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ABSTRACT

We introduce a traffic routing problem over an extended planning horizon that appears in geosynchro-
nous satellite networks. Unlike terrestrial (e.g., fiber optic) networks, routing on a satellite network is
not transparent to the customers. As a result, a route change is associated with significant monetary pen-
alties that are usually in the form of discounts (up to 40%) offered by the satellite provider to the cus-
tomer that is affected. The notion of these rerouting penalties requires the network planners to
explicitly consider these penalties in their routing decisions over multiple time periods and introduces
novel challenges that have not been considered previously in the literature. We develop a branch-and-
price-and-cut procedure to solve this problem and describe an algorithm for the associated pricing prob-
lem. Our computational work demonstrates that the use of a multi-period optimization procedure as
opposed to a myopic period-by-period approach can result in cost reductions up to 13% depending on
problem characteristics and network size considered. These cost reductions correspond to potential sav-

ings of several hundred million dollars for large satellite providers.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Satellite communications forms a large part of the telecommuni-
cations industry. The Satellite Industry Association reports (SIA,
2010) that the commercial satellite industry generated $160.9 bil-
lion in revenues in 2009, of which $93 billion or 58% is attributable
to the satellite services sector. Satellite communication providers
operate large fleets of satellites and are able to provide a multitude
of different services to retail customers, government agencies, and
companies in geographically diverse locations throughout the
world. Some of the products that companies in the satellite industry
currently offer include temporary and permanent video connec-
tions that usually carry traffic for cable and television networks,
internet trunking services that are used by internet service provid-
ers (ISPs), telecom carriers, global enterprises, government agen-
cies, and the military to connect remote locations to existing
high-speed backbones (e.g., in the United States or Europe).

Nowadays, companies in the satellite industry usually operate
satellites in geosynchronous (GEO) orbit at different longitudes that
remain over the same regions of the earth constantly. Typically a
GEO satellite, depending on the complexity of the on-board equip-
ment and its size, will cost hundreds of millions of dollars to design
and launch into orbit. Moreover, these satellites have an expected

* This paper was awarded the EURO Management Science Strategic Innovation
Prize 2010.
* Corresponding author.
E-mail addresses: igamvros@us.ibm.com (I. Gamvros), raghavan@umd.edu
(S. Raghavan).

0377-2217/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2011.11.004

life-span of approximately 15 years. Therefore, satellite companies
are under constant pressure to generate as much revenue as possi-
ble and utilize their capacity with the utmost efficiency.

In general, a satellite provider will receive service requests from
customers that wish to transmit a specific amount of traffic (or
lease a certain amount of bandwidth) between two locations. The
provider will then have to route this request over a satellite that
has available capacity and is directly visible from both locations.
Satellites usually have multiple antennas (or equivalently beams)
that can either receive or transmit (or both) telecommunications
signals from and to earth, respectively (for a nice introduction to
satellite technology see Maral and Bousquet, 1998). These beams
can communicate with specific regions of the world that are visible
from orbit and depend on the satellite’s design. Fig. 1 presents a
typical situation for a GEO satellite (positioned over the Atlantic
ocean) with a characteristic beam layout. In the industry lingo
beams that receive communications from the ground are called
up-beams while those that transmit signals back are called
down-beams. Also, it is important to note that on-board the satel-
lite there is a specific, number of connections (i.e., transponders)
between up-beams and down-beams. The transponders receive
signals from the up-beam to which they are connected and after
processing them they transmit them towards the earth through
the down-beam. Each transponder has a specific bandwidth and
processing characteristics which make it suitable for certain types
of traffic. For example high-definition video broadcasting requires
the use of transponders with enough capacity and transmitting
power, while voice trunks can be allocated to transponders with
relatively limited power. As a result, in order to connect two
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Fig. 1. Typical beam footprint for a GEO satellite over the Atlantic ocean.

distinct locations requested by a customer the satellite provider
must decide on the satellite and more importantly the up-beam,
down-beam pair, connected with an appropriate transponder, that
will handle the request. In Fig. 1 for example, in order to connect
Europe to North America one could use the eastern-hemi beam
together with the western-hemi beam, or alternatively the
north-eastern-zone beam together with the north-western-zone
beam provided that these beams are connected with transponders
on-board the satellite. Furthermore, in some satellites, network
operators can change the connectivity between the up-beams
and down-beams. More precisely, for these satellites network
planners can choose amongst a limited set of given configuration
possibilities.

