, the solution

satisfies constraint (4.32b) for {i, j} 6∈ Xp−1. For {i, j} ∈ Xp−1, the definition of uij ensures

that the solution satisfies constraint (4.32b).

We now show that the GW algorithm has a worst case ratio of 2H(fmax).

Theorem 4.8.2 The GW algorithm has a worst case ratio of 2(H(fmax).

Proof: Let Z
∗
D denote the optimal value of Formulation (4.32). From arguments preceding
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this theorem, we know that in stage p

Z
∗
D ≥

∑

S

f(S)wS −
∑

{i,j}∈E

uij

Observe that

∑

{i,j}∈E

uij =
∑

{i,j}∈Xp−1

∑

S:{i,j}∈δ(S)

wS =
∑

S

∑

{i,j}∈δXp−1
(S)

wS =
∑

S

|δXp−1(S)|wS .

Therefore,

Z
∗
D ≥

∑

S

(f(S) − |δXp−1(S)|)wS .

Now in stage p, wS > 0 only if the deficiency of S (f(S)−|δXp−1(S)|) is fmax−p+1. Thus,

Z
∗
D ≥ (fmax − p + 1)

∑

S

wS .

Now using Theorem 4.8.1 (i.e., equation (4.31)) and summing over all stages, we obtain

∑

{i,j}∈Xfmax

cij ≤ 2
fmax∑

p=1

1

fmax − p + 1
Z

∗
D = 2H(fmax)Z

∗
D.

4.8.2 Comparison

We can now compare the dual-ascent algorithm for the NDC problem to the GW algorithm.

We developed the dual-ascent algorithm for the NDC problem from the flow-based for-

mulation (the dual of the flow-based formulation). The GW algorithm is based upon a

cutset formulation that models the edge-connectivity version of the NDC problem (and

extensions of these problems). Even though these formulations are equivalent as LPs, they

lead to different dual-ascent algorithms. As shown in Sections 4.4, and 4.5, our dual-ascent

algorithm easily generalizes to node-connectivity problems, DNDC problems, problems with

combined connectivity requirements, and problems with node costs, whereas the GW algo-

rithm does not. On the other hand, the GW algorithm is applicable to many problems that

cannot be modeled with the flow-based formulation.

The dropping heuristics of the dual-ascent algorithm for the NDC problem and the
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GW algorithm are different. As its last step, the dual-ascent algorithm for the NDC problem

drops edges from the auxiliary network (described in Section 4.7). The GW algorithm drops

edges at the conclusion of each stage. In the GW algorithm, if an edge is in the primal

solution at the conclusion of a stage, it remains in the primal solution. Consequently,

although it might be possible to drop an edge from the primal solution at the conclusion of

the GW algorithm while maintaining feasibility, the edge remains in the primal solution.

The GW algorithm and the dual-ascent algorithm for the NDC problem define ascent

sets, and perform dual-ascent steps on ascent sets, in quite different ways (they are working

in different spaces). The GW algorithm considers minimal ascent sets and simultaneously

increases the dual variables for all minimal ascent sets. Our dual-ascent algorithm for the

NDC problem does not do this. It considers ascent sets sequentially. (Future research might

consider performing ascent steps for the ascent sets simultaneously.)

The dual-ascent algorithm for the NDC problem solves the q-edge-disjoint path problem

and the q-node-disjoint path problem optimally. The GW algorithm does not solve the q-

edge-disjoint path problem. In fact, it can achieve its worst-case ratio, i.e., provide a

solution that is 2H(q) times the optimal solution, for the q-edge-disjoint path problem

(see [GGP+94]).

One motivation for dual-ascent methods is as a lower bounding mechanism for opti-

mization problems. (We are interested in providing lower bounds in addition to heuristic

solutions for the NDC problem.) For this reason, let us compare the lower bound pro-

vided by the dual-ascent algorithm for the NDC with the best lower bound obtained by the

GW algorithm. Just prior to Theorem 4.8.2, we showed how to convert the dual solution

of the network design problem for stage p to a dual solution for the NDC problem. Let

us compare the best lower bound over all stages given by the GW algorithm to the lower

bound given by the dual-ascent algorithm for the NDC problem. As an example, consider

the 3-edge-disjoint path problem shown in Figure 4-10. At the conclusion of stage 1, X1 =

{{s, a}, {a, b}, {b, c}, {c, d}, {d, t}}, w{t} = 1, w{s} = 1, w{t,f,d} = 1, w{s,e,a} = 1, w{t,f,d,c} =

0.5 and w{s,e,a,b} = 0.5. The dual solution to the NDC problem constructed from this solu-

tion has value 15 (since this is stage 1 all u variables are zero). At the conclusion of stage 2,

X2 = {{s, e}, {e, f}, {f, t}}, and w{t} = 1, w{s} = 1, w{t,f} = 2, w{s,e} = 2, w{t,f,d,c} = 1

and w{s,e,a,b} = 1. To convert this dual solution to the overall dual, we set usa = udt = 3,

ubc = 2. Therefore, we obtain an overall dual solution with a value of 16. At the conclu-

sion of stage 3, X3 = {{s, d}, {a, t}}, and w{t} = w{s} = 8. To convert this dual solution

to an overall dual solution, we set usa = use = udt = uft = 8 and thus obtain an over-

all dual solution with value 16. The best dual solution obtained by the GW algorithm

is 16 units, whereas the optimal dual solution, obtained by our dual-ascent algorithm, is

25 units. Therefore, the dual-ascent algorithm for the NDC problem can provide better
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lower bounds than the GW algorithm.

On the other hand we note that the GW algorithm provides a guaranteed worst-case

bound (and was developed for this purpose) for all NDC problems with edge-connectivity

requirements. The dual-ascent algorithm for the NDC problem has no worst-case guarantees

(and we would not be surprised if for some examples, it can perform arbitrarily badly).

4.9 Concluding Remarks

In this chapter we compared a cutset formulation (with an exponential number of con-

straints) and a compact flow formulation for the NDC problem. We showed that the pro-

jection of the feasible space of the LP relaxation of the flow formulation is the feasible space

of the LP relaxation of the cut formulation. We then showed how to decrease the number

of commodities in the flow model for several NDC problems.

Our main contribution is a very flexible dual-ascent algorithm, based upon the flow

formulation, for the NDC problem. This algorithm easily generalizes to the DNDC prob-

lem, problems with node costs, and problems with combined node- and edge-connectivity

requirements between a pair of nodes.

We showed that the dual-ascent algorithm solves problems that are formulated with a

single commodity in the flow formulation for the NDC optimally. The q-edge-disjoint path

problem and the q-node-disjoint path problem are special cases. As a result, we also showed

that (for nonnegative-cost vectors) the LP relaxation of the cutset formulation and the LP

relaxation of the flow formulation give integer optimal solutions (i.e., the x variables are

integer). We also showed that when applied to the q-edge-disjoint path problem, the dual-

ascent algorithm mimics the successive shortest path algorithm for minimum cost flows.

We then compared the dual-ascent algorithm to Goemans et al.’s algorithm (GW algo-

rithm), highlighting their similarities and differences. We showed that the for the q-edge-

disjoint path problem, the dual-ascent algorithm provides both a better feasible solution

and a lower bound than the GW algorithm. We believe that the dual-ascent algorithm for

the NDC problem is particularly attractive because it is designed to generate both good

lower bounds (dual solutions) and upper bounds (integer primal solutions).

In order to evaluate any algorithmic procedure, it is important to conduct empirical

testing. We did not test the dual-ascent algorithm for two reasons. First, we found that it

was difficult to gather real-world data, or characteristics of real-world data, for the NDC

problem. Moreover, currently the most crucial problems for telcos appear to be network

design problems with low connectivity requirements. In Chapter 6 we consider a specializa-

tion of the dual-ascent approach for the NDLC problem. As part of that development, we

studied the computational performance of the dual-ascent approach for the NDLC problem.
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In our future research, we intend to empirically test the dual-ascent algorithm for the NDC

and DNDC problem.

Two possible directions for extending the research in this chapter appear to be par-

ticularly appealing. As described in Chapter 1, network planners need to both solve the

topological design problem and make decisions on facilities to install in the network based

on traffic demand estimates. One research avenue is to study whether it is possible to inte-

grate these two decisions into a single step, and devise a dual-ascent methodology for the

problem.

The integer multicommodity flow problem, which has many applications in transporta-

tion, is closely related to the NDC problem. In the integer multicommodity flow problem,

we are given commodities and their associated flow requirements. We are also given capac-

ity constraints on the total flow over all commodities that may flow on an edge (or arc).

The problem imposes a cost of d
k
ij for sending a unit of flow of commodity k on edge {i, j}

(arc (i, j)). We wish to find a minimum cost routing of the flows, with the added restriction

that we send only an integer amount of a flow on a path. The dual-ascent algorithm we

described in this chapter can be adapted to provide feasible solutions and lower bounds for

integer multicommodity flow problems as well. In his Ph.D. thesis, Balakrishnan [Bal84]

describes a dual-ascent procedure for the capacitated fixed-charge network design problem.

(The capacitated fixed charge network design problem is similar to the uncapacitated fixed

charge network design problem. It has additional capacity constraints on the total flow over

all commodities that may flow on each edge (or arc).) He describes an algorithm for prob-

lems with unit demands. By setting the fixed charge cost to zero, his algorithm can be used

to solve integer multicommodity flow problems with unit demands. Using the Lagrangian

duality approach we have described, it is very easy to generalize his algorithm to integer

multicommodity flows with nonunit demands. The dual-ascent framework described in this

chapter, along with the research results of Balakrishnan, has established a strong footing

for pursuing research on developing dual-ascent procedures for integer multicommodity flow

problems.



Chapter 5

Improved Formulation: Unitary

Network Design Problem with

Connectivity Requirements

In this chapter we consider models for the unitary network design problem with connectivity

requirements (NDC). Recall that for the unitary NDC problem all nodes with a connectivity

requirement (a node i has a connectivity requirement if rij ≥ 1 for some node j) must be

connected.

Motivated by a result due to Nash-Williams, we show how to improve upon the undi-

rected flow model (4.2) for the unitary NDC problem by using a flow directing procedure.

We also develop an equivalent directed cut model. These models improve upon the well-

known cutset model (4.1). By how much? In order to at least partially answer this question

and to compare the new models with the cutset model, we project out the flow variables

from the improved flow model. By doing so, we derive three classes of valid inequalities—

partition, odd-hole and combinatorial design inequalities—for the cutset model (these in-

equalities are generalizations of known inequalities for the Steiner tree problem). Each of

these three classes of valid inequalities is new for the unitary NDC problem. For special

case of the survivable network design problem (SND), the partition inequality is also known

to be facet defining. (Recall that the SND problem is a unitary NDC problem with pre-

scribed node connectivity parameters rv for node v and either edge- or node-connectivity

requirements defined by rij = min{ri, rj}.)

The development in this chapter is motivated by a desire to develop better linear pro-

gramming relaxations for network design problems. Considerable accumulated experience in

the optimization literature has demonstrated the value of developing good linear program-

ming relaxations of combinatorial optimization problems. In Chapter 6 we use the improved

151
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flow model to develop a linear programming based heuristic for the network design problem

with low connectivity requirements (NDLC). (Recall that the NDLC problem is a special

case of the SND problem with rv ∈ (0, 1, 2).) Computational experience with this algorithm

(it solves problems with 300 nodes and 3000 edges to within 4 percent of optimality) shows

that the linear programming relaxation of the improved flow formulation provides a good

approximation to the mixed integer programming formulation of this model.

Throughout most of this chapter, we consider the edge-connectivity version of the uni-

tary NDC problem. At the end of the chapter, we examine node-connectivity requirements.

5.1 Formulations for the Unitary NDC Problem

For convenience, to begin our discussion we restate the cutset formulation and the undi-

rected flow formulation for the unitary NDC problem defined on the undirected graph

G = (N,E).

Cutset formulation for the unitary NDC problem:

Minimize
∑

{i,j}∈E

cijxij (5.1a)

subject to:
∑

{i,j}∈δ(S)

xij ≥ econ(S) for all node sets S with φ 6= S 6= N ; (5.1b)

xij ≤ bij for all {i, j} ∈ E; (5.1c)

xij ≥ 0 and integer, for all {i, j} ∈ E. (5.1d)

Recall that econ(S) = max{rij |j ∈ S; i ∈ N\S} and that bij is the largest number of

times that the design is permitted to replicate edge {i, j} (bij = 1 for applications without

edge replication). We also define the maximum connectivity requirement of a node i as

ri = econ({i}).1

Undirected flow formulation for the unitary NDC problem:

Minimize
∑

{i,j}∈E

cijxij (5.2a)

subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−qk

qk

0

if i = O(k);

if i = D(k); for all i ∈ N and k ∈ K

otherwise;

(5.2b)

1For the NDC problem, rst need not be equal to min(rs, rt). For the SND problem, the maximum
connectivity requirement of a node equals the connectivity requirement of a node.
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f
k
ij

f
k
ji

}

≤ xij for all {i, j} ∈ E and k ∈ K (5.2c)

f
k
ij, f

k
ji ≥ 0 for all {i, j} ∈ E and k ∈ K (5.2d)

xij ≤ bij for all {i, j} ∈ E; (5.2e)

xij ≥ 0 and integer, for all {i, j} ∈ E. (5.2f)

In this undirected flow formulation, K denotes the set of all commodities; O(k), D(k),

and qk, denote the origin, destination, and flow requirement for commodity k ∈ K. In this

formulation, for each node pair {s, t}, we create a commodity from one of these nodes to

the other with a flow requirement of rst (Chapter 4 and our discussion later in this chapter

show how to use fewer commodities).

Our discussion of the minimum spanning tree problem showed that directing the model

improves the formulation. This result raises a natural question: is it possible to direct the

NDC problem and improve its formulation as well? In this section we first show how to

direct unitary NDC problems for situations when the connectivity requirements are all even

or one. We then generalize this result, developing an improved model for any unitary NDC

problem (i.e., even those with odd connectivity requirements). In Chapter 7, we develop an

improved model for all NDC problems (i.e., nonunitary problems as well). At the end of this

section, we compare the improved model with another model introduced by Balakrishnan,

Magnanti and Mirchandani [BMM94a]. For ease of exposition, for the rest of this section

we assume that the model does not permit edge replication.

5.1.1 Directing the Unitary NDC Problem

The following result due to Nash-Williams [NW60] provides a key ingredient for transform-

ing the undirected formulation to a directed one.

Theorem 5.1.1 (Nash-Williams) Suppose G is an undirected graph with rxy edge-disjoint

paths connecting each pair x and y of its nodes. Then it is possible to direct the graph (i.e.,

orient its edges) so that the resulting digraph contains ⌊rxy/2⌋ arc-disjoint paths from node x

to node y and ⌊rxy/2⌋ arc-disjoint paths from node y to node x.

Consider any unitary NDC problem whose connectivity requirements rst are even or

one. We can view any feasible integer solution to this problem as follows: it is connected

and contains several 2-edge-connected components. If we contract the 2-edge-connected

components, the solution becomes a tree. The edges on the tree are the bridge edges in

the feasible solution before we contracted the 2-edge-connected components; that is, those

whose removal disconnects the graph defined by that solution.
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The Nash-Williams theorem permits us to direct the edges of each 2-edge-connected

component so that for any pair of nodes i and j with rij ≥ 2 (by assumption these require-

ments must be even), the network contains rij/2 directed arc-disjoint paths from node i

to node j, and rij/2 directed arc-disjoint paths from node j to node i. Once oriented,

each 2-edge-connected component contains a directed path between every pair of its nodes.

Therefore, if nodes i and j belong to the same 2-edge-connected component and rij = 2,

the oriented network contains a directed path from node i to node j and a directed path

from node j to node i. To direct the bridges, consider the tree obtained by contracting each

2-edge-connected component of the solution. Select any one of the nodes created by the

contraction as a root node and direct the tree away from this node.

Figure 5-1 illustrates this directing procedure. In this example a, b, c and g are 2-edge-

connected components. Between every pair of nodes s and t in these components rst = 2.

We orient the edges of each component (see Figure 5-1b) so that it contains a directed path

between every pair of nodes in each 2-edge-connected component. Next, we select the node

created by contracting component b as the root node and direct the tree edges (i.e., the

bridges of the solution) away from node b. Figure 5-1c shows the graph at the conclusion

of the directing procedure.

These observations permit us to formulate the unitary NDC problem as follows. Let yij

be 1 if edge {i, j} is oriented from node i to node j in the directing procedure applied to

the optimal solution (i.e., the oriented network contains arc (i, j)) and be 0 otherwise.

Directed cut formulation for the unitary NDC problem (rst ∈ {0,1,even}):

Minimize
∑

{i,j}∈E

cijxij (5.3a)

subject to:
∑

(i,j)∈δ−(S)

yij ≥
econ(S)

2
if econ(S) ≥ 2; for all S, (5.3b)

∑

(i,j)∈δ−(S)

yij ≥ 1 if econ(S) = 1; for all S, root 6∈ S (5.3c)

yij + yji ≤ xij for all {i, j} ∈ E (5.3d)

xij ≤ 1 for all {i, j} ∈ E (5.3e)

yij, yji, xij ≥ 0 and integer, for all {i, j} ∈ E. (5.3f)

Since econ(S) ≡ max{rij |j ∈ S; i ∈ N\S}, constraint (5.3b) ensures that for every pair

of nodes s and t with rst ≥ 2, every s–t dicut contains at least rst/2 arcs and every t–s dicut

contains at least rst/2 arcs. Menger’s theorem ensures that the oriented network contains

at least rst/2 arc-disjoint paths from node s to node t and rst/2 arc-disjoint paths from

node t to node s. Similarly, constraints (5.3c) and (5.3b) ensure that the oriented network
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Figure 5-1: Directing the bridges of a feasible solution to the unitary NDC problem. (a) Fea-
sible solution. (b) Direct the edges of each 2-edge-connected component. (c) Direct the
bridges away from component b.
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contains a directed path from the root to every other node. Constraint (5.3d) ensures that

the oriented network contains at most one of the arcs (i, j) and (j, i).

Proposition 5.1.2 The directed cut model is a valid formulation for the unitary NDC

problem in the sense that (x,y) is a feasible solution to this model if and only if x is an

incidence vector of a feasible NDC design (that is, x is a feasible solution to the cutset

model (5.1)).

Proof: Suppose x is an incidence vector of a feasible NDC design. The argument preceding

Formulation (5.3) shows how to construct an integer vector y so that (x,y) is a valid solution

for the directed cut model.

To establish the converse, suppose (x,y) is a feasible solution to the directed cut model.

Let Q be any node set with econ(Q) = econ(N\Q) ≥ 2. Combining inequality (5.3b) for

S = Q and S = N\Q and the inequalities (5.3d) summed over all {i, j} ∈ δ(Q) gives

∑

{i,j}∈δ(Q)

xij ≥
∑

(i,j)∈δ+(Q)

yij +
∑

(j,i)∈δ−(Q)

yji ≥ econ(Q).

If Q is any node set with econ(Q) = econ(N\Q) = 1, assume without loss of generality that

the root node is not in Q. Then the inequality (5.3c) with S = Q and the inequality (5.3d)

summed over {i, j} ∈ δ(Q) implies that

∑

{i,j}∈δ(Q)

xij ≥ 1.

Therefore, x is a feasible solution to the cutset formulation (5.1).

To see that the the linear programming relaxation of the directed cut formulation is

stronger than linear programming relaxation of the cutset formulation, consider the NDLC

example shown in Figure 5-2. In this example, each edge has unit cost. Nodes a, b and c

have a connectivity requirement of 2. Nodes d, e and f have a connectivity requirement

of 1. The optimal LP solution to the cutset formulation is xab = xac = 1 and xbc = xbd =

xcd = xde = xdf = xef = 0.5. The optimal solution has value 5. The optimal solution to LP

relaxation of the directed cut model has integer values for the edge variables. The solution

is yab = ybd = ydc = yca = yde = ydf = 1 with xab = xac = xbd = xcd = xde = xdf = 1.

The optimal LP solution has value 6. By reformulating the problem and solving the linear

programming relaxation, we have obtained the optimal solution.

Some special cases of the directing procedure have appeared previously in the literature.

Using the approach we have described, Goemans [Goe90] developed a directed formulation

for the SND problem whose connectivity requirements are all even or one.
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Figure 5-2: The directed cut formulation is stronger than the cutset formulation. (a) Graph
with all edge costs equal to 1. (b) Optimal LP solution to the cutset formulation. (c) Op-
timal LP solution to the directed cut formulation.

In the next section we show how to generalize the results in this section, developing

extensions that apply to all unitary NDC problems.

5.1.2 Generalizing the Directing Procedure

Consider the directed cut formulation. Observe that the directed cut model (5.3) is not

valid for unitary NDC problems with odd connectivity requirements.2 Suppose, however,

that we relax the integrality constraints imposed upon the yij variables, and interpret yij

as the capacity on the flow from node i to node j. We will show that this formulation is a

valid mixed integer program for any unitary NDC problem. Consider any feasible solution

to an unitary NDC problem. By our earlier arguments, the solution is a connected graph

consisting of 2-edge-connected components and bridges. Suppose (i) we select yij = yji =

1/2 for each edge on the 2-edge-connected components, and (ii) direct the bridges away

from the component that contains the root node, setting yij to 1 if edge {i, j} is oriented

from node i to node j, and 0 otherwise. The resulting solution (x,y) is feasible in the

directed cut formulation if we relax the integrality condition on y. Therefore, the following

2As an example, consider an SND problem defined on K4, the complete graph on four nodes, assuming
each node has a connectivity requirement of 3. The optimal solution for this problem is K4. For any node i

in K4, there is no way to direct the edges so that both δ+(i) and δ−(i) are at least 1.5.
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directed cut formulation is valid for all unitary NDC problems.

Directed cut formulation for the unitary NDC problem:

Minimize
∑

{i,j}∈E

cijxij (5.4a)

subject to:
∑

(i,j)∈δ−(S)

yij ≥
econ(S)

2
if econ(S) ≥ 2; for all S, (5.4b)

∑

(i,j)∈δ−(S)

yij ≥ 1 if econ(S) = 1; for all S, root 6∈ S (5.4c)

yij + yji ≤ xij for all {i, j} ∈ E (5.4d)

xij ≤ 1 for all {i, j} ∈ E (5.4e)

yij, yji ≥ 0 for all {i, j} ∈ E (5.4f)

xij ≥ 0 and integer, for all {i, j} ∈ E. (5.4g)

Proposition 5.1.3 The directed cut model (5.4) is a valid formulation for the unitary NDC

problem in the sense that (x,y) is a feasible solution to this model if and only if x is an

incidence vector of a feasible NDC design.

Proof: Similar to Proposition 5.1.2.

Flow Formulation

The max-flow min-cut theorem permits us to formulate an improved flow model, with

multiple commodities, that is equivalent to the directed cut model (5.4).

Improved undirected flow formulation for the unitary NDC problem:

Minimize
∑

{i,j}∈E

cijxij (5.5a)

subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−qk

qk

0

if i = O(k);

if i = D(k); for all i ∈ N and k ∈ K

otherwise;

(5.5b)

f
k
ij + f

h
ji ≤ xij for all {i, j} ∈ E and k, h ∈ K (5.5c)

f
k
ij, f

k
ji ≥ 0 for all {i, j} ∈ E and k ∈ K (5.5d)

xij ≤ 1 for all {i, j} ∈ E (5.5e)

xij ≥ 0 and integer, for all {i, j} ∈ E. (5.5f)
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Applying the max-flow min-cut theorem directly would, in general, create a model with

O(n2) flow variables since to model the constraints (5.4b), we would define a commodity

for every pair of nodes {s, t} with rst ≥ 2.

To obtain a more compact flow formulation, we first find a maximum spanning tree of

the requirement graph (from now on we will refer to this tree as the requirement spanning

tree). In Section 4.1.2, we noted that if {i, j} is any nontree edge of the requirement graph

and Pij is the (unique) path between nodes i and j in the requirement spanning tree,

then rij ≤ min{s,t}∈Pij
rst. We concluded that any solution that satisfies the connectivity

requirements of the requirement spanning tree, satisfies all the connectivity requirements

because, it contains at least min{s,t}∈Pij
rst paths between nodes i and j.3

To use the requirement spanning tree to formulate the flow model, we select any node i

whose maximum connectivity requirement is greater than or equal to 2 as the root node.

(If the maximum connectivity requirement of all nodes is 1, and so the problem is a Steiner

tree problem, we arbitrarily select any one of the nodes as the root node.) We create the

commodities as follows.

Commodity selection procedure for Formulation (5.5)

1. Find the requirement spanning tree.

2. Delete all edges with rst = 0 from the requirement spanning tree. The resulting tree

is connected because, by assumption, the NDC problem is unitary.

3. For each edge {s, t} of the requirement spanning tree with rst ≥ 2, create two com-

modities: one with origin node s and destination node t, and the other with origin

node t and destination node s; each of these commodities has a flow requirement

of rst/2.

4. Contract each edge {s, t} with rst ≥ 2 in the requirement spanning tree, creating

a contracted requirement spanning tree T in which rij = 1 for all edges {i, j}. We

distinguish nodes created by the contraction from the original nodes, by calling them

components. We denote a component by any one the nodes it contains in the original

requirement spanning tree (e.g., if we create a component by contracting nodes s and t,

then we denote the component s). Select a component i in T as the root node (if T

does not contain any components, then select any node as the root node arbitrarily).

