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Abstract

Combinatorial auctions are currently becoming a common practice in industrial procurement, allowing bidders (sellers of goods
and services in the procurement setting) to avoid the risk of selling good or service bundles that are incomplete, inefficient, or
excessively expensive to deliver. Two major concerns in combinatorial auction design are the revelation or discovery of market
price information over the course of the auction, and the inherent computational difficulty (NP-hardness) of the underlying
“winner-determination” problem. In this paper we describe a new general auction format maintaining the benefits of the adaptive
user-selection approach without the problems of free-riding, inefficiency, or distortionary linear prices. This auction format is
particularly well-suited to the largest combinatorial auctions for which winner-determination is computationally tractable, because
it provides bundle synergy information that is computable in polynomial time for all interactive phases.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Early reports on the use of combinatorial procurement
auctions (see [18,23,25] for examples) emphasize the
robust ability of auction mechanisms to fairly price goods
or services provided to a central buyer, allowing benefits
on both sides of the market. Suppliers are able to pursue
only combinations of goods or services that are cost-
efficient to produce, while the buyer or procurer of services
benefits from the price competition among several sellers.
De-emphasized in the available literature is the complex
interplay between the need for market revelation, allowing
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competing participants the ability to learn about one
another, and the strategic leverage that becomes available
when too much information about a bidder is made
available through the auction's revelation environment.

One of the main strengths of traditional single item
auctions is that a bidder has the ability to learn about her
own true preferences by observing the behavior of her
opponents (see the text by Krishna [20]), a feature that is
also beneficial in the combinatorial procurement setting.
In the industrial procurement of food materials, for
example (see theMars Inc. procurement auction described
in [18]), industrial growers of sugar may each hold
some private knowledge on the yield of this year's crop,
which in aggregate will determine the relative scarcity
of the commodity and thus influence market behavior.
Similarly, several transportation providers participating in
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a shipping lane auction (see the case of Sears Inc.
described in [23]) may each have some (noisy) forecast of
future oil prices, which in aggregate are much more
accurate than if treated separately. Since the price of oil
may heavily influence the value of future shipping
contracts, these transportation firms would very much
want to ascertain or estimate the beliefs of their opponents
by observing their behavior in amulti-stage auction game.
We may conclude from these simple examples that
revelation of market information is quite beneficial in the
procurement setting, and that a (one-shot) sealed-bid
mechanism is undesirable for this reason.

While the importance of revealed information and the
potential for over-revelation have been only scarcely
explored in the combinatorial auction literature, the
issue that has been most discussed is the computational
difficulty (NP-hardness) of the underlying “winner-
determination” problem. Several approaches to this
computational problem are discussed in the literature
(see [1,14] for surveys), but here we focus instead on the
adaptive user-selection techniques which address both
the computational difficulties and the revelation prop-
erties simultaneously.

1.1. Adaptive user selection techniques

The adaptive user-selection approach was first
described in an early combinatorial auction paper by
Banks et al. [9] who introduce a decentralized
mechanism (AUSM) that shifts computational burden
away from the central decision making entity and to the
bidding agents themselves. Indeed, this is the essential
feature of the adaptive user-selection approach; bidders
adapt to a changing auction environment by carefully
selecting which packages of auction items1 is the best to
bid on at the current time.
1 We note that as long as the buyer can set reasonable publicly
known upper bounds on prices, a procurement auction can be
described as a forward auction (with one seller and many buyers) with
the auction items being the rights to provide various products or
services, and the bids interpreted as discounts from the posted bounds
that the real-life providers are offering to “buy” such rights. This
allows us to discuss the revenue-maximizing forward auction methods
in the context in which they were first proposed, without losing
relevance to the procurement auction discussion at hand. In general,
we can switch back and forth between forward and reverse
(procurement) auctions with little trouble, but mostly stay within
the procurement auction setting for this paper, except, at times, when
referring to the forward auction research of others. All of the results
presented here may be easily reformulated as results for forward
auctions. Thus, the auction designs we propose here can be easily
applied to the more commonly discussed (and often more strategic)
forward auction environments, such as auctions for spectrum licenses.
Later, this idea takes practical form under Kelly and
Steinberg [19] who demonstrate a new adaptive user-
selection auction format (PAUSE), in which bidders
reveal demand in successive rounds by combining their
own bids with standing bids of opponents. At each step
the new combination of bids forms a complete
assignment of auction items to bidders that offers
lower total prices to the buyer than the previously
proposed auction outcome. This new combination of
bids thus becomes the new incumbent solution until
(perhaps) displaced by the next winning combination of
bids. Importantly, though each bidder has a potentially
difficult problem finding a set of bids that complements
her own to form a winning combination, the auctioneer
has only the relatively simple job of verifying that the
new outcome does not award any item to more than one
bidder, and that the new combination indeed decreases
buyer payments.

The PAUSE auction pursues efficient outcomes2 by
shifting computational burden to the bidders, who have a
greater intuition as to which bundles may be of greatest
value to them, and can thus focus their computational
energy on relevant bundles. This contrasts a typical
sealed-bid combinatorial auction, where each bidder can
bid on a great number of bundles, letting the auctioneer
shoulder the computational burden of sorting them all out.

Despite the nice properties associated with the
decentralized computational approach of PAUSE, there
is a strategic problem limiting its applicability. In
particular, in order to achieve efficiency, the PAUSE
auction requires unsuccessful or displaced bids to be
available to all bidders for use in their own computations,
so that they may be combined with new bids in order to
eventually achieve the efficient solution. In Section 2.3,
however, we provide an example demonstrating that this
level of revelation is too much; revealing this much
information causes “free-riding”, which in turnmay cause
defensive bidders to curtail activity, thus sacrificing
efficiency. Incentive-compatible (i.e., truth-inducing)
mechanisms have also been proposed as a solution to
free-riding in some practical contexts (see [7], for
example, where investment in knowledge is seen as a
public good subject to free-riding). In the most general
settings, however, the incentive-compatible Vickrey–
Clarke–Groves (VCG) mechanism and its variants result
in prices that are exorbitant for the buyer in a procurement
2 An outcome is efficient if it gives the right to supply items to those
whose costs are lowest (or in the forward setting allocates goods to
those who value them the most). When auctions are designed to
approach the efficient outcome, we say they are designed for
efficiency.
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setting, making it unattractive and typically unused in
practice. (See [6] for a discussion of this and other
weaknesses of VCG.)

1.2. The clock proxy auction

A prominent alternative auction design is the clock–
proxy auction, presented recently by Ausubel et al. [4].
This technique combines the transparency of linear
prices and the efficiency of a sealed-bid (proxy) auction.
Although some may argue against the use of an efficient
mechanism, others make a convincing case for the
revenue optimality of an efficient mechanism, basing
their conclusions on an assumption of unfettered resale
on the part of auction winners (see [3]). Since the
providers of goods or services in the procurement
setting may find it profitable to subcontract out part of
their obligations following the auction (making it
unwise to assume that the auctioneer could prevent
“resale” after the auction), we advocate an efficient
mechanism for the present procurement setting, and our
mechanism achieves it in much the same way.

As in the adaptive user-selection methods (including
the currently proposed format), the clock–proxy's hybrid-
auction paradigm is to reveal price information on
individual items, eliminating the need for a vast number
of inconsequential bundle bids that might otherwise be
submitted in a (one-shot) sealed-bid auction. During the
revelation (clock) phase, however, bidders see only
aggregate demand and price information for each
individual item, thus the free-riding described in the
PAUSE auction context will not be observed. We argue,
however, that where the revelation of the PAUSE auction
is too great, the revelation of the clock–proxy may be too
little, not providing the bidders with much accurate
information about the prices of bundles.

1.3. Dual-based feedback mechanisms

Also relevant from the recent literature are certain
auction mechanisms that use individual item prices based
on dual prices from the linear programming dual of the
(relaxed) winner-determination problem, or some modi-
fication thereof. Prominent examples include the mechan-
isms ofKwon et al. [22] andKwasnica et al. [21], the latter
also borrowing features from the simultaneous ascending
auction and the AUSM approach, which will continue to
be discussed throughout this paper. These designs are
elegant in their approach, but due to the duality gap
inherent when complementarities are present, the indi-
vidual item prices produced by these mechanisms absorb
synergies among items into the prices for single items, and
are typically non-unique. These prices may therefore
distort information about individual items. In contrast, the
single-item prices proposed here are unique and do not
incorporate synergistic information, thus they cannot
suffer from this type of distortion. Further, these iterative
dual-based approaches typically solve a hard computa-
tional problem in each round, another weakness relative to
the current proposal, which postpones computational
difficulty to the final sealed-bid round.

1.4. A new hybrid auction design

We are motivated, therefore, to capture some of the
benefits of both the adaptive user-selection and the clock–
proxy approaches,while rejecting some of their difficulties,
and to provide an auction format that offers improvements
to other formats proposed in the literature. Specifically, we
offer a revelation paradigm that provides price information
on any bundle (incorporating synergy information that is
lost or distorted under linear pricing), while simultaneously
diminishing a bidder's ability to free-ride relative to the
existing adaptive user-selection methods. As such, we
introduce a new general auction framework, a hybrid
auction with the following properties:

• The opportunity for efficient outcomes when bidding
is straightforward.

