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Abstract We introduce the prize-collecting generalized minimum spanning tree
problem. In this problem a network of node clusters needs to be connected via a
tree architecture using exactly one node per cluster. Nodes in each cluster com-
pete by offering a payment for selection. This problem is NP-hard, and we describe
several heuristic strategies, including local search and a genetic algorithm. Further,
we present a simple and computationally efficient branch-and-cut algorithm. Our
computational study indicates that our branch-and-cut algorithm finds optimal so-
lutions for networks with up to 200 nodes within two hours of CPU time, while the
heuristic search procedures rapidly find near-optimal solutions for all of the test in-
stances.

Keywords Networks · Heuristics · Local search · Genetic algorithms ·
Branch-and-cut

In the prize-collecting generalized minimum spanning tree (PCGMST) problem,
which arises in the design of regional telecommunications networks, a set of regions
needs to be connected by a minimum cost tree structure and, for that purpose, one
gateway site needs to be selected out of a set of candidate sites from each region.
The competing sites in each region offer a monetary compensation, or a “prize,” if
selected as the gateway node for their region. The objective is to minimize the total
cost of links used to connect the regions offset by the total sum of prizes collected
from gateway sites selected for the design.

Examples of providing a monetary compensation for selection into a telecom-
munication network arise in many real-world contexts. For example, in the design of

B. Golden · S. Raghavan (�) · D. Stanojević
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undersea cable networks connecting different continents, not all countries or cities en-
route can be directly connected to the undersea cable network. This is due to the very
significant cost of connecting a location to a deep sea cable network. Consequently,
planners of these undersea cable networks usually designate that one location will be
selected from each of a specified set of regions that the network traverses. Given the
potential monetary benefits associated with being a location that is directly connected
to a transcontinental fiber-optic network with significant economic benefits it is not
uncommon for cities or countries to vie against each other for selection as a location
on this network. These monetary incentives are usually in the form of tax credits and
rebates to the builder or operator of the telecommunications network.

In mathematical terms we are given an undirected graph G = (V ,E), with node
set V and edge set E, with a cost vector c ∈ R

|E|
+ defined on the set of edges E, and

a prize vector p ∈ R
|V |
+ defined on the set of nodes V . We are also given a partition

of the node set V1, . . . , VK (i.e., Vi ∩ Vj = ∅, if i �= j and
⋃K

k=1 Vk = V ). We need
to find a minimum cost tree spanning exactly one node from each set in the partition,
where the cost of the tree is defined as the total cost of the edges used for the tree
minus the sum of the prizes corresponding to the nodes selected for the tree.

When all the prizes are equal to zero (or equivalently are exactly equal to each
other within a node set in the partition), this problem corresponds to the generalized
minimum spanning tree problem, that has been studied recently by several groups
of researchers (see Feremans et al. 2004; Golden et al. 2005; Pop 2004). Since the
GMST problem is NP-hard, it implies (by restriction) that the PCGMST problem is
also NP-hard.

In this paper we present several polynomial-time heuristics for the PCGMST prob-
lem, and discuss two improvement strategies that significantly enhance the perfor-
mance of these algorithms. We also adapt two heuristic search procedures—local
search and a genetic algorithm—that we designed for the GMST problem (see Golden
et al. 2005) to the PCGMST problem. These heuristic search procedures can be used
to obtain high-quality solutions in large networks.

We also present a simple and computationally efficient branch-and-cut solution
procedure for this problem. This procedure is very easy to implement and utilizes
simple depth-first search at the integer incumbent nodes of the branch-and-bound tree
to identify violated cuts. We compare its performance with two different variations
of an exact procedure proposed by Pop (2004) for the GMST problem, and show
that our algorithm provides better bounds for the problem. We show on a large set
of instances that this procedure can be used to find optimal solutions in networks
with random edge costs with up to 200 nodes and up to 40 clusters (for the rest of
this paper we will refer to a node set in the partition as a cluster) within two hours
of CPU time. On networks with Euclidean edge costs this procedure can be used to
find optimal solutions in networks with up to 125 nodes within two hours of CPU
time.

Our computational testing indicates that this branch-and-cut algorithm is sensitive
to the relative values of edge costs and node prizes. When the node prizes have a
smaller contribution to the objective function (compared to the contribution of edge
costs), our branch-and-cut procedure finds optimal solutions in 130 out of 169 test
instances within a two hour CPU time limit. On the other hand, when the node prizes
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have a higher contribution to the objective function, our branch-and-cut algorithm
finds the optimal solutions in 166 out of 169 test instances within a two hour time
limit. The performance of the heuristic search procedures is quite remarkable. Specif-
ically, both local search and the genetic algorithm find the optimal solution in all of
the 296 test instances where the optimal solution is known (from the branch-and-cut
procedure)!

The rest of this paper is organized as follows. In Sect. 1 we discuss related work on
the GMST problem. In Sect. 2, we discuss heuristic strategies for the PCGMST prob-
lem. We propose a lower bounding procedure and several polynomial-time heuristics
for the PCGMST problem. We show that tailored repetitions of these heuristics pro-
vide a significant improvement in the quality of their solutions. In Sect. 2, we also
adapt two heuristic procedures that we previously developed—local search and a
genetic algorithm to the PCGMST problem. In Sect. 3, we review the mathemati-
cal formulation proposed by Pop (2004) for the GMST problem and discuss some
important properties of this formulation that are relevant to our branch-and-cut algo-
rithm. Section 4 discusses two exact solution procedures based on the mathematical
formulation presented in Sect. 3. First, Sect. 4.1 explains the rooting procedure pro-
posed in Pop (2004), and then compares the performance of two different variations
of the rooting procedure. Next, in Sect. 4.2, we propose a new branch-and-cut algo-
rithm for the PCGMST problem. We discuss specific choices that need to be made
in this algorithm and computationally compare the performance of two different ver-
sions of this procedure. In Sect. 5, we compare our two heuristic search procedures
with the branch-and-cut algorithm. Finally, in Sect. 6, we provide concluding re-
marks.

1 Literature review

To our knowledge, we are the first researchers to consider the prize collecting variant
of the GMST problem. We will discuss some of the past work done on the GMST
problem.

Several variants of the GMST problem have been studied in the literature. The ver-
sion studied in this paper was introduced by Myung et al. (1995), who have shown
that the GMST problem is NP-hard. Myung et al. (1995) have also developed a dual-
ascent based branch-and-bound procedure that was used to solve problems in net-
works with up to 100 nodes and 4,500 edges.

Feremans (2001) and Feremans et al. (2002, 2004) presented several different for-
mulations for the GMST problem and proposed a specialized branch-and-cut algo-
rithm. In the computational study performed in Feremans (2001), this algorithm was
used to find optimal solutions for the GMST problem in networks with random edge
costs with up to 200 nodes. The same procedure provided optimal solutions for the
GMST problem in the networks with edge costs satisfying the triangle inequality and
with up to 160 nodes. Pop (2004) proposed a new mathematical formulation for the
GMST problem and used it to develop a new exact procedure that can be viewed as a
special form of delayed row and column generation. We will discuss this formulation
and exact solution procedure in Sects. 3 and 4. Golden et al. (2005) proposed two fast,
high-quality metaheuristic procedures for the GMST problem. Their computational
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study shows that these procedures provide optimal solutions for most of the problems
in the large set of test instances.

Other versions of the GMST problem found in the literature are closely related
to the more extensively studied Group Steiner Problem (GSP). In this sense, the first
version of the GMST problem was introduced by Cockayne and Melzak (1968). The
GSP studied by Cockayne and Melzak (1968) requires the design of a tree structure
spanning at least one node from each cluster of nodes. Additionally, there may exist
a set of Steiner nodes that does not belong to any of the clusters, but can be used for
the tree design.