Create a commodity for every node j in T other than the root node, with node i as

its origin (in the original graph), and node/component j as its destination (in the

original graph), with a requirement of 1.

3This result implies the requirements of nontree edges are irrelevant, and so without loss of generality we
may assume rij = min{s,t}∈Pij

rst.
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Figure 5-3: Commodity selection procedure for the unitary NDC problem. (a) Requirement
spanning tree. (b) Tree obtained by deleting edges {s, t} with rst = 0. (c) Tree obtained
by contracting edges {s, t} with rst ≥ 2.

Figure 5-3 illustrates this procedure. Figure 5-3a shows the requirement spanning tree

of a unitary NDC problem. Figure 5-3b shows the requirement spanning tree after we

have deleted edges {s, t} with rst = 0. Notice that because the problem is a unitary NDC

problem the graph in Figure 5-3b is connected. Otherwise, it would be a forest. Edges

{a, b} and {c, d} are the only edges with requirement at least 2 on this tree. Therefore, we

can orient every feasible solution so that it contains at least 2 directed paths from node b

to node a, at least 2 directed paths from node a to node b, at least 3 directed paths from

node c to node d, and at least 3 directed paths from node d to node c. Figure 5-3c shows

the requirement spanning tree after we have contracted all edges {s, t} with rst ≥ 2. Since

node a is the root node, the directing procedure implies that we can orient every feasible

solution so that it contains a directed path from component {a, b} (i.e., from both nodes

a and b) to component {c, d} (i.e., to both nodes c and d), and to nodes g, h, i and j.

(Component {a, b} might or might not be in the same 2-edge connected component as any

one of the nodes/component {c, d}, g, h, i and j. The directing procedure implies that in

both cases, the network contains a directed path from {a, b} to these nodes.)

Table 5.1 identifies the commodities obtained by applying the directing procedure to
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Commodity Origin Commodity Destination Commodity Requirement

a b 2

b a 2

c d 3

d c 3

a c 1

a g 1

a h 1

a i 1

a j 1

Table 5.1: Commodities in Formulation (5.5) for example in Figure 5-3.

the example in Figure 5-3. Edges {a, b} and {c, d} are the only edges with a requirement

of at least 2 on this tree. Therefore, we create four commodities—those shown in the first

four rows of Table 5.1. Figure 5-3c shows the contracted requirement spanning tree (i.e.,

after contracting edges with rst ≥ 2). Let node a denote the component {a, b}, and node c

denote component {c, d}. We select node a as the root. The tree in Figure 5-3c contains 6

nodes. Therefore, we create 5 commodities, each with origin node a, and destination nodes

c, g, h, i and j.

The following useful property is a consequence of the commodity selection procedure.

Property 5.1.4 For any node set S,

1. If econ(S) ≥ 2, then the improved flow formulation contains a commodity k whose

flow requirement is econ(S)/2, origin is in N\S, and destination is in S.

2. If econ(S) = 1 and root 6∈ S, then the improved flow model contains a commodity

whose flow requirement is 1, origin is the root node, and destination is in S.

3. If econ(S) = 1 and root ∈ S, then no commodity in the improved flow model has its

origin in N\S, and destination in S.

Proof: This result follows from the commodity selection procedure and the fact that for

any edge {s, t} in the requirement spanning tree rst = max{rij |j ∈ S; i ∈ N\S} ≡ econ(S).

We now establish the validity of the improved undirected flow formulation for the unitary

NDC problem by showing that the improved undirected flow formulation and the directed

cut formulation are equivalent.

Lemma 5.1.5 The improved undirected flow formulation (5.5) and the directed cut formu-

lation (5.4) are equivalent, both as linear programs and mixed integer programs.
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Proof: We assume that we select the same root node in both formulations. First, consider

any feasible solution (x∗
,y∗) to the directed cut formulation. If we interpret y

∗
ij as a capacity

imposed upon the flow from node i to node j, the max-flow min-cut theorem implies that

we can (i) send rst/2 units of flow between any pair of nodes s and t in the requirement

spanning tree, with rst ≥ 2, and (ii) send one unit of flow from the root component in

the contracted requirement spanning tree to any other node/component in the contracted

requirement spanning tree. Furthermore, the constraint y
∗
ij + y

∗
ji ≤ x

∗
ij implies that we

can fulfill conditions (i) and (ii) while ensuring that for each edge {i, j}, the sum of the

maximum flow sent (on the edge {i, j}) from node i to node j, and the maximum flow sent

from node j to node i does not exceed xij.
4 These arguments show that we can find flow

variables f∗ so that (x∗
, f∗) is feasible in the flow formulation.

Suppose (x̄, f̄ ) is a feasible solution to the improved flow formulation. For each edge

{i, j}, set ȳij = maxk∈K f̄
k
ij and ȳji = maxk∈K f̄

k
ji. We claim the solution (x̄, ȳ) is feasible

in the directed cut formulation. Whenever edge {s, t} is in the requirement spanning tree

and rst ≥ 2, the improved undirected flow formulation sends rst/2 units of flow from node s

to node t and rst/2 units of flow from node t to node s. Consequently, if edge {s, t} is in the

requirement spanning tree and rst ≥ 2, the capacity of every s–t dicut and every t–s dicut

is at least rst/2 (for the solution (x̄, ȳ)). For any node set S, the requirement spanning tree

contains an edge {s, t} in δ(S) with econ(S) = rst. Therefore, whenever econ(S) ≥ 2, the

capacity of the dicut δ
−(S) is at least econ(S)/2. The improved undirected flow formulation

sends 1 unit of flow from the root component to every node/component in the contracted

requirement spanning tree. Therefore, the capacity of every dicut δ
−(S) with root 6∈ S

and econ(S) = 1 is at least 1. The constraint f̄
k
ij + f̄

h
ji ≤ x̄ij implies that for every edge,

ȳij + ȳji ≤ x̄ij. Consequently, (x̄, ȳ) is feasible for the directed cut model, and thus the

improved undirected flow formulation and the directed cut formulation are equivalent.

Before concluding this section, we note the improved models (5.4) and (5.5) are stronger,

as linear programs, than the cutset (5.1) and the undirected flow (5.2) model only if the

requirement spanning tree contains an edge {s, t} with rst = 1. To see this result, observe

that if no pair of nodes i and j has a connectivity requirement of 1, then for all node sets

S, econ(S) 6= 1. But then, if x̄ is any feasible solution to the cutset formulation, the vector

(x̄, ȳ), with ȳij = ȳji = x̄ij/2, is feasible in the directed cut formulation. As we have shown

before, if (x̄, ȳ) is any feasible solution to the directed cut formulation, then x̄ is feasible in

the cutset formulation. Therefore, in this case, the two models are equivalent.

4If rst ∈ {0, 1, even}, Nash-Williams’ theorem permits us to send flow in only direction on an edge. In
general, this is not the case.
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5.1.3 Comparison with the Enhanced Cutset Model

Balakrishnan, Magnanti and Mirchandani [BMM94a] introduced the following enhanced

cutset model (our terminology) for the edge-connectivity version of the NDC problem: this

model resembles the directed cut formulation (5.4).

Enhanced cutset formulation for the NDC problem:

Minimize
∑

{i,j}∈E

cijxij (5.6a)

subject to:
∑

{i,j}∈δ(S)

yij ≥
econ(S)

2
if econ(S) ≥ 2; (5.6b)

∑

{i,j}∈δ(S)

zij ≥
econ(S)

2
if econ(S) ≥ 2; (5.6c)

∑

{i,j}∈δ(S)

yij ≥ 1 if econ(S) = 1; (5.6d)

yij + zij = xij for all {i, j} ∈ E (5.6e)

xij ≤ 1 for all {i, j} ∈ E (5.6f)

xij ≥ 0 and integer, for all {i, j} ∈ E. (5.6g)

yij, zij ≥ 0 for all {i, j} ∈ E. (5.6h)

This formulation introduces additional edge variables yij and zij . It “splits” the connec-

tivity requirements of all sets with econ(S) ≥ 2, and ensures that the yij and zij variables

satisfy these connectivity requirements (the model permits fractional values for yij and zij).

In addition, the yij variables satisfy the connectivity requirements of those node sets S with

econ(S) equal to 1. It is easy to see that this formulation is valid (since xij = yij + zij , the

xij variables satisfy the connectivity constraints).

If the problem contains no node set S with econ(S) = 1, the enhanced cutset formulation

does not strengthen the cutset formulation (5.1). The xij variables of the enhanced cutset

formulation are feasible for the cutset formulation, and we can convert a feasible solution to

the cutset formulation to a feasible solution to the enhanced cutset formulation by setting

yij = zij = xij/2 (with no change in the xij variables). If the problem contains no node

sets with econ(S) ≥ 2, then the zij variables can be set to zero. Therefore, yij = xij for

all edges, and the formulation is identical to the cutset model. Consequently, the enhanced

cutset formulation does not strengthen the cutset model if econ(S) equals zero or one for

all node sets S.

The enhanced cutset formulation is stronger than the cutset formulation when the prob-

lem contains some node sets S with econ(S) = 1 and some node sets S with econ(S) ≥ 2
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Figure 5-4: The enhanced cutset formulation is stronger than the cutset formulation.
(a) Graph with all edge costs equal to 1. (b) Optimal LP solution to the cutset formu-
lation. (c) Optimal LP solution to the enhanced cutset formulation.

(see Figure 5-4). In this SND example, each edge has unit cost. Nodes a, b and c have a

connectivity requirement of 2. Nodes d, e, f , g, h and i have a connectivity requirement

of 1. The optimal solution to the cutset formulation, which sets all edge variables to 0.5,

has an objective value of 6. The LP relaxation of the enhanced cutset formulation has the

solution yad = ydb = ybf = yfc = yce = yea = yag = ygb = ybi = yic = ych = yha = zad =

zdb = zbf = zfc = zce = zea = 0.5 (Figure 5-4c shows the x variables), with an objective

value of 9 (which is the objective value of the optimal integer solution).

For the SND problem (and in general the unitary NDC problem), the improved undi-

rected flow formulation can be stronger than the enhanced cutset formulation. Figure 5-2

provides an example. The optimal solution of the enhanced cutset formulation is yab =

yac = ybd = ycd = yde = ydf = yef = 0.5, zab = zbc = zac = 0.5, and xab = xac = 1,

xbc = xbd = xcd = xde = xdf = xef = 0.5, and the objective value is 5. In contrast, the

improved undirected flow formulation solves the problem optimally.

It is an open question whether for some instance of the unitary NDC problem, the en-

hanced cutset formulation is stronger than the improved undirected flow formulation (5.5).

We conjecture that this is not the case, and so the improved undirected flow formula-

tion (5.5) is stronger than the enhanced cutset formulation (5.6).
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Summary

In this section we first showed how to direct unitary NDC problems when the connectivity

requirements rst are even or one. We then showed how to generalize this directing procedure

to all unitary NDC problems. We used this directing procedure to develop two improved

models, a flow-based model and a directed cut model, for the unitary NDC problem. Finally,

we compared these improved models with the enhanced cutset model of Balakrishnan, Mag-

nanti and Mirchandani [BMM94a], and showed that the improved models can be stronger

than the enhanced cutset model.

To conclude this section, we note that a simple modification of the formulations we have

considered permits us to model situations that allow edge replication: we just replace the

constraint xij ≤ 1 by the constraint xij ≤ bij throughout our discussion.

5.2 Projecting from the Improved Formulation

In the previous section we described an improved flow-based model (5.5) for the unitary

NDC problem. In this section we investigate the relationship between this formulation and

the cutset model for the unitary NDC problem (5.1). More specifically, we project out the

flow variables from the improved undirected flow formulation (5.5) to obtain several valid

inequalities for the cutset model.

5.2.1 The Projection Theorem

To compare the improved flow formulation and the cutset formulation, we would like to

project out the flow variables from the improved flow formulation so that the resulting

models have the same set of variables. One approach is to use Fourier-Motzkin elimination:

project out a single flow variable at a time. A more elegant method, proposed by Balas and

Pulleyblank [BP83], is based upon a theorem of the alternatives.

Theorem 5.2.1 (Balas-Pulleyblank) The projection of the set P = {(x, f) ∈ Rn+m|Ax+

Bf ≥ d} onto the space of the x variables is

Projx(P ) = {x ∈ Rn|(gj)
T
Ax ≥ (gj)

T
d, for j = 1, 2, . . . , J},

which is defined by a finite set of generators {gj |j = 1, . . . , J} of the cone C = {g|BT g =

0;g ≥ 0}.

Proof: We first show that Projx(P ) ⊆ {x ∈ Rn|(gj)
T
Ax ≥ (gj)

T
d, for j = 1, 2, . . . , J}.

Let x̄ ∈ Projx(P ). By definition, for some vector f̄ ∈ Rm, (x̄, f̄) ∈ P . Therefore,

Ax̄ + Bf̄ ≥ d.
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Consider any element g ∈ C. Multiplying both sides of this equation by gT , we obtain

gT Ax̄ + gT Bf̄ ≥ gT d.

Noting that for any member of the cone C, BT g = 0, we see that

gT Ax̄ ≥ gT d.

Since this inequality is valid for all members of the cone C, it is also true for the generators

of the cone. Thus,

x̄ ∈ {x ∈ Rn|(gj)
T
Ax ≥ (gj)

T
d, for j = 1, 2, . . . , J}.

Now we show that {x ∈ Rn|(gj)
T
Ax ≥ (gj)

T
d, for j = 1, 2, . . . , J} ⊆ Projx(P ). Let

x̂ ∈ {x ∈ Rn|(gj)
T
Ax ≥ (gj)

T
d, for j = 1, 2, . . . , J}. Then no element g ∈ C satisfies the

condition

BTg = 0, g ≥ 0, gT (d − Ax̂) > 0.

By Farkas’ lemma, this result implies some vector f̂ ∈ Rm satisfies the condition

Bf̂ ≥ (d − Ax̂).

But then x̂ ∈ Projx(P ).

We can similarly establish the following result.

Corollary 5.2.2 The projection of the set P = {(x, f) ∈ Rn+m|Ax + Bf ≥ d,x ∈ X},

where X is an arbitrary subset of Rn, onto the space of the x variables is

Projx(P ) = {x ∈ X|(gj)
T
Ax ≥ (gj)

T
d, for j = 1, 2, . . . , J},

which is defined by a finite set of generators {gj |j = 1, . . . , J} of the cone C = {g|BT g =

0;g ≥ 0}.

Proof: Similar to Theorem 5.2.1.

The cone C in the statement of Theorem 5.2.1 is just the linear programming dual to the

feasibility problem obtained by deleting the x variables and setting the righthand side to

zero. Consequently, there are many ways to express Theorem 5.2.1. For the improved undi-

rected formulation, it is more convenient to consider the following form of Theorem 5.2.1.

Corollary 5.2.3 The projection of the set P = {(x, f) ∈ Rn+m|Ax+Bf ≥ d;A′x+B′f =
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d′;x ∈ X; f ≥ 0} onto the space of the x variables is

Projx(P ) = {x ∈ X|(gj
u)

T
Ax + (gj

v)
T
A′x ≥ (gj

u)
T
d + (gj

v)
T
d′

, for j = 1, 2, . . . , J},

which is defined by a finite set of generators {(gj
u,gj

v)|j = 1, . . . , J} of the cone C =

{(u,v)|BT u + B′Tv ≥ 0;u ≥ 0;v unrestricted}.

If we can identify a set of finite generators of the cone C, then we obtain the projection of

the set P . The Balas-Pulleyblank theorem has the additional advantage that every member

(u,v) of the cone C defines a valid inequality (uT
A+vT

A
′)x ≥ uTd+vTd′) for Projx(P ).

As a consequence, even if we cannot characterize the generators of the cone, we can still

use the cone to obtain valid inequalities for Projx(P ).

5.2.2 Projection Cone of the Improved Undirected Flow Formulation (5.5)

As noted earlier, the cone C in the statement of Theorem 5.2.1 is the LP dual to the

feasibility problem obtained by deleting the x variables and setting the righthand side to

zero. For the improved flow formulation (5.5), we need to consider the following projection

cone:

∑

h∈K u
kh
ij + v

k
i − v

k
j

∑

h∈K u
hk
ij + v

k
j − v

k
i

}

≥ 0 ∀ {i, j} ∈ E, ∀ k ∈ K (5.7a)

u
kh
ij ≥ 0 ∀ {i, j} ∈ E, ∀k, h ∈ K. (5.7b)

In these inequalities, v
k
i is the dual variable corresponding to the flow balance equation at

node i for commodity k, and u
kh
ij is the dual variable corresponding to the forcing constraint

f
k
ij +f

h
ji ≤ xij . Note that for any edge {i, j} and any pair of commodities k and h, the model

contains two forcing constraints f
k
ij + f

h
ji ≤ xij and f

h
ij + f

k
ji ≤ xij . We identify the dual

variable u
kh
ij with the constraint f

k
ij +f

h
ji ≤ xij and the dual variable u

hk
ij with the constraint

f
h
ij + f

k
ji ≤ xij . By convention, the dual variables obtained by reversing the indices, i.e. u

kh
ij

and u
hk
ji , are the same.

Since one flow balance equation for each commodity is redundant, we can set, for each

commodity k, v
k
O(k) to value zero. Using Corollary 5.2.3 for any member of this cone, we

obtain a valid inequality of the form

∑

{i,j}∈E
(
∑

k∈K

∑

h∈K
u

kh
ij )xij ≥

∑

k∈K
qkv

k
D(k). (5.8)

In this expression, qk is the number of units of commodity k sent from commodity k’s

origin to its destination. We refer to the coefficient of xij in this inequality as πij and the

righthand side coefficient as π0.
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Given some choice of the variables v
k
i for all the nodes i and commodities k, there are a

number of choices for u
hk
ij . How do we determine the best such choice? Since the coefficient

πij of xij in the inequality πx ≥ π0 is
∑

k∈K

∑

h∈Ku
kh
ij , we would like

∑

k∈K

∑

h∈Ku
kh
ij to be

as small as possible for each edge. The following theorem describes the choice of u
hk
ij that

minimizes
∑

k∈K

∑

h∈Ku
kh
ij . We give a constructive proof that also shows how to determine

the u
hk
ij values.

Theorem 5.2.4 Suppose we are given values for v
k
i for all nodes i and all commodities k.

For any edge {i, j}, let t
k
ij = max (0, vk

j −v
k
i ) and t

k
ji = max (0, vk

i −v
k
j ). Define tij =

∑

k∈Kt
k
ij

and tji =
∑

k∈Kt
k
ji. Then max (tij , tji) is the minimum feasible value of

∑

k∈K

∑

h∈ku
kh
ij in

the inequalities (5.7a).

Proof: We will establish this result for each edge {i, j}. Let us first show that max (tij , tji)

is a lower bound on the value of
∑

k∈K

∑

h∈Ku
kh
ij in any feasible solution to the inequal-

ities (5.7a). Let I be the set of all commodities with t
k
ij > 0 and J be the set of com-

modities with t
k
ji > 0. For any edge {i, j} with v

k
j − v

k
i > 0, equation (5.7a) implies

∑

h∈Ku
kh
ij ≥ v

k
j −v

k
i . Summing over all commodities in I gives

∑

k∈I

∑

h∈Ku
kh
ij ≥

∑

k∈I(v
k
j −

v
k
i ) = tij. Similarly, by considering the commodities in J , we obtain

∑

k∈J

∑

h∈Ku
hk
ij ≥

∑

k∈J(vk
i − v

k
j ) = tji. But then the inequalities

∑

k∈K

∑

h∈Ku
kh
ij ≥

∑

k∈I

∑

h∈Ku
kh
ij and

∑

k∈K

∑

h∈Ku
kh
ij ≥

∑

k∈J

∑

h∈Ku
hk
ij imply that

∑

k∈K

∑

h∈Ku
kh
ij ≥ max (tij, tji).

We next prescribe values for the variables u
kh
ij that achieve the lower bound max (tij , tji).

Initially, each u
kh
ij = 0 and

∑

k∈K

∑

h∈Ku
kh
ij = 0. Select a commodity l from I and a

commodity m from J . Set u
lm
ij = min {tlij , t

m
ji}. If t

l
ij ≥ t

m
ji , delete m from J, and if t

l
ij ≤ t

m
ji ,

delete l from I. Set t
l
ij = t

k
ij−u

lm
ij and t

m
ji = t

m
ji −u

lm
ij . Repeat this procedure until one of the

two sets I and J , say J , is empty. Note that at this point
∑

k∈K

∑

h∈Ku
kh
ij = min (tij , tji) and

the u and v variables satisfy inequality (5.7a) for every commodity we have deleted from I

and J . For the remaining commodities l ∈ I, let m be any commodity in K and set u
lm
ij = t

l
ij .

Thus,
∑

k∈K

∑

h∈Ku
kh
ij = min (tij, tji) + (max (tij, tji) − min (tij , tji)) = max (tij , tji). By

construction, this choice of u
hk
ij satisfies the equations of the cone.

With the aid of Theorem 5.2.4, we will now derive three classes of valid inequalities—

partition inequalities, odd-hole inequalities, and combinatorial design inequalities. For ease

of exposition, we will consider the NDLC problem. Then we will generalize the results to

the unitary NDC problem.

5.3 Partition Inequalities

For the NDLC problem, partition inequalities (also called multicut inequalities by some au-

thors) have the following form. Partition the node set N into disjoint node sets N0, N1, . . . , Np
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Figure 5-5: Projecting partition inequalities for a five node example. (a) Connectivity
requirements (b) Value of the v

0
i variables (c) Value of the v
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i variables (d) Value of the v
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variables (e) Value of the v
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i variables (f) Value of the v
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i variables.

satisfying the property that each node set has at least one node i with a connectivity re-

quirement ri > 0. A partition inequality is an inequality of the form

1

2

k=p
∑

k=0

∑

δ(Nk)

xij ≥







p + 1 if at least two sets have a node with

a connectivity requirement of two;

p otherwise.

This inequality implies that (i) if no set or exactly one set in the partition has a node with

a connectivity requirement of two, then the network contains at least p edges between the

p + 1 sets, and (ii) if two or more sets have a node with a connectivity requirement of

two, then the network contains at least p + 1 edges between these sets. Chopra [Cho92b]

shows that the partition inequalities describe the dominant of the spanning tree polytope.

Chopra and Rao [CR94] and Grötschel and Monma [GM90] show that under appropriate

conditions, partition inequalities are facet defining for the Steiner tree problem and for the

NDLC problem.
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Consider the five node example shown in Figure 5-5. Nodes 0 and 1 have a connectivity

requirement of two; nodes 2, 3 and 4 have a connectivity requirement of 1. The improved

undirected formulation (with node 0 as the root node) for this network has four commodities

(1, 2, 3 and 4) with the origin as the root node and node 1, 2, 3 and 4, respectively, as

the destination node. It also has a commodity (commodity 5) with node 1 as the origin

and node 0 as the destination. We will refer to commodity 5 as commodity 0 to simplify

our discussion. Therefore, for each commodity i, node i is the destination. Consider the

partition inequality with each node defining a set in the partition (i.e., 1
2

∑

i

∑

j 6=ixij ≥ 5).

Each edge variable5 in the partition inequality has a coefficient of 1. Consequently, in

projecting out these variables to obtain this inequality, we need
∑

k∈K

∑

h∈Ku
kh
ij = 1. Since

the righthand side has value 5, we also need
∑

k∈Kv
k
D(k) = 5 (qk = 1 for all commodities in

the NDLC problem).

In the example of Figure 5-5, for each commodity k = 0, . . . , 4, let v
k
i = 0 if i 6= k

and v
k
k = 1. Consider any edge {i, j}. Note that the v

k
i and v

k
j values are the same for all

commodities, except for (i) commodity i, with v
i
i = 1 and v

i
j = 0, and (ii) commodity j, with

v
j
i = 0 and v

j
j = 1. Thus, for each edge {i, j},

∑

k∈K max (0, vk
j − v

k
i ) =

∑

k∈K max (0, vk
i −

v
k
j ) = 1. Therefore, in accordance with Theorem 5.2.4 we can set u

hk
ij = 1 if h = j and

k = i, and u
hk
ij = 0 otherwise. This choice of variables in the projection cone imply the

partition 1
2

∑

i

∑

j 6=ixij ≥ 5.

In general, consider a partition N0, . . . , Np. Without loss of generality assume that

the root node is a node in N0. Suppose econ(Ni) = 2. Recall, from Property 5.1.4, if

econ(Ni) = 2 the improved flow formulation must contain two commodities: one with origin

ni ∈ Ni and destination some node mi 6∈ Ni, and one with destination ni ∈ Ni and origin

mi 6∈ Ni, both with a flow requirement of econ(Ni)/2 = 1. Let i denote the commodity

with destination node ni ∈ Ni (and origin mi 6∈ Ni) and a requirement of 1. Similarly, if

econ(Ni) = 1 and i 6= 0, the improved flow formulation must contain a commodity i with

destination a node ni ∈ Ni (the origin would be the root node) and a requirement of 1.

For commodities 0, . . . , p, we set

v
k
i =

{

1 if i ∈ Nk,

0 otherwise,

and set v
k
i = 0 otherwise.