• Revelation of price information for any complemen-
tary bundle without explicit public knowledge of
specific bundle bids, diminishing a bidder's ability to
free-ride on the revealed information of others.

• User-selection of relevant bundles during the bundle-
revelation stage.

• Computational tractability during all interactive
(revelation) phases.

• Reliance on linear (single-item) prices only where
appropriate, alleviating the distortion caused by the
over-use of linear prices.

To our knowledge, there is no published auction
design which incorporates all of these features into a
single format. Further, our design has several degrees of
freedom, allowing pieces of other auction designs to be
incorporated into our own format, allowing the auction
to take advantage of alternative bid languages, pricing
rules, or other special features when desired.

The essential features of our three-stage auction are
described in the next three paragraphs. From this brief
description of typical participation, we see that the general
instructions for this auction format are not complicated,
with only the Bid Table format in Stage I requiring an
appreciable amount of learning to participate.
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In Stage I bidders reveal preferences by submitting
bid tables, through which a bidder can make several
flexible offers to provide items while being assured not
to provide a group of substitute items which may be
costly to provide simultaneously.

Once all bidders are satisfied with their bid tables the
auction enters Stage II, in which bidders are asked in
turn to submit a bundle bid. To establish bundle prices,
the bidder may ask the auctioneer the price on any
bundle of interest, and after “probing” several bundles
for a price may offer to provide a particular bundle at
that price, or may decline to offer a new bundle bid.

Once all bidders decline to offer a bundle bid in Stage II,
the auction enters Stage III, in which bidders make any
additional bundle bids that (in the procurement setting) are
above the probed prices at the end of Stage II. Like the
final proxy phase in the clock–proxy auction, this stage
ensures efficiency and allows for several non-winning bids
to be combined forming a winning set of bids if possible. In
order to ensure participation in Stage II, Stage III bundle
bids that would have been winning at the end of Stage II are
rejected. Thus, a bidder cannot wait until Stage III tomake a
bid that would have been acceptable in Stage II. However,
this rule is not enforced on any subset that is in the tentative
possession of a bidder at the end of Stage II. Intuitively, at
the end of Stage II a tentativewinning bid reflects only that a
bidder is willing to bid just enough not to be displaced in
Stage II, even though the bidder's true valuation may
represent a stronger bid. In Stage III we must allow the
bidder to make this stronger bid to ensure efficiency. This
overall design allows us to postpone difficult computational
problems until the end of the auction, and encourages
revelation in earlier stages in order to reduce the
computationally difficulty facing the bidders in later stages.

The remainder of the paper is organized as follows.
In Section 2 we provide some background information,
in particular describing some of the problems with linear
price revelation in the clock–proxy auction and a free-
riding problem with the PAUSE auction. Section 3 gives
an overview of our proposed three-stage auction design,
with added detail for each stage provided in Section 4,
Section 5, and Section 6. In Section 7 we provide a brief
example demonstrating the flow of the three-stage
process for a small procurement auction, and provide
concluding remarks in Section 8.

2. Background

2.1. Preliminaries

Informally, combinatorial auctions are often moti-
vated by the presence of “synergy” in the preference
structure of a bidder; some items are worth more in a
bundle than the sum of what they are worth separately.
We now introduce a formal model of a procurement
auction, including a precise definition of synergy.

We take as given a set I={1, 2,…i,…N} of N
unique indivisible items (goods or services) to be
bought by a single buyer, and a set of suppliers/
bidders, J={1, 2, …j,…M}. In a general combinatorial
procurement auction each bidder j can be modeled by
a cost function cj: 2

I→R and a bidding function bj:
2I→R. To make precise the notion of synergy, the
primary motivation for the use of combinatorial
auctions, we adopt the following definition of the
synergy σ perceived by bidder j on set S ⊆ I:

rj Sð Þ ¼
X

iaS

cj if gð Þ � cj Sð Þ

If synergy is positive, the bundle contains comple-
mentary services or goods; it costs the bidder less to
provide the package than the sum of providing each
individual item. If synergy is negative, the bundle
contains mostly substitutes; bidder j may prefer, for
example, to provide any one of the items more than
providing them all together.

This definition of synergy emphasizes the importance
of both positive and negative synergy which should both
be considered in the design of a combinatorial auction. If
negative synergy is ignored (because, perhaps, the
immediate benefits to the auctioneer are not as obvious),
bidders will feel the need to curtail their bidding activity,
because of the possibility of supplying substitute items at
too low a price, potentially leading to lost auction
efficiency (loosely speaking auction efficiency is a
measure of how close the auction allocation is to the
efficient outcome or allocation).

The presence of nonzero synergy motivates an auction
format in which each bidder discloses some bidding
function bj over bundles, and the auctioneer solves a
combinatorial optimization problem to select the bidders
that will provide all the items at the lowest cost. This
general winner-determination problem can be formulated
as an Integer Program (IP), with binary variables xj (S)
that equals 1 if and only if bidder j provides bundle S⊆ I:

min
X

jaJ

X

SpI

bj Sð Þ � xj Sð Þ ðGWDÞ

subject to
X

St if g

X

jaJ

xj Sð Þ ¼ 1; 8iaI ð1Þ

X

SpI

xj Sð ÞV1; 8jaJ ð2Þ
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xj Sð Þa 0; 1f g; 8SpI ; 8jaJ ð3Þ

Constraints (1) ensure that each item is provided by
exactly one bidder, while constraint set (2) prevents the
auctioneer from accepting multiple bids from the same
bidder, so that the bidding function announced by the
bidder remains accurate. An allocation that solves
problem (GWD) when bids are replaced by true costs is
defined to be an efficient allocation. Given two feasible
allocations, we may say that the allocation with a lower
(better) objective function value has greater efficiency.3

As noted in the introduction, bidders in real-world
auctions may have uncertainty about the values of cj (S)
(and hence bj (S)), but may be able to decrease this
uncertainty with increased information about their
competitors. Additionally, for even a modest number
of auction items the sheer number of bundles to consider
makes it difficult to find the bundles S worth submitting
bids on. We therefore eschew a sealed-bid (direct
revelation) version of the auction and focus instead on
revealing information that will be useful to the bidders
in their challenging role of determining significant
bundles and bj (S) values.

2.2. A problem with linear price signals

Given our motivation to provide bidders with useful
market information over the course of the auction,
allowing them to learn about their competition through
revealed information, one of the most natural feedback
mechanisms to consider is a set of linear price signals.
Very simply, this would entail a vector of prices, one for
each item in the auction, that can be combined linearly to
provide the bidder with some idea of the value of a bundle
of items at the current state of the auction (such signals are
used in the clock–proxy auction of Ausubel et al. [4]).
Though linear prices are admirable for their simplicity,
synergy is the primary motivation for a combinatorial
auction, and as we now show, linear prices may behave
badly in the presence of synergy. Roughly speaking, when
linear prices are used, the value of synergy must be
absorbed into the prices of some individual items, causing
the prices to be distorted and misrepresenting the value of
a single good or service.

To see that this may be a problem in a real procurement
auction, suppose that we are attempting to run a clock
auction (the revelation phase of a clock–proxy auction, as
3 Although we deal with bj (S) values in our formulation, instead of
the true cost cj (S), the last stage of our auction—when using Vickrey
payments or bidder-Pareto-optimal core payments—as described in
Section 6 induces behavior that results in an efficient allocation.
described in [4]) modified from its original form to
accommodate the procurement auction environment.
Described in this reverse auction setting, the clock auction
proceeds as follows: the auctioneer announces a set of
linear prices for the items desired by the buyer, and
bidding suppliers each announce a vector indicating the
number of each item they are willing to supply at this price
vector; for any items with excess supply prices are
reduced (in proportion to the amount of excess supply),
while other prices remain unchanged. Each submitted
vector is treated as a binding indivisible offer from the
bidder, and the procedure stops when there is no excess
supply on any auction item.

Now consider applying this linear price auction format
to a procurement auction with three unique items (A, B,
and C) demanded by a single buyer, and four potential
suppliers with varying economies-of-scale for providing
these items. In particular, suppose that any of the four
competing firms may supply any single item at a cost of 9
units. Next suppose that the first three bidders are regional
suppliers, each of which can supply a particular pair of
items at a volume discount, while the fourth, a national
supplier, experiences a significant reduction in costs when
providing all three items to the buyer. To be precise, let us
assume the following privately known cost structure,
where blank entries indicate a combination of items that
would be too expensive for the corresponding bidder to
provide given their current infrastructure:
4 We assum
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The clock auction begins with the auctioneer announc-
ing a reasonably high price on each item, for example a
price of 10 for each of A, B, and C. At this price vector,
bidder 1 would make a profit of 8=20−12 for providing
the bundle {A, B} (which we abbreviateAB), or a profit of
1=10−9 for providing any single item. Bidder 1 would
thus submit the profit maximizing supply vector (1,1,0)
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With these submissions, excess supply will continue
to be equal across all items for the entirety of the clock
auction, regardless of the size of the price decrement,
and thus prices will fall for all items at exactly the same
rate. Excess supply will not cease until the prices offered
for the items A, B, and C reaches 6 – δ for each, where δ
is the price decrement. At this point, the first three
bidders will reduce their bid vectors to zero, since no
bundle will be profitable. (Bidder 4 would have dropped
out when the prices fell just below 19/3 for each item.)
Unfortunately, because of synergy, neither the final nor
the penultimate price vector announced by the auction-
eer supports a partition of the items in the auction; at the
next to last announcement there is excess supply on
every item, at the last there is zero supply for all.