Recently, Duin and Voß (2004) have pointed out that when a specific GMST prob-
lem fits the framework of the GSP, one can use the transformation of the GSP to
the well-studied undirected Steiner problem in graphs (SPG) to model the GMST
problem. In their computational study, Duin and Voß (2004) found that two special-
ized SPG heuristics, Pilot-Rush and Pilot-Drop (originally defined in Duin and Voß
(1999)), provide good results for this special case of the GMST problem. On a set
of problems with Euclidean, random, and rectilinear distances in networks with 100
to 400 nodes, the Pilot-Drop procedure provided solutions that were on average less
than 0.3% from optimality and with a maximum gap of 3.4% from optimality.

The at least version of the GMST problem (which is similar to the GSP except
there are no Steiner nodes) is identical to the GMST problem, except that the tree
must span at least one (instead of exactly one) node from each cluster. For these
problems Duin and Voß showed that an exact SPG solver similar to the one devel-
oped by Duin (1993) significantly outperformed a genetic algorithm (GA) developed
by Dror et al. (2000), both in terms of the solution quality and computational effort.
On a set of 20 problems, the GA developed by Dror et al. (2000) provided solutions
that were on average 6.53% from optimality, while the exact SPG procedure pro-
vided optimal solutions for all test instances within very short CPU times. Shyu et
al. (2003) developed an ant colony approach that provides comparable results to the
GA developed by Dror et al. It also takes less CPU time than the GA developed by
Dror et al. Recently, Haouari et al. (2005) proposed an exact branch-and-bound al-
gorithm for the at least version of the GMST problem. The proposed algorithm was
combined with a specialized preprocessing algorithm, and was used to find optimal
solutions for problems in networks with up to 250 nodes, 1000 edges, and 25 clusters
within three hours of CPU time.

2 Heuristic procedures for the PCGMST problem

Given the fact that the PCGMST problem is a generalization of the polynomially
solvable minimum spanning tree (MST) problem, it is natural to raise a question
regarding the application of existing MST algorithms, as heuristics, to the PCGMST
problem. In our previous work (Golden et al. 2005) we addressed this question for the
GMST problem, and presented a spanning tree lower bound and three heuristic pro-
cedures based on three well-known MST algorithms—Kruskal’s, Prim’s, and Sollin’s
(see the text by Ahuja et al. 1993, for a nice description of the three algorithms, their
implementations, and complexity).
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The procedures for the GMST may be applied to the PCGMST, by ignoring the
node prizes, and subtracting them ex-post from the solutions (i.e., by subtracting the
node prizes for the nodes in the tree solution). However, if the prizes are considered
ex-post, the three heuristic procedures provide solutions of extremely poor quality.
In particular, on a set of TSPLIB instances (these instances are described in Sect. 5)
for which the optimal solution is known, we found that the heuristic solutions were
on average 40% from optimality. On the other hand when the node prizes are zero,
these three heuristic procedures provided solutions that were on average 15% from
optimality. This suggests that for the PCGMST problem, the node prizes should be
accounted for within the heuristic procedures instead of ex-post.

In this section, we show how to account for node prizes, and describe a spanning
tree lower bound procedure. We also describe how to adapt Kruskal’s, Prim’s, and
Sollin’s algorithm to the PCGMST problem while accounting for the node prizes.
We then discuss a repetition strategy that significantly improves the performance of
the proposed heuristics while maintaining the polynomial running time. Finally, we
describe two fast and efficient metaheuristic procedures—local search and a genetic
algorithm—for the PCGMST problem.

2.1 Spanning tree lower bound

A very simple lower bound for a given PCGMST problem can be obtained through
the straightforward application of Kruskal’s algorithm for the MST. This procedure
solves the MST problem on a modified graph where each cluster is contracted into a
single node (the prize of this node is set to the highest prize offered by nodes from
the same cluster) and multiple edges between pairs of clusters are replaced by the
one of minimum cost. To calculate this lower bound, it is not necessary to contract
the graph. Instead, it is fairly easy to modify Kruskal’s algorithm to accomplish the
same. The running time of the lower bound algorithm is identical to Kruskal’s and is
O(|E| + |V | log |V |). (Observe, that if we ignore the node prizes or node prizes are
zero, we obtain the spanning tree lower bound for the GMST problem (Golden et al.
2005).)

2.2 Polynomial-time heuristics

We now describe how to adapt Kruskal’s, Prim’s, and Sollin’s algorithm for the MST
problem as heuristics to the PCGMST problem while taking into account the node
prizes within the algorithm. We then consider a heuristic polynomial-time repetition
framework called the pilot method that significantly improves the performance of
these adaptations.

The adaptation of Kruskal’s algorithm builds the PCGMST in a similar fashion to
Kruskal’s algorithm for the MST, with two exceptions. First, we need to make sure
that exactly one node in each cluster is selected. And, second, we need to take into
account prizes offered by the selected nodes.

To take into account the prizes we apply the following strategy in all three adap-
tations. Initially, we modify the cost of all edges by subtracting the prizes of the end
points of an edge from its actual cost (note that the edge cost defined this way more



74 B. Golden et al.

precisely reflects the impact of addition of a particular edge on the objective func-
tion). In the subsequent steps of our algorithms, we update the edge costs whenever a
new node is added to the tree that is being built. Once a node is included in the tree,
we add the weight of this node to the cost of all edges that have this node as one of its
end points. This modification of edge costs ensures that weights of the nodes already
in the tree are not considered in the edge selection process (note that once the node is
selected for the generalized spanning tree (GST), it is only the actual edge cost that
makes a difference in the objective function).

In other words, in each iteration of Kruskal’s adaptation (we call this adaptation
PCKH) for the PCGMST problem, it finds the minimum cost edge (observe the edge
costs can change in each iteration) such that its addition to the tree does not create a
cycle among the clusters, and that at most one node from each cluster is selected for
the final network design. This is also the bottleneck step in Kruskal’s adaptation. This
step takes O(|E|) time, and, since we add K − 1 edges, the running time of PCKH is
O(|E|K).

The adaptation of Prim’s algorithm for the PCGMST problem (referred to as
PCPH) requires the selection of a starting node from which the tree is grown. Once
the starting node is selected, we proceed in a straightforward manner identical to
Prim’s algorithm for the MST problem while taking care that exactly one node is
selected from each cluster. That is, in each step we add the minimum cost edge from
the nodes in the tree being grown to the nodes not in the tree, taking care that exactly
one node is selected from each cluster. Additionally, we need to make sure that the
node prizes are taken into account (as explained above). Observe that the solution
provided by Prim’s adaptation may depend on the node selected as the starting node
(we refer to this node as the root node). In our implementation of this algorithm we
select the root node randomly.

The running time of Prim’s adaptation is identical to Prim’s algorithm for the MST
plus the time needed to make updates of edge costs. Since we will update an edge cost
only once, this takes O(|E|) time. So, the running time of Prim’s adaptation remains
O(|E| + |V | log |V |).