With this choice of values for the v
k
i variables, we ensure that for all edges {i, j} across

the partition
∑

k∈K max (0, vk
j − v

k
i ) =

∑

k∈K max (0, vk
i − v

k
j ) = 1 and for edges {i, j} not

in the partition
∑

k∈K max (0, vk
j − v

k
i ) =

∑

k∈K max (0, vk
i − v

k
j ) = 0. Thus, by choosing the

5Note that the inequality counts each edge twice in the double summation.
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values of u
kh
ij as indicated by Theorem 5.2.4, we find that πij =

∑

k∈K

∑

h∈Ku
kh
ij is 1 if i and

j are in different sets of the partition and πij = 0 otherwise. Also, π0 =
∑

k∈Kv
k
D(k) = p+1,

since v
k
D(k) = 1 for commodities 0, . . . , p and v

k
D(k) = 0 otherwise.

If all the nodes with a connectivity requirement of two lie in one of the sets (i.e., N0)

of the partition or the problem has no node with a connectivity requirement of two (in this

case the problem is a Steiner tree problem), by Property 5.1.4, there is no commodity in the

improved flow formulation with destination in N0. Consequently, we select p commodities

with destinations in N1, . . . , Np and origin in N0 (i.e., the root node). With the same choice

of v
k
i for k = 1, . . . , p (i.e., v

k
i = 1 if i ∈ Nk and 0 otherwise), for all edges {i, j} across the

partition, max (
∑

k∈K max (0, vk
j −v

k
i ),
∑

k∈K max (0, vk
i −v

k
j )) = 1; and for edges {i, j} not in

the partition,
∑

k∈K max (0, vk
j −v

k
i ) =

∑

k∈K max (0, vk
i −v

k
j ) = 0. Thus, in accordance with

Theorem 5.2.4 the edges across the partition have coefficient 1; all others have coefficient 0.

Since we have only p commodities, the resulting righthand side is π0 =
∑

kv
k
D(k) = p.

5.3.1 Partition Inequalities for the Unitary NDC Problem

Since the projection cone obtained from the improved flow model for the NDLC problem

and the unitary NDC problem are identical, any member of the cone that provides a valid

inequality for the NDLC problem also provides a valid inequality for the unitary NDC

problem.

Consider a partition N0, . . . , Np. Without loss of generality assume that the root node

is a node in N0. Consider any set Ni of the partition. If econ(Ni) ≥ 2, Property 5.1.4

implies the improved flow formulation must contain two commodities: one with origin

ni ∈ Ni and destination some node mi 6∈ Ni, and one with destination ni ∈ Ni and origin

mi 6∈ Ni, both with a flow requirement of econ(Ni)/2. Let i denote the commodity with

destination node ni ∈ Ni (and origin mi 6∈ Ni) and a requirement of econ(Ni)/2. Similarly,

if econ(Ni) = 1 and i 6= 0, the improved flow formulation must contain a commodity i with

destination a node ni ∈ Ni (the origin would be the root node) and a requirement of 1.

For commodities 0, . . . , p, we set

v
k
i =

{

1 if i ∈ Nk,

0 otherwise,

and set v
k
i = 0 otherwise.

We have not changed anything so far. These values for v
k
i variables are the same as

for the NDLC problem. Therefore, for all edges in the partition, πij = 1 if i and j are in

different sets of the partition and πij = 0 otherwise. For commodities k = 0, . . . , p, qk = 1 if

econ(Nk) = 1, and qk = econ(Nk)/2 if econ(Nk) ≥ 2. Substituting these values, we obtain
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the following valid inequality:

1

2

k=p
∑

k=0

∑

δ(Nk)

xij ≥

{

p if I2 = φ;
1
2

∑

i∈I2 econ(Ni) + |I1| otherwise.
(5.9)

In this inequality, I1 = {i : econ(Ni) = 1} and I2 = {i : i ∈ econ(Ni) ≥ 2}.

But since, in the mixed integer program, the variables xij are either 0 or 1 we can round

up the righthand side in this inequality and still maintain feasibility. Thus, the following

inequalities are valid:

1

2

k=p
∑

k=0

∑

δ(Nk)

xij ≥

{

p if I2 = φ

⌈1
2

∑

i∈I2 econ(Ni)⌉ + |I1| otherwise.
(5.10)

Grötschel, Monma and Stoer [GMS92c, Sto92] call inequalities (5.10) partition inequali-

ties and show that under appropriate conditions they are facet defining for the SND problem.

Our derivation shows that these inequalities are valid for the more general unitary NDC

problem. If the number of sets in the partition inequality with odd connectivity require-

ment greater than one is odd, then the improved undirected formulation implies a weaker

form of the partition inequality that we refer to as weak partition inequalities (i.e., inequal-

ities (5.9)). Otherwise, the formulation implies the partition inequality. Note that the weak

partition inequalities are stronger than the cutset formulation (as long as I1 6= φ).

Since the flow model implies the weak partition inequalities, and does not always im-

ply the partition inequalities, we might like to characterize, in a certain sense, how much

stronger a model that contains the partition inequalities is compared to a model that con-

tains the weak partition inequalities.

To compare two classes of valid inequalities, we use the following notion previously intro-

duced by Goemans [Goe93]. Let X1 and X2 be two classes of valid inequalities. Then, the

relative strength of the class of the valid inequalities X1 to the class of the valid inequalities

X2 is defined as

max







{min cx : x ∈ R
|E|
+ ; x ∈ X1; x ∈ X2}

{min cx : x ∈ R
|E|
+ ; x ∈ X2}






.

The relative strength measures how much, in the best case, the objective function of an LP

that contains the class of valid inequalities X2 improves by adding to it the class of valid

inequalities X1.

We have been able to characterize the relative strength of the partition inequalities with

respect to the weak partition inequalities when (unlimited) edge replication is permitted.

Theorem 5.3.1 The relative strength of the class of partition inequalities X1 with respect

to the class of weak partition inequalities X2 is 10
9 .
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Proof: We will show that by multiplying any feasible solution (including any optimal solu-

tion) to the linear program {min cx : x ∈ R
|E|
+ ; x ∈ X2} (we refer to this linear program as

LP2) by 10
9 gives a feasible solution to the linear program {min cx : x ∈ R

|E|
+ ; x ∈ X1; x ∈

X2} (we refer to this linear program as LP1). This result implies that the optimal value to

LP1 is at most 10
9 times the optimal value to LP2. Note that the weak partition inequalities

are implied by the partition inequalities. Consequently, we can delete x ∈ X2 from LP1.

LP1 and LP2 differ when the righthand side of the weak partition inequalities is frac-

tional. If we show the maximum ratio between the righthand side of any partition inequal-

ity and its corresponding weak partition inequality is 10
9 , we have shown that the relative

strength of the partition inequalities with respect to the weak partition inequalities is 10
9 .

(Since multiplying any solution that satisfies the weak partition inequalities by 10
9 gives a

solution that satisfies the partition inequalities.)

The righthand sides of the weak partition inequalities and the partition inequalities differ

by at most 0.5. This happens when the cardinality of the set {i : econ(Ni) odd; and econ(Ni) ≥

3} is odd (i.e., for an odd number of sets, econ(Ni) is (i) odd, and (ii) greater than or equal

to 3). Noting that the partition contains at least two sets with the highest value of econ(Ni),

we find that the maximum ratio is obtained by considering a partition with three sets, each

with connectivity 3. The righthand side for the weak partition inequality is 4.5 and the

righthand side for the partition inequality is 5. The ratio is 10
9 .

5.4 Odd-Hole Inequalities

Chopra and Rao [CR94] introduced odd-hole inequalities for the Steiner tree problem. These

inequalities have the following form. Consider a graph Gp = (Np, Ep) with Np = (Tp ∪Zp),

Tp = {a0, a1, . . . , ap} the set of nodes with nonzero connectivity requirements, and Zp =

{b0, b1, . . . , bp} the set of nodes with zero connectivity requirements. The edge set Ep consists

of edges of the form {ai, bi}, {ai, bi−1} and {bi, bi−1} for i = 0, . . . , p. Note that we define

b−1 = bp, a−1 = ap, bp+1 = b0 and ap+1 = a0. An odd-hole inequality is an inequality of the

form
∑

{i,j}∈Ep

xij ≥ 2p.

When p is even, the graph Gp is called an odd-hole.6 Chopra and Rao [CR94] show that if

p is even and p ≥ 2, then an odd-hole inequality defines a facet for the Steiner tree polytope

on the graph Gp.

We extend the definition of odd-hole inequalities to obtain the following valid inequalities

6The odd in odd-hole refers to the number of nodes with nonzero connectivity requirements.
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Figure 5-6: Projecting odd-hole inequalities for a ten node example. (a) Connectivity
requirements (b) Value of the v
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for the NDLC problem.

∑

{i,j}∈Ep

xij ≥







2(p + 1) if at least two nodes have a

connectivity requirement of two;

2p otherwise.

To prove that these inequalities are valid, we now show how to project these inequalities

from the improved undirected formulation.

Consider the odd-hole shown in Figure 5-6. Nodes a0 and a1 have a connectivity require-

ment of 2, and a2, a3 and a4 have a connectivity requirement of 1. The improved undirected

formulation, with root node a0, has five commodities. Commodities 1, 2, 3 and 4 have a0

as the origin and a1, a2, a3 and a4 as the destination nodes. Commodity 5, which we will

also refer to as commodity 0, has a1 as the origin and a0 as the destination. Note, with this
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notation, each commodity i has destination ai.

In the example of Figure 5-6, for all commodities k = 0, . . . , 4, let v
k
i = 0 if i 6= ak, bk or

bk−1. Let v
k
ak

= 2 and v
k
bk

= v
k
bk−1

= 1. Notice that with this choice of values

v
i
ai
− v

i
bi

= v
i+1
bi

− v
i+1
ai

= 1

v
i
ai
− v

i
bi−1

= v
i−1
bi−1

− v
i−1
ai

= 1

v
i−1
bi−1

− v
i−1
bi

= v
i+1
bi

− v
i+1
bi−1

= 1.

All other v
k
i −v

k
j = 0. Thus, for each edge {i, j},

∑

k∈K max (0, vk
j −v

k
i ) =

∑

k∈K max (0, vk
i −

v
k
j ) = 1. Therefore in accordance with Theorem 5.2.4 we can set u

(k+1)k
akbk

, u
(k−1)k
akbk−1

and

u
(k+1)(k−1)
bkbk−1

to 1 for k = 0, . . . , 4, and u
hk
ij = 0 otherwise. Since

∑

k∈Kv
k
ak

= 10, this choice

of variables defines the odd-hole inequality
∑

{i,j}∈E4
xij ≥ 10.

In general, let node a0 be the root node. For each node al, select a commodity l with

D(l) = al. For commodities k ∈ {0, . . . , p}, set

v
k
i =







2 if i = ak;

1 if i = bk or i = bk−1;

0 otherwise,

and set all other v
k
i values to zero.

With this choice of the v
k
i variables, we once again ensure that

∑

k∈K max (0, vk
j − v

k
i ) =

∑

k∈K max (0, vk
i − v

k
j ) = 1 for any edge {i, j}. Thus, by choosing the values of u

kh
ij as

indicated in Theorem 5.2.4, we find that πij =
∑

k∈K

∑

h∈Ku
kh
ij is 1 for each edge {i, j};

and π0 =
∑

k∈Kv
k
D(k) = 2(p + 1), since v

k
D(k) = 2 for commodities 0, . . . , p, and v

k
D(k) = 0

otherwise.

Suppose the graph Gp has more edges than Ep. What inequality is implied? Retain

the same choice of v
k
i variables and consider an edge {i, j} 6∈ Ep. This edge can be of three

types—{ai, bj}, {bi, bj} and {ai, aj}. For edges of type {ai, aj},

v
j
aj

− v
j
ai

= v
i
ai
− v

i
aj

= 2.

For edges of type {ai, bj} 6∈ Ep, j 6= i and j 6= i − 1,

v
j
bj
− v

j
ai

= v
j+1
bj

− v
j+1
ai

= 1

and

v
i
ai
− v

i
bj

= 2.
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Finally, for edges of type {bi, bj} 6∈ Ep, j 6= i − 1 and j 6= i + 1,

v
j
bj
− v

j
bi

= v
j+1
bj

− v
j+1
bi

= v
i
bi
− v

i
bj

= v
i+1
bi

− v
i+1
bj

= 1.

Thus, for any edge {i, j} 6∈ Ep,

∑

k∈K
max (0, vk

i − v
k
j ) =

∑

k∈K
max (0, vk

j − v
k
i ) = 2.

Selecting u
kh
ij values as prescribed by Theorem 5.2.4, shows that πij =

∑

k∈K

∑

h∈Ku
kh
ij is 2

for each edge {i, j} 6∈ Ep. The projected inequality

∑

{i,j}∈Ep

xij +
∑

{i,j}∈E\Ep

2xij ≥ 2(p + 1)

is called a lifted odd-hole inequality and is also a facet-defining inequality for the Steiner

tree problem (see Chopra and Rao [CR94]).

If the problem has no node with a connectivity requirement of two, it does not contain

any commodity with destination the root node. Therefore we select p commodities, one for

each node a1, . . . , ap, each with origin a0 (the root node). With the same choice of v
k
i for

commodities 1, . . . , p, we obtain max (
∑

k∈K max (0, vk
j − v

k
i ),
∑

k∈K max (0, vk
i − v

k
j )) = 1

for all edges {i, j} ∈ Ep and max (
∑

k∈K max (0, vk
j − v

k
i ),
∑

k∈K max (0, vk
i − v

k
j )) = 2 for

edges {i, j} ∈ E\Ep. Since we have only p commodities, the resulting righthand side is

π0 =
∑

k∈Kv
k
D(k) = 2p.

Both the odd-hole inequality and its lifted version are new valid inequalities for the

NDLC problem.

By examining the cone element that generates the odd-hole inequality, we can obtain

valid odd-hole inequalities for the unitary NDC problem. In the next section, we study a

generalization of odd-hole inequalities called combinatorial design inequalities. Therefore,

to avoid repetition, we will not derive odd-hole inequalities for the unitary NDC problem.

5.5 Combinatorial Design Inequalities

Goemans [Goe94b] introduced a new class of facet defining valid inequalities called combi-

natorial design inequalities for Steiner tree problems. He showed that under appropriate

conditions combinatorial design inequalities are facet defining for the Steiner tree problem.

He derives the combinatorial design inequalities by projecting from a node weighted (undi-

rected) extended formulation for the Steiner tree problem. Goemans and Myung [GM93]

show the LP relaxation of the node weighted model is equivalent to the improved undirected

flow formulation for the Steiner tree problem. Therefore we can expect the combinatorial
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design inequalities to be in the projection of the improved flow model. Since we are not

aware of any similar node weighted (undirected) formulation for the unitary NDC problem,

we show how to project out the combinatorial design inequalities from the improved undi-

rected flow formulation (5.5). As a result, we generalize the combinatorial design inequality

to the unitary NDC problem, and obtain a new class of valid inequalities for this problem.

The description of the combinatorial design inequality is fairly involved. Let Tp =

{a0, . . . , ap} be the set of nodes with nonzero connectivity requirements. Zq = Np − Tp =

{b0, . . . , bq} is the set of nodes with zero connectivity requirements. Associate with each

node ai of Tp a subset Tai
containing elements of Zq. Based on these subsets, we also

define sets Zbi
associated with each node bi in Zq. Zbi

contains those elements of Tp whose

associated subset contains the node bi. For example, consider the odd hole with p = 4

(see Figure 5-6). T4 = {a0, a1, a2, a3, a4} and Z4 = {b0, b1, b2, b3, b4}. Here Ta0 = {b0, b4},

Ta1 = {b0, b1}, Ta2 = {b1, b2}, Ta3 = {b2, b3}, Ta4 = {b3, b4}. Thus, the sets associated

with the elements in Z4 are Zb0 = {a0, a1}, Zb1 = {a1, a2}, Zb2 = {a2, a3}, Zb3 = {a3, a4},

Zb4 = {a4, a0}. (The odd-hole inequality is a special case of the combinatorial design

inequality).

Define the q × p matrix D = [dij ] with dij = 1 if aj ∈ Zbi
and dij = 0 otherwise. The

following two conditions are imposed on D: (i) rank(D) = p, and (ii) the unit vector e

belongs to the cone generated by the columns of D; i.e., Dy = e for some vector y ∈ Rq
+.

For any fixed d > 0, if we set βj = dyj , we see that

∑

aj∈Zbi

βj = d for all i = 1, . . . , q. (5.11)

If we select d so that the greatest common divisor of β1, . . . , βp, and d is 1, the coefficients of

xij in the following combinatorial design inequalities will be integer and as small as possible.

For every edge {s, t}, define

dst =







∑

k:ak∈(Zbi
∩Zbj

)βk {s, t} = {bi, bj} where bi, bj ∈ Zp;

βj {s, t} = {aj , bi} with bi ∈ Taj
;

0 otherwise.

For the Steiner tree problem, the inequality

∑

{i,j}∈E
(d − dij)xij ≥ dp,

is a combinatorial design inequality. The odd-hole inequality is a special case of the combi-

natorial design inequality when d = 2, βj = 1 for j = 0, . . . , p, and |Tp| = |Zq|.

We extend the definition of the combinatorial design inequality to obtain the following
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valid inequalities for the NDLC problem.

∑

{i,j}∈E
(d − dij)xij ≥







d(p + 1) if at least two nodes have a

connectivity requirement of two;

dp otherwise.

(5.12)

Let us now project the combinatorial design inequality from the improved undirected

formulation. In the improved undirected formulation, let node a0 be the root node. For

each node al, select a commodity l with destination al and set

v
k
i =







d if i = ak;

βk if i ∈ Tak
;

0 otherwise.

For all other commodities k set v
k
i to zero.

Consider an edge {s, t} = {aj , bi} with bi ∈ Taj
. When aj is the destination node,

v
j
aj

= d and v
j
bi

= βj if i ∈ Taj
. Consider any node ak ∈ Zbi

\{aj}. v
l
ak

6= 0 only if ak is a

destination node for commodity l, i.e., l = k and, in this case, v
k
bi

= βk and v
k
aj

= 0. Note

that, v
k
bi
− v

k
aj

= βk. Thus,7

∑

ak∈{Zbi
\{aj}}

v
k
bi
− v

k
aj

=
∑

ak∈{Zbi
\{aj}}

βk
(5.11)

= d − βj = v
j
aj

− v
j
bi

.

If ak 6∈ Zbi
, then v

k
aj

= v
k
bi

= 0. Therefore,
∑

k∈K max (0, vk
aj

− v
k
bi
) =

∑

k∈K max (0, vk
bi
−

v
k
aj

) = d − βj . By Theorem 5.2.4, in the projected inequality d − βj is the coefficient of an

edge {s, t} = {aj , bi} with bi ∈ Taj
.

Consider an edge {s, t} = {bi, bj}. For any commodity k with destination ak, v
k
bi

and

v
k
bj

differ only if exactly one of bi and bj belongs to Tak
. If bi belongs to Tak

then v
k
bi

= βk

and v
k
bj

= 0. Thus v
k
bi
− v

k
bj

= βk. Summing over all sets Tak
that contain node bi but not

node bj, we find that

∑

k:bj∈Tak
;bi 6∈Tak

v
k
bi
− v

k
bj

=
∑

k:bj∈Tak
;bi 6∈Tak

βk

(5.11)
= d −

∑

k:bj∈Tak
;bi∈Tak

βk.

7The notation
(5.11)

= means that the equality follows from expression (5.11).
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Similarly, summing up over all sets Tak
that contain node bj but not node bi, we find that

∑

k:bi∈Tak
;bj 6∈Tak

v
k
bj
− v

k
bi

=
∑

k:bi∈Tak
;bj 6∈Tak

βk

(5.11)
= d −

∑

k:bi∈Tak
;bj∈Tak

βk.

Therefore,
∑

k∈K max (0, vk
bj
− v

k
bi

) =
∑

k∈K max (0, vk
bi
− v

k
bj

) = d −
∑

k:bj∈Tak
;bi∈Tak

βk. By

Theorem 5.2.4, d −
∑

k:bj∈Tak
;bi∈Tak

βk is the coefficient of an edge {s, t} = {bi, bj} in the

projected inequality.

All the other edges are either of the form {s, t} = {ai, aj} or {s, t} = {aj , bi} with

bi 6∈ Taj
. For any edge of the form {ai, aj}, v

j
aj

− v
j
ai

= v
i
ai

− v
i
aj

= d for commodities i

and j and v
k
ai

= v
k
aj

= 0 otherwise. Consider an edge of the form {s, t} = {aj , bi} with

bi 6∈ Taj
. For all commodities k with ak ∈ Zbi

, i.e. ak is the destination, v
k
bi
− v

k
ai

= βk.

For commodity j, aj is the destination and v
j
aj

− v
j
bi

= d. For all other commodities k,

v
k
aj

= v
k
bi

= 0. Therefore, for both edges of the form {s, t} = {ai, aj} and {s, t} = {aj , bi}

with bi 6∈ Taj
, we find that

∑

k∈K max (0, vk
s − v

k
t ) =

∑

k∈K max (0, vk
s − v

k
t ) = d. By

Theorem 5.2.4, d is the coefficient of these edges in the projected inequality.

The righthand side of the projected inequality is π0 =
∑

kv
k
D(k) = d(p+1) since v

k
D(k) = d

for commodities 0, . . . , p, and v
k
D(k) = 0 otherwise.

If the problem has exactly one node or no nodes with a connectivity requirement of 2,

with the same choice of v
k
i variables we obtain the same coefficients for xij and a righthand

side of dp (there will be no commodity with destination the root node a0).

5.5.1 Combinatorial Design Inequalities for the Unitary NDC Problem

To conclude this discussion, we examine the valid inequality for the unitary NDC problem

that is implied by the cone element that generates the combinatorial design inequality for

the NDLC problem.

For each node ak, k = 0, . . . , p, we select a commodity k with destination ak as follows. If

the maximum connectivity requirement rak
of node ak is greater than or equal to 2, then we

select a commodity k with destination node ak and flow requirement rak
/2. If the maximum

connectivity requirement rak
of node ak is equal to 1, then we select a commodity k with

destination node ak and flow requirement 1. Retain the same choice of variables v
k
i . The

projected inequality is

∑

{i,j}∈E
(d − dij)xij ≥

{

dp if L2 = φ,

d(1
2

∑

l∈L2
rl + |L1|) otherwise.

(5.13)

In this inequality L1 = {i : i ∈ Tp, ri = 1} and L2 = {i : i ∈ Tp, ri ≥ 2} (ri denotes the
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maximum connectivity requirement of a node).

Once again, noting that the lefthand side should be integer if the x variables are integer,

we can round up the righthand side, giving the inequality

∑

{i,j}∈E
(d − dij)xij ≥

{

dp if L2 = φ,

(⌈d
2

∑

l∈L2
rl⌉ + d|L1|) otherwise.

(5.14)

We refer to inequalities (5.13) and (5.14) as weak combinatorial design and combinatorial

design inequalities. Noting that d ≥ 1, it is easy to prove a result similar to Theorem 5.3.1—

namely, if edge replication is permitted, the value of the linear program determined by the

weak combinatorial design inequalities is at least 10
9 ths the value of the linear program

determined by the combinatorial design inequalities.

5.6 Node-Connectivity Requirements

So far, we have restricted our attention to edge-connectivity requirements. We now briefly

show how to improve the flow formulation for node-connectivity problems.

Because node connectivity implies edge connectivity, all the valid inequalities derived

for the edge-connectivity version of the unitary NDC problem are valid for the node-

connectivity version. That is, the partition, odd-hole and combinatorial design inequali-

ties are valid for the node-connectivity version of the unitary NDC problem. Stoer [Sto92]

shows that under certain conditions, the partition inequalities are facet defining for the

node-connectivity version of the SND problem.

We now show a simple way to strengthen the flow-based formulation for the unitary NDC

problem with node-connectivity requirements. This method creates additional commodities

derived from the directing procedure. To distinguish between the flow variables that impose

node-connectivity requirements and the flow variables that direct the problem, we denote

the former by f and the latter by g. We also let K
f denote the set of commodities that

impose node-connectivity requirements and K
g denote the set of commodities that direct

the problem. We can state the improved undirected flow formulation for the unitary NDC

problem with node-connectivity requirements as follows.

Improved undirected flow formulation for the unitary NDC problem with node-

connectivity requirements

Minimize
∑

{i,j}∈E

cijxij (5.15a)
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subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−qk

qk

0

if i = O(k);

if i = D(k); for all i ∈ N & k ∈ K
f

otherwise;

(5.15b)

f
k
ij

f
k
ji

}

≤ xij for all {i, j} ∈ E and k ∈ K
f (5.15c)

∑

l∈N

f
k
il ≤ 1 for all k ∈ K

f & all i 6= O(k), D(k) (5.15d)

∑

j∈N

g
k
ji −

∑

l∈N

g
k
il =







−qk

qk

0

if i = O(k);

if i = D(k); for all i ∈ N & k ∈ K
g

otherwise;

(5.15e)

g
k
ij + g

h
ji ≤ xij for all {i, j} ∈ E and k, h ∈ K

g (5.15f)

f
k
ij, f

k
ji ≥ 0 for all {i, j} ∈ E and k ∈ K

f (5.15g)

g
k
ij , g

k
ji ≥ 0 for all {i, j} ∈ E and k ∈ K

g (5.15h)

xij ∈ {0, 1} for all {i, j} ∈ E. (5.15i)

The set of commodities in K
f have the interpretation described in Section 4.1.2 (see

page 92). The set of commodities in K
g have the same interpretation as for the unitary

NDC problem with edge-connectivity requirements. We note, as in Section 5.1.2, this for-

mulation is stronger than the undirected flow formulation for the unitary NDC problem

with node-connectivity requirements only when some edge {s, t} on the requirement span-

ning tree (obtained by considering the node-connectivity requirements as edge-connectivity

requirements) has rst = 1.