The clock–proxy auction controls for this by
following the revelation clock phase with a proxy
phase, an efficient sealed-bid combinatorial auction that
awards winners higher payments in order to stimulate
bidding. In this hybrid auction (with both open and
sealed-bid phases), all reported bid vectors are consid-
ered binding contracts at the corresponding prices. For
example, if bidder 4 reported (1,1,1) at the prices
(6.5,6.5,6.5), the auction can hold bidder 4 responsible
at the end of the auction to supply all three items for a
total payment of 19.5, regardless of what bids are
submitted in the final proxy round. In this way the
auction converts every bid in the revelation (clock)
phase into a bid in the final sealed-bid (proxy) phase,
assuring efficiency based on the bids that are submitted,
and allowing for more submissions that may also
increase auction efficiency (i.e., finds an allocation
based on submitted bids that decreases the total cost of
procuring the items). For this data the proxy auction
would find the winning bid from bidder 4, the lowest bid
made on ABC, given straightforward bidding strategies
on the part of the bidders.

But the purpose of the open descending-price clock
phase is to reveal useful market information, aiding
bidders in placing bids, possibly allowing them to place
different bids in the sealed-bid final round than they
would have without this market information (assuming
that they would update their cost structure based on
information revealed in the auction). How useful is the
information reported to bidders at the end of the clock
phase? Assuming a small enough decrement the
auctioneer is essentially reporting the price vector
(6,6,6) for individual items, in this example. But this
price vector is only informative about bundles of size
two for this data, and is otherwise misleading. A bidder
might be led to believe that a single item bundle could
be produced at a cost of around 6 when the actual cost is
9, or that a new bid on the entire set of three items must
be below 18 in order to be competitive, when it need
only be just below 19.

In fact it is not difficult to see (and iswell known) that in
the presence of synergy, any set of linear prices will fail to
support the efficient solution as a competitive equilibrium
for this data. Bidders with incompatible bundles will drive
the prices too low for the winners to accept (as bidder 4
cannot accept 18, here). We conclude that linear price
signals are misleading and not appropriate in the context of
bundle synergy, and that market information should be
conveyed to the bidder in some other way.

In the PAUSE auction, bids on bundles become
available information for the bidders after the first stage
(which accepts bids on single items only), avoiding the
problem of linear prices present in the clock–proxy
auction. Since bids are binding for the remainder of the
auction, a rational bidder will not bid below the cost of a
single item in the first stage, and so the first stage of the
PAUSE auction should end with single item prices of 9 at
the lowest for any item. Assuming bidders are fully
aggressive, the next stage will begin with bidders allowed
to combine bids on bundles of size 2 (two item bundles)
with an available bid of 9 on any single item by itself.

To begin the bundle bidding stage, bidder 1 may
combine a standing bid of 9 on item C by itself with a
bid to provide AB at a price of 17, thus offering a lower
combined total (=26), than the buyer would have paid at
the end of the first stage (=27). Bidder 2 may respond by
combining a standing bid of 9 on B by itself with a bid to
provide AC at price 16, again lowering the total cost to
the buyer. This process will continue through the
substage of bids on bundles of size 2, with bidders 1,
2, and 3 each submitting bids on bundles of size two
only to be undercut by the next bid.

At no point in this procedure are the price signals
unclear: the bidder knows exactly how low to bid for the
bundle of size two in order for it to become provisionally
winning (i.e. winning until someone else displaces this
bid with a lower combined total). Assuming fully
aggressive bidders, this may take place until one of
these three bidders bids 12 on a bundle of size 2
(combined with the complementary bid of 9 on a single
item), at which point none of the other regional bidders
will want to undercut (assuming theywill not change their
preferences based on revealed information).

At this point (when no one wants to bid on a bundle
of size two) the PAUSE auction accepts bids on bundles
of size three. Since the buyer is now being offered all
items at a price of 21=9+12, bidder 4 can now achieve
the efficient solution by bidding 21 – δ, keeping some
of her true cost hidden, depending on the size of the
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minimum price decrement δ. Again there is no
misinformation about the current state of the auction;
bidder 4 knows exactly what price to offer for all three
items in order to become winning, at least provisionally.

So we see that the adaptive user-selection methods
such as PAUSE (and the format proposed here) avoid
the problem experienced by linear price signals in the
presence of synergy. The amount of information
revealed in these methods is enough for bidders to
make accurate decisions, and the format in which
auction information is conveyed is not distortionary or
misleading. We will see in Section 2.3, however, that the
amount of information conveyed by the adaptive user-
selection methods as described in the previous literature
may reveal too much information, that is, enough to
cause strategic interference.

2.3. A free-rider problem

In the process of providing synergy expression, some
combinatorial auction formats introduce what is com-
monly known as the threshold problem, the potential
inability of an individual bidder to displace an
inefficient package bid without the coordinated efforts
of other bidders.

Take for example a three bidder auction with four
items A, B, C, andD. Suppose that c1 (AB)=c2 (CD)=12,
c3 (ABCD)=27. (Let us assume prohibitively large costs
for all other bidders and bundles.) The threshold problem
occurs if a bid of 27 on all four items is made by bidder 3
and tentatively accepted by the auctioneer. Neither of the
other two bidders is able to submit a package bid
individually that will knock out this bid (provide lower
cost to the buyer), but if they were simultaneously to bid
13 each on AB and CD, respectively, they can together
under-price the bid of 27 and achieve a more efficient
solution (andmaintain a profit of 1 each). A combinatorial
auction should therefore address this threshold issue, by
providing the bidders a mechanism for coordinating their
bids in order to “gang up” on bidders they cannot defeat
individually.

There is, however, a disincentive to honest revelation
in these circumstances known as the free-rider problem.
If bidder 1 suspects or knows that c2 (CD)=12, she may
try to only bid as low as 14 on AB hoping that bidder 2
will shoulder more of the burden necessary to overcome
bidder 3. If bidder 2 takes the same approach, bidding
only 14 hoping that bidder 1 will bid 12, the two may
fail to overcome the bid of 27 by combining for a larger
aggregate bid of 28.

To address the threshold problem Banks et al. [9] and
Kelly and Steinberg [19] suggest the use of a publicly
available stand-by queue containing voluntarily submit-
ted package/price bids that bidders may select to
combine with their own bids to make winning package
bids. Though this technique does address the threshold
problem, it is in fact open to the difficulties of the free-
rider problem because too much information is available
to aid free-riding in the public queue.

The PAUSE auction is able to avoid the free-rider
problem for this particular example by accepting bids on
bundles in increasing size order (larger bundles after
smaller ones). However, free-riding problems also occur
with bundles of the same size, causing trouble for the
PAUSE auction. To demonstrate this, let us alter our
previous free-rider example slightly, by changing bidder
3 to have costs c3 (BC)=10, and adding a fourth bidder
with c4 (S)=8 |S| for any bundle S.

The PAUSE auction will commence with bids on
individual items, and conclude with a lowest price of
8 on every individual item. Next the PAUSE auction is
open to bids on bundles of size 2, where each bidder
must combine existing bids with her own to achieve a
lower cost solution for the buyer. In this bundle bidding
stage, each submitted bundle bid becomes “registered”
for others to possibly use later, leading to the possibility
of free-riding.

To begin the bundle bidding, bidders 1, 2, and 3 each
bid 15 on their respective bundles of interest, combined
with the existing bids of 8 each from bidder 4, lowering
the cost to the buyer from 32 to 31 in every case. The
buyer selects one of these “composite” bids (i.e. a
collection of bids covering every item) and registers the
new bundle bids. Seeing the registered bid of bidder 1,
bidder 2 may combine her own existing bid of 15 on CD
with bidder 1's bid of 15 on AB, offering still lower total
costs of 30. (Bidder 1 could make the same offer.)
Bidder 3, however, cannot combine with another bundle
bid and must bid down to 14 on BC in order to lower
total cost (with the bids of 8 each on A and D). This
continues in much the same way until bidder 3 is
bidding 12 on BC with bidder 4's help to achieve a cost
of 28, while bidders 1 and 2 each propose to use the
other's registered bid of 14 together with her own bid of
14 to achieve 28.

At this point we encounter the free-riding problem.
Bidders 1 and 2 can see that bidder 3 is continuing to bid
on BC while they must work together to displace this
bid. Confronted with the decision to continue lowering
their bundle bids or to stop, bidders 1 and 2 find
themselves in a prisoner's dilemma: if both go on
bidding they can achieve a profit of 1 each, but if one
goes on while the other does not, the one who stops
bidding will achieve a profit of 2 while the other earns



Fig. 1. Outline of the Procurement Auction.
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zero. As is typical with a prisoner's dilemma, the only
Nash equilibrium is for both bidders to stop bidding,
achieving zero profit each. Because continued bidding
allows the other to free-ride, we arrive at a solution in
which bidder 3 wins BC and the buyer pays too much
(27 rather than 26). Or, in other words we arrive at a less
efficient solution to the auction.