Sollin’s algorithm for the MST starts with each node representing a tree. In each
iteration of Sollin’s algorithm, it identifies, for each tree in the partial solution, the
minimum cost edge emanating from the tree. It then adds these edges to the partial
solution (thus merging trees to build larger trees, and reducing the number of trees in
the partial solution). The iterations of the algorithm are repeated until a spanning tree
is obtained. We adapt Sollin’s algorithm to the PCGMST as follows (we refer to this
adaptation as PCSH). In each iteration of the algorithm, for each tree (or cluster, if no
edge in the forest constructed so far is incident to any node in the cluster) select as a
candidate edge the minimum cost edge out of the tree (or cluster) whose addition is
feasible (i.e., adding the edge will not result in multiple nodes from a cluster in the
partial solution). Ties between edges, for selection as candidate edge, are broken by
choosing the edge that appears first in the sorted order. Consider the selected edges
in sorted order and add an edge to the partial solution if its addition is feasible. (Note
that, although the edges were feasible when selected, once we start adding edges to
the partial solution, a selected edge may no longer be feasible for addition to the
partial solution.) We repeat these iterations, updating edge costs as described earlier,
until a feasible generalized spanning tree is obtained.
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Each iteration of Sollin’s adaptation takes O(|E| + K2 logK) time as we go
through the list of |E| edges to select the minimum cost feasible edge out of each
tree (or cluster), sort them, and then consider at most K − 1 edges to add in an itera-
tion. The time for making edge updates at the end of the iteration is O(|E|). In each
iteration at least one edge is added, since it is always feasible to add the first selected
edge. Thus there are at most K − 1 iterations. Consequently, the overall running time
of Sollin’s adaptation is O(|E|K + K2 logK).

Note that the proposed heuristics are guaranteed to return a feasible solution only
when the underlying graph is complete (in terms of edges between all pairs of nodes).
Ideally, we would like to add an edge in our adaptations only if the addition of the
edge does not cause the heuristic to fail (i.e., make the problem infeasible). In order to
do this, we need to answer the following question. Given a graph, clusters, and edges,
does it contain a feasible GST? (When we add an edge, we have selected a node in
a cluster. Thus, we can delete all other nodes in the cluster and edges emanating
from them, and ask the question: does the modified graph contain a feasible GST?)
Unfortunately, in general, from the transformation given by Myung et al. (1995),
even the recognition of whether a graph contains a generalized spanning tree is NP-
complete. Consequently, we handle infeasibility as follows.

In the case of Kruskal’s adaptation, if the algorithm results in an infeasible solu-
tion, we propose that the algorithm remove the most expensive edge added to the tree
from the problem and run the heuristic again. We repeat this procedure until either a
feasible GST is obtained or one cluster has no edges out of it. In the case of Prim’s
and Sollin’s adaptations, if the algorithms result in an infeasible solution, we delete
the edge that was most recently added to the tree, and run the algorithm again.

When feasibility is an issue, a crude running-time bound for Kruskal’s adapta-
tion is O(|E|2K) (since we run Kruskal’s at most |E| times). However, this bound
is somewhat misleading, because when the graph is dense (i.e., |E| is large), infea-
sibility is very unlikely. Furthermore, observe that in Kruskal’s algorithm the most
expensive edge in the tree constructed is the last edge that was added to it. Thus, in-
stead of building a tree from scratch, we may simply delete the last edge added and
continue to build the tree from there. Similarly, arguing as for Kruskal’s adaptation,
a crude running-time bound for Prim’s adaptation, when feasibility is an issue, is
O(|E|2 +|E||V | log |V |). Again, for the very same reason as in the case of Kruskal’s
adaptation, this is somewhat misleading. Also, as in the case for Kruskal’s adapta-
tion, we can delete the most recently added edge and continue to rebuild a tree from
there. Arguing similarly, when feasibility is an issue, a crude running-time bound for
Sollin’s adaptation is O(|E|2K + |E|K2 logK).

The quality of the solutions provided by the three adaptations PCKH, PCPH, and
PCSH, are shown in Table 1. Table 1(a) shows results for the PCGMST problem with
node weights set to zero (so, these problems correspond to the GMST problem), and
Table 1(b) shows results for the PCGMST problem with the integer node weights
randomly selected from the interval [0,10]. Note, the number of instances in the
two tables differs because they only include results for problems where the optimal
solution is known. The results in Table 1(b) indicate that accounting for the prizes
within the adaptations (instead of ex-post) significantly improves the quality of results
(recall that at the start of this section we found that accounting for the prizes ex-post
results in average gaps on the order of 40%). On the other hand, the average gap of
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Table 1 Comparison of Kruskal’s, Prim’s, and Sollin’s adaptation and the spanning tree lower bound for
the PCGMST problem: (a) Zero node prizes; (b) Integer node prizes randomly selected in the range [0,10]

Clustering Number Spanning tree Upper bound procedures

type instances Lower bound PCKH PCPH PCSH

Avg error Avg error Avg error Avg error

(a)

Center 37 37.13% 8.27% 13.10% 7.99%

Grid, μ = 3 28 22.22% 5.05% 7.94% 5.22%

Grid, μ = 5 28 32.95% 10.65% 12.41% 10.70%

Grid, μ = 7 28 42.34% 15.87% 17.18% 15.64%

Grid, μ = 10 29 44.39% 15.90% 18.56% 15.67%

Overall 150 35.94% 11.00% 13.83% 10.89%

(b)

Center 33 74.18% 12.06% 25.42% 17.64%

Grid, μ = 3 22 47.84% 7.95% 13.71% 10.89%

Grid, μ = 5 22 68.68% 12.59% 22.16% 14.21%

Grid, μ = 7 26 101.10% 21.33% 32.12% 23.28%

Grid, μ = 10 27 74.39% 18.98% 23.76% 19.93%

Overall 130 74.22% 14.75% 23.88% 17.52%

the PCKH, PCPH, and PCSH is still quite high and probably too crude to be used
for practical purposes. The same holds for our simple spanning tree lower bound for
which we also report results in Table 1. This lower bound is very weak, deteriorates
with non-zero node weights, and is probably not a good choice for obtaining lower
bounds for the PCGMST problem.

The poor performance of the proposed upper bound heuristics is not surprising,
given the fact that edge selection is used to direct the search. This kind of search can
be inefficient for the PCGMST problem since when we select an edge, we automat-
ically select (“fix”) nodes that will be used for the two clusters incident to the edge
selected. This motivates the question of whether a different type of search that would
take into account node selection, would perform better.

We now describe an extensive search strategy that significantly improves our upper
bound heuristics by progressively fixing all the nodes in the GST. First, let T be a set
of nodes that are fixed for the initial GST design, such that 1 ≤ |T | ≤ K . Next, let
St

T represent a solution obtained by fixing all the nodes from the set T (t = |T |)
for the GST design and then applying one of the three upper bound heuristics. (The
steps for finding a solution St

T for a given set T are specific to each of our upper
bound heuristics, and will be explained later in this section.) Also, let T ∗ indicate a
set of nodes selected for the final GST design, and V ∗ indicate a set of all nodes that
belong to the same clusters as the nodes in T ∗. The search is started with empty sets
T and T ∗, and one of our upper bound heuristics is run |V | times, each time starting
with a different node selected for the design. The node i∗ (i ∈ V ), that provides the
minimum cost solution is then fixed for the final GST (i.e., it is added to the set T ∗).
In order to add another node to the set T ∗, we first set T = T ∗ and then run the same
upper bound heuristic |V \ V ∗| times, each time with a different node i (i ∈ V \ V ∗)
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Fig. 1 Pilot method for the upper bound heuristics for the PCGMST problem

added to the set T (i.e., each time we set T = T ∗ ∪ {i}, fix the nodes in the set T

for the GST design, and apply the same upper bound heuristic). We continue this
procedure until K nodes are added to the set T ∗. This search paradigm is called the
pilot method (see Duin and Voß 1999).

An example of the steps of our implementation of the pilot method for the pro-
posed upper bound heuristics is illustrated in Fig. 1. In this example, we are given
an 8-node network with 4 clusters, each containing 2 nodes. In the first iteration
of the pilot method we run one of our upper bound heuristics |V | times. The node
that provides the best solution (node 3 in this example) is then added to set T ∗,
i.e., it is fixed for the final GST design. In the next iteration of the pilot method
the same upper bound heuristic is run |V \ V ∗| times. As in the previous iteration,
we select the node that provides the best solution (in this case node 6) and add it
to the set T ∗. The pilot method is continued until K nodes are fixed for the GST
design.