5.6.1 Combined Edge- and Node-Connectivity Requirements in the Uni-

tary NDC Problem

In Chapter 4 we described a model for combined edge- and node-connectivity require-

ments (see Section 4.5.1). We now describe a similar model for combined edge- and node-

connectivity requirements in the unitary NDC problem.

In this model, we define the connectivity requirements as follows. Between each pair

of nodes {s, t}, we are given an edge-connectivity requirement r
e
st and a node-connectivity

requirement r
n
st. We require that r

e
st ≥ r

n
st for each edge {s, t}. Design a network that

contains, for every pair of nodes i and j, r
e
ij edge-disjoint paths and r

n
ij node-disjoint paths.

For the SND problem, we describe this model as follows. Each node has an edge-

connectivity requirement r
e
v and a node-connectivity requirement r

n
v . We require that r

e
v ≥

r
n
v for each node. Design a network that contains, for every pair of nodes i and j, min(re

i , r
e
j )

edge-disjoint paths and min(rn
i , r

n
j ) node-disjoint paths.
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Formulation (5.15) can easily model these requirements. We model the edge-connectivity

requirements with the commodities K
e and the node-connectivity requirements with the

commodities K
n.

5.7 Concluding Remarks

In this chapter we described an improved flow formulation for the unitary NDC problem.

When solved as a linear program, the optimal value of this formulation provides a tighter

lower bound on the cost of an optimal design than does the linear programming relaxation

of the standard cutset formulation. By projecting out the flow variables from the improved

model and rounding up the righthand side of the projected inequality, we derived three

classes of valid inequalities (partition, odd-hole, and combinatorial design) for the unitary

NDC problem (in the space of the edge selection variables). These inequalities are gener-

alizations of known inequalities for the Steiner tree problem. Using the notion of relative

strength of a class of valid inequalities with respect to another class of valid inequalities, we

showed that the relative strength of the partition inequalities with respect to the weak par-

tition inequalities is 10/9, and the relative strength of the combinatorial design inequalities

with respect to the weak combinatorial design inequalities is 10/9.

Grötschel, Monma and Stoer [GMS95] have previously examined the directed cut for-

mulation (5.3) as applied to the SND problem when the connectivity requirements of the

nodes are restricted to be even or one. They called all inequalities in the space of the edge

selection variables xij that can be projected from the directed cut formulation Prodon in-

equalities. Because of the equivalence of the improved undirected flow formulation (5.5) and

the directed cut formulation (5.4), Prodon inequalities are equivalent to the inequalities that

can be projected out from the improved undirected flow formulation. Grötschel, Monma

and Stoer (5.3) also showed how to project out the partition inequalities using the directed

cut formulation for the SND problem, but did not investigate other types of inequalities

that might be obtainable by projection. If all the connectivity requirements are even, they

showed that other than the cut constraints, no Prodon inequality is facet defining. This re-

sult corroborates the observation we made earlier that the improved undirected flow model

is stronger than the cutset model only if rst = 1 for some edge {s, t} of the requirement

spanning tree.

Although we have shown that the flow formulation implies three classes of valid inequal-

ities (some in weaker form), some classes of facet defining inequalities are not obtainable

by projecting from the flow formulation.

Consider the SND problem shown in Figure 5-7. In this problem, nodes a, b, and c have

a connectivity requirement of 2. Figure 5-7 shows the underlying graph and the cost of the
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connectivity 2 node

a

b c

3 1

1 1

3

3

Steiner node

edge cost

d

Figure 5-7: The flow formulation does not always give integer solutions. The LP solution
is 7.5 and the optimal solution to the problem has cost 8.

edges. One optimal integer solution to the problem has the edges xad = xdb = xbc = xca = 1

and has cost 8. In the improved flow model assume commodity 1 is from node a to b,

commodity 2 is from node a to c, commodity 3 is from node b to a and commodity 4 is

from node c to a. The optimal LP solution to the improved undirected flow model (5.5) is

f
a1
ad = f

a1
db = f

c1
ad = f

c1
dc = f

a2
bd = f

a2
da = f

c2
cd = f

c2
da = 0.5, f

a1
ab = f

a1
ac = f

a1
cb = f

c1
ab = f

c1
ac =

f
c1
bc = f

a2
ba = f

a2
ca = f

a2
bc = f

c2
ca = f

c2
cb = f

c2
ba = 0.25, xad = xbd = xcd = 1 and xab = xbc =

xca = 0.5 with cost 7.5. Grötschel, Monma and Stoer [GMS92b] have introduced a class of

inequalities for the SND problem, called r-cover inequalities, that eliminates such fractional

solutions in the cutset model.

It is unlikely that any polynomial size flow formulation implies the r-cover inequali-

ties because, in a certain sense, the r-cover inequalities are complements of the blossom

inequalities of the matching polytope. Therefore, if we can project out the r-cover inequal-

ities from a polynomial size flow-based formulation, then we will have a polynomial size

extended formulation for the matching polytope. However, Yanakakis [Yan88] showed that

the matching polytope has no polynomial size extended formulation unless P = NP (i.e.,

unless all NP-hard problems can be solved in polynomial time).

We also described an improved flow model for the node-connectivity version of the

unitary NDC problem that implies the partition, odd-hole, and combinatorial design in-

equalities. However, we were unable to project out of the improved flow model some classes

of inequalities that Stoer [Sto92] has described for the node-connectivity version of the SND

problem. Is it possible to strengthen the improved flow model for the unitary NDC problem

to obtain these and other valid inequalities? Notice that Formulation (5.15) does not include

any direct interaction between the flow variables that impose the node-connectivity require-

ments and the flow variables that arise from the directing procedure. This observation leads

to the following questions. Is there a way to link the two sets of variables? Does linking

the variables improve the formulation? Answering these questions might lead to better

flow-based models for the unitary NDC problem with node-connectivity requirements.



184 Improved Formulation: Unitary NDC Problem

Grötschel, Monma and Stoer [GMS92a, GMS92c] found the cut and partition inequalities

to be the most useful in polyhedral computations for the SND problem. These results

suggest that the improved flow model might be a good (strong) formulation for the SND

problem. In the next chapter we use the improved flow model to devise a new dual-ascent

algorithm for the NDLC problem and test this assertion empirically on problems with up

to 300 nodes and 3000 edges. The results of this experimentation suggest that the linear

programming relaxation of the improved flow formulation provides a good approximation

to this mixed integer program model.



Chapter 6

Low-Connectivity Requirements

In this chapter we consider the network design problem with low connectivity require-

ments (NDLC). Network providers (e.g., the RBOCs) frequently need to connect a set of

customer nodes (a node might represent an office building of a large corporation). To pro-

vide adequate service, the network often needs to connect some of these customers (e.g.,

those generating high revenues) to each other by two physically diverse paths. Some nodes

are optional: they need not be contained in the network, but can be used if they lower

the cost of the network design. Because network failures tend to be rare, many network

providers (e.g., the telcos) believe it is important to protect against single link and sin-

gle node failures. Therefore, the NDLC problem is significantly more important to these

corporations than the other survivability problems we consider.

In this chapter we consider the edge-connectivity version of the NDLC problem. This

restriction is reasonable for two reasons. First, at this time protecting against single link

failures in a network seems to be of greater importance to telcos than protecting against

single node failures in a network [TEM93a]. Second, recall (see Section 2.2.2) that for

the NDLC problem, if the costs satisfy the triangle inequality and the underlying graph is

complete, then the cost of the optimal solution of the edge-connectivity model is the same as

the node-connectivity model. In telecommunication settings, typically the costs associated

with the links are Euclidean (and so satisfy the triangle inequality when the underlying

graph is complete). Therefore, in many instances solving the edge-connectivity version of

the NDLC problem is sufficient.

Using an undirected flow formulation, in Chapter 4 we described a dual-ascent proce-

dure for the general network design problem with connectivity requirements (NDC). This

dual-ascent algorithm is a potential solution technique for the NDLC problem because the

problem is a special type of NDC problem. In this chapter we provide an alternative

dual-ascent procedure (for the NDLC problem) that exploits the improved flow formulation

(model (5.5)) described in Chapter 5.

185
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In computational experiments reported in this chapter, this dual-ascent algorithm has

solved problems with up to 300 nodes and 3000 edges to within 4 percent of optimality.

6.1 Directed Flow Formulation

Formally, we can state the NDLC problem as follows. Given a graph G = (N,E) and a

connectivity requirement ri ∈ (0, 1, 2) for each node, design a network at minimum cost

that contains rst = min(rs, rt) edge-disjoint paths between nodes s and t. We first consider

the NDLC problem without edge replication. Later, we show how to apply a modified

version of the dual-ascent algorithm for situations with edge replication. In this chapter,

we let T1 denote the nodes with connectivity requirement 1, T2 the nodes with connectivity

requirement 2, and T (= T1 ∪ T2) the nodes with nonzero connectivity requirements.

Before developing the dual-ascent algorithm, we first review some of the material pre-

sented in Chapter 5, now in the context of the NDLC problem.

A feasible integer solution to the NDLC problem consists of a single 2-edge-connected

component that contains T2, with trees attached to it. When applied to the 2-edge-

connected network, the Nash-Williams theorem says that we can orient its edges so that

the resulting digraph is strongly connected. In the literature, this result is referred to as

Robbins’ theorem [Rob39].

Theorem 6.1.1 (Robbins) An undirected graph is 2-edge connected if and only if 1 we

can orient its edges so that the resulting directed graph is strongly connected.

Therefore, we can orient the edges in the main 2-edge connected component, i.e., the one

that contains T2, so that it becomes a strongly connected digraph. We can also orient every

tree away from the 2-edge connected component. As a result, the oriented network contains

a directed path from every node with a connectivity requirement of 2 to every other node

with a connectivity requirement. Figure 6-1 illustrates this directing procedure.

Consequently, we formulate the NDLC problem as follows.

Improved undirected flow formulation for the NDLC problem:

Minimize
∑

{i,j}∈E

cijxij (6.1a)

subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−1

1

0

if i = O(k);

if i = D(k); for all i ∈ N and k ∈ K

otherwise;

(6.1b)

1For the only if part, we impose a tacit assumption that the directed graph does not contain both arcs
(i, j) and (j, i).
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Connectivity 2 nodes

Connectivity 1 nodes

Steiner nodes

Figure 6-1: Directing procedure applied to the NDLC problem.

f
k
ij + f

h
ji ≤ xij for all {i, j} ∈ E and k, h ∈ K (6.1c)

xij ≤ 1 for all {i, j} ∈ E (6.1d)

f
k
ij, f

k
ji ≥ 0 for all {i, j} ∈ E and k ∈ K (6.1e)

xij ≥ 0 and integer for all {i, j} ∈ E. (6.1f)

To define the commodities in this model (see Section 5.1.2), we select any node with a

connectivity requirement of 2 as a root node. We then define two types of commodities.

(i) Any node i from T , other than the root node, defines a commodity with the origin as the

root node and with node i as the destination, (ii) Any node i (other than the root) in T2,

defines a commodity with node i as the origin and the root node as the destination.

Alternatively, we can formulate the problem on a digraph. To describe this formulation,

we first convert the undirected network to a directed one D = (N,A) by replacing each

undirected edge {i, j} by two directed arcs (i, j) and (j, i), each with the same cost as the

undirected edge {i, j}. We say that arcs (i, j) and (j, i) are twins. Let yij be 1 if arc

(i, j) is in the design and be 0 otherwise. The following model prescribes the directed flow
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formulation.

Directed flow formulation for the NDLC problem:

Minimize
∑

(i,j)∈A

cijyij (6.2a)

subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−1

1

0

if i = O(k);

if i = D(k); for all i ∈ N and k ∈ K

otherwise;

(6.2b)

f
k
ij ≤ yij for all (i, j) ∈ A and k ∈ K (6.2c)

yij + yji ≤ 1 for all {i, j} ∈ E (6.2d)

f
k
ij, f

k
ji ≥ 0 for all {i, j} ∈ E and k ∈ K (6.2e)

yij ≥ 0 and integer for all {i, j} ∈ A. (6.2f)

As is the case for the minimum spanning tree problem (see Section 3.1), the improved

undirected flow formulation and the directed flow formulation are equivalent models of the

NDLC problem (as mixed integer programs or as relaxed linear programs).2

Like the NDC problem, the flow-based formulation for the NDLC problem can be quite

large; it contains as many as O(|N ||E|) constraints and variables. As a result, solving even

its linear programming relaxation is quite challenging (for some computational experiments

with this LP relaxation see Section 6.6). Therefore, we develop a dual-ascent approach for

the problem.

6.2 Dual-Ascent Procedure

In developing a dual-ascent procedure for the NDLC problem, we draw on many ideas

presented in Section 3.4 for the Steiner branching problem.

We will apply the dual-ascent algorithm to the following dual of the linear programming

relaxation of the directed flow formulation for the NDLC problem.

Dual of directed flow formulation for the NDLC problem:

Maximize
∑

k∈K

v
k
D(k) −

∑

{i,j}∈E

uij (6.3a)

subject to v
k
j − v

k
i ≤ w

k
ij for all (i, j) ∈ A and k ∈ K (6.3b)

2Goemans and Myung [GM93] first showed this result in the context of the Steiner tree problem.
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∑

k∈K

w
k
ij − uij ≤ cij for all (i, j) ∈ A (6.3c)

uij ≥ 0 for all {i, j} ∈ E (6.3d)

w
k
ij ≥ 0 for all (i, j) ∈ A and k ∈ K. (6.3e)

In this dual linear program, v
k
j is the dual variable for the flow balance constraint (6.2b)

at node j for commodity k, w
k
ij is the dual variable for constraint (6.2c), and uij is the

dual variable for constraint (6.2d). Since for each commodity k, one flow balance constraint

in the primal problem (6.2) is redundant, we can choose an arbitrary value for one dual

variable v
k
j . We set v

k
O(k) = 0 for each commodity k ∈ K. In this dual, note that the variable

uij is associated with the edge {i, j} (so uij = uji), but the variable w
k
ij is associated with

the arc (i, j).

For given w
k
ij and uij values, the dual problem separates by commodity. For commod-

ity k, the problem {max v
k
D(k), subject to v

k
j − v

k
i ≤ w

k
ij , for all (i, j) ∈ A} is the dual to a

directed shortest path problem between the nodes O(k) and D(k) on the digraph D with

arc costs w
k
ij . As a result, if we prescribe feasible values for the w and u variables, it is

easy to calculate the shortest path lengths for each subproblem and thereby obtain a dual

solution for that choice of w and u.

To maintain dual feasibility, we need to ensure the solution satisfies constraints (6.3c),

(6.3d) and (6.3e). Let sij be the slack in constraint (6.3c) (i.e., sij = cij + uij −
∑

k∈K w
k
ij).

As before, if sij = 0, we say that the arc is tight, and the auxiliary network is defined by the

tight arcs. We denote the set of tight arcs by Z, and the auxiliary network by DZ = (N,Z).

6.2.1 Preliminaries: A Generalization of Wong’s Algorithm

We first discuss the dual-ascent algorithm with the values of the uij variables fixed at

value 0. We refer to this part of the dual-ascent algorithm as Stage 1. Keeping uij fixed at

value 0 is tantamount to assuming that the formulation does not contain constraint (6.2d).

In that case, Formulation (6.2) is structurally very similar to the directed flow formulation

for the Steiner branching problem (model (3.7) on page 66); Formulation (6.2) contains

additional commodities with the root node as their destination.

This observation suggests a simple dual-ascent strategy to obtain a network that satisfies

all the constraints except (6.2d). For any one of the commodities k ∈ K, identify and

perform a basic dual-ascent step on a loose O(k)–D(k) dicut. (Recall, a loose O(k)–D(k)

dicut is an O(k)–D(k) dicut that does not contain any tight arcs, and a basic dual-ascent

step increases the w
k
ij values for all arcs in a loose dicut until the slack on one of the arcs

becomes zero. By Menger’s theorem, if the auxiliary network does not contain a directed

path from O(k) to D(k), then the digraph contains a loose O(k)–D(k) dicut.) Continue in
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this fashion until for every commodity k, every O(k)–D(k) dicut contains a tight arc. Each

step of this strategy improves the dual objective value, and at termination the auxiliary

network contains a path from the root node to every node with a connectivity requirement

and a path from every node with a connectivity requirement of 2 to the root node.

We consider two dual-ascent strategies for Stage 1. Recall (from Chapter 3), if δ
−(S) is

a loose O(k)–D(k) dicut for some commodity k, we refer to S as an ascent set. A minimal

ascent set is an ascent set that contains no subset of nodes that is an ascent set.

The first dual-ascent strategy is similar to the dual-ascent algorithm for the minimum

cost branching problem and the dual-ascent algorithm for the Steiner branching problem.

In this approach we identify and perform dual-ascent steps on minimal ascent sets in the

auxiliary network until the digraph contains no more ascent sets.

In the second strategy, we initially consider only minimal ascent sets that do not contain

the root node. This approach is equivalent to performing Wong’s algorithm for the Steiner

branching problem on the digraph with the terminal node set T\{root node} (and with

the root as the root node). At the conclusion of this procedure, we obtain a network that

contains a directed path from the root node to every node with a connectivity requirement.

We next perform dual-ascent steps so that the the auxiliary network contains a directed

path from every node with a connectivity requirement of 2 to the root node. That is,

we ensure that the transpose of the auxiliary network contains a Steiner branching with

terminal node set T2\{root node}. We say a set of nodes S is a transpose minimal ascent

set if S is a minimal ascent set in D
T , the transpose3 of the digraph D. That is, δ

+(S)

(the arcs directed out of S in the digraph D) contains no tight arc and no subset of S

contains an outgoing tight arc. We now perform a basic dual-ascent step on the loose dicut

δ
−(N\S) defined by the complement of S.4 In the dual-ascent algorithm, we perform basic

dual-ascent steps on the complement of transpose minimal ascent sets until the digraph

contains no more transpose minimal ascent sets.

There is considerable flexibility in implementing either of the two strategies. In Sec-

tion 6.3 we will discuss several implementation approaches.

6.2.2 Twinless Strongly Connected Components

In this section we characterize the auxiliary network at the end of Stage 1 and use this

characterization to develop a second stage for a dual-ascent algorithm. At the conclusion of

Stage 1, if we use either of the two dual-ascent strategies outlined in the previous section, the

auxiliary network contains a directed path from the root to every node with a connectivity

3DT , the transpose of D, is the digraph DT = (N, AT ) defined by the arc set AT = {(i, j) : (j, i) ∈ A}.
4Observe that the set N\S might not be a minimal ascent set. This illustrates the difference between

the two strategies.
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ba

Figure 6-2: Twin paths.

requirement and from every node with a connectivity requirement of 2 to the root node. As

a result, the nodes of T2 belong to the same strongly connected component of the auxiliary

network. Does the auxiliary network always satisfy the conditions of Robbins’ theorem?

(Remember, typically if the auxiliary network violates some primal constraint, it is possible

to ascend on the dual.)

As the example in Figure 6-2 shows, the answer to this question is no. In this example,

nodes a and b have a connectivity requirement of 2. The auxiliary network has a path from

node a to node b and a path from node b to node a. However, if we replace the directed arcs

by their undirected counterparts, (i.e., replace (i, j), (j, i), or both by a single edge {i, j}),

the network is not 2-edge connected. We refer to the pair of paths from node a to node b

and from node b to node a as twin paths. In general, we say that two paths P and P
′ are

twin paths if P is a path from node i to node j, and P
′ is a path from node j to node i that

uses the reversal of each arc on the path P .

A digraph D = (N,A) is a Twinless Strongly Connected Digraph (TSCD) if for some

subset A
′ of A, the digraph (N,A

′) is strongly connected and does not contain any arc

and its twin. A Twinless Strongly Connected Component (TSCC) of a digraph is a maximal

twinless strongly connected subdigraph of D. Figure 6-3 identifies four TSCCs (that contain

3 or more nodes) in a digraph.

Robbins’ theorem (Theorem 6.1.1) says that a graph is 2-edge connected if and only if

some orientation of it is strongly connected. The statement of the theorem has an implicit

assumption, namely that the digraph contains no arc (i, j) and its twin. Robbins’ theorem

implies that if the auxiliary network satisfies the connectivity requirements for the problem,

then it must have a TSCC that contains the root node and all other nodes that have a

connectivity requirement of 2. We will try to find violations to this characterization in the

auxiliary network and use the violations to improve the dual objective function.

We first derive some structural properties of TSCCs in a strongly connected digraph D.

We will use these properties to design a dual-ascent procedure and efficient implementations

of the procedure. For ease of exposition, we introduce some additional notation. The TSCC

induced subdigraph of D is the digraph D
∗ obtained by contracting each TSCC in D to a

single node. We replace parallel arcs that the contraction creates by a single arc. For any

digraph D = (N,A), the associated undirected graph G = (N,E) is a graph with edges

E = {{i, j} : (i, j) ∈ A and/or (j, i) ∈ A}. If (i, j) belongs to A, we refer to the edge {i, j}

in E as an image of this arc.
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TSCC

TSCC

TSCC

Twinless Strongly
Connected Component

(TSCC)

Figure 6-3: Twinless Strongly Connected Components. Bold arcs show twinless arcs that
form a strongly connected component.
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Figure 6-4: Proof that the paths P and P
′ are twin paths.

We first prove a useful property concerning the structure of directed paths between

TSCCs in a strongly connected digraph.

Theorem 6.2.1 (Twin-arc) Let D = (N,A) be any strongly connected digraph and let

D
∗ be the TSCC induced subgraph of D. The associated undirected graph of D

∗ is a tree.

Moreover, every edge in the associated tree is the image of a pair of twin arcs (and no other

arcs) of D.

Proof: First, consider the TSCC induced subdigraph D
∗ (note that since D is strongly

connected, so is D
∗). We show that D

∗ contains a twin path and no other path between

any two nodes. As a result, the associated undirected graph of D
∗ is a tree. We will establish

this result by contradiction. Assume the digraph D
∗ contains a path P from a node s to

a node t and a path P
′ from node t to node s that are not twin paths. Let arc (i, q) be

the first arc on P
′ that does not have a twin arc on the path P and let j be the first node

following node i on the path P
′ that lies on the path P (see Figure 6-4). Then all nodes on

P
′ between nodes i and j and all nodes on P between nodes j and i form a TSCC. But, a

TSCC in the contracted digraph corresponds to a TSCC in the original digraph, and so D
∗

is not the TSCC induced subdigraph of D. Thus, we have a contradiction.

We now show that every pair of twin arcs in D
∗ corresponds to a pair of twin arcs and

no other arcs of D. As a result, every edge in the associated tree is the image of a pair of

twin arcs and no other arcs of D. Consider any two adjacent nodes in D
∗, say nodes a and t.

Node t and node a correspond to TSCCs (possibly single nodes) in the expanded digraph

(i.e., D). We refer to the TSCC node a corresponds to as TSCC(a), and the TSCC node t

corresponds to as TSCC(t). If the original (expanded) digraph contains two nontwin arcs

(i, j) with i ∈ TSCC(a) and j ∈ TSCC(t) and (k, l) with k ∈ TSCC(t) and l ∈ TSCC(a),

then TSCC(a), TSCC(t) and the arcs (i, j) and (k, l) form a larger TSCC, a contradiction.

Therefore, only a single arc (a, t) connects TSCC(a) to TSCC(t) and only a single arc, the

twin of arc (a, t), joins TSCC(t) to TSCC(a).

Since D
∗, the TSCC induced subdigraph of the strongly connected digraph D, has the

structure of a bidirected tree (that is, a tree with twin arcs in place of each edge [see
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Figure 6-5]); we refer to D
∗ as the TSCC tree. (Each node of this tree corresponds to a

TSCC in D). We also refer to every TSCC that corresponds to a leaf node of the TSCC

tree as a leaf TSCC, and refer to the arcs (a, b) and (b, a) directed into and out of a leaf

TSCC in D
∗ as twin leaf arcs.

Figure 6-5b shows the TSCC tree of the strongly connected digraph shown in Figure 6-

5a. In this figure, nodes a, c, e and g correspond to leaf TSCCs. The pair of arcs (a, b) and

(b, a) are twin leaf arcs in the TSCC tree.

Theorem 6.2.1 implies the following result concerning the relationship between a strongly

connected digraph and its associated undirected graph.

Theorem 6.2.2 The associated undirected graph G of a strongly connected digraph D is

2-edge connected if and only if D is a twinless strongly connected digraph.

Proof: If D is a twinless strongly connected digraph, then its associated undirected graph

G is 2-edge connected. Otherwise, deleting some edge from G disconnects the graph. In D,

this edge corresponds to some arc or that arc and its twin. But since eliminating these arcs

disconnects D, it is not twinless strongly connected, a contradiction.

To complete the proof, we show that if the associated undirected graph G is 2-edge

connected, then D is a twinless strongly connected digraph. We claim the TSCC tree is a

single node. If the TSCC tree contained 2 or more nodes, then its associated undirected

graph (a tree) has at least one edge. But then G is not 2-edge connected (deleting this edge

from the associated undirected graph of the TSCC tree disconnects G), a contradiction.