More desirable is a mechanism through which these
bidders can participate and arrive at the efficient
solution, sharing the burden of overcoming the
combined bids of bidders 3 and 4 equitably, without
being given enough information about the bids of others
to induce a free-riding situation. In this paper, we
introduce a new way to reveal bundle synergy
information through price signals only, addressing the
free-rider problem by a more controlled revelation of
bidder information, and addressing the threshold
problem in a final sealed-bid (proxy) auction, assuring
a more efficient auction outcome.

3. An overview of the three-stage auction design

The mechanism we propose proceeds in three stages,
as shown in Fig. 1. The first two stages are designed to
reveal cost information while mitigating the exposure
problem, a phenomenon widely recognized as a primary
reason for the use of combinatorial auctions. If items are
provided singly (not as complete packages), bidding on
individual items exposes the bidder to the possibility of
bidding too low for some sets of items. The negative-
synergy exposure problem occurs when a bidder reveals
honest cost information about substitute items and is
exposed to the risk of providing several low cost
individual items that cost more when taken together
(negative synergy). The positive-synergy exposure
problem5 occurs when a bidder reveals honest cost
information about complementary items and is exposed
5 These positive-synergy and negative-synergy definitions of the
exposure problem represent a refinement of the definition of the exposure
problem given or implied in the literature. As with the refined definition
of the threshold problem presented in Section 6, these new distinctions
offer a better classification, allowing the auction format to function more
smoothly by treating these problems separately.
to the risk of getting paid too little for an incomplete set
of complements (unrealized positive synergy or econ-
omies-of-scale). In either case cautious bidders will
have an incentive not to tell the truth and may be
reluctant about revealing cost information.

3.1. Stage I

The first stage of our auction addresses the negative-
synergy exposure problem, and fills the same role as the
first stage in the PAUSE auction. In order to reveal cost
information systematically, it is natural to reveal the bids
on single items first.Where the PAUSE auction employs a
simultaneous ascending auction (SAA) for this purpose,
we introduce an improvement, the Bid Table Auction,
which allows the bidder to avoid the negative-synergy
exposure that is present when the (SAA) is used. As we
will see, the strategy space of the simultaneous ascending
auction is a strict subset of the Bid Table Auction. This
new format offers more possibilities to those who are
interested, while anyone wishing to participate as if the
format was a SAA is free to do so.

In the Bid Table Auction, a bidder is guaranteed the
ability to simultaneously lower bids on mutually
exclusive alternative items without being forced to
provide more than one of these items (thus these items
are pure substitutes for this bidder). The bidder expresses
this mutual exclusivity by placing the bids for mutually
exclusive items in a single column of her bid table.
Affording the bidder several such columns to work with
allows her to express a variety of substitutable prefer-
ences. An example of a bid table for a shipping lane
auction is illustrated in Fig. 2. In practice, bid tables may
be adjusted over several rounds to achieve a final set of bid
table entries (such as those in Fig. 2) if bidders are initially
unsure of their bid table bids.

The essential feature of a bid table is that only one bid
may be accepted from each row (associated with a single
item) and only one from each column (associated with a
group ofmutually exclusive offers). Empty entriesmay be
assumed to be prohibitively large (expensive) offers or
simply no offer at all. For this example, a transportation
company is bidding on three trips from origin A to



Fig. 2. A Bid Table for a Shipping Lane Auction.

6 In the context of procurement auctions with quasi-linear
preferences, the gross substitutes property states that if prices fall
on some items, then a bidder would not wish to provide less of any
alternative items for which the prices did not fall. Roughly speaking,
this ensures that complementarity is not expressed in the bidders'
valuation functions.
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destinationB (varying perhaps on pick up times: morning,
afternoon and evening), two trips from C toD, three trips
from E to F , and one from G to H. Column labels might
represent bidder resource availability. For example
column W might represent a truck or driver available to
make one trip from A to B. Similarly, Z1 and Z2 might
represent two trucks or drivers both of which are available
to make one trip each from E to F.

By bidding as in Fig. 2, the company is expressing
that it will only make a single trip from A to B (since
there are offers for these trips only in a single column
and only one entry per column may be accepted by the
buyer). These bids in column W also express that the
company would prefer the afternoon option (2), which it
would provide at a lower cost (by $5) than other two
options (1 and 3), each of which it would provide at $15.
The company's reasons for this distinction remain
private, but it is easy to imagine that a single trip fits
neatly into an existing schedule, which already has a
driver returning an empty truck from A to B leaving in
the afternoon, for example. This portion of the bid table
neatly demonstrates the protection against the negative-
synergy exposure problem; the three trips from A to B
are of lesser value when taken together for this bidder
(i.e., experience negative synergy) so only one bid table
column is used for all three. In a SAA, on the other hand,
a bidder must either pick which one of these three to bid
on (perhaps picking poorly relative the bids of others) or
expose herself to the possibility of providing more than
one of these substitute items by bidding on more than
one of them.

Similarly, a bidder may express mutual exclusivity
among different routes by placing bids in the same
column. Here the bids in the column labeled X xor Y
show that the bidder is willing to provide only one of the
routes from C to D, or the single route from G to H , but
not both, at the indicated prices.

If the bidder instead wants to treat two or more items
as partial substitutes, bids may be spread over several
columns, as in Z1 and Z2. In this case the bidder is
expressing the desire to have an increasing price
schedule on three options for routes from E to F.
Because the auction is searching for the bid minimizing
allocation, it will first accept the bid from the lower price
column, Z1, paying the bidder $12 for a single route
from E to F. Since only one bid may be accepted per
column, if this bidder is awarded two routes from E to
F, the second bid must be accepted from the column
Z2, pricing the second route higher at $18. Clearly,
many analogous increasing price schedules over subsets
of I are possible using this technique.

If the bidder wants instead to express a volume
discount (a natural possibility in a combinatorial
procurement auction) the bid table format cannot
accommodate this expression. Indeed, only substitutable
preferences may be described with bid tables, while
volume discounts necessarily represent a complemen-
tarity among auction items to the provider. Stage I of our
auction is designed specifically to reveal substitutable
preferences, because the flexibility of substitutable
preferences eases the computational needs of the
following rounds, which reveal complementary prefer-
ences, a more computationally difficult endeavor. In
fact, with preference expression that satisfies the “gross
substitutes6 property”, the computation of Walrasian
equilibrium prices can be performed rapidly (i.e., poly-
time) for bid table submissions, being not much more
computationally difficult than solving the underlying
assignment problem. Lehmann et al. [24] provide the
first proof of the gross substitutes property for the OXS
bidding language (i.e., OR-of-XOR-of-Singletons,
equivalent to the language of bid table submission, but
more difficult to read in aggregate) while Day and
Raghavan [12] provide the relevant algorithm for the
winner-determination problem and computation of
equilibrium prices.

Stage I of the auction proceeds in an iterative fashion
with bidders submitting and adjusting bid tables like the
one in Fig. 2. Following the submission of bid tables by
all bidders the auctioneer announces a current winning
allocation and a price for each item. These prices are
dual prices to a slightly modified primal allocation
problem and are equal to the highest Walrasian
equilibrium prices (as shown in [12]). These prices
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convey aggregate information about the value of the
items to all bidders as individual commodities; a new
entrant would have to accept a price less than or equal to
the Walrasian price to provide that item. After observing
the current state of the market in terms of Walrasian
prices, bidders may then adjust and resubmit their bid
table entries according to the following eligibility rules:

• an entry may not increase
• an entry in a non-winning bid table row must be
lowered to at most the current price for that row
minus one bid increment, or else a “last and best”
entry may be made that cannot be adjusted again for
the remainder of the auction.

• entries in a winning row of a bid table need not be
adjusted.

Such rules are necessary for this stage to ensure that
the auction proceeds at a healthy pace and so that
bidders may not lay in waiting without revealing their
intentions. In [12] we show that the dynamic (descend-
ing) version of the Bid Table Auction converges to the
same equilibrium prices as the direct revelation Bid
Table Auction under the assumption of straightforward
bidding.

3.2. Stage II

When a round of Stage I occurs in which no bidder
chooses to decrease any bid table entry, the auction
enters Stage II, designed to mitigate the positive-
synergy exposure problem by accepting all-or-nothing
package bids. In this stage each bidder is asked in turn to
submit a package of items and a price which guarantees
to increase auction efficiency (reduce the objective of
the winner-determination problem) if accepted. If this
bid survives the remainder of the auction, the bidder
provides the items in the package, receiving no less than
the specified price, as well as any items she may still be
providing individually from Stage I at the prices
determined there. Because a particular package may
be intended to take the place of a set of bid table
columns (those that bid on the items in that package), a
bidder is allowed to specify those bid-table columns so
that the auctioneer may remove them from her bid table.
This will ensure that multiple substitute items are not
provided at a low cost unintentionally, one from the bid
table and one from the package bid.