The procedure used to obtain solutions St
T at any given iteration of the pilot

method is as follows. In the case of Kruskal’s and Sollin’s adaptation, we simply
fix the nodes from the set T for the GST design and apply either PCKH or PCSH
respectively. In other words, we eliminate all nodes belonging to the same clusters
as nodes that are fixed for the design and run our upper bound heuristics without any
modifications. However, since each step of Prim’s algorithm adds an edge to a par-
tially completed tree, we need to implement a slightly different strategy. Specifically,
we want to make sure that the new node added to the set T ∗ at the end of a given
iteration of the pilot method is connected to the tree that is being built (in other words
we want to make sure it is feasible to construct a tree on the set T ∗ in each step of
the pilot method). To ensure this, we first connect the candidate node i ∈ V \ V ∗
that is being considered to the tree on T ∗ using the least-cost edge available before
proceeding with Prim’s adaptation.

The results of the pilot method applied to each of our upper bound heuristics are
shown in Table 2. We can see that solutions obtained using the pilot method provide
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Table 2 Comparison of Pilot method for PCKH, PCPH, and PCSH. (a) Zero node prizes. (b) Integer node
prizes randomly selected in the range [0,10]

Clustering Number PM-PCKH PM-PCPH PM-PCSH

type instances Average error Average error Average error

(a)

Center 37 0.80% 1.53% 0.83%

Grid, μ = 3 28 0.42% 0.83% 0.48%

Grid, μ = 5 28 0.71% 1.30% 0.65%

Grid, μ = 7 28 1.56% 1.42% 1.74%

Grid, μ = 10 29 1.49% 1.42% 1.71%

Overall 150 0.99% 1.31% 1.07%

(b)

Center 33 1.75% 1.18% 3.97%

Grid, μ = 3 22 1.21% 0.62% 2.30%

Grid, μ = 5 22 1.43% 1.85% 1.59%

Grid, μ = 7 26 0.91% 1.63% 1.27%

Grid, μ = 10 27 1.25% 1.99% 1.70%

Overall 130 1.33% 1.46% 2.27%

upper bounds that are less than 2% from optimality in the case of zero node weights,
and less than 3% from optimality in the case of non-zero node weights. This is a
significant improvement when compared to the quality of the upper bounds obtained
by the initial adaptations (PCKH, PCPH, and PCSH) of the MST algorithms. Also,
an interesting observation is that the pilot method for our upper bound heuristics runs
in polynomial time (a very crude running time of the pilot method for each of our
upper bound heuristics is |V |K times their running times). The actual average CPU
times of the PM-PCKH, PM-PCPH, and PM-PCSH procedures were 0.84, 0.34, and
66.29 seconds respectively in the case of zero node weights, and 101.22, 0.23, and
49.30 seconds respectively in the case of non-zero weights. (We note that the longer
CPU times of the PM-PCKH and PM-PCSH procedures compared to the PM-PCPH
procedure are due to our code. We believe that the running times for these procedures
can be improved with more efficient codes.)

2.3 Metaheuristic procedures

We now describe two fast and efficient metaheuristic procedures for the PCGMST
problem—local search and a genetic algorithm.

The local search (LS) procedure we developed in Golden et al. (2005) for the
GMST problem may be directly applied to the PCGMST problem. It differs only
in that an additional objective function term for node prizes needs to be taken into
account here. Briefly, our local search procedure works as follows. It is an iterative
1-opt procedure. It visits clusters in a wraparound fashion following a randomly de-
fined order. In each cluster visit, the neighborhood of a feasible generalized spanning
tree is explored by examining all feasible trees obtained by replacing the node (in
the tree) from the current cluster. In other words, a GST of least cost (the cost of
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Fig. 2 Steps of our Genetic Algorithm for the PCGMST problem

the tree is the sum of the edge costs minus the rewards on the nodes) is found by
trying to use every node from that cluster, while fixing nodes in other clusters. The
local search procedure continues with visiting clusters until no further improvement
is possible. The procedure is applied to a pre-specified number of starting solutions
(denoted by t).

We now present a genetic algorithm (GA) for the PCGMST problem that is similar
to the one we developed in Golden et al. (2005), with a few differences in the initial
population and genetic operators applied. Figure 2 shows an outline of our genetic
algorithm. The initial population is created by randomly generating a pre-specified
number of feasible GSTs. Before adding a new chromosome to the population P(0),
we apply local search and add the resulting chromosome as a new population mem-
ber. Within each generation t, new chromosomes are created from population P(t −1)

using two genetic operators: local search enhanced crossover and random mutation.
The total number of offspring created using these operators is equal to the number
of chromosomes in the population P(t − 1), with αP (t − 1) offspring created us-
ing crossover, and βP (t − 1) offspring created using mutation (fractions α and β

are experimentally determined). Once the pre-specified number of offspring is gen-
erated, a subset of chromosomes is selected to be carried over to the next generation.
The algorithm terminates when the termination condition, a pre-specified number of
generations that we denote NUMGENS, is met.

We now provide some more details of the genetic algorithm. A chromosome is
represented by an array of size K , so that the gene values correspond to the nodes
selected for the generalized spanning tree. The initial population is generated by ran-
dom selection of nodes for each cluster. If possible, a minimum spanning tree is
built over the selected nodes. Otherwise, the chromosome is discarded, since it rep-
resents an infeasible solution. Each feasible minimum spanning tree built in this way
is then used as input for the local search procedure. The resulting solution is then
added to the initial population as a new chromosome. We apply a standard one-point
crossover operation (see Fig. 3 for an example). As in the initial population, only
the feasible solutions are accepted. Each child chromosome created using this op-
erator is used as input to the local search procedure, and the resulting chromosome
is added to the population. A random mutation operator randomly selects a cluster
to be modified and replaces its current node by another, randomly selected, node
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Fig. 3 An example of one-point
crossover operator

from the same cluster. The new chromosome is accepted if it results in a feasible
GST. In order to maintain diversity of the population, we do not apply local search
to new chromosomes created by random mutation. At the end of each generation, a
fraction, θ , of the current population is selected to be carried to the next generation,
while the remaining chromosomes are discarded. This selection is a combination of
elitism and rank-based selection, where the top 10% of the current population is se-
lected using elitism and the remaining 90% is selected using rank-based selection
(see Michalewicz 1996).

Our two metaheuristic procedures performed outstandingly. On a set of 296 test
problems where the optimal solution is known both LS and GA found the optimal
solution. We will elaborate on these results in Sect. 5 when we compare them with
an exact solution procedure for the PCGMST problem.

3 A compact formulation

The exact procedures that we develop in this paper are based on a compact (i.e., poly-
nomial size) mathematical formulation for the GMST problem originally proposed by
Pop (2004). We will first introduce and motivate this formulation. We will then de-
scribe some important properties associated with this formulation that we later use to
develop a simple and efficient branch-and-cut algorithm. While the formulation was
introduced in the context of the GMST problem, we adapt and present it in the con-
text of the PCGMST problem. Since the formulation has node variables to indicate
whether a particular node is selected, this is easily done by modifying the objective
function in the formulation.