However, the TSCC tree is a single node only when D is a twinless strongly connected

digraph.

Theorem 6.2.1 and Theorem 6.2.2 imply the following characterization of TSCCs in a

strongly connected digraph.

Corollary 6.2.3 The 2-edge-connected components of the associated undirected graph G of

a strongly connected digraph D correspond in a one to one fashion with the TSCCs of D.

6.2.3 Dual-Ascent and TSCCs

In this section we show how to perform dual-ascent using TSCCs. Suppose we identify

all TSCCs in the auxiliary network. We refer to any TSCC that contains a node with a

connectivity requirement of 2 as an admissible TSCC.

We can now improve the dual objective as follows. Consider the strongly connected

component, which we denote by DS , of the auxiliary network that contains the nodes

of T2. Assume DS contains more than one admissible TSCC; otherwise, the auxiliary

network satisfies the constraints of Formulation (6.2). By Theorem 6.2.1, DS contains a
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Figure 6-5: Illustration of Theorem 6.2.1, Theorem 6.2.2, and Corollary 6.2.3. (a) Strongly
connected digraph D, (b) D

∗ the TSCC induced subdigraph of D (the TSCC tree), (c) As-
sociated undirected graph of D

∗, (d) Associated undirected graph of D.
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pair of twin arcs5 (a, b) and (b, a) whose deletion divides it into two strongly connected

components. Moreover, we can choose this pair of twin arcs so that both the resulting

strongly connected components contain an admissible TSCC. Let D
ab
S and D

ba
S denote the

two strongly connected components of DS obtained by deleting the arcs (a, b) and (b, a).

The arc (a, b) is directed into D
ab
S and the arc (b, a) is directed into D

ba
S .

Let Sba be the set of all nodes, including the nodes of D
ba
S , that have a directed path to

any node in D
ba
S in the auxiliary network after we delete arc (b, a) (recall that the auxiliary

network DZ = (N,Z) contains more nodes and arcs than DS). Similarly, let Sab be the set

of all nodes, including the nodes of D
ab
S , that have a directed path to D

ab
S in the auxiliary

network6 after we delete arc (a, b). Let Q = {δ−(Sba) ∪ δ
−(Sab)}\{(a, b), (b, a)} be the set

of all arcs other than arcs (a, b) and (b, a) that are directed into the sets Sab and Sba.

Without loss of generality, assume the root node is in Sba and let t be a node from T2

in Sab. Let k and h be the commodities with origin node t and destination node t. Note

that, from equation (6.3c) even though arcs (a, b) and (b, a) are tight we can increase both

w
k
ab and w

h
ba by ǫ for any pair of commodities k and h by increasing uab by ǫ.

Suppose we increase w
k
ij by ǫ for all arcs in δ

−(Sba) and w
h
ij by ǫ for all arcs in δ

−(Sab).

Then, in order to maintain feasibility, we need to increase uab by ǫ. We have thus increased

the shortest path lengths (vk
D(k) and v

h
D(h)) for both commodities k and h by ǫ, and the dual

objective increases by ǫ (since uab has a negative coefficient in the objective function). We

can improve the dual in this fashion using the sets Sba and Sab until an arc in Q becomes

tight. At this point, any further increase in the dual objective using the sets Sba and Sab is

no longer possible.

In this dual-ascent step, we increase w
k
ij by ǫ for all arcs in δ

−(Sba) and w
h
ij by ǫ for

all arcs in δ
−(Sab). Observe that the slack of an arc in Q that is in δ

−(Sba) ∩ δ
−(Sab)

decreases by 2ǫ, whereas the slack of an arc in Q that is in exactly one of the two dicuts

δ
−(Sba) and δ

−(Sab) decreases by ǫ. Consequently, we define the effective slack of arc (i, j)

in δ
−(Sba) ∩ δ

−(Sab) as sij/2, and the effective slack of arc (i, j) in exactly one of the two

dicuts δ
−(Sba) and δ

−(Sab) as sij. The arc in Q that becomes tight in the dual-ascent step

is the one with minimum effective slack.

Since it is possible to perform dual-ascent by considering the pair of sets Sab and Sba,

and they are defined by deleting twin arcs (a, b) and (b, a), we refer to the sets Sab and Sba

as twin ascent sets. Notice that a pair of twin ascent sets satisfies the following properties:

(i) they contain a node from T2, (ii) they have a single tight arc directed into them, and

(iii) moreover, the tight arc directed into one of the sets is the twin of the arc directed into

5These are the twin arcs of the TSCC tree.
6Some nodes could be in both set Sba and set Sab. However, observe that no node in T2 belongs to both

set Sba and set Sab since this situation would violate Theorem 6.2.1.
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the other set. We refer to the dual-ascent step on the twin ascent sets as a twin dual-ascent

step.

In Stage 2 of the dual-ascent algorithm, we perform twin dual-ascent steps on twin

ascent sets until the network has no more twin ascent sets. This situation occurs when all

nodes with a connectivity requirement of 2 are in a single TSCC. At the conclusion of these

dual-ascent steps, the auxiliary network contains a digraph that satisfies the constraints in

Formulation (6.2), and the dual solution provides a lower bound on the optimal solution to

the NDLC problem.

Minimal Twin Ascent Sets (Leaf TSCC Rule)

We now discuss a rule for selecting twin ascent sets in Stage 2 that is reminiscent of the

minimal ascent set rule used in previous chapters. In the dual-ascent algorithm we consider

only twin ascent sets Sab and Sba that are minimal, in the sense that one of the sets Sab and

Sba is minimal; it does not contain any member set of a twin ascent set pair as a subset.

We call sets Sab and Sba minimal twin ascent sets and refer to this scheme as the minimal

twin ascent set rule.

The following property relates leaf TSCCs to twin minimal ascent sets.

Property 6.2.4 Consider the strongly connected component DS of the auxiliary network

that contains the nodes of T2. Iteratively delete (peel of) leaf nodes that are not admissible

TSCCs from the TSCC tree, so that every leaf TSCC in the resulting TSCC tree is an

admissible TSCC. Then twin ascent sets Sab and Sba obtained by deleting twin leaf arcs

(a, b) and (b, a) of this tree are minimal twin ascent sets. Furthermore, all minimal twin

ascent sets of the digraph can be obtained in this fashion.

Proof: First, observe from Theorem 6.2.1 that deleting a leaf TSCC that is not admissible

does not destroy the twin path between two admissible TSCCs in the TSCC tree. Conse-

quently, none of the twin arcs deleted from the original TSCC tree defines a pair of twin

ascent sets.

Therefore, from now on we assume that all leaf TSCCs of the TSCC tree are admissible.

Observe that deleting any pair of twin arcs of this TSCC tree splits DS into two strongly

connected components, both of which contain TSCCs. As a result, (deleting) every pair of

twin arcs of the TSCC tree defines a pair of twin ascent sets. We now show that deleting

only leaf twin arcs defines minimal twin ascent sets, proving the assertion of the theorem.

Suppose we delete twin leaf arcs (a, b) and (b, a). Without loss of generality assume,

that TSCC(a) (the TSCC that contains node a in the TSCC tree) is a leaf TSCC. Sba is

defined as the set of all nodes, including the nodes of D
ba
S , that have a path to any node in
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D
ba
S in the auxiliary network after we delete arc (b, a). We claim that Sba is minimal. This

assertion is true because Sba contains only one TSCC, TSCC(a).

Now suppose we delete a pair of twin arcs (a, b) and (b, a) that are not twin leaf arcs.

Then, the resulting twin ascent set pair, Sab and Sba, is not minimal. Since (a, b) and (b, a)

are not twin leaf arcs, Sba and Sab each contain at least two TSCCs from the TSCC tree.

Furthermore, both the twin ascent sets Sab and Sba contains at least one (admissible) leaf

TSCC. By considering the twin leaf arcs adjacent to a leaf TSCC in Sab we obtain a pair

of twin ascent sets, and one is a subset of Sab. Similarly, by considering the twin leaf arcs

adjacent to a leaf TSCC in Sba, we obtain a pair of twin ascent sets, and one is a subset

of Sba. Thus, Sab and Sba are not minimal twin ascent sets.

Since every leaf TSCC of the TSCC tree (we assume every leaf TSCC of the tree is

admissible) characterizes a pair of minimal twin ascent sets, the twin leaf arcs adjacent to

the TSCC define the minimal twin ascent sets, we also refer to the minimal twin ascent set

rule as the leaf TSCC rule.

These results provide us with all the required ingredients for creating a dual-ascent

algorithm for the NDLC problem. However, there are still a number of issues to be resolved:

in Section 6.3, we discuss implementation issues; in Section 6.4 we describe methods for

obtaining a primal solution. We conclude this section by providing a formal description of

the dual-ascent algorithms and then illustrating them with an example.

6.2.4 Dual-Ascent Algorithms

In Stage 1, Dual-ascent algorithm 1 performs basic dual-ascent steps on minimal ascent

sets.

Dual-ascent algorithm 1

1. (Initialization) Set

(a) w
k
ij = 0 for all (i, j) ∈ A and k ∈ K.

(b) sij = cij for all (i, j) ∈ A.

(c) Z = {(i, j) : (i, j) ∈ A; sij = 0} (the set of zero-slack arcs).

(d) uij = 0 for all {i, j} ∈ E.

(e) v
k
i = 0 for all i ∈ N and k ∈ K.

(f) L =
∑

k∈K v
k
D(k) −

∑

{i,j}∈E uij (the lower bound).

2. (Stage 1) While the digraph contains a minimal ascent set S,
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(a) Select a node l ∈ S that has a connectivity requirement and identify the com-

modity k associated with it (i.e., D(k) = l, O(k) 6∈ S). Set N(k) to be the set of

nodes that have a directed path to node l.

(b) Find minimum slack.

• ǫ = min
{(i,j):(i,j)∈δ−(N(k))}

sij.

(c) Update relevant dual variables, slacks, the auxiliary network DZ = (N,Z), and

the lower bound L.

• w
k
ij = w

k
ij + ǫ ∀ (i, j) ∈ δ

−(N(k)),

• sij = sij − ǫ ∀ (i, j) ∈ δ
−(N(k)),

• v
k
i = v

k
i + ǫ ∀ i ∈ N(k),

• L = L + ǫ,

• Z = Z ∪ {(i, j) : (i, j) ∈ δ
−(N(k)) and sij = 0}.

3. (Stage 2) While the auxiliary network DZ contains a pair of minimal twin ascent

sets Sab and Sba,

(a) Without loss of generality, assume the root node belongs to Sab and let t be

a node in T2 that belongs to Sba. Select commodities k and h with D(k) = t

(O(k) = root) and O(h) = t (D(h) = root).

(b) Find minimum effective slack.

• s̄ij =

{ sij

2 if (i, j) ∈ δ
−(Sab) ∩ δ

−(Sba),

sij otherwise,

• ǫ = min
{(i,j):(i,j)∈{δ−(Sba)∪δ−(Sab)}\{(a,b),(b,a)}}

s̄ij.

(c) Update relevant dual variables, the auxiliary network DZ , and the lower bound

L.

• w
k
ij = w

k
ij + ǫ ∀ (i, j) ∈ δ

−(Sba),

• w
h
ij = w

h
ij + ǫ ∀ (i, j) ∈ δ

−(Sab),

• s̄ij = s̄ij − ǫ {δ−(Sba) ∪ δ
−(Sba)}\{(a, b), (b, a)},

• sij =

{

2s̄ij

s̄ij

if (i, j) ∈ δ
−(Sab) ∩ δ

−(Sba),

otherwise,

• uab = uab + ǫ,

• v
k
i = v

k
i + ǫ ∀ i ∈ (Sba),

• v
h
i = v

h
i + ǫ ∀ i ∈ (Sab),

• L = L + ǫ,

• Z = Z ∪ {(i, j) : (i, j) ∈ {δ−(Sba) ∪ δ
−(Sab)}\{(a, b), (b, a)} and sij = 0}.
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The second algorithm, Dual-ascent algorithm 2, differs from Dual-ascent algorithm 1 in

Stage 1. Dual-ascent algorithm 2 first considers minimal ascent sets that do not contain the

root and performs basic dual-ascent steps on them. When the digraph has no more ascent

sets that do not contain the root, the algorithm considers transpose minimal ascent sets

and performs basic dual-ascent steps on the complement of these sets.

Dual-ascent algorithm 2

1. (Initialization) Identical to Dual-ascent algorithm 1.

2. (Stage 1)

(a) (Stage 1a) While the digraph contains a minimal ascent set S that does not

contain the root node,

i. Select a node l ∈ S that has a connectivity requirement and identify the

commodity k associated with it (i.e., D(k) = l). Set N(k) to be the set of

nodes that are reachable in the auxiliary network on a directed path from

node l.

ii. Find minimum slack.

• ǫ = min
{(i,j):(i,j)∈δ−(N(k))}

sij.

iii. Update relevant dual variables, slacks, the auxiliary network DZ , and the

lower bound L.

• w
k
ij = w

k
ij + ǫ ∀ (i, j) ∈ δ

−(N(k)),

• sij = sij − ǫ ∀ (i, j) ∈ δ
−(N(k)),

• v
k
i = v

k
i + ǫ ∀ i ∈ N(k),

• L = L + ǫ,

• Z = Z ∪ {(i, j) : (i, j) ∈ δ
−(N(k)) and sij = 0}.

(b) (Stage 1b) While the digraph contains a transpose minimal ascent set S,

i. Select a node l ∈ S that has a connectivity requirement and identify the

commodity k associated with it (i.e., O(k) = l). Set N(k) to be the set of

nodes in the auxiliary network that node l has a directed path to.

ii. Find minimum slack.

• ǫ = min
{(i,j):(i,j)∈δ+(N(k))}

sij.

iii. Update relevant dual variables, slacks, the auxiliary network DZ , and the

lower bound L.

• w
k
ij = w

k
ij + ǫ ∀ (i, j) ∈ δ

+(N(k)),

• sij = sij − ǫ ∀ (i, j) ∈ δ
+(N(k)),
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Figure 6-6: Data for dual-ascent example. (a) Nodes a, c and d have connectivity require-
ment 2. (b) The undirected graph converted into a directed graph.

• v
k
i = v

k
i + ǫ ∀ i ∈ N\N(k),

• L = L + ǫ,

• Z = Z ∪ {(i, j) : (i, j) ∈ δ
+(N(k)) and sij = 0}.

3. (Stage 2) Identical to Dual-ascent algorithm 1.

In these algorithms, if our interest is only in the value of the dual objective, that is the

lower bound, we need not store the v and w variables. The slacks and uij values of the

arcs provide the necessary information to update the lower bound, auxiliary networks, slack

and uij values. Consequently, we can store the slacks, uij variables, and digraph data in

O(|N | + |A|) space.

6.2.5 Example

To illustrate the two dual-ascent algorithms, consider the example shown in Figure 6-6. In

this example, nodes a, c and d have a connectivity requirement of 2, and in the flow model

we select node a as the root node.

Figure 6-7 illustrates Dual-ascent algorithm 1. The algorithm first performs Stage 1.

The sets {a}, {c} and {d} are minimal ascent sets. Stage 1 begins by performing a basic

dual-ascent step on {a}. As a result, arc (b, a) becomes tight. The dual objective increases

by 3 units to L = 3. The algorithm then performs a basic dual-ascent step on the minimal

ascent set {c}. As a result, arc (b, c) becomes tight, and the dual objective increases by 3

units to L = 6. The algorithm then performs a basic dual-ascent step on minimal ascent

step {d}. As a result, arcs (c, d) and (g, d) become tight and the dual-objective increases by

6 units to L = 12. Figure 6-7a shows the digraph at the conclusion of these iterations. At

this point, the sets {a, b} and {c, b} are minimal ascent sets. The algorithm performs a basic

dual-ascent step on the minimal ascent set {a, b}. Arc (e, a) becomes tight and the dual
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Figure 6-7: Example of Dual-ascent algorithm 1 for NDLC problem. Numbers next to arcs
are slacks; bold arcs have zero slack.
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objective increases by 1 unit to L = 13. The dual-ascent algorithm then performs a basic

dual-ascent step on the minimal ascent set {c, b}. Arc (f, b) becomes tight and the dual

objective increases by 2 units to L = 15. Figure 6-7b shows the digraph at the conclusion

of these two iterations. At this juncture, sets {a, b, e, f} and {c, b, f} are minimal ascent

sets. The dual-ascent algorithm performs a basic dual-ascent step on the minimal ascent set

{a, b, e, f}. Arc (c, b) becomes tight and the dual objective increases by 2 units to L = 17.

The dual-ascent algorithm then performs a basic dual-ascent step on the minimal ascent

set {c, b, f}. Arcs (a, b), (e, c) and (d, c) become tight, and the dual objective increases by

1 unit to L = 18. Figure 6-7c shows the digraph at the conclusion of these two iterations.

At this point, the network has no more ascent sets. Therefore, Stage 1 is complete and the

auxiliary network contains a strongly connected component that contains nodes a, c, and d.

The dual-ascent algorithm now performs Stage 2. At the start of Stage 2, the auxiliary

network contains three admissible TSCCs—{a}, {c} and {d}. TSCCs {a} and {d} satisfy

the leaf TSCC rule. The dual-ascent algorithm selects admissible TSCC(d),7 and identifies

the twin leaf arcs (c, d) and (d, c). Therefore, it sets Scd = {d, g} and Sdc = {a, b, c, f} and

then performs a twin dual-ascent step on this twin ascent set pair. As a result arc (g, f)

becomes tight, and the dual objective increases by 1 unit to L = 19. Figure 6-7d shows the

digraph at the conclusion of this iteration. TSCCs {a} and {d} satisfy the leaf TSCC rule.

The dual-ascent algorithm selects TSCC(d) and identifies the twin leaf arcs (c, d) and (d, c).

It sets Scd = {d, g} and Sdc = {a, b, c, f, g} and then performs a twin dual-ascent step on this

twin ascent set pair. As a result, arc (f, g) becomes tight, and the dual objective increases

by 3 units to L = 22. Figure 6-7e shows the digraph at the conclusion of this iteration.

At this point, TSCCs {a} and {d} satisfy the leaf TSCC rule. The dual-ascent algorithm

selects TSCC(d) and identifies the twin leaf arcs (c, d) and (d, c). It then sets Scd = {d, g, f}

and Sdc = {a, b, c, f, g} and performs a twin dual-ascent step considering this twin ascent

set pair. As a result, arcs (b, f) and (d, g) become tight, and the dual objective increases

by 3 units to L = 25. Figure 6-7f shows the digraph at the conclusion of this iteration.

At this point, TSCCs {a} and {b, c, d, f, g} satisfy the leaf TSCC rule. The dual-ascent

algorithm selects admissible TSCC(a) and identifies the leaf twin arcs (b, a) and (a, b). The

dual-ascent algorithm sets Sba = {a, e} and Sab = {b, c, d, e, f, g} and then performs a twin

dual-ascent step on this twin ascent set pair. As a result, arcs (a, e) and (c, e) become tight

and the dual objective increases by 4 units to L = 29. Figure 6-7g shows the digraph at the

conclusion of this iteration.

At this point, the nodes of D form a single TSCC. As a result, the dual-ascent algorithm

terminates with a lower bound of 29 units.

Figure 6-8 illustrates Dual-ascent algorithm 2. The algorithm first performs Stage 1a.

7Again, we let TSCC(i) denote the TSCC that contains node i.
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Figure 6-8: Example of Dual-ascent algorithm 2 for NDLC problem.
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In this stage, it considers minimal ascent sets that do not contain the root node, namely

the sets {c} and {d}. The algorithm first performs a basic dual-ascent step on minimal

ascent set {c}. As a result, arc (b, c) becomes tight and the dual objective increases by 3

units to L = 3. The algorithm then performs a basic dual-ascent step on minimal ascent

step {d}. Arc (c, d) and (g, d) become tight and the dual-objective increases by 6 units

to L = 9. Figure 6-8a shows the digraph at the conclusion of these two iterations. At

this point, the set {c, b} is the only minimal ascent that does not contain the root. The

dual-ascent algorithm performs a basic dual-ascent step on the minimal ascent set {c, b}.

As a result, arcs (a, b), (f, b), (e, c) and (d, c) become tight and the dual objective increases

by 3 units to L = 12. Figure 6-8b shows the digraph at the conclusion of this iteration. At

this juncture, every ascent set contains the root node.

The algorithm now performs Stage 1b. In this stage, the dual-ascent algorithm identifies

transpose minimal ascent sets. The only transpose minimal ascent set is {c, d}. The dual-

ascent algorithm performs a basic dual-ascent step on the complement of set {c, d}, i.e.,

{a, b, e, f, g}. The arc (c, b) becomes tight and the dual objective increases by 3 units to

L = 15. Figure 6-8c shows the digraph at the conclusion of this iteration. At this point,

the only transpose minimal ascent set is {b, c, d}. The dual-ascent algorithm performs a

basic dual-ascent step on the complement of set {b, c, d}, i.e., {a, e, f, g}. As a result, the

arcs (b, a), (c, e), (b, f) and (d, g) become tight. The dual objective increases by 3 units

to L = 18. Figure 6-8d shows the digraph at the conclusion of these two iterations. At

this point, the network contains no transpose minimal ascent sets. Therefore, Stage 1b is

complete, and the auxiliary network contains a strongly connected component that contains

nodes a, c and d.

The dual-ascent algorithm now performs Stage 2. At the start of Stage 2, the auxiliary

network contains three admissible TSCCs—{a}, {c} and {d}. TSCCs {a} and {d} satisfy

the leaf TSCC rule. The dual-ascent algorithm selects admissible TSCC(d) and identifies

the twin leaf arcs (c, d) and (d, c). The dual-ascent algorithm sets Scd = {d, g} and Sdc =

{a, b, c, f} and then performs a twin dual-ascent step considering this twin ascent set pair.

As a result, arcs (g, f) and (f, g) become tight, and the dual objective increases by 4 units

to L = 22. Figure 6-8e shows the digraph at the conclusion of this iteration. At this point,

TSCCs {a} and {b, c, d, f, g} satisfy the leaf TSCC rule. The dual-ascent algorithm selects

admissible TSCC(a) and identifies the twin leaf arcs (a, b) and (b, a). The dual-ascent

algorithm identifies the sets Sba = {a} and Sab = {b, c, d, e, f, g}. It then performs a twin

dual-ascent step considering this pair of twin ascent sets. As a result, arcs (a, e) and (e, a)

become tight, and the dual objective increases by 4 units to L = 26. Figure 6-8f shows the

digraph at the conclusion of this iteration.

At this point the nodes of D form a single TSCC. As a result the dual-ascent algorithm
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terminates with a lower bound of 26 units.

This example also illustrates the effectiveness of the leaf TSCC rule. Suppose at the

start of Stage 2, Dual-ascent algorithm 2 deletes twin arcs (b, c) and (c, b) (note, they are

not twin leaf arcs). The dual-ascent algorithm sets Sbc = {e, c, d, g} and Scb = {a, b, f}, and

performs a twin dual-ascent step on this twin ascent set pair. As a result, arcs (a, e), (e, a),

(f, g) and (g, f) become tight and the dual objective increases by 4 units to L = 22. The

auxiliary network is feasible to the problem. Therefore, the lower bound is less than that

provided by the leaf TSCC rule. Figure 6-8g shows the auxiliary network at the conclusion

of Stage 2 without the leaf TSCC rule.

This example also seems to indicate that Dual-ascent algorithm 1 provides a better lower

bound than Dual-ascent algorithm 2. However, as our computational experiments indicate

(see Section 6.6), neither algorithm is more effective in all situations.

6.3 Implementing the Dual-Ascent Algorithms

In this section we show how to efficiently implement the dual-ascent algorithms. We show

how to identify the TSCC tree in linear time (and thus identify leaf TSCCs in linear time)

and then show how to implement the dual-ascent algorithms so that they run in O(|A|2)

time and O(|N | + |A|) space. (To avoid confusion we will describe the complexity of the

algorithms in terms of the number of arcs |A| in D, instead of the number of edges |E|

in G. To obtain the complexity of these algorithms in terms of |E| simply replace |A| by

|E| [since |A| = 2|E|].)

In this section we draw on many ideas and implementations described in Section 3.4.3

for Wong’s dual-ascent algorithm for the Steiner branching problem. Consequently, to

avoid repetition, much of our discussion is brief and refers to the appropriate material in

Chapter 3.

6.3.1 Stage 1

Dual-Ascent Algorithm 1

In Stage 1 of this dual-ascent algorithm, we perform dual-ascent steps on minimal ascent

sets in the digraph. Recall that in Section 3.4.3 we described an algorithm for identifying

root components, and used the root components to identify minimal ascent sets.

For convenience we review the definition of a root component for the Steiner branching

problem. Recall in the Steiner branching problem, given a directed graph D = (N,A), a root

node r, and a set T (r 6∈ T ) of terminal nodes, we wish to design a minimum cost network

that contains a directed path from the root node r to every node in T . If the auxiliary

network contains a directed path from node i to node j and no directed path from node j
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Root-Components
1. for i = 0 to |N | − 1
2. pred[i] = −1;
3. color[i] = green;
4. root[i] = 0;
5. for i = 0 to |N | − 1
6. if ((color[i] = green) and (req[i]=1))
7. then root[i] = 1;
8. DFS-Visit(i);

Figure 6-9: Algorithm to find root components.

to node i, then we say that node i dangles from node j. A strongly connected component R

is a root component if it contains a member of T and no member of T ∪ {r} dangles from a

member of R. Let SR = {j : there is a directed path in DZ from node j to a node in R}.