Using the techniques described in Section 5, each
bidder in Stage II can “probe” the market to determine
what price must be offered for a particular bundle of
items. Each “probe” is simply a query to the auctioneer,
“In order to become the (tentative) winner of bundle S,
what price do I have to offer?” Once she has found the
subset that she is most willing to provide at the current
suggested price, she may submit this package/price pair
which is guaranteed to be winning, until (possibly) it is
“knocked out” by another bidder's package bid. Note,
each probe is almost computationally costless, requiring
only the solution of an easy assignment problem. Thus,
in practice a bidder may devise a (polynomial-sized) list
of “interesting” bundles to probe automatically at each
round of Stage II. As in PAUSE and AUSM, the
computational burden is shifted to the bidder to compile
this list of interesting bundles, and the development of
decision support tools for this purpose in specific
environments remains the subject of future study.

Though the order in which package bids should be
accepted in Stage II is not set in stone, we suggest that
probing may proceed in a round-robin fashion, where
the order of bidding is generated randomly for each
round, making sure that the last participant in one round
is not the first participant in the next. If the results of
Stage I (i.e. the final bid tables) and each of the
provisionally winning Stage II bids are released to the
bidders, they may continue to computationally probe the
data while waiting their turn. This would allow bidders
to explore more scenarios and potential business plans,
so that many package bids may be evaluated in
preparation for a turn to bid.

On the other hand, privacy of individual information
may be of paramount importance in many applications.
Thus we allow for the possibility that Stage II may be
conducted with the provisionally winning Stage II bids
and final Stage I bids known only to the auctioneer. In
this case more time should be given to each bidder for
probing, since this would be the bidders' only way to
learn about the competition. When such a scenario
occurs in practice, the bidder may have a list of
“relevant” bundles which are automatically probed at
the beginning of the turn, giving the human users as
much time as possible to think about these prices.

Whether the bidders are allowed access to provi-
sional winner information or this information is
withheld for privacy at the cost of auction speed,
Stage II continues until a round occurs in which every
bidder declines to submit a new bid at the probe prices.
A bidder who declines to bid in one round may become
active again later, leaving room for implicit cooperation
when a competitor's non-overlapping bid helps knock
out one that does overlap a bundle of interest.
Remaining inactive, however, causes a risk of closing
Stage II, resulting in restrictions on the level of bidding
that can occur in Stage III.
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3.3. Stage III

As pointed out in Section 2, previous adaptive user-
selection auctions advocate a publicly available stand-by
queue in order to mitigate the threshold problem and
promote efficiency. Eschewing this approach because of
its openness to the free-rider problem, we instead suggest
the use of a third auction stage to mitigate both of these
problems. Rather than consider collections of non-
winning package bids in our own Stage II, our auction
format does not address the threshold problem explicitly
until Stage III. The reason for doing this is similar to the
reason for the separation of Stage I and Stage II:We do not
begin to admit package bids in Stage II until after we
know that such bids will beat the individual item prices
derived in Stage I; similarly, we do not want to consider a
collection of individual package bids displacing some
other collection of package bids until no more improving
individual package bids are possible.

In order to address the threshold problem and the
free-rider problem simultaneously, we conduct a sealed-
bid auction in Stage III which takes bid information
from Stages I and II and attempts to improve upon the
allocation found at the end of Stage II. When a bidder
probes a particular set in Stage II, she is told a price that
she must accept in order to become the provider of this
bundle, at least for the time being. If she chooses to
accept the reported price at the time of probing, she
becomes the provisional winner of this package deal. If
she decides instead that her cost for this bundle is higher
than the amount necessary to win that package
unilaterally, she may be forced to wait until Stage III
to submit her bid on this bundle, hoping that it may then
become part of the winning collection of bids.

In order to assure participation in Stage II, a bid on a
particular bundle in Stage III must be more than would
becomewinning in Stage II. If a bidder passes on the price
of every bundle in a round of Stage II, she forfeits her right
to bid the current probe amount (or lower) for any bundle
in Stage III. Further, every Stage III bundle bid is screened
to ensure that it would not have been winning in Stage II;
thus an unprobed bid is treated just as a probed bid
rejected by the bidder. For an honest bidder, this rule will
not be restrictive when the current (probe) price for a
bundle is lower than her true cost for that bundle. We
therefore refer to these restrictions as honesty constraints.

If a bidder is winning a particular bundle bid at the
termination of Stage II, however, the auction has not
necessarily discovered the true cost of that bundle to the
bidder. The auction therefore puts no honesty constraint
on a Stage III bundle bid for a bidder that is the provider of
that bundle at the end of Stage II. This provides an
additional incentive for participation in Stage II; a bundle
won in Stage II may be protected by an arbitrarily low bid
in Stage III, despite limitations on the bids of competitors.

Within Stage III, the auctioneer will determine an
allocation that is more efficient than the one achieved in
Stage II (if one exists), and compute competitive prices,
such as Vickrey–Clarke–Groves payments or bidder-
Pareto-optimal core payments (see [5,13,17,27]). Such
pricing mechanisms usually ensure positive profit to
each supplier, except perhaps where market competition
is too tight (i.e. when a bidder must supply at the cost of
her bid because any higher payment could be contested
by a competitor who is willing to provide for less).

As in the clock–proxy auction, the final sealed-bid
round allows the entire auction to inherit the efficiency
and incentive properties of the payment rule used in the
final stage. A major concern is “jump-bidding” in
intermediate rounds, in which bidders wait until later
rounds (or stages) to reveal their preferences. Just as
with the revealed preference activity rule used to
mitigate jump-bidding in the clock–proxy auction, the
honesty constraints proposed here assume that bidders
bid honestly and consistently, and constrain the later
activity of bidders based on this assumption of honesty.

Strategically, this design makes free-riding as
difficult as possible. When a bidder decides not to
place any further bids on any bundles in Stage II (i.e.,
when a bidder passes on the opportunity to bid when it is
her turn), she relinquishes the ability to bid any amount
below the probe price in the final sealed-bid round for
any bundle she is not winning at the end of Stage II. This
makes it unwise not to accept the probe price except
when it is truly too low.

Next, faced with the decision of what to report for her
valuation of this bundle in Stage III, she cannot test the
waters to see how much of a free-ride is possible.
Though she may decide to report a valuation that is more
than her true cost for this bundle, the higher the price she
reports the greater the probability that she will
regrettably miss an allocation for which she provides
this bundle at positive profit. Honest bidders, on the
other hand, have the opportunity to achieve an efficient
displacement if one exists, and will be paid fair prices
determined by whichever sealed-bid pricing algorithm is
pre-announced by the auctioneer.

3.4. Summary

The three-stage auction design we have described has
several attractive properties. For the remainder of the
paper we will elaborate upon the theoretical landscape in
which this design functions, as well as providing more
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details into how each stage will proceed, and an
illustrative example. Before delving deeper into this
exposition, we list a few of the desirable properties
which have been or will be discussed.

Stage I

• The winner-determination problem can be solved
quickly (polynomial time in the number of items and
bidders).

• Bidders may bid competitively on several substitute
items at once, without the risk of providing more than
desired.

• Individual item price signals are revealed, diminish-
ing the number of package bids that are necessary in
Stages II and III.

• The gross substitutes property is automatically
upheld throughout Stage I.

Stage II

• Bidders may bid on packages without exposure to the
risk of being paid too little for an incomplete, high-
cost package (e.g. one with unrealized economies-of-
scale).

• Each bundle “probe” is computable in polynomial
time, as is the auctioneer's validation of a winning
bundle/price pair.

• Non-participation in Stage II constrains activity in
Stage III, making free-riding and demand reduction
risky decisions.

• A bidder may guarantee the final right to provide the
package she is awarded at the end of Stage II, but
may be charged to beat out her Stage III competition.

Stage III

• If non-winning bids from Stage II can be combined to
overcome a provisionally winning package bid, this
will be corrected in the final sealed-bid round.

• An efficient allocation is computed given all revealed
bid information.

• Competitive prices are determined which share the
cost of displacement fairly among those who benefit,
alleviating the free-rider problem. (We advocate
bidder-Pareto-optimal core payments, though VCG
or any other payment mechanism may be used.)

4. Stage I: bid tables vs. SAA

An important feature of our model is the order in
which different types of preference information is
revealed over the course of the auction, postponing the
solution of difficult computational problems until they
are assured to be necessary. For example, the all-or-
nothing package bids of Stage II introduce a high level of
computational difficulty (we discuss the NP-complete-
ness of the feasibility problem with such bids in
Section 5). By first executing a Bid Table Auction in
Stage I, we eliminate from consideration any package
bid which doesn't at least beat the “individual prices”
for the items in the package. We place Stage I before
Stage II in order to drive down these prices on individual
items as much as possible before considering any
package bids, eliminating as many as possible from
consideration since they are more difficult to handle
computationally. We then shift the computational burden
to the bidder who must decide which bundle to bid on
in Stage II.

This idea of first driving up individual prices and
then shifting computational burden to the bidders is
present in the PAUSE auction of Kelly and Steinberg
[19]. However, the use of the SAA in their own Stage 1
does not address the negative-synergy exposure prob-
lem, unlike the Bid Table Auction. Indeed, if a Bid Table
Auction was simply used to replace the SAA in Stage 1
of Kelly and Steinberg's model, bidders would
experience less negative-synergy exposure and be able
to bid more aggressively on individual items. The
resulting lower prices on individual items will in turn
ease more of the computational burden of package
bidding. This can be shown easily by noting that if
bidders bid with only a single active entry in each
bid table column they are participating exactly in the
SAA.