To motivate the formulation for the PCGMST problem, it is best to first look at the
well-known subtour elimination formulation for the minimum spanning tree (MST)
problem from which this formulation is derived. This (submst) formulation can be
stated as follows:
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Minimize
∑

(i,j)∈E

cijuij (1)

subject to:

∑

∀(i,j)∈E

uij = n − 1, (2)

∑

∀(i,j)∈S

uij ≤ |S| − 1, S ⊂ V, |S| > 1, (3)

uij ∈ B1 ∀(i, j) ∈ E. (4)

The linear relaxation of this formulation describes the convex hull of the integer
feasible region (see Magnanti and Wolsey 1995), but has an exponential number of
subtour elimination constraints (3). It is well known that the separation problem for
the identification of violated subtour elimination constraints (SECs) is a polynomially
solvable min-cut problem that can be solved by either using one of the well-known
combinatorial algorithms for the min-cut problem or by solving a linear program.

Martin (1991) shows that when the separation problem can be formulated as a
polynomial-size linear program, we can use the dual of the separation problem to ob-
tain an equivalent (in terms of the linear relaxation) compact (i.e., polynomial sized)
formulation. In the case of the submst formulation, use of this approach leads to a
new formulation (ref-submst) that replaces constraint (3) by the following three con-
straints:

wkij + wkji = uij ∀(i, j) ∈ E, ∀k ∈ V, (5)
∑

j

wkij ≤ 1 ∀k ∈ V, ∀i ∈ V \ k, (6)

∑

j

wkkj = 0 ∀k ∈ V. (7)

Martin (1991) formally establishes the equivalence of the submst and ref-submst
formulations. Note, it is easy to see that the ref-submst formulation is valid. In terms
of the MST problem, each set of wkij variables for a given k represents a set of vari-
ables defining a directed tree rooted at node k, where an individual variable wkij is
equal to 1 if node j is predecessor of node i in the directed tree rooted at node k.
Constraints (6) and (7), together with (2) and (5), guarantee that each node in the
directed tree rooted at node k has at most one predecessor node, while the node k,
by constraint (7), has no predecessors at all. (Note, constraint (6) may also be written
with an = sign, instead of a ≤ sign.) Constraints (5) through (7) guarantee that there
are no cycles, since if there was a cycle it would mean that for some root node k,
and the corresponding set of variables wkij , there is a node with either two predeces-
sors, or a root node has a predecessor, which is not valid by the definition of these
constraints.

We now discuss the properties of a special type of relaxation of the ref-submst
formulation where only a subset of nodes W (W ⊂ V ) is selected to be used as the
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root nodes of directed trees. In other words, instead of having variables wkij defined
for each k ∈ V , only the wkij variables for k ∈ W are included in the formulation.
We will refer to this type of relaxation of the ref-submst formulation as a p-root
relaxation, where p indicates the number of nodes used as roots in a given relaxation.

Lemma 1 The linear relaxation of the ref-submst formulation with wkij variables
defined only for k ∈ W ⊂ V (1 ≤ |W | ≤ |V | − 1), provides an optimal solution for a
given MST problem if the solution is integer feasible to the ref-submst formulation.

Proof It is easy to see that Lemma 1 is true, as any relaxation of the ref-submst not
including a set of constraints (5–7) is actually equivalent to the submst formulation
without a set of subtour elimination constraints. And, for the latter relaxation, an
integer solution without cycles always represents the optimal solution. �

Lemma 1 implies that an integer solution of the p-root relaxation of the ref-submst
formulation always represents either a tree, or a structure with at least one cycle
(note that if the solution is integer but does not define a tree structure, then, by
constraints (3), the solution must contain at least one cycle). So, one way to solve
the original problem is to start with a p-root relaxation, and then add violated con-
straints (5–7) (which means adding root nodes to the relaxation). Another approach
to solve the original problem is to start with a p-root relaxation, and then use violated
subtour elimination constraints (3) to eliminate any cycles that may be present in the
solution of the p-root relaxation. While the violated SECs can be identified in poly-
nomial time using a min-cut algorithm, identification of the violated constraints (5–7)
may not be immediately obvious. However, we show that when the solution of the
p-root relaxation is integral the separation problem for constraints (5–7) can be solved
in a straightforward manner.

Proposition 2 If there is a cycle in the integer solution of the p-root relaxation of
the ref-submst formulation, then nodes k∗ ∈ W (where W is the set of root nodes) can
never be a part of the cycle(s) present.

Proof Observe that if a node k∗ ∈ W was a part of a cycle, it would imply that either
one of the nodes in the cycle (other than node k∗) has 2 predecessors in the directed
tree rooted at node k∗, or that node k∗ has a predecessor in this tree. However, neither
is possible by definition of constraints (5–7) for the set of variables wk∗ij . �

Proposition 2 suggests that violated constraints (5–7) can always be identified as
those corresponding to the directed trees rooted at nodes forming a cycle in the cur-
rent integer solution of the p-root relaxation. We now show how these ideas can be
applied to the PCGMST problem.

The subel formulation uses three types of variables to define the connections be-
tween clusters in the graph. The first group of variables, are local edge variables uij

that define the use of specific edges between nodes in the graph. The other two groups
of variables, ylr and wklr , on the other hand, define connections between clusters in
the graph. The ylr variables are global edge variables that indicate whether the solu-
tion includes an edge directly connecting clusters l and r . Observe that a GST forms a
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spanning tree on the graph obtained by shrinking each cluster to a single node. Thus,
we would like the global edge variables to form a spanning tree on the clusters. Con-
sequently, the wklr variables play the same role as in the ref-submst formulation, but
in relation to the global edge variables (i.e., they ensure the global edge variables do
not form a cycle on the clusters). More precisely, each variable wklr indicates whether
cluster r is a predecessor of cluster l in the directed tree rooted at cluster k (there are
K directed trees, one for each of the clusters in the graph). Finally, the formulation
contains node variables zi to indicate whether node i is in the solution.

Subtour elimination formulation (subel) for the PCGMST problem:

Minimize
∑

∀(i,j)∈E

cijuij −
∑

∀i∈V

pizi (8)

subject to:

∑

i∈Vk

zi = 1 ∀k = 1, . . . ,K, (9)

∑

i∈Vl,j∈Vr

uij = ylr ∀l, r = 1, . . . ,K, l �= r, (10)

∑

j∈Vr

uij ≤ zi ∀r = 1, . . . ,K, ∀i ∈ V \Vr, (11)

∑

(i,j)∈E

uij = K − 1, (12)

yij = wkij + wkji ∀k, i, j = 1, . . . ,K, i �= j, (13)
∑

j

wkij = 1 ∀k, i = 1, . . . ,K, i �= k, (14)

wkkj = 0 ∀k, j = 1, . . . ,K, (15)

wkij ≥ 0 ∀k, i, j = 1, . . . ,K, (16)

zi ≥ 0 ∀i ∈ V, (17)

uij ≥ 0 ∀(i, j) ∈ E, (18)

ylr ∈ B1 ∀l, r = 1, . . . , K, l �= r. (19)

Formulation subel represents a straightforward extension of the ref-submst for-
mulation, achieved through the introduction of local (i.e., u and z) and global (i.e.,
y and w) variables. Pop (2004) shows that the only variables that need to be defined
as integer in the subel formulation are the global edge variables ylr . Once the ylr

variables are integer, and form a spanning tree on the clusters, the other variables
are automatically integer. Together, the variables define the GST in the following
way. Constraint (9) ensures that exactly one node is selected from each cluster. Con-
straint (10) ensures that an edge connecting two nodes can be used only if the clusters
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corresponding to these nodes are connected by a global edge. Constraint (11) guar-
antees that node i belonging to cluster Vl can be connected to at most one node in
any given cluster Vr (l �= r). Constraint (12) specifies the number of edges that are
supposed to be selected for the GST. Constraint (13) ensures that clusters i and j can
be adjacent in the directed tree rooted at cluster k only if clusters i and j are directly
connected. Constraints (14) and (15) ensure that, with the exception of a root clus-
ter k (k ∈ K), every cluster in the directed tree rooted in the cluster k has exactly one
predecessor cluster.