We showed (in Section 3.4.2) that the set SR corresponding to root component R is a

minimal ascent set. Furthermore, we showed these are the only minimal ascent sets in the

digraph.

We now modify slightly the definition of the root component to include strongly con-

nected components that contain the root node. A strongly connected component R is a

root component if it contains a node from T (= T1 ∪ T2), the set of nodes with a connec-

tivity requirement greater than zero, and no member of T dangles from a member of R.

An identical argument to that in Section 3.4.2 shows that the sets SR associated with root

components are minimal ascent sets, and are the only minimal ascent sets in the digraph.

Since the nodes in a root component are strongly connected, it is sufficient to identify

the digraph obtained by contracting all strongly connected components. If a strongly con-

nected component in DZ contains a node from T , then the node is a required node in the

contracted network. We assume that the contracted network is topologically sorted (recall,

a digraph with no strongly connected components can be topologically sorted). We note

that algorithm Root-Components, which we present again in Figure 6-9 for convenience,

identifies all root components in this topologically sorted digraph.

Consequently, we could implement Stage 1 for Dual-ascent algorithm 1 in four different

ways.

Implementation 1: This implementation identifies a single root component and performs

a basic dual-ascent step on the minimal ascent set associated with it. The arguments in
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Section 3.4.3 (on page 76) show that this implementation requires O(|A|min(|T ||N |, |A|))

time and O(|N | + |A|) space.

Implementation 2: In this implementation, we find minimal ascent sets S1, . . . , Sp corre-

sponding to all root components. We then sequentially perform a basic dual-ascent step on

each of the sets S1, . . . , Sp. (The example in Figure 6-7 is similar to this implementation.)

The correctness of this implementation follows from Proposition 3.4.2.8 Consequently, this

implementation requires O(|A|min(|T ||N |, |A|)) time and O(|T ||N | + |A|) space.

Implementation 3: In this implementation we consider all minimal ascent sets simul-

taneously, and perform an ascent step on them simultaneously. This procedure requires

O(|T ||A|min(|T ||N |, |A|)) time and O(|T ||N | + |A|) space.

Implementation 4: This implementation is identical to the round robin rule presented

for the Steiner branching problem. Initially, for each commodity the dual-ascent algorithm

sets N(k) = {D(k)}. In a dual-ascent step on commodity k, the algorithm identifies the

arc (i∗, j∗) in δ
−(N(k)) with minimum slack (in case of ties, it selects any one of the arcs

with minimum slack). The algorithm then adds exactly one node, the node i
∗, to the set

N(k). We say that a commodity k is active if O(k) is not in N(k); otherwise, commodity k is

inactive. Note that for an inactive commodity k, the auxiliary network contains a path from

O(k) to D(k). The algorithm considers the commodities in a fixed order and cycles through

the commodities, performing dual-ascent steps for active commodities, in this fixed order.

As mentioned in Chapter 3, Balakrishnan, Magnanti and Wong [BMW89] have shown that

the round robin rule simulates the minimal ascent set rule for the Steiner branching problem.

The same result (with no change to their proof) is also true here. That is, the round robin

rule simulates the minimal ascent set rule for Stage 1 of the dual-ascent algorithm. Arguing

similarly as in Section 3.4.3 and noting that the number of commodities is at most 2|T |

shows that this implementation requires O(|T ||N ||A|) time and O(|T ||N | + |A|) space.

Dual-Ascent Algorithm 2

This dual-ascent algorithm performs Stage 1 in two parts—Stage 1a and Stage 1b.

First, in Stage 1a, it uses dual-ascent to construct an auxiliary network that has a path

from the root node to every other node with a connectivity requirement. Then, in Stage 1b,

it uses dual-ascent to ensure that the auxiliary network has a path from every connectivity

requirement 2 node to the root.

8Proposition 3.4.2 asserts that if S is a minimal ascent set, then, after a sequence of basic dual-ascent
steps, S is either a minimal ascent set or no longer an ascent set (i.e., it has a tight arc directed into it).
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Stage 1a is equivalent to Wong’s algorithm for the Steiner branching problem presented

in Section 3.4.2, with the root node as the root and the nodes in T\{root node} as the

required nodes. Consequently, we could implement it in any of the four ways described in

Section 3.4.3.

Stage 1b is equivalent to Wong’s algorithm on the transpose of the digraph and can

therefore be implemented identically as Stage 1a. As an example, we briefly describe how

the round robin rule could be implemented for Stage 1b. (To obtain the steps of the round

robin rule, we simply transform the operations of the round robin rule from the transpose

of the network to the network.) Initially, for each commodity the dual-ascent algorithm

sets N(k) = {O(k)} for all commodities with D(k) = root node. In a dual-ascent step on

commodity k, the algorithm identifies the arc (i∗, j∗) in δ
+(N(k)) with minimum slack (in

case of ties, it selects any one of the arcs with minimum slack). The algorithm then adds

exactly one node, the node i
∗, to the set N(k). The algorithm considers the commodities

(with D(k) = root node) in a fixed order and cycles through the commodities, performing

dual-ascent steps for active commodities, in this fixed order.

As a result, assuming similar implementations for Stage 1a and Stage 1b,

1. Implementation 1 requires O(|A|min(|T ||N |, |A|)) time and O(|N | + |A|) space,

2. Implementation 2 requires O(|A|min(|T ||N |, |A|)) time and O(|T ||N | + |A|) space,

3. Implementation 3 requires O(|T ||A|min(|T ||N |, |A|)) time and O(|T ||N |+ |A|) space,

and

4. Implementation 4 requires O(|T ||N ||A|) time and O(|T ||N | + |A|) space.

6.3.2 Stage 2

At the end of Stage 1 the auxiliary network contains (i) a directed path from the root node

to every other node with a connectivity requirement, and (ii) a directed path from every

node with a connectivity requirement of 2 to the root node.

In Stage 2 of the dual-ascent algorithm, we identify minimal twin ascent sets and perform

twin dual-ascent steps on them. To identify these minimal ascent sets, we need to identify

all the twinless strongly connected components of DS , the strongly connected component

of the auxiliary network that contains the nodes of T2. Recall, from Section 3.4.3 (see

Figure 3-5 on page 74), we can identify all strongly connected components in a digraph in

linear time. Therefore we can identify DS from DZ (the auxiliary network) in linear time.

In this section we describe a linear time algorithm to identify all twinless strongly connected

components of DS .
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Identification of Twinless Strongly Connected Components

Recall from Corollary 6.2.3 that to identify the TSCCs of a strongly connected digraph, it is

sufficient to identify all 2-edge-connected components of its associated undirected graph. We

can convert DS to its associated undirected graph GS in O(|N | + |A|) time. A well-known

method for identifying all 2-edge-connected components is based on depth first search (see

exercise 23.2 in [CLR90], or exercise 3.7 in [Eve79]). For completeness, in Figure 6-10 we

describe the algorithm.

A bridge is an edge whose removal disconnects a graph. Algorithm Bridges identifies all

bridges in an undirected graph. By deleting the bridges of a graph, we obtain the 2-edge-

connected components of a graph. Notice that the bridges correspond to the image of edges

of the TSCC tree. As a result, the algorithm Bridges contains the necessary information to

construct the TSCC tree.

Algorithm Bridges performs depth first search. The arrays pred, color, start, and

finish are the same as in algorithm DFS (described in Section 3.4.3). Recall that the pred

array defines the depth first search forest Dpred = (N,Apred), with

Apred = {(pred[i], i) : i ∈ N andpred[i] 6= −1}.

Note that the depth first forest defines a directed graph even though we perform depth first

search on an undirected graph. The forest contains a directed path from the root of each

tree to all the nodes in that tree. The start array indicates the order in which the DFS

algorithm first examined the nodes. That is, if start[i] < start[j], then the algorithm visits

node i before node j. The low array provides us with the necessary information to identify

those edges that are bridges.

To help the reader understand this algorithm, we briefly sketch a proof that shows

Bridges is correct. For more details, refer to [Eve79]. For convenience, assume that the graph

is connected. In this analysis, we orient the edges {i, j} of the graph that do not appear as

arcs on the depth first search forest, orienting a nonforest edge {i, j} from node i to node j

if start[i] > start[j] (i.e., orient it in the direction that the depth first search algorithm

first traversed edge {i, j}). Let L(i) denote the set of nodes that can be reached from node i

via a directed path on the depth first search forest followed by at most one nonforest arc.

Define low[i] = minj∈L(i) start[j]. If {k, l} is a bridge, then deleting it disconnects the

graph. Let G
k
{k,l} and G

l
{k,l} denote the two components obtained by deleting bridge {k, l}:

G
k
{k,l} contains node k and G

l
{k,l} contains node l. Suppose, in depth first search, we first

reach node l by traversing {k, l}, i.e., pred[l] = k. Then all the nodes in G
l
{k,l} must be

unscanned when we first reach node l; otherwise some edge of the network besides {k, l}

connects G
k
{k,l} and G

l
{k,l}. Therefore, low[l] = start[l]. If {k, l} is not a bridge, i.e., it lies
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Bridges(G)
1. for i ∈ N

2. pred[i] = −1;
3. color[i] = green;
4. time = 0;
5. for i ∈ N

6. if (color[i] = green)
7. then x =DFS-Visit(i);
8. Output list of bridges.

DFS-Visit(i)
1. color[i] = yellow.
2. time = time + 1;
3. start[i] = time;
4 low[i] = time;
5. while i’s adjacency list is nonempty
6. select a node j from i’s adjacency list;
7. if (color[j] = green)
8. then pred[j] = i;
9. low[i] = min(low[i],DFS-Visit(j));
10. else if ((color[j] = yellow) and (pred[i] 6= j))
11. then low[i] = min(low[i],start[j]);
12. color[i] = red;
13. time = time + 1;
14. finish[i] = time;
15. if ((pred[i] 6= −1) and (low[i]=start[i]))
16. then add {i,pred[i]} to the list of bridges;
15. return(low[i]).

Figure 6-10: Algorithm to find bridges of a graph.
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on a cycle, one of its ancestors9 is in L(l). Therefore, low[l] < start[l]. The algorithm uses

this property of the low array to identify bridges.

Since the algorithm Bridges performs depth first search, it has a worst case running

time of O(|N | + |E|). Constructing the TSCC tree from the algorithm Bridges is a linear

time procedure, requiring O(|N | + |A|) time. Note that once we have the TSCC tree, we

can identify all twin leaf arcs and leaf TSCC’s in O(|N | + |A|) time.

Methods for Implementing Stage 2

We now describe three methods for implementing Stage 2. Note that we can reduce the

size of the digraph D in the dual-ascent procedure by contracting every twinless strongly

connected component in the auxiliary network DZ into a single node in the digraph D. If

this contraction creates parallel arcs, we retain the arc with the smallest slack. Although

contraction does not improve the complexity analysis of any of the implementations we

discuss, it might prove to be useful in practice, especially when solving large-scale problems.

Implementation 1: This implementation first identifies a single leaf TSCC on the TSCC

tree and performs a twin dual-ascent step on the minimal twin ascent set associated with

it. (This is similar to the examples in Figure 6-7 and 6-8.) The algorithm continues in this

fashion (it identifies a leaf TSCC (either the same one or a different one) on the TSCC tree

and performs a twin dual-ascent step on the minimal twin ascent sets associated with the

leaf TSCC) until the TSCC tree is a single node.

We can identify the twin ascent set pair Sab and Sba associated with twin leaf arcs (a, b),

and (b, a) as follows. Consider the digraph D
ab
Z = (N,Z\{(a, b), (b, a)}) (i.e., the digraph

obtained by deleting arcs (a, b) and (b, a) from DZ). By performing depth first search from

TSCC(a) on the transpose of D
ab
Z , we can identify Sba, and by performing depth first search

from TSCC(b) on the transpose of D
ab
Z we can identify Sab. Therefore, we can identify

the minimal twin ascent sets associated with a leaf TSCC in O(|A|) (since Z ⊆ A) time.

Performing a twin dual-ascent step requires identifying the arc with minimum effective slack,

a computation that requires O(|A|) time if we sequentially scan all the arcs in the digraph.

The dual-ascent algorithm performs at most |A| iterations because, after |A| iterations, all

the arcs in the original digraph D are tight. Consequently, the dual-ascent algorithm is

an O(|A|2) procedure. If we do not store the dual variables v and w, this implementation

requires O(|N |+|A|) space to store the adjacency lists of the digraph, the auxiliary network,

and the slacks. It simultaneously keeps track of two dicuts, and requires O(|N |) space to

do so.

9An ancestor of node i is any node that can reach node i on the depth first forest Dpred.
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Implementation 2: In this implementation, we find all minimal twin ascent sets (i.e., the

twin ascent sets corresponding to every pair of twin leaf arcs). We then sequentially perform

a twin dual-ascent step on each of the twin sets. We continue by again finding the TSCC

tree, identifying all minimal twin ascent sets, and sequentially performing twin dual-ascent

steps on them. The correctness of this implementation follows from the following property.

Proposition 6.3.1 Suppose Sab and Sba are a pair of minimal twin ascent sets. Then after

a sequence of twin dual-ascent steps, Sab and Sba either form a pair of minimal twin ascent

sets or are no longer twin ascent sets (i.e., one of Sab and Sba has two tight arcs directed

into it).

Proof: By definition, one of the two set Sab and Sba is minimal. Suppose Sab is minimal.

Then all nodes with with a connectivity requirement of 2 in Sab are in TSCC(b). Therefore

any twin ascent set that contains TSCC(b) must contain Sab. Consequently as long as Sab

and Sba are twin ascent sets, they are a pair of minimal twin ascent sets.

If the dual-ascent algorithm attempts to perform a twin dual-ascent step on the pair Sab

and Sba and they are not twin ascent sets, then one of them has a tight arc in Z\{(a, b), (b, a)}

directed into it. The algorithm finds that the minimum effective slack of some arc in

{δ−(Sba) ∪ δ
−(Sab)}\{(a, b), (b, a)} is zero and makes no change to the dual variables and

lower bound.

If the TSCC tree contains p twin leaf arc pairs, then we can identify the minimal

twin ascent set pairs corresponding to every pair of twin leaf arcs of the TSCC tree in

O(p|A|) steps (finding the minimal twin ascent set pair for one twin leaf arc pair requires

O(|A|) time). The algorithm now performs p twin dual-ascent steps, one for each of the

p minimal twin ascent set pairs, each requiring O(|A|) steps. Therefore, p iterations require

O(|A|+p|A|+p|A|) steps. So on the average, each of the p iterations requires O(|A|) steps.

Now, arguing similarly as in Implementation 1, we can prove that this implementation

requires O(|A|2) time. Since this implementation needs to simultaneously keep track of

at most O(|T2|) dicuts (the maximum number of admissible TSCCs is |T2|, and so the

maximum number minimal twin ascent set pairs is |T2|), it requires O(|T2||N |) space.

Implementation 3: This implementation identifies the minimal twin ascent sets corre-

sponding to each pair of twin leaf arcs and then performs the dual-ascent steps simultane-

ously on all minimal twin ascent sets. We can determine all minimal twin ascent set pairs in

O(|T2||A|) steps (the maximum number of minimal twin ascent set pairs is |T2|). To deter-

mine the arc that first becomes tight, for each arc we need to determine the rate at which

its slack decreases. We can do so by sequentially scanning the arcs and determining how

many ascent sets an arc is directed into. Therefore, each iteration requires O(|T ||A|) time.

Arguing similarly as in Implementation 1 shows that this implementation is an O(|T ||A|2)
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procedure. Since this implementation needs to simultaneously keep track of O(|T2|) dicuts,

it requires O(|T2||N |) space.

In this section we showed how to identify all TSCCs in linear time (and how to iden-

tify a single minimal twin ascent set pair in linear time). We then gave several simple

implementations for each stage of the dual-ascent algorithm. Our analysis shows that if

we use Implementation 1 for both Stage 1 and Stage 2, the dual-ascent algorithm requires

O(|N |+ |A|) space and O(|A|2) time. However, we believe that by using more sophisticated

data structures and analysis, it might be possible to improve the running times of these

algorithms.

6.4 Primal Heuristics

At the conclusion of the dual-ascent procedure, the auxiliary network DZ contains a solution

that is feasible to Formulation (6.2). It might be possible to delete some arcs from the

auxiliary network and retain a feasible solution to Formulation (6.2).

We consider two classes of heuristics—drop heuristics and exchange heuristics.10 In

our implementation we first perform drop heuristics to obtain a feasible solution (that is

minimal), and then apply the improvement heuristics to this solution.

6.4.1 Drop Heuristics

In this section we describe two LIFO drop heuristics. Recall that in a LIFO drop heuristic,

we sequentially consider the arcs in the opposite order that they became tight (i.e., the

opposite order that the algorithm adds them to the auxiliary network).

The first heuristic sequentially considers the arcs of the auxiliary network in a LIFO

order and deletes them if their deletion does not create an infeasible solution. However,

because the NDLC problem is an undirected problem, we might be able to improve on this

solution. Figure 6-11 shows a solution obtained by using a LIFO drop rule. In this example,

nodes c and d have a connectivity requirement of 2. Observe that the only directed path

from node c to node d includes the path from node b to node a, and the only directed

path from node d to node c includes the path from node b to node a. However, in the

undirected network, we can delete the path from node b to node a. Therefore, at the end

of the directed LIFO drop heuristic, we consider the associated undirected graph of the

heuristic solution and sequentially delete edges in any order, deleting an edge if it retains

the solution’s feasibility.

10An exchange heuristic is a local search heuristic that considers a feasible solution and improves it by a
combination of adding and deleting edges from the solution.
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connectivity 2 nodes

a b

c

d

Figure 6-11: Nodes c and d are connected via the path from b to a in the directed graph.
The arcs on the path from b to a can be deleted if the network is made undirected.

In the second LIFO drop heuristic, we consider the associated undirected graph of the

auxiliary network and perform a LIFO drop heuristic on it. To perform the LIFO drop

heuristic, we construct the LIFO list as follows. We replace arc (a, b) or (b, a) or both on

the LIFO list by edge {i, j}. If the auxiliary network contains some twin arcs, then some

edges will appear twice on the LIFO list. We can consider deleting these edges based on

when the algorithm added the former of (i, j) and (j, i) to the auxiliary network or added

the latter of these arcs to the network. We refer to these procedures as the LIFO first and

LIFO last rules.

To implement either drop heuristic, we need to check if the solution is feasible when we

drop an arc (or edge). To do so, we can use the algorithm Bridges to ascertain whether all

nodes with a connectivity requirement of 2 belong to the same TSCC, and the algorithm

DFS on the directed graph to ensure that the network contains a path from the root node

to every node with a connectivity requirement of 1. As a result, we can check feasibility of

a solution in O(|A|) time, thus implementing the drop heuristic in O(|A|2) time (since we

can drop no more than |A| arcs).

6.4.2 Exchange Heuristics

At the conclusion of either of the two drop heuristics, the resulting network design is a

minimal undirected network satisfying the connectivity requirements (i.e., if we delete an

edge from the network design, it is no longer feasible). To obtain further improvements, we

consider exchange heuristics. We adapt and apply some of the improvement heuristics—

one-opt, two-opt and two-for-one—that Monma and Shallcross [MS89] have developed con-
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Figure 6-12: One-opt exchange.

sidered heuristics for the NDLC problem (actually, they consider the node connectivity ver-

sion, but their methods are also applicable for the edge-connectivity version of the NDLC

problem).

One-Opt Heuristic

The one-opt heuristic attempts to remove an edge {x, y} from the solution and replace it by

another edge {x, z} not in the solution. We make the replacement if the resulting network

is feasible and has a lower cost. Figure 6-12a illustrates a one-opt exchange. Sometimes,

as illustrated in Figure 6-12b, a one-opt exchange creates a solution that is not minimal.

That is, if we remove edge {i, h} from the network and add edge {i, k}, then we can also

delete edges {f, g} and {g, h}. To delete such edges, we use a drop heuristic (i.e., drop

edges in any order, deleting an edge if it retains the solution’s feasibility) after applying a

prespecified number of successful one-opt changes.

Two-for-One

In this heuristic, we replace two “back to back” cycles by a single cycle if the resulting

solution has a lower cost. Figure 6-13a illustrates a two-for-one exchange heuristic. In this

example, we remove the edges {a, b} and {e, h}, replacing them by a single edge {b, h}.
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Figure 6-13: (a) Illustration of a two-for-one exchange. (b) Illustration of a two-opt ex-
change.
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Two-Opt

In this heuristic, we replace two edges {a, b} and {c, d} in a cycle by the crossing edges {a, d}

and {b, c} to form a new cycle (if the resulting solution is cheaper). Figure 6-13b illustrates

a two-opt exchange.

6.5 Extensions

To this point, we have considered a model that prohibits edge replication. With replication,

a design could use some edges two or more times. However, problems with nonnegative

edge costs always have an optimal solution that does not replicate an edge more than

twice since we can delete additional copies of the edge (beyond two) while retaining the

solution’s feasibility. Therefore, to model the NDLC problem with edge replication, we

delete constraints (6.1d) and (6.2d) from models (6.1) and (6.2) for any edge {i, j} that is

replicable.

What are the consequences of this change to the dual-ascent algorithms? If an edge

{i, j} is replicable in the undirected problem, a solution to the directed problem that con-

tains twin arcs (i, j) and (j, i) is feasible. Therefore, in the dual-ascent algorithm, if the

auxiliary network contains twin arcs (i, j) and (j, i) and edge {i, j} is replicable, we contract

nodes i and j. (If this contraction creates parallel arcs, we retain the arc with the smallest

slack.) With this change, the dual-ascent applies to the NDLC problem that permits edge

replication. We note that both the drop heuristics and exchange heuristics are applicable

to this problem.

Although the NDLC problem is undirected, we have developed the dual-ascent algo-

rithm on a directed network. Consequently, this dual-ascent algorithm is also applicable

to the Steiner 1-arc-connected subdigraph problem (a directed network design problem).11

This problem can be formulated in a similar fashion to Formulation 6.2, except without

constraint (6.2d) (i.e., yij + yji ≤ 1).12 Consequently, the dual-ascent algorithm is applica-

ble to this problem as well. Recall that the auxiliary network at the conclusion of Stage 1

satisifies all of the primal constraints except yij + yji ≤ 1. Since the formulation for the

Steiner 1-arc-connected subdigraph problem does not contain this constraint, the auxiliary

network at the conclusion of Stage 1 is a feasible solution for this problem. Therefore, we

11In the Steiner 1-arc-connected subdigraph problem, we are given a directed network D = (N, A), arc
costs, and a set of nodes T that must be strongly connected. We need to design a minimum cost strongly
connected network that contains the nodes in T .

12Select some node in T as the root node and create commodities as follows. For each node i from T ,
other than the root node, create two commodities: one with the root node as the origin, node i as the
destination, and a requirement of 1; and one with node i as the origin, the root node as the destination, and
a requirement of 1.
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do not need to apply Stage 2 of the dual-ascent algorithm for this problem. Of the primal

heuristics we described only the directed LIFO drop heuristic is applicable to the Steiner

1-arc-connected subdigraph problem; the others were designed specifically for undirected

problems.

6.6 Computational Experiments

In this section we report on the application of the dual-ascent procedure to a set of NDLC

problems.

We implemented both Dual-ascent algorithm 1 and Dual-ascent algorithm 2 as well

as the primal heuristics. To implement Stage 1 of both dual-ascent algorithms, we used

Balakrishnan, Magnanti and Wong’s round robin rule. To implement Stage 2 of both dual-

ascent algorithms, we used Implementation 1. That is, we identified a single TSCC that

satisfies the leaf TSCC rule and performed a dual-ascent step on the pair of sets associated

with this TSCC. To obtain a primal solution, we first applied the two LIFO heuristics.

We then applied the one-opt heuristic, the two-for-one heuristic, and the two-opt heuristic

sequentially to the solution of the two LIFO heuristics (that is, we applied the two-for-one

heuristic to the solution of the one-opt heuristic, applied the two-opt heuristic to the solution

of the two-for-one heuristic and so on). We repeated this sequence (one-opt, two-for-one,

and two-opt) until the method no longer improved the solution. We coded our algorithms

in C, and performed all our tests on a Sun SPARCstation 10 (Model 41) workstation (a 96

MIPS machine).

We would have liked to test our dual-ascent algorithm on some real-world problems.

However, because problems in the telecommunications industry appear to be classified, we

instead tested the dual-ascent algorithm and primal heuristics on some randomly generated

problems with similar characteristics to existing telecommunication network design prob-

lems. From this experience, we hope to learn how the dual-ascent method performs and to

classify its strengths and weaknesses.

6.6.1 Random Problem Generator

Our random problem generator creates NDLC test problems. It uses the following four

input parameters: the number of nodes |N |, the number of edges |E|, the number of nodes

with a connectivity requirement of two |T2|, and the number of nodes with a connectivity

requirement of one |T1|. It then randomly selects |N | nodes on a 100 × 100 grid and

arbitrarily creates |E| edges between these nodes. To ensure that the problems are feasible,

it also creates a cycle that contains all the nodes. The generator randomly selects the nodes

with a connectivity requirement of 1, and the nodes with a connectivity requirement of 2.
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Nodes Edges |T1| |T2|

36 65 12 24

77a 112 65 14

39 71 31 8

46 98 36 10

116 173 108 8

116 173 108 8

116 173 84 32

aTable I from [GMS92a] contains this incorrect
data (65 + 14 6= 77).