The following simple example illustrates this point:
suppose that cj ({A})=cj ({B})=3, but cj ({A, B})=8.
Restricting bidders to the SAA is equivalent to allowing
only one active entry per column in a bid table, thus the
lowest this bidder would bid in SAA is equivalent to the
bid table:

since any lower would expose the bidder to providing A
and B at less than cost on the bundle {A, B}. The Bid
Table Auction makes no such restriction, allowing for
the bid:

If, for example, this bidder is pitted against another
identical bidder, the SAA can guarantee individual item
prices no less than $4 each, while the protection from
negative synergy exposure introduced by the Bid Table
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Auction allows the prices to drop to $3 each. Since the
purpose of the first stage of either auction is to reveal
lowest price information on single items (in the
procurement environment), one that can provably
achieve lower individual item prices clearly dominates.
This effect strengthens the Stage I results relative to the
SAA, because many bids in Stage II need not be
considered if lower prices are established in Stage I.

Replacing the SAA with a Bid Table Auction has
other benefits besides just achieving lower prices. In
Stage I of the three-stage auction proposed here, new
market entrants will have a greater opportunity to make
simultaneous aggressive bids relative to the SAA,
forcing market incumbents to either let them into the
market or share the burden of keeping them out. Fair
entry into the market place has been an expressed
consideration in the adoption of auctions in many
environments (for example in the airport landing-slot
context described in [8]), and we feel that the use of the
Bid Table Auction will also enhance the ability of new
entrants to compete in the market by decreasing the
opportunity for the “bullying” punishment strategies
described by Cramton and Schwartz [10] for the SAA.
In this behavior (observed in actual SAA implementa-
tions), an aggressive bidder drives up the price (in a
forward auction) on a competitor as punishment for
placing a competing bid. In the Bid Table Auction this
aggressive behavior is not possible; only price signals
are revealed to the bidder at each iteration, making it
hard to tell who to bully. Further, each bidder
simultaneously competes on several substitutable
items without exposure to receiving more than needed;
a bullying bidder would have to drive up the price on all
items for the punishment strategy to be effective,
increasing her chances of winning an item that was
bid on only to punish a competitor.

As a final note in this comparison, the Bid Table
Auction may be easier to participate in (despite a higher
fixed-cost of learning a more complicated format),
because bidders who know their lowest costs for
substitutable items may simply submit their final bid
table and wait while others play iteratively and watch
the prices go down. Indeed, the iterative nature of the
bid table auction is provided to allow for some learning
about the preferences of others. For bidders who are well
informed of their own cost structure and do not need to
learn much about the bids of others, we would expect
Stage I to conclude after very few rounds (perhaps one).
The SAA, however, will always need several rounds for
bidders to convey their preferences. Thus the Bid Table
Auction allows bidders to convey their preferences for
substitute items more succinctly, allowing them to get to
Stage II where they will bid on complementary
packages more quickly, and achieves better (lower)
individual items prices in the process.

The winner-determination problem for Stage I is
simply an assignment problem. That is, it assign items to
bidders in order to minimize the cost of procuring these
items, such that every item is assigned to exactly one
bidder, and so that at most one item is assigned to any
column k in bidder j's bid table:

z ¼ min
X

i;j;kð ÞaI�J�Kj

bijk � xijk ðAÞ

subject to
X

iaI

xijkV1; 8 j; kð Þ with jaJ and kaKj

X

jaJ

X

kaKj

xijk ¼ 1; 8iaI ð4Þ

xijkz0; 8i; j; k
where each bijk represents bidder j's bid on item i in her
kth bid table column, and Kj indexes all columns of
bidder j. This problem is well known to be total-
unimodular, (see for example [26]) so that we do not
need explicit integer constraints on the decision
variables xijk which equals 1 exactly when the item i is
assigned to bidder j's kth column. Indeed, the linear
program (A) automatically solves the corresponding
Integer Program to integer optimality (and does so for
integer right-hand-sides (RHS), allowing also for an
auction for multiple identical items.)

In [12] we provide a simple algorithm to obtain
maximal Walrasian equilibrium prices on each item
starting from the values of the dual variables to problem
(A), and we propose that these prices be reported by the
auctioneer at each round of Stage I. Briefly summarized,
the generic constraint of the linear programming dual to
(A) is of the form pi− sjk≤bijk corresponding to each xijk
variable, where pi may be interpreted as a price for item
i and sjk may be interpreted as the surplus at column j, k.
By duality, this constraint will be satisfied at equality
when xijk=1, properly defining the surplus on a column,
while each constraint otherwise says that the price paid
by the winner of an item must be low enough so that
each competing bid table column cannot achieve higher
surplus by providing the same item at a lower price.

We [12] show that if we first solve the primal problem
(A), the resulting dual prices correspond to a Walrasian
equilibrium, but not necessarily the highest Walrasian
equilibrium. To compute the highest Walrasian equilib-
rium prices, we may re-solve the dual problem after
relaxing any “self competition” constraints (in which one
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larger values early on giving way to smaller values later in Stage II.
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bid table column would set the price for an item won by
the same bidder) based on our previous solution to the
primal problem. The technique is a natural generalization
of the methods of Demange et al. [15] (who use an
assumption of unit demand, i.e., a single bid table
column per bidder), and an example of the procedure's
results can be seen in Section 7.

5. Stage II: package bidding and probing

Preferences for complementary bundles introduce a
potential for computational difficulty into the auction
process. The problems of determining the winning bids
and prices for a given round of Stage I can be achieved
in polynomial time, as shown in [12]. In order to
develop Stage II, in which we wish to include package
bidding (for complementary packages), we must
consider the computational difficulties inherent when
complements are introduced.

Consider scenarios in which bidders report demand
correspondences as in Gul and Stachetti [16] and Ausubel
[2]. In these (forward) auctions bidders report which
bundles they would be willing to take at current prices
(their demand correspondences), after which the auction-
eer selects a feasible allocation with one bundle from each
correspondence, if possible. The prices are changed in
order to lower demand, and the process repeated until
such a feasible allocation exists. Both assume the gross
substitutes property, but one might wonder if their
demand correspondence reporting technique might
apply to a more general model of bidders. The following
theorem (proved in [11]) recognizes a difficulty in this
scenario: with a slightly more general set of bidder
preferences finding a feasible allocation for the subprob-
lem at each round is NP-complete.

Theorem 5.1. If the demand correspondence {∅, S} is
admissible for any S⊆ I, then the problem of determining
whether there exists a feasible allocation of items among
the bidders according to these reports is NP-complete.

The above theorem states that if a there exist
complementarities (positive synergies) that would cause
a bidder to demand all of a particular bundle or nothing at
all, then the auctioneer's problem of even determining the
existence of a feasible solution isNP-complete. Thus, any
extension of bidder preferences which allows for all-or-
nothing bids may expect computational difficulties. As it
turns out (see [11]), all-or-nothing bidding of this type
(and the resulting computational difficulty) does not occur
when the gross substitutes condition holds; if a bidder
currently demands both S and ∅, she must also demand
every subset of S under gross substitutes.
Demand correspondence reporting can present a
computational difficulty at every round when the gross
substitutes condition does not hold. Our overall approach
to an auction with complements is therefore as follows:
use the bid-table format in Stage I to enforce gross
substitutes and reveal price information, and then accept
package bids to promote price discovery and bundle price
revelation while avoiding the computational burden. The
method for avoiding this computational burden (until
Stage III) is to only consider “strong” bundle bids in Stage
II, those which can immediately become winning without
being combined with bundle bids of others that are not
currently winning.

Bidders in Stage II will “probe” various sets to
determine whether they are willing to place a “strong”
bundle bid to compete for this set, or instead to indicate
that they have reached a lower bound on the price they
are willing to accept for this set. For the first bidder in
Stage II, this will proceed as follows.

The bidder picks a set of items S that seems attractive
for probing, using the current prices as a first approxima-
tion of what bundles are most attractive. When the bidder
reports this set, the auctioneer (an appropriately designed
software package) probes it to determine a price. Since no
other package bids have been accepted, this task is
equivalent to finding a price such that auction efficiency
increases if the package bid is accepted and the other items
are awarded according to the reports from Stage I.

Given the first bidder in Stage II is probing some
bundle S, let z⁎ be the objective value from (A) at the end
of Stage I, and let z−S be a solution to the allocation
problem (A) after changing the RHS of each demand
constraint in the set (4) to zero 8iaS. This is of course the
efficient solution to the auction in the absence of the items
in S.

The auctioneer may then report to the bidder a price of
pS=z⁎−z−S−δ. If the bidder is willing to accept this
price, then auction efficiency is increased one decrement7

δ by this bidder providing S at pS and all other items being
provided according to the assignment solution yielding
z−S. Finding this assignment and corresponding value of
z−S is not computationally burdensome: we merely solve
a smaller assignment problem than was solved at each
round of Stage I. A bidder may continue to probe several
bundles before choosing one to bid on, if any.

In order to continue this procedure past the first
bidder in Stage II, we must first provide notation for the
set of packages for which package bids have been
provisionally accepted thus far, S. Now, when a bidder
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probes set S, the auctioneer takes the current auction
value z⁎, and computes z− S, a solution to the primal
allocation problem with the set of restrictions:

RHS ¼ 0 8 constraints in 4ð Þwith ia S or ia T

where T a S with S \ T ¼ t

plus the current bid values on all bundles T with
S∩T=∅.