It is possible to define a p-root relaxation of the subel formulation using a sim-
ilar relaxation strategy defined for the ref-submst formulation. In other words, the
p-root relaxation of the subel formulation includes only a subset of the wkij variables
that define directed trees for the pre-specified set of the root clusters W (1 ≤ |W | ≤
K − 1). (Note that the directed trees in the p-root relaxation for the PCGMST prob-
lem are defined over the clusters of the graph G, while the directed trees in the p-root
relaxation for the MST problem are defined over the nodes of the graph G.) It is easy
to establish that this relaxation has similar properties as the p-root relaxation for the
MST problem.

Lemma 3 The p-root relaxation of the subel formulation with the wkij variables
defined only for k ∈ W ⊂ K (1 ≤ |W | ≤ K − 1), provides an optimal solution to the
PCGMST problem if the solution is integer feasible to the subel formulation.

Proof First, observe that we can write the subel formulation using the subtour elimi-
nation constraints instead of the constraints (13–16). (We will refer to this new formu-
lation as the subel′ formulation for the PCGMST problem.) This directly implies that
any relaxation of the subel formulation that does not include a set of constraints (13–
16) is equivalent to the subel′ formulation without a set of subtour elimination con-
straints. The rest of the proof is similar to the proof of Lemma 1. �

In an identical fashion to the MST problem, we can argue that if an integer solution
of the p-root relaxation is infeasible to the subel formulation, then there must exist
a cycle defined by the ylr variables (we call these global cycles since ylr represents
global edge variables). Further, by definition of constraints (13–16), clusters that are
used as roots of directed trees in the p-root relaxation of the subel formulation cannot
belong to global cycles.

4 Exact procedures

In this section we discuss two exact procedures. First, we discuss a simple exact
procedure called the rooting procedure (originally proposed by Pop (2004), for the
GMST problem). We examine and test two variations of the rooting procedure to
determine the best strategy while using the rooting procedure. Then, we develop a
new (and simple) branch-and-cut algorithm for the PCGMST problem.
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Fig. 4 Steps of our implementation of the Rooting Procedure (RPcycle)

4.1 Rooting procedure

This procedure is motivated by the fact that the subel formulation that includes all
the wkij variables and the corresponding constraints may be enormous and difficult
to solve. The idea behind the rooting procedure is, therefore, to try to find the optimal
solution by using only a small subset of clusters as root clusters.

The rooting procedure starts with the p-root relaxation of the subel formulation
with a single randomly selected root cluster kr . In the next step, the p-root relaxation
that includes only variables and constraints defining a directed tree from root node kr

is solved. If the solution of this relaxation turns out to be a global tree, then, according
to Lemma 3, the problem is solved; otherwise, variables and constraints for another
root cluster are added (or used to replace existing root clusters) and the relaxation is
resolved. This procedure is repeated until the optimal solution is found.

Pop (2004) does not elaborate on the strategy used to add or substitute root clusters
in the rooting procedure. We suggest two simple ideas that come to mind when apply-
ing the rooting procedure. One is to randomly select clusters and add one root cluster
at a time to the p-root relaxation. We refer to this variant of the rooting procedure
as RPrand. A more deliberate strategy for the addition of root clusters to the p-root
relaxation that has a potential to provide better computational results is to examine
the solution to a given p-root relaxation for the existence of global cycles (i.e., cycles
defined on the global edge variables) and to only add a cluster (or clusters) that is a
part of these global cycles. We refer to this procedure as RPcycle. Our implementation
of RPcycle is outlined in Fig. 4.

We computationally tested these two variants of the rooting procedure on a set of
geographical TSPLIB instances. The results confirmed our expectations and showed a
significant difference in the performance of the two versions of the rooting procedure.
With a two hour CPU time limit, RPrand did not find the optimal solution in 11 out
of 41 instances and, on average, required 2805.16 seconds of CPU time. Also, on
average, RPrand required 7.34 root clusters to be added to the p-root relaxation in
order to find the optimal solution. RPcycle, on the other hand, did not find the optimal
solution in 9 instances, and required, on average, 2126.34 seconds of CPU time. The
average number of root clusters needed to be added to the p-root relaxation in this
case was 4.09. Additionally, in instances solved to optimality, RPcycle never needed
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more than 8 root clusters to find the optimal solution, while RPrand required 25 root
clusters in the worst case. RPcycle also provided better lower bounds than RPrand in
several instances. In particular, when compared over 11 instances that RPrand did not
solve to optimality, the lower bound provided by RPcycle was on average 3.93% better
than the one provided by RPrand.

Pop et al. (2006) independently describe the variant that we call RPcycle. Their
computational results appear to be identical to Pop (2004) where no elaboration on the
rooting procedure is provided (most of the results in Pop et al. (2006) appear to also
be in Pop (2004)). In contrast, our experiments explicitly compare the performance
of two different variants of the rooting procedure in the context of the PCGMST
problem in order to get a better sense of the impact that the choice of the root clusters
has on the efficiency of the rooting procedure for the PCGMST problem.

4.2 A simple branch-and-cut algorithm

In Sect. 3 we pointed out that an alternative approach for solving the p-root relaxation
of the subel formulation is to progressively add violated subtour elimination con-
straints (SECs). In this section, we elaborate on this idea and present a new branch-
and-cut algorithm for the PCGMST problem.

First, note that in a given solution of the p-root relaxation violated SECs can be
defined over local edge variables or over global edge variables. Although it is not ap-
parent which choice is better, it is clear that the number of SECs defined over global
edge variables can be significantly lower than the number of SECs over local edge
variables. Consequently, we use SECs defined over global edge variables (we call
these global SECs) in our branch-and-cut algorithm. Another important decision that
one needs to make is whether to add SECs at all nodes of the branch-and-bound tree
or only at certain, designated, nodes. This issue is very important from an imple-
mentation perspective since the complexity of the separation problem may not be the
same at different nodes of the branch-and-bound tree. In the p-root relaxation, the
separation problem for the identification of violated SECs at any node of the branch-
and-bound tree is a min-cut problem. At incumbent (integer) nodes, on the other
hand, we can examine the set of edges selected in the solution and identify cycles
using a simple depth-first search. These cycles immediately point to violated SECs.
Consequently, once a cycle is identified, we can add a subtour elimination constraint
defined over the clusters (i.e., a SEC defined over global edge variables) that are part
of this cycle.

Besides the advantage of solving a simpler separation problem, the addition of
cuts at incumbent (integer) nodes only may be more effective due to a fewer number
of nodes at which the separation problem needs to be solved. We tested both ideas
by defining two branch-and-cut algorithms. The first algorithm, BCAinc, adds SECs
only at incumbent (integer) nodes. The steps of this procedure are outlined in Fig. 5.

The second algorithm, BCAall, solves the min-cut problem at every node of the
branch-and-bound tree, and whenever violated global SECs are found, they are added
to the entire branch-and-bound tree. In our implementation of the BCAall we have
used the min-cut algorithm of Stoer and Wagner (1997) implemented in LEDA 4.5
to solve the separation problem. The comparison of these two procedures is provided
in Table 3. We can see that the proposed algorithm has comparable performance
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Fig. 5 Steps of our branch-and-cut algorithm (BCAinc)

Table 3 Comparison of branch-and-cut algorithms BCAinc and BCAall for the PCGMST problem. (Note:
The TSPLIB instances used for these tests were modified by adding randomly generated integer node
weights in the range [0,10])

Clustering Number of BCAinc BCAall Avg relative difference

type instances BCAinc vs BCAall

Avg. time (sec) Avg. time (sec) UB LB

Center 41 1606.23 1588.04 0.00% −0.03%

Grid, μ = 3 32 2362.58 2177.03 −0.07% −0.31%

Grid, μ = 5 32 2611.72 2293.01 −0.03% −0.09%

Grid, μ = 7 32 1534.83 1450.86 0.01% −0.08%

Grid, μ = 10 32 1189.16 1177.85 0.01% −0.12%

Overall 169 1847.34 1729.41 −0.02% −0.12%

with BCAinc providing slightly better upper bounds, but also somewhat worse lower
bounds. However, due to the extreme simplicity of the implementation of BCAinc, we
suggest the use of this algorithm.