Table 6.1: Grötschel, Monma and Stoer’s [GMS92a] test data.

If the edge costs are to be Euclidean, then the cost of an edge {i, j} on this graph is the

integer part of the Euclidean distance between nodes i and j. Otherwise, the cost of an edge

is a random integer between 1 and 100. We also used this generator to test our dual-ascent

algorithm on the Steiner tree problem (as reported in Section 3.4.3).

6.6.2 Results

We limited our computational tests to problems with Euclidean edge costs, since telecom-

munication applications typically have this structure.

Test Problems that Resemble Telecommunication Data

We attempted to generate test problems that closely resembled those in the telecommunica-

tions industry. Grötschel, Monma and Stoer [GMS92a] solved seven connectivity problems

for the Regional Bell Operating Companies. Table 6.1 shows the data for these seven

problems. In these test problems the edge costs were Euclidean.

To simulate these test problems, we generated problems with 40 nodes and 80 edges, and

problems with 120 nodes and 180 edges. In these problems, all the nodes have a nonzero

connectivity requirement. For the 40 node problems, we varied the fraction of nodes in T2

from 20 to 60 percent, and for the 120 node problems, we varied the fraction of nodes in T2

from 10 to 30 percent.

Tables 6.2, 6.3 and 6.4 summarize our computations on problems with these characteris-

tics. The first table summarizes the computational performance of Dual-ascent algorithm 1

and the primal heuristics. The second summarizes the computational performance of Dual-

ascent algorithm 2 and the primal heuristic. The third combines the results of Dual-ascent

algorithm 1 and Dual-ascent algorithm 2. It selects the best upper bound and best lower

bound generated by the two dual-ascent algorithms. The columns LIFO1 and LIFO2 indi-
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cate the performance of the two LIFO heuristics (for LIFO2 we used the LIFO first rule).

The column Best shows the performance of the best primal solution generated (i.e., the best

solution after the exchange heuristics were applied). The column Running Time measures

the running time in CPU seconds of the algorithm. It includes the time for input, output,

the dual-ascent phase, and the primal heuristics. For the combined algorithm in Table 6.4,

the running time is the sum of the running times of Dual-ascent algorithm 1 and Dual-ascent

algorithm 2. The columns Ave Gap and Max Gap measure the gap between the upper and

lower bounds, calculated as Upper bound − Lower bound
Lower bound × 100.

The results indicate that the average gaps of LIFO2 seem to be marginally better than

those of LIFO1. For several problem instances, the maximum gap of LIFO2 exceed those of

LIFO1. Dual-ascent algorithm 2 performs slightly better than Dual-ascent algorithm 1. The

computational performance of the combined algorithm is worth noting. Both the average

gaps and the maximum gap values are significantly lower than Dual-ascent algorithm 1,

and a little lower than Dual-ascent algorithm 2. Typically, one algorithm generates a better

upper bound and the other algorithm generates a better lower bound. For the 40 node

problems, the average gaps vary from 5 percent to 11 percent, and the maximum gaps

vary from 9 percent to 16 percent. For the 120 node problems, the average gaps vary from

4 percent to 8 percent, and the maximum gaps vary from 5 percent to 10 percent. The error

gap increases as the fraction of nodes in T2 increases. The running time for these problems,

whose structure is typical of telecommunication applications, varied from about 3 seconds

for 40 node problems to about 30 seconds for 120 node problems.

To obtain a better understanding of the error gaps, we solved some of the test problems

with an LP solver. We developed a GAMS model for Formulation (6.2) and solved the

linear programs with CPLEX version 2.1 on a Sun SPARCstation 10 (Model 41). The

linear programming models are fairly large. For instance the mixed integer programming

model of a problem with 40 nodes, 80 edges, |T1| = 16, and |T2| = 24, contains as many as

8320 continuous variables, 160 binary variables, and 10480 constraints.13 We solved only

the 40 node problems using GAMS/CPLEX because CPLEX was unable to find an optimal

solution (to the LP) for the 120 node problems in a reasonable amount of computational

time (24 hours). We used the dual-simplex method to solve the LPs, since it was 10-15 times

faster than the simplex method for these problems. Table 6.5 shows the results of this study.

The running time for GAMS/CPLEX is quite large. The average running time varies from

around 290 seconds to 1372 seconds, and increases as the fraction of nodes in T2 increases.

The columns Ave Gap and Max Gap for the Heuristic-LP Gap measure the gap between the

heuristic solution and LP solution value, calculated as Upper bound − LP solution value
LP solution value

×

13In general model (6.2) contains 2|E| binary variables, 2|E|(2(|T2| − 1) + |T1|) continuous flow variables,
and |E| + (2(|T2| − 1) + |T1|)(2|E| + |N |) constraints.
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Size Terminal Nodes Trials LIFO1 LIFO2 Best Running Timea

Ave Max Ave Max Ave Max Ave Max

(|N |, |E|) (|T1|, |T2|) Gap Gap Gap Gap Gap Gap Time Time

(32,8) 10 7.10% 10.03% 6.59% 10.43% 6.29% 9.03% 1.4 1.8

(40,80) (24,16) 10 12.91% 19.12% 12.25% 19.65% 11.44% 18.13% 1.35 1.82

(16,24) 10 14.35% 20.80% 13.98% 20.80% 13.86% 20.80% 1.42 1.71

(108,12) 10 4.77% 7.52% 4.71% 6.60% 4.35% 6.13% 9.62 13.89

(120,180) (96,24) 10 7.82% 10.53% 7.50% 8.89% 7.10% 8.64% 13.78 24.25

(84,36) 10 9.64% 11.45% 9.48% 12.22% 9.03% 11.45% 16.68 23.36

aSeconds on a Sun SPARCstation 10 (Model 41).

Table 6.2: Computational experiments with Dual-ascent algorithm 1.



6
.6

C
o
m

p
u
ta

ti
o
n
a
l
E
x
p
e
ri

m
e
n
ts

2
2
3

Size Terminal Nodes Trials LIFO1 LIFO2 Best Running Timea

Ave Max Ave Max Ave Max Ave Max

(|N |, |E|) (|T1|, |T2|) Gap Gap Gap Gap Gap Gap Time Time

(32,8) 10 5.30% 8.77% 5.54% 10.44% 4.65% 8.77% 1.34 1.64

(40,80) (24,16) 10 11.17% 19.78% 10.39% 19.78% 9.61% 18.07% 1.83 2.29

(16,24) 10 12.52% 18.60% 11.38% 14.34% 11.38% 14.34% 1.54 2.22

(108,12) 10 4.27% 6.38% 4.26% 6.01% 3.88% 5.20% 10.36 13.78

(120,180) (96,24) 10 7.44% 11.13% 7.01% 8.93% 6.58% 8.67% 13.67 20.04

(84,36) 10 9.08% 11.79% 8.98% 10.64% 8.42% 10.86% 18.29 22.80

aSeconds on a Sun SPARCstation 10 (Model 41).

Table 6.3: Computational experiments with Dual-ascent algorithm 2.
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Size Terminal Nodes Trials Combined Algorithm Running Time

Ave Max Ave Max
(|N |, |E|) (|T1|, |T2|) Gap Gap Time Time

(32,8) 10 4.56% 8.77% 2.74 3.4
(40,80) (24,16) 10 8.73% 16.50% 3.18 3.79

(16,24) 10 11.25% 14.18% 2.96 3.79

(108,12) 10 3.79% 5.20% 19.98 27.67
(120,180) (96,24) 10 6.39% 8.51% 27.45 44.49

(84,36) 10 8.17% 10.52% 34.96 44.96

Table 6.4: Combining Dual-ascent algorithm 1 and Dual-ascent algorithm 2.

Terminal Trials GAMS/CPLEX Heuristic-LP Gap LP-Dual-Ascent Gap
Nodes Ave Max Ave Max Ave Max

(|T1|, |T2|) Time Time Gap Gap Gap Gap

(32,8) 10 290.56 507.27 1.75% 3.91% 2.66% 4.55%
(24,16) 10 934.84 1753.33 3.23% 8.85% 5.02% 6.64%
(16,24) 10 1372.45 1913.83 3.43% 5.09% 7.00% 9.39%

Table 6.5: Comparison of LP solution with lower and upper bounds of 40 node problem.

100. The columns Ave Gap and Max Gap for the LP-Dual-Ascent Gap measure the gap

between the lower bound generated by the dual-ascent algorithm and the LP solution value,

calculated as LP solution value − Lower bound
LP solution value × 100. The average Heuristic-LP Gap

varies from less than 2 percent to 3.5 percent, while the maximum gap varies from about

4 percent to 9 percent. These results show that although the error gaps between the primal

feasible solution and the dual-ascent algorithm are substantial (over 11 percent on average

for one problem class), the heuristic solution is typically within 4 percent of optimality.

The LP-Dual Ascent Gap is larger than the Heuristic-LP Gap. It varies from 3 percent

to 7 percent increasing as the fraction of nodes in T2 increases. We will discuss this issue

further in the next section.

Other Computational Experiments

We performed two other computational experiments. In the first, we varied the fraction of

Steiner nodes, i.e., nodes with a connectivity requirement of 0. In these tests, we generated

problems with 100 nodes and a 1000 edges and varied the fraction of Steiner nodes from

25 percent to 75 percent. In each of these problems, we held the ratio |T2|/|T1| fixed at 0.10.

Table 6.6 summarizes these computations. The average error gap is close to 4 percent,

and increases slightly as the number of Steiner nodes increases. The maximum error gap
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Size Steiner Nodes Trials Combined Algorithm Running Time

Ave Max Ave Max
(|N |, |E|) Gap Gap Time Time

25 10 3.72% 5.63% 23.67 44.11

(100,1000) 50 10 4.04% 5.29% 16.67 27.42

75 10 4.14% 14.84% 10.29 17.04

Table 6.6: Performance as a function of the number of Steiner nodes.

Size Terminal Nodes Trials Combined Algorithm Running Time

Ave Max Ave Max
(|N |, |E|) (|T1|, |T2|) Gap Gap Time Time

(100,1000) (90,10) 10 3.92% 6.13% 26.60 49.91

(200,2000) (180,20) 10 3.59% 4.82% 174.45 287.55

(300,3000) (270,30) 10 4.17% 6.00% 957.91 1416.53

Table 6.7: Performance as a function of problem size.

increases from 5 percent to 14 percent.14 The running time of the algorithm decreases

significantly as the number of Steiner nodes increases. We believe that our use of the round

robin rule implementation of Stage 1 leads to this behavior. We will elaborate on this issue

shortly.

Our second experiment varied the problem size. For these experiments, we generated

test problems with 100 to 300 nodes, and 1000 to 3000 edges. For each problem, T2 contained

10 percent of the nodes, and the problem contains no Steiner nodes. Table 6.7 summarizes

these computations. The running time of the algorithm increases significantly from 26

seconds for the 100 node problems to 957 seconds for 300 node problems. The average

error gap was around 4 percent and the maximum error gap was around 8 percent. There

does not appear to be any noticeable relationship between the average error gap and the

problem size. The error gaps decreased slightly from the 100 to 200 node problems and

increased slightly from the 200 to 300 node problems. The mixed integer programming

models for these problems are huge. For example, the mixed integer programming model of

the 300 node problems contain 6000 binary constraints, 1,968,000 continuous flow variables,

and 2,069,400 constraints. As an experiment, we attempted to solve the LP relaxations of

one of these models using GAMS/CPLEX. The model was so large, however, that the

problem exceeded the memory capacity (i.e., the RAM) of the workstation.

14Only one problem had an error gap greater than 10 percent.
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6.6.3 Comments

In their computational work, Grötschel, Monma and Stoer were able to successfully solve

the problems shown in Table 6.1 to optimality. They used the underlying network structure

to reduce the problem size. For example, many parts of the telecommunication networks

they considered were trees, and thus could be “forced” into the solution (i.e., fixed). Conse-

quently, they were able to reduce the size of the problems shown in Table 6.1. For example,

they reduced the 116 node problem to a problem with 39 nodes and 86 edges. Our test

problems do not have this structure because we ensure that all the nodes of the graph lie

on a cycle. Also, except for a few crossing edges, the networks they considered were usu-

ally planar. Thus, the “real” problems have far richer structure that we could conceivably

exploit.

We now elaborate on two issues. First, we consider the round robin rule. For con-

venience, we restate the rule as applied to Dual-ascent algorithm 1. Initially, for each

commodity the dual-ascent algorithm sets N(k) = {D(k)}. In a dual-ascent step for com-

modity k, the algorithm identifies the arc (i∗, j∗) in δ
−(N(k)) with the minimum slack (in

case of ties, it selects any one of the arcs with the minimum slack). The algorithm then adds

exactly one node, the node i
∗, to the set N(k). The algorithm considers the commodities in

a fixed order and cycles through the commodities, performing dual-ascent steps for active

commodities in this fixed order.

Consider a root component, and let L be the set of active commodities whose destination

is in this root component. For the moment, assume that N(k) = N(l) for any k, l ∈ L.

When the dual-ascent algorithm performs a dual-ascent step on the first commodity it

considers from the set L, say commodity k, it selects an arc (i∗, j∗) in δ
−(N(k)) with the

minimum slack, reduces its slack to zero, and adds node i
∗ to N(k). In subsequent steps,

for each active commodities l ∈ L, the algorithm finds that δ
−(N(l)) has a tight arc (i∗, j∗)

directed into it. Therefore, it performs a dual-ascent step that does not change the dual

variables, and only adds node i
∗ to N(l). We refer to a dual-ascent iteration that does not

change the dual variables as a degenerate dual-ascent iteration. The algorithm continues to

perform degenerate dual-ascent steps until N(k) = N(l) for all k, l ∈ L.

The dual-ascent algorithm performs degenerate dual-ascent iterations in another sce-

nario. Suppose the dual-ascent algorithm adds D(l) to N(k) for some pair of commodi-

ties k and l (we are not assuming that their destinations lie in the same root component).

Then, if N(l) contains some nodes that are not in N(k), the algorithm performs degenerate

dual-ascent iterations on N(k) until all the nodes that N(l) contains are in N(k). (This

is true because D(l) ∈ N(k), and so the auxiliary network contains a directed path from

all the nodes in N(l) to D(k).) As the number of commodities in the model increases, the

number of dual-ascent iterations that do not improve the dual objective increase rapidly.
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Therefore, the running time of the dual-ascent algorithm increases as the number of Steiner

nodes decreases, and also increases sharply with problem size (since the number of com-

modities is proportional to the number of required nodes). Consequently, as mentioned in

Chapter 3, we believe Implementations 1, 2, and 3, might provide better running times for

Stage 1, especially the Implementations 1 and 3, that strictly increase the lower bound in

every dual-ascent step.

Why might the performance of the dual-ascent algorithm deteriorates as the fraction of

nodes in T2 increases? On a careful examination of the dual-ascent algorithm, we found

that there are situations when v
k
i > v

k
j and both w

k
ij and w

k
ji are greater than zero. Notice

that if v
k
i > v

k
j , we can set w

k
ij = 0 and w

k
ji = v

k
i − v

k
j , i.e., reduce the w values, while

retaining the dual solution’s feasibility. However, as a result, some tight arcs might become

loose, and so the auxiliary network might no longer be feasible. This situation presents

us with an opportunity to apply the dual-ascent algorithm again and increase the lower

bound. Arguing identically as we did for Wong’s algorithm (see Section 3.4.2), we can show

that at the conclusion of Stage 1, w
k
ij = max(0, vk

j − v
k
i ) for all commodities. Therefore,

the violations to w
k
ij = max(0, vk

j − v
k
i ) occur in Stage 2 (and thus for commodities with

destinations in T2). In some recent research [Rag94], we have made nontrivial modifications

to the dual-ascent algorithm to ensure that w
k
ij = max(0, vk

j −v
k
i ) for all commodities k ∈ K

and arcs (i, j) ∈ A. We believe that, when implemented, the computational performance

of this version of the dual-ascent algorithm will improve upon our results, especially for

problems with a large fraction of nodes in T2.

6.7 Concluding Remarks

In this chapter, using a directed flow model that is equivalent to the improved models

presented in Chapter 5, we developed a new dual-ascent algorithm for the network design

problem with low connectivity constraints. This algorithm generalizes Wong’s dual-ascent

algorithm for the Steiner branching problem.

Our algorithm is based upon several concepts from both the optimization and computer

science communities. In Chapter 5 we showed how to improve formulations for the uni-

tary network design problems (which includes the NDLC problem). Much of this work was

ground deeply in ideas from the mathematical programming literature. In this chapter our

emphasis was on developing an efficient dual-ascent algorithm. To that end, we drew upon

several ideas and concepts from the graph theory and computer science literature. In par-

ticular, we introduced a graphical structure called twinless strongly connected components,

and used them to identify ascent directions for the dual to the LP relaxation of the directed

flow model.
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Our computational results are quite encouraging. We have quickly solved NDLC prob-

lems that are an order of magnitude larger than anyone else has solved in the literature.

For problems with a small fraction of requirement 2 nodes (those in T2), our code per-

forms relatively well, with an average error gap of about 6 percent when the fraction of

required nodes in T2 is less than 20 percent. As the fraction of nodes in T2 increases to

about 60 percent, the average gaps between the upper and lower bounds generated by the

dual-ascent algorithm increase to about 11 percent. However, as compared to the optimal

LP solution, the heuristic solution is typically within 3-4 percent of optimality, indicating

that this heuristic procedure is reasonably good. Further developments to this code, as

suggested in the previous section, should improve its performance (both its average error

gaps and its running time).



Chapter 7

A Strong Formulation for the

Network Design Problem with

Connectivity Requirements

In the course of this thesis we have described several models for the network design prob-

lem with connectivity requirements (NDC) and its special cases. Our starting point was

the well-known cutset and undirected flow formulations (models (1.1) and (1.2)). By using

a directing procedure, for the unitary NDC problem, we improved upon these formula-

tions. This development raises the following question. Can we develop better models for

nonunitary NDC problems by directing them?

In this chapter we first study the Steiner forest problem, a special case of the NDC

problem. Recall that in this problem we are given a graph G = (N,E) and node sets

T1, T2, . . . , TP with Ti ∩ Tj = φ for all node set pairs (i 6= j). We wish to design a graph at

minimum cost that connects the nodes in each node set (possibly by including multiple node

sets in any connected component of the graph). There are several reasons for studying the

Steiner forest problem. First, it is an important network design problem with applications,

for example, in VLSI design (see [LMSL92]). Perhaps more importantly, strong models for

the Steiner forest problem lead to significantly improved models for the nonunitary NDC

problem. The main contribution of this chapter is a strong formulation for the Steiner forest

problem, and its generalization as a strong directed model for the NDC problem.

To our knowledge, the model we present in this chapter is the first directed model for the

Steiner forest problem in the literature. For the Steiner forest problem, we are aware of only

the well-known cutset formulation and the undirected flow model presented in Chapter 1.

For the NDC problem with general edge-connectivity requirements, Balakrishnan, Magnanti

and Mirchandani [BMM94a] described an enhanced cutset formulation that is stronger than

229
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the cutset model (for the Steiner forest problem, their formulation is equivalent to the cutset

formulation). We will briefly compare the enhanced cutset model with the directed model

for the NDC problem that we present in this chapter.

The strong formulation for the Steiner forest problem also leads to a stronger formulation

for a more general multi-level network design problem. In the two-level network design

problem, we are given a network with two facility types available for each edge—primary

and secondary—and a partition of the nodes into two types—primary nodes and secondary

nodes. In this scenario, primary edges are more expensive than secondary edges. We wish

to design a minimum cost connected network that connects the primary nodes to each other

by primary edges. A more general version of this problem splits the primary nodes into

primary sets T1, . . . , TP with Ti∩Tj = φ for all primary node set pairs. We wish to design a

minimum cost connected network that connects the nodes in each primary set by primary

edges. We can interpret this problem as a Steiner forest problem overlayed on a tree (the

primary edges in the optimal solution define a forest, and the edges in the optimal solution,

both primary and secondary, define a tree). Developing a stronger model for the Steiner

forest problem yields better models for this two-level network design problem (and for the

multi-level network design problem).

This chapter is organized as follows. We first show how to direct the Steiner forest

problem. Next, we describe three equivalent flow-based formulations for the Steiner forest

problem. We then describe our main result: how to direct the NDC problem with edge-

connectivity requirements. Finally, we summarize future research directions.

7.1 Directing the Steiner Forest Problem

For convenience, we once again describe the cutset and undirected flow formulations for the

Steiner forest problem.

Cutset formulation for the Steiner forest problem

Minimize
∑

{i,j}∈E

cijxij (7.1a)

subject to:
∑

{i,j}∈δ(S)

xij ≥ 1
for all S, φ ⊂ S ⊂ N ,

S ∩ Ti 6= φ and S\Ti 6= φ for some i,
(7.1b)

xij ≥ 0 and integer. (7.1c)

In the following undirected flow formulation for the Steiner forest problem, we select a

root node for each node set and send one unit of flow from the root node of each node set

to every node in that node set.
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Undirected flow formulation for Steiner forest problem:

Minimize
∑

{i,j}∈E

cijxij (7.2a)

subject to:
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =







−1

1

0

if i = O(k);

if i = D(k); for all i ∈ N and k ∈ K

otherwise;

(7.2b)

f
k
ij

f
k
ji

}

≤ xij for all {i, j} ∈ E and k ∈ K (7.2c)

f
k
ij, f

k
ji ≥ 0 for all {i, j} ∈ E and k ∈ K (7.2d)

xij ≥ 0 and integer; for all {i, j} ∈ E. (7.2e)

If we assume each cij ≥ 0, these formulations always have an optimal solution that is a

Steiner forest, and so each component of the forest is a tree. Nodes belonging to any node

set Ti, for any i, lie in the same component. As an example, Figure 7-1 shows the optimal

solution to a Steiner forest problem with five components. One component contains the two

node sets T1 and T4. All the other components do not contain nodes from other node sets.

How might we direct the Steiner forest problem? Since each component in the optimal

solution is a tree, we could arbitrarily choose a node in each component and direct each tree

away from it. Unfortunately, before we solve the problem, although we know that nodes in

each node set will lie in the same component, we do not know the number of components in

the optimal solution and the node sets they contain. The problem is to determine, a priori,

the root node for each component. For this reason, directing the Steiner forest problem

raises difficulties not encountered in directing the Steiner tree problem and unitary NDC

problems.

In directing the Steiner forest, for each set Ti, we choose an arbitrary root node ri ∈ Ti.

We then direct each component (tree) away from the lowest indexed root node that it

contains. In the example shown in Figure 7-2(a), one component contains two node sets T1

and T4. Since T1 is the lowest indexed node set in this component, we have directed the

component away from the root node r1 of node set T1. All the other components contain

nodes from only one node set Ti, for i = 1, 2, 3, 4, 5, and we direct each of them away from

the root node ri of node set Ti. Figure 7-2(b) shows the forest after we have applied the

“directing procedure.”

For notation, if j ∈ Ti, we let ρ(j) = ri denote the root node of the node set that node j

belongs to. We refer to ri as node j’s root node. We also define T = T1 ∪ T2 ∪ . . . TP , and

let R be the set of all root nodes, that is, R = {r1, r2, . . . , rP }.
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T1 U T4

T2

T3

T5

T6

Steiner node

Required node

Figure 7-1: An undirected forest.

7.2 Formulations for the Steiner Forest Problem

We model the Steiner forest problem using commodity flows. Observe that the network we

obtain after directing the Steiner forest contains a directed path from the lowest indexed

root node in a component to all other nodes in that component. Therefore, we can send a

unit of flow from the root node of each directed component to every node in that component.

For each node j ∈ Ti, with j 6= ri, and for each p ≤ i, we define a commodity with

origin node rp and destination node j, and for each root node ri and for each p < i, we

define a commodity with origin node rp and destination node ri. In the optimal solution,

it is possible to send a unit of flow from the lowest indexed root node of a component to

each required node in that component. Let CO(q) denote the set of all commodities that

have node q as their origin, and CD(q) denote the set of all nodes that have node q as

their destination and let K denote the set of all commodities. We also define H = {S :

S ⊂ K, and |S ∩ CO(rj)| = 1 for all j = 1, . . . , P}. That is, each member of H is a set of

commodities with exactly one commodity having each root node as its origin.

We now describe three different flow based formulations for the Steiner forest problem.

The first formulation is on an undirected graph and the latter two are directed formulations.
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j ∈ T4

T5

T3

T6T2

T1 U T4

r1

r2

r3

r4

r5

r6

(a) Undirected forest.

j ∈ T4

T5T1 U T4

T3

T2
T6

r1

r2

r3

r4

r5

r6

(b) Direct each forest away from the lowest indexed root node that it contains.

Figure 7-2: Example of the directing procedure.
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In the first formulation, we let xij be 1 if the network design contains edge {i, j} and be

0 otherwise. The improved undirected flow formulation for the Steiner forest problem has

the following form.