In words, the auctioneer computes an optimal
assignment of items to bid table entries, given that S is
reserved for the current bidder and that a currently
winning bid on any subset T not overlapping with S
reserves the items it is already winning. Given this
assignment of items not in S, the probing bidder must
offer to provide the set S at a price that results in an
increase in efficiency by δ. Note that if we tried to find
an optimal assignment of the items not in S while
additionally considering the use of previously knocked
out bundle bids, the problem again becomes NP-hard.
We therefore intentionally leave out all bundle bids
except the ones that are currently winning and do not
overlap the bundle being probed.

The auctioneer now reports a probe value pS= z⁎−
z− S−δ as before. If this price is accepted, the new bid
will push any overlapping bids out of the current
allocation, so that any items in a displaced package bid
but not in S must be allocated according to the
assignment information from Stage I. The bidder will
pay the amount necessary to compensate the auction for
the drop in efficiency from displacing any currently
accepted package bids and reverting to bid table values
for leftover items. Again the computations are easily
handled as restricted versions of the assignment problem
(A). Since all such restrictions are simply bounds on
RHS values for (A) (or equivalently removing a set of
variables), and by the total unimodularity of problem
(A), the polynomial solvability is not sacrificed. After
each iteration in which a bid on probed package S is
accepted, the set S is updated by adding S and removing
any package Twith S∩T=∅.

One criticism of the PAUSE auction is that the upper-
hand is given to bidders with greater computational
resources (and hence those with greater financial
resources) who can construct composite bids (an NP-
hard task) more easily than less endowed competitors.
The auction proposed here, however, provides no such
advantage. With computational tractability maintained
throughout the bundle-revelation stage, computations
can be left in the hands of the auctioneer. Bidders will
each have an equal opportunity to probe the auction and
need not be given access to existing bundle bids for
simulations or other strategic computations favoring
those with greater resources.

In the Stage II package auction (as described thus far in
this section) there is still a potential exposure problem. A
bidder may provide a particularly desirable package from
a bid in Stage II, but then also provide several other
individual items that were not awarded as part of a
package. This will occur, for example, if the bidder uses a
particular column to bid on a certain set of substitute items
and then wins the right to provide one of these items as
part of a package bid. This problem easily disappears if we
allow (or force) bidders to specify which of their bid table
columns corresponds to (bids on) the items in the package
bid. We may then simply remove (temporarily ignore)
these columns from consideration in the calculation of
z− S. This Package/Column Designation suggests a
reasonable user-interface for Stage II probing; the bundle
to be probed may be specified by simply clicking on the
bid table entry corresponding to the row of the desired
item and the column to be removed if this package bid is
accepted. The auctioneer removes the corresponding
columns from the bidder's bid table until (perhaps) the
bundle bid is no longer winning. This assures that the
protection against negative-synergy exposure is main-
tained in Stage II as it was intended in Stage I.

This removal of bid table columns suggests a further
incentive to participation in the Bid Table Auction of
Stage I. As more packages are accepted into the final
allocation, more and more bid table columns will be
removed. Further, certain items may remain “loose,” not
being incorporated in any package bid. As fewer bid
table columns remain active in the auction, competition
on these loose items diminishes, resulting in higher final
prices for items that are eventually won from bid table
entries. Intuitively, a bid table entry is very flexible and
may be applied at any time; by making this flexible offer
to provide an item in the early rounds, a bidder may be
rewarded with an attractive price in the final allocation.

6. Stage III: the threshold problem, the free-rider
problem and efficiency

The auction format described in the present work differs
from earlier combinatorial auction literature in its treatment
of the threshold problem. As mentioned above, some
advocate a publicly available stand-by queue of non-
winning bids which an interested bidder may combine with
her own to form a winning bid (see [9,19]). We argue that
this revelation of information is beyond what is necessary
to achieve efficiency and allows for tactical manipulation
with little if any benefit. As previously mentioned, this
tactical manipulation comes in the form of free-riding. A



636 R.W. Day, S. Raghavan / Decision Support Systems 44 (2008) 621–640
bidder with the ability to view the valuations of others will
find it in her best interests to reveal as little valuation as is
necessary to form awinning bid, placing asmuch burden as
possible on those who have revealed their valuations to the
stand-by queue. Intelligent bidders may therefore cautious-
ly shade down their own revelation to the queue, possibly
not revealing enough information for an efficient allocation
to be reached. Although we do not provide a formal game-
theoretic analysis, it should be clear that the presence of the
stand-by queue introduces two potential problems related
to dishonest revelation: bidders taking advantage of the
revealed information of others (free-riding) and the inability
to achieve efficiency due to cautious shading (free-riding
defense strategies).

Even if for some altruistic reason we were to assume
truthful revelation (thereby nullifying the free-rider
problem) another problem remains with the stand-by
queue approach. Maintaining the availability of this bid
information throughout the auction seems to diagnose the
threshold problem as a barrier to bidding throughout the
auction, when in fact the threshold problem should be
recognized as a barrier to efficiency only in the final
allocation. A bidder in an auction with a stand-by queue
may spend valuable computation time attempting to find a
collection of available queue bids to combinewith her own,
only to have the successfully combined coalitional bid
knocked out in subsequent rounds. To clarify the situation,
we advocate a new definition of the threshold problem:

Definition:
The Threshold Problem occurs when a collection of

bids, each of which cannot become winning unilaterally,
can be combined to reach an efficient final allocation.

There are two changes here from the definition given
loosely in Section 2 (and in the literature at large.) One
distinction is the word “final”whichmakes it unnecessary
in particular to consider a set of bids which may be
combined to displace a bid that eventually is not winning
(as is the case in the intermediate phases of AUSM [9] or
PAUSE [19].) A second change is “each of which cannot
become winning unilaterally.” If a bidder is willing to
submit a bid which can become winning unilaterally, we
would want her to do so, rather than hiding this low
valuation only to submit this into the final sealed-bid
phase when it is too late for her opponents to react. To
encourage revelation during Stage II we assume that a
bidder has bid truthfully and hold her to it in Stage III via
bounds on her Stage III bids. These “honesty constraints”
make it risky to hide preferences in Stage II, as doing so
will limit one's ability to bid aggressively in Stage III.

These observations suggest that the threshold problem
should not be addressed until a final sealed-bid auction,
regardless of what type of sealed-bid auction is used. For
the remainder of this section we describe the specific
winner-determination problem for a sealed-bid auction
tailored to the multi-stage auction as developed to this
point. In particular, we want to maintain the bid table
entries as bid information, allow for package bidding, and
uphold the Package/Column designations for each
package bid as described in Section 5. We now describe
an integer programming formulation for determining
winners, treating all revealed bid information as binding.

In addition to each (final) bid table entry bijk , we will
have (from Stages II and III) some indexed list of L
package bids {(B1, S1), …(Bl, Sl), …(BL, SL)}, where
each (Bl, Sl) represents a bid of Bl for set Sl. In practice a
sophisticated bid language may be used that bids on
several packages simultaneously, but for now we
maintain bids on an arbitrary number of exclusive
packages for the sake of generality. This set of package
bids will contain any bid that is winning at the end of
Stage II, and any other bids submitted for Stage III after
having been screened to ensure that each Bl could not
become winning at the end of Stage II.

We introduce the notation Cl to denote the set of
columns that a bidder has associated with a particular
package bid (Bl, Sl), and 0–1 decision variable yl which
equals one if and only if package bid (Bl, Sl) is accepted.
Also, we will wish to express that if (Bl, Sl) is a winning
package bid then the bid table columns associated with
tasks in Cl will become inactive (i.e. not win any items).
To find an optimal allocation we solve the following
allocation problem for Stage III, which we denote (A3):

min
X

i;j;kð ÞaI�J�Kj

bijk � xijk þ
X

l¼1 to L

Bl � yl ðA3Þ

subject to
X

iaI

xijk þ
X

lj j;kð ÞaCl

ylV1; 8 j; kð Þ

with jaJ and kaKj

X

jaJ

X

kj j;kð ÞaCl

xijk þ
X

ljiaSl

yl ¼ 1; 8iaI

X

ljBl is made by j

ylV1; 8j

xijkaf0; 1g; 8i; j; k

ylaf0; 1g; 8l
This modification of formulation (A) (from Section 5)
places the yl variables so that if a package bid wins its
specified collection of items, then the columns associ-
ated with this bid will not win other items, and no other
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bid which includes any of those items may be accepted.
The third set of constraints assures an XOR relationship
among the bundle bids.

The solution to (A3) gives the final efficient winners
and their awarded bundles, but does not tell us what
prices to charge the bidders for the items they receive.
Pay-as-bid is one extreme possibility, but clearly this
pricing rule provides the strongest incentives for bid
shading, risking a less efficient outcome. The other
extreme possibility is to adopt a VCG payment structure
which is guaranteed to be incentive-compatible (induce
truthful bidding).