The key advantage of BCAinc is the fact that it does not require sophisticated rou-
tines and can be easily coded using commercial optimization software such as ILOG
Concert Technology, and can even be easily implemented in a modeling language
like AMPL or GAMS. Additionally, the improvement in the time needed to solve the
PCGMST problem using these procedures compared to the time needed to solve some
alternative mathematical formulations (without using branch-and-cut) is quite signifi-
cant. For example, the mathematical formulation that we used for the GMST problem
in Golden et al. (2005)1 needed several days to solve several random instances (these
instances are described in Sect. 5). Our BCAinc procedure, on the other hand, solved
most of these instances within two hours of CPU time.

1This formulation was solved using CPLEX 7.1 on a Sun Microsystems Enterprise 250 with 2 × 400 MHz
processors and 2 GB RAM.
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5 Additional computational results

All the procedures presented in this paper were coded using Microsoft Visual C++.
The exact procedures were coded using ILOG Concert Technology 2.0 in CPLEX 9.0.
All computations were performed on a workstation with 2.66 GHz Xeon processor
and 2 GB RAM.

The test instances used in this paper include two sets of problems identical to those
that we used in Golden et al. (2005), except that here we have used randomly gen-
erated integer node weights in the range [0,10]. The first set represents the TSPLIB
instances where the edge costs satisfy the triangle inequality. These instances were
generated by Fischetti et al. (1997). This set contains five groups of problems that
differ in the type of clustering in the network (the parameter μ in these instances can
be interpreted as the average number of nodes in a cluster). The second set of test
instances are random instances generated by Golden et al. (2005).

The two metaheuristic procedures, local search (LS) and genetic algorithm (GA),
were applied with the following parameters that we determined using computational
tests on a separate set of random instances. For the GA, we use a population size of
100 chromosomes, 15 generations, and we create 50% of offspring using crossover
and mutation operators each. The fraction of the population discarded at the end of
each generation is set to 0.5. The LS was performed using 500 independent randomly
generated starting solutions. For the exact procedures, BCAinc and RPcycle, we have
used a two hour time limit.

We first compared BCAinc and RPcycle over a set of geographical TSPLIB in-
stances and obtained the following results. Out of 41 instances, BCAinc did not find
a solution in 8 instances, while RPcycle did not find a solution in 9 instances. Overall,
the average CPU time for the BCAinc was 1606.23 seconds, while RPcycle required
2126.34 seconds on average. In 9 instances where RPcycle did not find the optimum,
BCAinc provided a better lower bound in 8 instances with an average improvement
of 1.72%.

Due to the superiority of BCAinc over RPcycle, in our further computational tests,
we have compared BCAinc with the two metaheuristics—LS and GA. Table 4 sum-
marizes results for 130 TSPLIB instances where BCAinc found the optimum within
two hours of CPU time, and Table 5 provides results for the remaining 39 unsolved

Table 4 Summary of computational results for BCAinc, LS, and GA on TSPLIB instances where BCAinc
found the optimal solution within 2 hours of CPU times. Both LA and GA found the optimal solutions in
all instances. Node weights are in the range [0,10]

Clustering Number of BCAinc LS GA

type instances Opt. sol. Avg. time (sec) Avg. time (sec) Avg. time (sec)

Center 41 33 250.16 8.70 4.55

μ = 3 32 22 163.72 38.84 10.74

μ = 5 32 22 526.12 3.53 3.83

μ = 7 32 26 227.47 2.51 3.34

μ = 10 32 27 76.03 1.66 2.00

Overall 169 130 241.53 10.23 4.70
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Table 5 Computational results for BCAinc, LS, and GA on TSPLIB instances where the optimal solution
is unknown. (The time limit for BCAinc was 2 hours)

Problem |E| BCAinc LS GA
name LB UB Soln Time (sec) Soln Time (sec)

TSPLIB instances, center clustering
28pr136 8879 30406.9 34003 34003 5.59 34003 5.70
30kroa150 10809 9330.25 9655 9655 7.33 9655 11.28
30krob150 10807 9568.43 9896 9896 6.78 9896 11.53
39rat195 18478 406.117 541 532 36.49 532 18.41
40kroa200 19409 10597.5 11442 11442 17.81 11442 18.28
40krob200 19430 10123.5 11080 11047 17.59 11047 18.72
40d198 18841 6662.5 6844 6844 17.19 6844 42.23
45ts225 24650 54554.8 62036 62080 196.02 62016 30.56

TSPLIB instances, grid clustering, μ = 3
50bier127 7729 70052.6 70965 70965 135.44 70965 14.86
60pr136 9064 49394 52569 52575 20.47 52562 22.13
57kroa150 11005 13318.8 13796 13796 206.31 13796 32.17
58u159 12321 23212.3 23916 23916 229.64 23916 23.47
81rat195 18745 635.438 646 649 67.33 646 61.05
72kroa200 19636 13613.6 14574 14533 246.41 14529 59.02
76krob200 19661 14028.1 14930 14930 328.14 14930 74.25
67d198 19101 7588.51 7956 7956 58.47 7956 44.02
75ts225 24900 73343.2 78639 78609 68.74 78609 136.94
84pr226 25118 58815.4 62156 62052 54.91 62052 74.66

TSPLIB instances, grid clustering, μ = 5
36kroa150 10868 9549.6 9929 9929 10.70 9929 31.05
36krob150 10870 9226.83 9580 9580 10.00 9580 29.55
33pr152 11083 37505.3 37985 37985 9.03 37985 16.19
32u159 12046 16498.4 16871 16871 8.03 16871 9.52
49rat195 18600 450.332 514 515 263.28 513 44.69
47kroa200 19464 11020.6 11383 11383 25.67 11383 23.22
48krob200 19511 10261.1 10866 10866 26.22 10866 24.27
40d198 18772 6527.09 6892 6892 15.88 6892 39.69
45ts225 24726 46446.4 60900 60496 210.20 60431 27.77
50pr226 24711 55338.1 56444 56444 265.52 56444 25.84

TSPLIB instances, grid clustering, μ = 7
25krob150 10725 6841.77 7174 7174 5.47 7174 5.00
36rat195 18454 349.141 409 408 18.27 408 15.25
35kroa200 19335 8016.5 9507 9476 14.61 9474 15.02
36krob200 19362 8802.5 9581 9580 14.97 9580 15.38
32d198 18372 5836.9 6329 6329 136.39 6329 17.83
35ts225 24544 42156.9 50753 50636 20.53 50635 15.73

TSPLIB instances, grid clustering, μ = 10
25rat195 18225 257.55 313 313 7.69 313 6.41
25kroa200 19100 6008.25 6754 6754 7.75 6754 22.11
25krob200 19082 6094.43 6801 6801 7.67 6801 21.06
25d198 18149 5600.93 6067 6053 6.66 6053 7.59
25ts225 24300 34771.1 40199 40187 8.64 40187 7.81
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instances. Both metaheuristic procedures found optimal solutions in all 130 instances.
The average CPU time required by LS in these instances was 10.23 seconds, while
the average CPU time required by the GA was 4.7 seconds. Over all 169 TSPLIB
instances, GA always provided solutions at least as good as the solutions provided by
LS, and in eight instances GA was better than LS. In these instances, the upper bound
provided by GA was, on average, 0.14% better than the upper bound provided by LS.
The average time BCAinc needed to solve 130 TSPLIB instances to optimality was
241.52 seconds. Of the remaining 39 instances where BCAinc did not find the optimal
solution, the upper bound provided by BCAinc equals the best upper bound found by
our metaheuristics in 24 instances. In 15 instances, the best upper bound found by
our metaheuristics was, on average, 0.31% better than the one provided by BCAinc.
The average gap between the best upper bound and lower bound provided by BCAinc,
over the 39 instances that BCAinc did not solve to optimality, was on average 8.94%.