Improved undirected flow formulation for Steiner forest problem:

Minimize
∑

(i,j)∈E

cijxij (7.3a)

subject to
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il







≥

≤

=

−1

1

0

if i = O(k);

if i = D(k);

otherwise;







∀i ∈ N ;

and

k ∈ K;

(7.3b)

∑

k∈CO(i)

∑

j∈N f
k
jD(k)

−
∑

k∈CO(i)

∑

l∈N f
k
D(k)l

= 1 for all i ∈ T\R (7.3c)

∑

j∈N f
k
jD(k)

−
∑

l∈N f
k
D(k)l

≤

∑

j∈N f
k∗

jD(k∗)

−
∑

l∈N f
k∗

D(k∗)l

∀ j ∈ T\R, ∀k ∈ CD(j),

s.t. O(k) = O(k∗), and

D(k∗) = ρ(j);

(7.3d)

∑

k∈H

f
k
ij +

∑

k∈H̄

f
k
ji ≤ xij

for all {i, j} ∈ E, and

all H, H̄ pairs in H
(7.3e)

∑

i∈N

∑

k∈H

f
k
ij ≤ 1

for all j ∈ N , and

all H in H
(7.3f)

f
k
ij

f
k
ji

}

≥ 0
for all {i, j} ∈ E, and

k ∈ K
(7.3g)

xij ∈ {0, 1} for all {i, j} ∈ E. (7.3h)

Constraints (7.3b) and (7.3c) ensure that each node in T\R obtains a unit of flow from

either its root node, or the root node of a lower indexed node set. Constraint (7.3d) ensures

that if node i ∈ Tj , i 6= rj , is supplied by a commodity k whose origin is not the root node

of set Tj , then its root node also is supplied from the origin of commodity k (i.e., its root

node belongs to the same component that it belongs to). Constraint (7.3e) follows from the

property that in an optimal solution flow travels in only one direction across an edge, and

all the flow across an edge originates from the same source (the root node of the component

the edge belongs to). Constraint (7.3f) follows from the fact that flow into any node in a

component originates from a single node (the root node of that component).

We can simplify some notation in equations 7.3c and 7.3d, if we set f
k
D(k)l = 0 for

all commodities k ∈ K, and all nodes l ∈ N . If commodity k flows out of node D(k),

constraints (7.3b) and (7.3c) imply that it flows around a cycle and returns to D(k). By
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decreasing the flow on this cycle, we can obtain a feasible solution with f
k
D(k)l = 0. We will

make this change to equation (7.3c) and (7.3d) in the next two formulations.

To formulate the problem on a digraph, D = (N,A), we replace each undirected edge

{i, j} by two directed arcs (i, j) and (j, i), each with the same cost as the undirected edge

{i, j}. In the directed flow formulation, let yij be 1 if arc (i, j) is in the design, and be 0

otherwise. The directed formulation is

Directed flow formulation for Steiner forest problem:

Minimize
∑

(i,j)∈A

cijyij (7.4a)

subject to
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il







≥

≤

=

−1

1

0

if i = O(k);

if i = D(k);

otherwise;







∀i ∈ N ;

and

k ∈ K;

(7.4b)

∑

k∈CO(i)

∑

j∈N

f
k
jD(k) = 1 for all i ∈ T\R (7.4c)

∑

j∈N

f
k
jD(k) ≤

∑

j∈N

f
k∗

jD(k∗)

∀ j ∈ T\R, ∀k ∈ CD(j),

s.t. O(k) = O(k∗), and

D(k∗) = ρ(j);

(7.4d)

∑

k∈H

f
k
ij ≤ yij

for all (i, j) ∈ A, and

H ∈ H
(7.4e)

yij + yji ≤ 1 for all {i, j} ∈ E (7.4f)

∑

i∈N

∑

k∈H

f
k
ij ≤ 1

for all j ∈ N , and

all H in H
(7.4g)

f
k
ij ≥ 0

for all (i, j) ∈ A, and

k ∈ K
(7.4h)

f
k
D(k)l = 0

for all l ∈ N , and

k ∈ K
(7.4i)

yij ∈ {0, 1} for all (i, j) ∈ A. (7.4j)

In this formulation, constraints (7.4b), (7.4c), (7.4d), and (7.4g) are the same as those in

Formulation (7.3). Constraint (7.4f) is valid because the optimal solution to the Steiner

forest problem contains at most one of the two arcs (i, j) and (j, i). Constraint (7.4e) is

valid because all the flow on an arc originates from the same root node.

Yet another way to formulate the Steiner forest problem is to use a layered network.

In this approach, we create P copies, D
1
, . . . ,D

P of the digraph D. That is, we replace

each arc (i, j) by P arcs (i, j)1, . . . , (i, j)P , each with cost c
p
ij = cij for p = 1 . . . , P . If
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the root node of a component is node rp, then the component contains only arcs from the

digraph D
p. For example, in Figure 7-2(b) the component that contains node sets T1 and

T4 is rooted at node r1. As a result, all arcs in this component belong to the digraph D
1.

Let y
p
ij be a binary variable representing whether arc (i, j)p is in the network design.

We formulate the problem as follows.

Multilevel directed flow formulation for Steiner forest problem:

Minimize
∑

(i,j)∈A

P∑

p=1

cijy
p
ij (7.5a)

subject to
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il







≥

≤

=

−1

1

0

if i = O(k);

if i = D(k);

otherwise;







∀i ∈ N ;

and

k ∈ K;

(7.5b)

∑

k∈C(i)

∑

j∈N

f
k
jD(k) = 1 for all i ∈ T\R (7.5c)

∑

j∈N

f
k
jD(k) ≤

∑

j∈N

f
k∗

jD(k∗)

∀ j ∈ T\R, ∀k ∈ CD(j),

s.t. O(k) = O(k∗), and

D(k∗) = ρ(j);

(7.5d)

f
k
ij ≤ y

p
ij

for all (i, j) ∈ A, k ∈ K;

such that O(k) ∈ rp,
(7.5e)

P∑

p=1

(yp
ij + y

p
ji) ≤ 1 for all {i, j} ∈ E (7.5f)

∑

i∈N

∑

k∈H

f
k
ij ≤ 1

for all j ∈ N , and

all H in H
(7.5g)

f
k
ij ≥ 0

for all (i, j) ∈ A, and

k ∈ K;
(7.5h)

f
k
D(k)l = 0

for all l ∈ N , and

k ∈ K
(7.5i)

y
p
ij ∈ {0, 1}

for all (i, j) ∈ A, and

p = 1, . . . , P.
(7.5j)

In this formulation, constraints (7.5b), (7.5c), (7.5d), and (7.5g) are the same as those in

Formulations (7.3) and (7.4). Constraint (7.5f) is valid because the optimal solution contains

at most one arc from (i, j)1, . . . , (i, j)P , (j, i)1, . . . , (j, i)P . Constraint (7.5e) is valid because

any flow sent on arc (i, j)p must originate at node rp (arc (i, j)p belongs to a component

only if the component’s root node is rp).
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The improved undirected flow formulation, the directed flow formulation, and the mul-

tilevel directed formulation are closely related. We show that the LP relaxations of all three

formulations are equivalent.

Theorem 7.2.1 If the flow costs are zero, the LP relaxations of the improved undirected

flow formulation, the directed flow formulation, and the multilevel directed formulation are

equivalent.

Proof: In all three formulations, the flow variables are identical. In transforming the

solution of the LP relaxation of one formulation to a solution to the LP relaxation of

another, we will make no changes in the flow variables. As a result, to prove that the

formulations are equivalent we need to show how to transform the edge or arc variables

from one formulation to another so that after the transformation, the solution satisfies the

constraints that contain edge or arc variables.

1. To transform a solution to the LP relaxation of (7.5) to a solution to the LP relaxation

of (7.4) with no change in cost, we let yij =
∑P

p=1y
p
ij. Then replacing

∑P
p=1y

p
ij by yij

in constraint (7.5f) yields constraint (7.4f). Observing that any combination of flows

with different sources originate from different root nodes, we obtain the constraint

∑

k∈H

f
k
ij ≤

∑

{p:rp=O(k);k∈H.}

y
p
ij where H ∈ H.

≤
P∑

p=1

y
p
ij

= yij.

2. To transform a solution to the LP relaxation of (7.4) to a solution to the LP relaxation

of (7.3) with no change in cost, we let xij = yij + yji. Then replacing yij + yji by xij

in constraint (7.4f), we obtain xij ≤ 1. By adding constraint (7.4e) for arcs (i, j) and

(j, i) and replacing yij + yji by xij , we obtain constraint (7.3e).

3. To transform a solution to the LP relaxation of (7.3) to a solution to the LP re-

laxation of (7.5) with no change in cost, we set y
p
ij = max{k:O(k)=rp}f

k
ij and y

p
ji =

max{k:O(k)=rp}f
k
ji, for all {i, j} ∈ E and p = 2, . . . , P . Also, set y

1
ij = max{k:O(k)=r1}f

1
ij

and y
1
ji = xij − y

1
ij −

∑P
p=2(y

p
ij + y

p
ji). Constraint (7.3e) is

∑

k∈H f
k
ij +

∑

k∈H̄ f
k
ji ≤ xij

for all H, H̄ pairs in H. Therefore,

P∑

p=1

max{k:O(k)=rp}f
k
ij +

P∑

p=1

max{k:O(k)=rp}f
k
ji ≤ xij
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Figure 7-3: (a) Graph with unit edge costs and T1 = {a, d}, and T2 = {b, c}. (b) Optimal
solution to LP relaxation of cutset formulation. (c) Optimal solution to LP relaxation of
improved undirected flow formulation.

Substitute (i) y
p
ij in place of max{k:O(k)=rp}f

k
ij for p = 1, . . . , P , (ii) y

p
ji in place of

max{k:O(k)=rp}f
k
ji for p = 2, . . . , P , and (iii)

∑P
p=1(y

p
ij + y

p
ji) in place of xij , in the

previous equation. We find that max{k:O(k)=r1}f
1
ji ≤ y

1
ji. Therefore, the resulting

solution satisfies constraint (7.5e) (fk
ij ≤ y

p
ij if O(k) = rp). Noting that xij is less than

or equal to 1 shows that the solution satisfies constraint (7.5f) (
∑P

p=1 y
p
ij + y

p
ji ≤ 1).

Figure 7-3 shows that the the improved undirected flow formulation is stronger than

the cutset formulation (or undirected flow formulation, since they are equivalent) for the

Steiner forest problem. In this example T1 = {a, d}, T2 = {b, c}, and each edge has a cost

of 1 unit. The optimal solution to the cutset formulation sets xab = xbd = xdc = xca = 0.5

with a cost of 2 units. In the improved undirected flow formulation, we select node a as the

root of node set T1, and select node b as the root of node set T2. This formulation contains

four commodities. Commodities 1, 2, and 3 have origin node a and destinations nodes b,

c and d. Commodity 4 has origin node b and destination node c. The optimal solution to

the LP relaxation of the improved undirected flow formulation sets xab = xbd = xad = 1,

f
2
ac = f

1
ab = f

3
ab = f

3
bd = 1 (notice that all the commodities originate at the node a, the

lowest indexed root node of the optimal solution), and has a cost of 3 units.
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Figure 7-4: (a) Graph with unit edge costs and T1 = {a, d}, and T2 = {b, c}. (b) Optimal
solution to LP relaxation of improved undirected flow formulation. (c) Optimal integer
solution. (d) Optimal solution to LP relaxation of cutset formulation.

Researchers have previously shown that the LP relaxations of the improved undirected

flow formulation and the directed flow formulation (the multi-level directed flow formulation

is identical to the directed flow formulation for the Steiner tree problem) provide integer

solutions (i.e., the design variables are integer) for the Steiner tree problem when the un-

derlying graph is series-parallel (see [PLG85]). Is a similar result true for the Steiner forest

problem? The example in Figure 7-3 suggests that this might be the case, since the underly-

ing graph in that example is series-parallel. However, Figure 7-4 provides a example showing

that this property is not true. This example is very similar to the example in Figure 7-3.

The graph, a series-parallel graph, contains an additional edge between node b and node c.

In this example T1 = {a, d}, T2 = {b, c} and each edge has a cost of 1 unit. In the improved

undirected flow formulation, we select the root nodes and commodities as in the previous

example. The optimal solution to the LP relaxation of the improved undirected flow formu-

lation is xab = xbd = xdc = xca = xbc = 0.5, f
3
ab = f

3
bd = f

3
ac = f

3
cd = f

1
ab = f

2
ac = f

4
bc = 0.5,

with a cost of 2.5. The optimal integer solution is xab = xbd = xbc = 1 with a cost of

3 units. The optimal solution to the LP relaxation of the cutset formulation (or undirected

flow formulation) is the same as in the previous example and has a cost of 2 units. Thus

the result is not true for Steiner forest problems.

Before we conclude this section, we note that we modeled the directing procedure using
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commodity flows. Unlike the Steiner tree problem and the unitary NDC problem, there

does not seem to be any obvious way to formulate a directed cut model. This shows the

flexibility and power of flow models for modeling network design problems with connectivity

constraints.

7.3 Directing the NDC Problem

In Section 5.1.2 we showed how to direct unitary NDC problems. In this section we show

how to generalize the directing procedure we have just presented for the Steiner forest

problem to obtain a directed model for all NDC problems. As a result, we obtain a stronger

formulation for the NDC model with edge-connectivity requirements.

To sketch the basic idea underlying the directing procedure, we first consider NDC

problems where the connectivity requirements rst are even or one. Any solution to the

NDC problem consists of one or more connected components. By following the procedure

described in Section 5.1.1 for each connected component of the integer solution to the NDC

problem, we can direct each component. However, like the Steiner forest problem, because

the problem is nonunitary, we do not know a priori the number of connected components

in the optimal solution and the required nodes1 they contain. (We do know that if we

delete the edges {s, t} with rst = 0 from the requirement spanning tree, then the nodes

that belong to the same tree (component) of the requirement forest will be in the same

component of the solution to the NDC problem.) By combining the directing procedure for

the unitary NDC problem and the directing procedure for the Steiner forest problem, we

obtain a directed model for the NDC problem.

The following commodity selection procedure outlines the essential idea of the directing

procedure. In this discussion, we no longer restrict the connectivity requirements to be even

or one. We first use the directing procedure described in Chapter 5 to direct the problem for

commodities with rst ≥ 2. We then apply the Steiner forest problem’s directing procedure

and direct the bridge edges in each component of the optimal integer solution to the NDC

problem.

Commodity selection procedure for Formulation (7.6)

1. Find the requirement spanning tree.

2. Delete all edges with rst = 0 from the requirement spanning tree.

1We say a node is required if it has a connectivity requirement. Recall a node i has a connectivity
requirement if rij ≥ 1 for some node j.
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3. For each edge {s, t} of the requirement spanning tree with rst ≥ 2, create two com-

modities: one with origin node s and destination node t, and the other with origin

node t and destination node s; each of these commodities has a flow requirement

of rst/2. Let L denote this set of commodities.

4. Contract each edge {s, t} with rst ≥ 2 in the requirement spanning tree, creating

a forest F in which rij = 1 for all edges {i, j}. Identify the connected components

T1, T2, . . . , TP of this forest. Denote any node in F created by contraction by any of

the nodes it contains in the original requirement spanning tree (e.g., if contracting

nodes s and t creates a node in F , then we denote the contracted node by s). Select

a contracted node in each set Ti as the root node ri of the node set Ti. (If node set Ti

does not contain a contracted node, then arbitrarily select any one of the nodes as

the root node.) Now create commodities as described for the Steiner forest problem

with node sets T1, T2, . . . , TP , and root nodes r1, r2, . . . rP . Let K denote this set of

commodities.

Using this set of commodities we obtain the following improved undirected flow formu-

lation.

Improved undirected flow formulation for NDC problem:

Minimize
∑

(i,j)∈E

cijxij (7.6a)

subject to
∑

j∈N

f
k
ji −

∑

l∈N

f
k
il







≥

≤

=

−1

1

0

if i = O(k);

if i = D(k);

otherwise;







∀i ∈ N ;

and

k ∈ K;

(7.6b)

∑

j∈N

f
k
ji −

∑

l∈N

f
k
il =

−qk

qk

0

if i = O(k);

if i = D(k);

otherwise;







∀i ∈ N ;

and

k ∈ L;

(7.6c)

∑

k∈CO(i)

∑

j∈N

f
k
jD(k) = 1 for all i ∈ T\R (7.6d)

∑

j∈N

f
k
jD(k) ≤

∑

j∈N

f
k∗

jD(k∗)

∀ j ∈ T\R, ∀k ∈ CD(j),

s.t. O(k) = O(k∗), and

D(k∗) = ρ(j);

(7.6e)

∑

k∈H

f
k
ij +

∑

k∈H̄

f
k
ji ≤ xij

for all {i, j} ∈ E, and

all H, H̄ pairs in H
(7.6f)

∑

i∈N

∑

k∈H

f
k
ij ≤ 1

for all j ∈ N , and

all H in H
(7.6g)
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f
k
ij + f

h
ij ≤ xij for all k, h ∈ K ∪ L (7.6h)

f
k
D(k)l = 0 for all l ∈ N and k ∈ K (7.6i)

xij ≤ 1 for all {i, j} ∈ E (7.6j)

f
k
ij

f
k
ji

}

≥ 0
for all {i, j} ∈ E, and

k ∈ K ∪ L
(7.6k)

xij ≥ 0 and integer, for all {i, j} ∈ E. (7.6l)

In this formulation, T = T1 ∪ . . . ∪ TP , R = {r1, . . . , rP }, and ρ(j) denotes node j’s

root node. CO(k), CD(k), and H are defined as for the Steiner forest problem for the

commodities k ∈ K.

If the requirement spanning tree contains no edge {s, t}, with rst = 1, Formulation (7.6)

contains no commodities in K, and so the model contains only constraints (7.6c), (7.6h),

(7.6j), (7.6k), and (7.6l). In this case, an argument similar to the one we used in Section 5.1.2

shows that this formulation is equivalent to the undirected flow formulation. Consequently,

the improved formulation for the NDC problem is stronger than the undirected flow formu-

lation only when the maximum spanning tree of the requirement graph contains some edge

{s, t} with rst = 1.

The enhanced cutset formulation (5.6) of Balakrishnan, Magnanti, and Mirchandani

[BMM94a] also applies to the nonunitary NDC problem. For the Steiner forest problem,

the enhanced cutset model is equivalent to the cutset model. Therefore, there are instances

for the nonunitary NDC problem when the improved flow formulation is stronger than the

enhanced cutset formulation. We conjecture that this is true in general, and so the improved

undirected flow formulation (7.6) is stronger than the enhanced cutset formulation (5.6)

7.4 Conclusions

The main contribution of this chapter is the strong formulation for the NDC problem. To

develop this formulation, we first showed how to direct the Steiner forest problem. Based

upon this directing procedure, we presented three equivalent formulations for the Steiner

forest problem. We then generalized one of these formulations to the NDC problem with

edge-connectivity requirements. To our knowledge, these formulations are the first directed

formulations for the Steiner forest problem and the NDC problem with edge-connectivity

requirements.

Although we have not proved this result in this chapter, the max-flow min-cut theorem

implies that (i) the choice of root node for each node set, and (ii) the order of node sets does

not affect the optimal objective value of the LP relaxation of the improved flow formulation

for the Steiner forest problem or the NDC problem.
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There are many unanswered questions concerning the new directed model for the NDC

problem. How strong is the directed model? Is it significantly stronger than the undirected

flow or cutset models? Can we derive new classes of valid inequalities for nonunitary NDC

problems by projecting out the flow variables from this model? (Like we did for the unitary

NDC problem.) Can we derive an improved dual-ascent procedure (or perhaps a Lagrangian

relaxation method) based on this improved formulation? In our future research, we plan to

investigate these issues.
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Chapter 8

Summary and Final Remarks

In this thesis we considered the network design problem with connectivity requirements

(NDC). This problem has many applications, especially to telecommunication network de-

sign, and is of considerable theoretical interest because it generalizes several well-known

combinatorial optimization problems.

Our research was motivated by the need for efficient solution procedures for large-scale

NDC problems. Consequently, we devoted our attention to understanding the structural

properties of solutions to the NDC problem, and exploiting these properties to develop

mixed integer programming models and computationally attractive solution procedures. In

particular, we designed

1. A dual-ascent algorithm for a general NDC problem. This algorithm optimally solves

special cases including the k-edge-disjoint path problem and the k-node-disjoint path

problem. The algorithm is to date the only heuristic procedure that applies to the

general NDC problem.

2. A dual-ascent algorithm for the network design problem with low connectivity require-

ments (NDLC). This algorithm generalizes Wong’s [Won84] well-known algorithm for

the Steiner branching problem.

Since a dual-ascent algorithm attempts to approximately solve the dual of the LP re-

laxation of a formulation, it is important to use strong formulations of a problem in order

to obtain good lower bounds from a dual-ascent procedure. With this objective in mind,

we developed strong models for the NDC problem. We started Chapter 3 by reviewing a

well-known directing procedure for the minimum spanning tree problem and Steiner tree

problem. In Chapter 5 we generalized this directing procedure and developed a directed

model for all unitary NDC problems with edge-connectivity requirements. This model gen-

eralizes a directed model described by Goemans [Goe90] for the survivable network design

245
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problem (SND) when the connectivity requirements of the nodes are even or one. By pro-

jecting out the flow variables from the improved model for the unitary NDC problem, we

generalized some known classes of facet-defining inequalities for the Steiner tree problem—

partition, odd-hole, and combinatorial design—to the unitary NDC problem. We continued

our development of strong models for the NDC in Chapter 7 by showing how to direct the

Steiner forest problem. We then described a directed model for the Steiner forest problem,

and later generalized this model to all NDC problems with edge-connectivity requirements.

The directed model for the Steiner forest problem and the nonunitary NDC problem are

new.

Because flow models, although compact, are fairly large, we devised methods to reduce

the size of these formulations by minimizing the number of commodities they contain.

For this purpose, the main tool we used for edge-connectivity problems is the Gomory-Hu

requirement spanning tree. We showed how to model edge-connectivity problems and the

node-connectivity version of the SND problem using O(|N |) commodities. We also outlined

a scheme for reducing the number of commodities in the flow model of NDC problems with

general node-connectivity requirements.

We established a Lagrangian duality framework to derive dual-ascent algorithms for

network design problems. Using this framework, we developed dual-ascent algorithms for

the Steiner branching problem, the NDC problem, and the NDLC problem. We introduced

the notion of a minimal ascent set, and using this concept provided a simple interpretation

of Wong’s algorithm for the Steiner branching problem (and Edmonds’ algorithm for the

branching problem). We also used minimal ascent sets, and a generalization of this no-

tion (i.e., minimal twin ascent sets), in designing the dual-ascent algorithm for the NDLC

problem. Throughout this research, we devoted considerable attention to devising efficient

implementations of these algorithms. For this purpose, several graph search algorithms

proved to be particularly useful.

We implemented some of our dual-ascent algorithms, testing them on some important

NDC problems—the network design problem with low connectivity requirements, and the

Steiner tree problem. These algorithms solve NDLC problems that are an order of magni-

tude larger than previously solved (problems with upto 300 nodes and 3000 edges). Our

results indicate that the dual-ascent algorithms are quick, and generate excellent heuristic

solutions (typically within 4 percent of optimality for the NDLC problem, and within 1 per-

cent of optimality for the Steiner tree problem), as well as reasonably good lower bounds.

The quality of the lower bound of the dual-ascent algorithm for the NDLC problem deterio-

rates as the fraction of nodes with a connectivity requirement of 2 increases. We believe that

certain modifications to this dual-ascent algorithm, as described in Chapter 6, will improve

its performance both in terms of providing a better lower bound and a faster running time.
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We view our research as synthesizing concepts from two important areas: mathematical

programming and computer science. In developing mixed integer programming models, we

relied on concepts that are traditional to the optimization community; while developing

dual-ascent algorithms, we used many algorithmic ideas from the computer science liter-

ature. The use of both these areas proved crucial to the development of the dual-ascent

algorithms. Without a good model, the dual-ascent procedure is bound to generate poor

lower bounds. In the dual-ascent algorithms, we usually related some graphical structure

(e.g., twinless strongly connected components) to an ascent direction. Without an efficient

algorithm for identifying such structures, the running time of a dual-ascent procedure might

be excessively large. By combining lessons learned from both fields we developed quick and

efficient dual-ascent methods.

The following recipe summarizes the main lesson learned about using dual-ascent as an

algorithmic approach to solve combinatorial optimization problems.

Recipe for a dual-ascent algorithm

1. Develop a good model for the problem. (For network problems, perhaps by directing

the problem.)

2. Study special cases of the problem that are polynomially solvable and devise dual-

ascent methods that solve them optimally.

3. Generalize the dual-ascent method to the more general problem.

This is the approach we have taken for developing our algorithms, and one that we have

found to be particularly effective. Algorithms designed to optimally solve polynomially

solvable cases seem to capture the properties of a “good” solution. Consequently, when

applied to the more general NP-hard problem, these algorithms seem to generate reasonably

good solutions.

In conclusion, a dual-ascent procedure developed for a strong formulation of a problem,

followed by an efficient implementation, can be a very effective solution methodology for

(approximately) solving combinatorial optimization problems.
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Appendix A

Abbreviations

DFS Depth first search

DNDC Directed network design problem with connectivity requirements

IP Integer program

LP Linear program

MIP Mixed integer program

MST Minimum spanning tree problem

NDC Network design problem with connectivity requirements

NDLC Network design problem with low connectivity requirements

RBOC Regional Bell Operating Companies

SND Survivable network design problem

TSCC Twinless strongly connected component

TSP Traveling salesman problem
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