There are, however, several problems with VCG
payments when positive synergy is present. Most notably,
the VCG outcome is often not a “core” outcome; a losing
group of bidders may be able to show a consistent set of
submitted bids that offers to provide the buyer with all
items at lower total cost. Intuitively, the VCGmechanism
“pays” the bidders in order to induce truth-telling, and in
the presence of complementary items, these payments can
grow to absurd levels in regard to perceived fairness (and
what is rational for the buyer).

The recent work of Ausubel and Milgrom [5], Day
and Raghavan [13], Hoffman et al. [17], and Wurman
et al. [27] advocate the use of “bidder-Pareto-optimal
core” pricing, which does pay rents to bidders in order to
induce truth-telling, but not such high rents as to cause
this absurdity sometimes associated VCG payments.
Loosely speaking, with core pricing no coalition of
bidders could offer to provide the items to the buyer at
lower total cost, and have every member of the coalition
prefer this offer to the outcome of the auction (or be at
worst indifferent). It is worth noting though, that for
some instances the VCG payments are in the core, in
which case the bidder-Pareto-optimal prices correspond
exactly to the VCG prices, as is the case for the following
example of Section 7. In other cases, bidder-Pareto-
optimal core payments are different from the VCG
payments, in which case truthful revelation is not a
dominant strategy for bidders. However, as we show in
[13], at Nash equilibrium in a bidder-Pareto-optimal core
auction each bidder will bid “close to truthfully,”
resulting in an efficient allocation.

7. Example: a shipping lane auction

We now present an illustrative example to demon-
strate how the stages of our auction design might
proceed, using a fairly simple model of synergies.
Suppose that a firm is holding a procurement auction for
shipping lanes, and bidders X, Y, and Z have come to bid
on the available transportation contracts A, B, C, D, and
E. The network associated with these routes is depicted
graphically in Fig. 3.

Imagine that each of these bidders has costs for each of
these items (contracts) individually and perceives some
natural synergies among routes. In particular, any route
that forms a 2-cycle will cost 3 units less than the
assignment of the individual contracts for bidder X, and
similarly every 3-cycle will save bidder X7 units. These
decreases in costs may have to do with driver scheduling
and the fact that a cycle diminishes the number of empty
loads for which a shipping company may still have to pay
their drivers. Among the contracts available in this auction
there is only one 2-cycle (A – B) and only one 3-cycle (A –
C – D), but let us imagine that bidder X has an existing
contract to move shipments along the path F, allowing this
company to experience the benefits of a 3-cycle (C –E –F)
from obtaining contracts on just C and E in the present
auction. For the other bidders, we suppose that bidder Y
has no existing contracts, but perceives a cost decrease of 7
units on a 2-cycle and 4 units on a 3-cycle, and bidder Z
also has no existing contracts and experiences a decrease in
costs of 6 on a 2-cycle and 9 on a 3-cycle.

For the sake of brevity, we do not show iterations of
Stage I, in which players alter their bid tables, but
instead present the following set of final Stage I bid table
entries:

Bidder Y has simple preferences: at most three routes
could be supported with an additive cost structure for
items won individually. Bidder Z similarly has additive
costs for the first two routes provided, but must expand
(perhaps train a new driver) at a cost of 1 for the third or
fourth route awarded (thus the third and fourth columns
include an extra unit of cost.) Bidder X has a slightly
more complex cost structure: routes B and C both
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originate at the same city, and are hence partially
substitutable; by putting the lowest cost for these two
routes in the same column, bidder X has made certain
that both of these routes will not be provided at their
lowest cost. A similar partial substitutability is expressed
for D and E, while A could be provided at cost 11
regardless of what other routes are provided. Given these
bid table entries, the winning entries (shown in bold) are
the tentative winners of a contract on the respective
routes, at the indicated highest Walrasian equilibrium
prices. All butD are awarded at a profit, becauseD could
be provided by bidder X if bidder Y were to be paid any
more than 16.

Together with the synergies described above, these
bid tables describe the following costs for bundles.
(Note: we need only list bundles which contain positive
synergy; individual routes may be added on at their bid
table value.)
AB
 ACD
 ABCE
 CE
Bidder X
 20
 29
 41
 23

Bidder Y
 19
 38

Bidder Z
 17
 37
In Stage II, each bidder asks the auctioneer (probes) for a
price quote on any bundle, designating that a lowest cost
assignment of their bid table columns be removed if the
price offer is accepted. For simplicity, we assume
straightforward bidding in which the bidder always
chooses a bundle that offers the most profit, as long as
that profit is non-negative. The rounds of Stage II proceed
in random order as follows, with accepted prices shown in
bold:
Rounds
 AB
 ACD
 ABCE
 CE
Round 1

Bidder Z
 21
 37

Profit
 4
 0

Bidder Y
 20
 37

Profit
 1
 −1

Bidder X
 18
 32
 49
 29

Profit
 −2
 3
 8
 6
Round 2

Bidder Y
 18
 35

Profit
 −1
 −3

Bidder Z
 18
 34

Profit
 1
 −3

Bidder X
 16
 30
 47
 29

Profit
 −1
 1
 6
 6
Round 3

Bidder Z
 16
 32

Profit
 −1
 −5

Bidder Y
 16
 33

Profit
 −3
 −5
Thus Stage II ends with bidder X winning the bundle
ABCE, which includes a known 2-cycle and allows this
firm to complete a 3-cycle with its existing contract on
F, while bidder Y is awarded a contract on route D
from its bid table value.

Bidders next enter any bid that is higher than the final
probe price they receive at the end of Stage II, except for
bidderX, whomay submit any bid on any subset ofABCE
due to the winning Stage II bid on this bundle. The
auctioneer then determines the efficient solution in Stage
III and computes VCG prices for each awarded bundle
contract. Bidder X wins CE with a bid of 23 and a VCG
payment of 34; bidder Y wins D with a bid table entry of
16 and a VCG payment of 16, and bidder Z wins AB with
a bid of 17 and aVCGpayment of 18. Using the technique
described in [13] one can show that the VCG payments
are in the core, and thus need not be adjusted.

In this example we have briefly demonstrated the
overall flow of the three-stage auction, from bid tables to
probing for bundles to a final sealed-bid round. The
example shows that some bidders may experience a
profit while others may only be able to win a contract by
bidding away any visible profit. It also shows the need
for the final sealed-bid round, with Stage II ending at a
less than efficient solution, and shows that with
forthcoming bidders the honesty constraints do not
prohibit the bids necessary to achieve efficiency.

8. Concluding remarks

We have presented a new auction design that
incorporates features from both the PAUSE auction of
Kelly and Steinberg [19] and the clock–proxy auction of
Ausubel et al. [4]. In particular, our method emphasizes
revelation of price information on individual items in
order to reduce the number of bundles for which bids will
be necessary in the (NP-hard) winner-determination
problem, and to allow for the revelation of aggregate
information in common value settings. Unlike the clock–
proxy auction and the dual-based pricing approaches, our
mechanism for revealing prices on individual items does
not incorporate non-linear (or non-additive) synergy
information into linear item prices, as this leads to
meaningless and distorted item prices. Unlike the PAUSE
auction, free-riding is limited by a disciplined approach to
bundle price revelation. We do, however, reveal price
information over bundles, and as in the PAUSE auction
this revelation takes place with only little computational
burden to the auctioneer. (In contrast to PAUSE, this takes
place through the repeated solution of assignment
problems in our case, a polynomial-time procedure.)
Like the clock–proxy auction, the use of a final sealed-bid
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round ensures efficiency and allows us to encourage
truthful bidding throughout the auction with a “second-
price” final payment mechanism.

With the increasing use of combinatorial auctions for
procurement (and other settings) the design of a
computationally viable auction that incorporates price
discovery (both for items and bundles), while mitigating
many of the problems such as free-riding and the
threshold problem, is of significant practical interest.
The auction proposed in this paper addresses these
issues in a novel and comprehensive way, building upon
both PAUSE and the clock–proxy auction, yet avoiding
some of the criticisms of each. To our knowledge, no
other auction proposed so far is able to address all of the
issues addressed by our auction. We look forward to
experiments and practical implementations of our
auction format in the future, in both the forward and
reverse (procurement) auction contexts.
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Appendix A

Proof of Theorem 5.1

Proof. We work in the forward auction setting for
consistency with the literature to which we are referring.
The problem of allocating items according to demand
correspondences is as follows: given a set of demand
correspondencesDl, D2,…DM, each a set of subsets of the
set of all items I, select one subset Sj from each Dj such
that Sj∩Sj̄ =∅ whenever j≠ j¯ and⋃j∈JSj= I. It is easy to
verify that this problem is in NP. Given a set of Sjs we
need only verify that Sj∩Sj̄ =∅ for all M M�1ð Þ

2 pairings of
distinct bidders and that ⋃j∈J Sj= I. Clearly these
verifications can occur in polynomial time. To show that
the problem is NP-complete, we transform a generic set
partitioning feasibility problem into an instance of the
allocation feasibility problem. Given a set of objects X
and a family of subsets of X, F={Xl, X2,…Xp}, the set
partitioning feasibility problem is to find a subset F′ of F
such that Xj¯∩Xj=∅ for any distinct Xj and Xj¯ in F′ and
⋃Xj∈F′Xj=X. To transform this into an instance of the
demand correspondence allocation feasibility problem
simply let I=X and create a bidder j for each Xj where j's
demand correspondence={∅, Xj}. □
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