In the case of random instances, our branch-and-cut algorithm found the optimal
solution for 41 out of 42 instances within two hours of CPU time (see Table 6). In
instances where the optimal solution is known, BCAinc needed 32.93 seconds to find
the optimal solution. Over the same set of instances, the average CPU time for LS
was 6.2 seconds, and 5.98 seconds for GA. Both LS and GA did not find an optimal
solution for one of the problems where the optimal solution is known.

In order to test the sensitivity of our procedures with respect to assigned node
prizes, we have repeated our experiments over all 169 TSPLIB instances using a
different node-prize function with 5 possible prize values (0, 1, 10, 100, 1000). These
are summarized in Table 7. In these experiments, BCAinc found the optimal solution
in 166 out of 169 instances within two hours of CPU time, with an average CPU time
of 113.95 seconds.2 Both LS and GA found optimal solution in all 166 instances, with
average CPU times of 14.37 and 9.56 seconds, respectively. In three instances where
BCAinc did not find the optimal solution, LS and GA provided the same solutions
that were 12.65% from the best known lower bound, and 0.03% better than the upper
bound provided by BCAinc. These results indicate that higher node prizes (relative
to edge costs) tend to make the problem easier to solve for BCAinc. At the same
time, the higher importance of the node prizes seems to make problems slightly more
difficult to solve for the metaheuristics—LS and GA—in terms of computation time.

6 Conclusions

In this paper, we introduced the PCGMST problem, the prize collecting version of
the GMST problem, that has potential applications in telecommunications network
design.

We presented three polynomial-time upper bound heuristics for the PCGMST
problem, and also adapted two heuristic search procedures—local search and a ge-
netic algorithm—for the GMST problem to the PCGMST problem. We discussed
a formulation and solution strategy called the rooting procedure introduced by Pop
(2004) for the GMST problem. We experimented with two variants of the rooting

2In this case, we had to adjust the mip gap in CPLEX settings due to higher magnitude of cost functions.
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Table 6 Computational results for BCAinc, LS, and GA on random instances

Problem characteristics BCAinc LS GA
K |V | |E| Soln Time (sec) Soln Time (sec) Soln Time (sec)

15 120 2,000 −54 7.63 −54 1.66 −54 1.66
3,000 −69 2.77 −69 1.70 −69 2.00
6,000 −83 3.16 −83 1.66 −83 1.59

150 3,000 −82 0.33 −82 2.14 −82 1.45
5,000 −80 0.33 −80 2.08 −80 1.91
9,000 −98 19.24 −98 2.22 −98 1.94

180 4,000 −81 8.30 −81 2.53 −81 2.30
7,000 −96 6.60 −96 2.52 −96 2.39

14,000 −94 11.36 −94 2.39 −94 2.31

20 120 1,500 −76 2.95 −76 2.70 −76 2.75
3,000 −100 8.91 −100 2.86 −100 2.92
6,000 −112 85.30 −112 2.66 −112 2.73

160 3,000 −96 3.80 −96 4.09 −96 3.13
5,000 −94 60.56 −94 3.78 −94 3.72

10,000 −131 13.08 −131 3.52 −131 3.44

200 5,000 −101 43.36 −101 4.94 −101 4.72
10,000 −108 42.48 −108 4.58 −108 3.64
15,000 −128 1.80 −128 4.50 −128 4.45

25 150 3,000 −89 88.73 −85 5.44 −89 5.67
6,000 −111 19.47 −111 5.31 −111 4.14
9,000 −130 3.81 −130 5.20 −130 4.78

200 5,000 −111 12.00 −111 7.11 −111 6.99
10,000 −134 60.33 −134 7.13 −134 6.59
15,000 −148 12.39 −148 7.14 −147 6.56

30 120 2,000 −89 5.34 −89 5.78 −89 5.45
3,000 −144 2.86 −144 6.17 −144 7.72
6,000 −159 1.58 −159 6.30 −159 5.91

150 3,000 −118 30.67 −118 7.22 −118 7.08
6,000 −164 8.83 −164 7.14 −164 6.89
9,000 −139 18.38 −139 7.09 −139 6.84

180 4,000 −146 11.73 −146 9.30 −146 7.58
7,000 −151 15.50 −151 9.17 −151 8.48

14,000 −153 189.02 −153 8.38 −153 7.16

40 120 1,500 −112 2.58 −112 10.05 −112 9.33
3,000 −157 22.00 −157 9.75 −157 9.45
6,000 −180 12.83 −180 9.05 −180 9.58

160 3,000 −142 9.25 −142 13.86 −142 12.77
5,000 −170 20.14 −170 13.36 −170 12.70

10,000 −205 6.97 −205 12.49 −205 11.36

200 5,000 −177 150.20 −177 18.19 −177 17.00
10,000 −195* 7,200.00 −194 16.94 −194 17.36
15,000 −223 323.56 −223 15.33 −223 15.91

*BCAinc did not complete search for this problem within 2 hours of CPU time. Upper bound at the
time search was terminated was −194
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Table 7 Summary of computational results of BCAinc, LS, and GA on TSPLIB instances with node
weights [0,1,10,100,1000]. Both LA and GA found the optimal solutions in the 166 instances that
BCAinc solved to optimality within 2 hours of CPU time

Clustering Number of BCAinc LS GA

type instances Opt. sol. Avg. time (sec) Avg. time (sec) Avg. time (sec)

Center 41 41 55.89 8.54 7.17

μ = 3 32 31 348.13 52.45 23.14

μ = 5 32 31 56.82 7.46 10.18

μ = 7 32 31 34.66 3.46 4.80

μ = 10 32 32 93.63 2.24 3.50

Overall 169 166 113.95 14.37 9.56

procedure for the PCGMST problem. We then developed a very simple and effective
exact solution procedure.

Our computational experiments show that our upper bound heuristics, which rep-
resent the straightforward adaptations of the MST heuristics, do not provide good
bounds for the PCGMST problem. However, when applied within the framework of
a tailored, heuristic-repetition paradigm called the pilot method we show that these
procedures provide substantially better results (finding solutions that are on average
less than 3% from optimality).

The exact procedure that we proposed in this paper is a novel branch-and-cut al-
gorithm that works with incumbent (integer) nodes of the branch-and-bound tree. Re-
sults of our computational study indicate that this algorithm provides better bounds
for the PCGMST problem than the two variants of the rooting procedure that we
tested in this paper. Our computational experiments further suggest that our branch-
and-cut algorithm is a good choice (i.e., can provide optimal solutions within rela-
tively short CPU times) for networks with up to 200 nodes. For larger networks, the
heuristic search procedures are a better alternative. These procedures (LS and GA)
have demonstrated excellent performance for two different types of functions used
for the node prizes. In particular, out of 296 TSPLIB instances for which the opti-
mum is known, both LS and GA, very rapidly, found the optimum solution in all 296
instances. For the random instances, both algorithms found optimal solutions for 40
out of 41 instances for which the optimal solution is known.
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