Up to this point one could deduce, and rightfully so, that routing
service requests over a satellite network presents similar chal-
lenges to those that terrestrial carriers face when trying to utilize
their networks more efficiently. In the terrestrial case a carrier
could optimize the utilization of the network by finding the best
possible routing solution for all its customers and since routing
in such networks is transparent to the customers (i.e., the custom-
ers are unaware of the route their traffic follows) this solution
could be readily implemented. On-board configuration decisions
in a terrestrial context could resemble leasing of additional capac-
ity or installing new facilities in the long term. Notice that the fre-
quency of routing reconfigurations depends on the underlying
technology and the network layer at which they are implemented
but, in general, can take place in real-time. However, in satellite
networks rerouting a customer, has a very direct impact on the
customer. This occurs because in most cases it is the customers
who own the equipment (satellite dishes) that point to specific
locations in the sky and communicate with predetermined satel-
lites. Rerouting a customer to a different satellite would entail a
discontinuation of service until the satellite dish can be re-pointed
to the new satellite location and the channel parameters would
have to be reconfigured. As a result, service contracts for satellite
services define financial penalties for the satellite provider in case
of a rerouting. These penalties are usually defined as discounts on
the price that the customer pays for the service and in the case of a
satellite change can be as high as 40%. Even in cases when the cus-
tomer is routed over the same satellite but a different up-beam to
down-beam channel (i.e., transponder) there is still a rerouting
penalty imposed to the satellite provider, albeit a smaller one.
The reason for this penalty is that network engineers still have to
reconfigure the connection on the customer’s side to deal with a
possibly different frequency, signal strength and/or polarity. Final-
ly, on-board configuration changes on a satellite require significant
programmatic changes on the satellite from ground based control-
lers, and affect all of the traffic routed through the satellite. Thus,
they result in some rerouting penalties for all of the traffic through

the satellite and they are only considered when demand patterns
change significantly and the realignment of a satellite’s capacity
with current demand trends outweighs the rerouting penalties im-
posed by the reconfiguration. Given the significant programmatic
changes required and the significant engineering resources in pro-
viding such capabilities on a satellite; it is common for satellites to
be designed with only (or for ground based engineers controlling
the satellite to only consider) a very limited number of configura-
tion possibilities.

The notion of rerouting penalties is the critical characteristic of
satellite networks that sets them apart from their terrestrial coun-
terparts and has significant implications as to the way in which one
addresses the problem. Because of these penalties it is not enough
to plan traffic routing and satellite reconfigurations based on a sta-
tic picture of the network’s current status, since that would ignore
the significant cost effect of possible reroutings. As a result one
needs to introduce a time dimension into the problem and plan
for the routes that service requests are going to use over an ex-
tended time horizon. The consideration of routing decisions over
time makes it necessary to take into account the highly dynamic
nature of satellite networks. Because satellites have a limited life
expectancy it is not uncommon to have launches of new satellites,
discontinuation of service of old satellites, and (for companies with
large fleets) planned relocations of existing satellites to new longi-
tudes. All of these events as well as the possible reconfigurations of
the on-board connectivity cause significant changes to the physical
topology of the network and affect the routing decisions for all ser-
vice requests.

In this paper, based on our interactions and a project with one
of the world’s largest satellite services provider, we tackle the traf-
fic routing problem for existing and future service requests on a sa-
tellite network with multiple GEO satellites over several periods of
time. Network planners in this context forecast the amount of traf-
fic demanded by service requests between different origin and des-
tination regions based on historical data and strategic decisions for
the entire planning horizon. Consequently, the service requests
that we consider in this problem have a time dimension and a gi-
ven traffic component that is a function of time. Additionally, even
though the state of the network is dynamic, changes caused by
launches of new satellites, relocations of existing spacecraft, and
discontinuation of service for old satellites result from high-level
strategic decisions and are known with certainty. Therefore, the
state of the network can change, but it is predetermined, over
the entire planning horizon. Naturally, we wish to route as much
demand as possible while minimizing the sum of the routing and
penalty costs. Thus, the objective of the multi-period network plan-
ning (MPNP) problem is to minimize the overall cost of routing
“multi-period” traffic requests while making onboard configura-
tion decisions on a dynamic network topology for an extended
time horizon.

1.1. Related literature

Multi-period network planning and routing problems have
been previously considered in the literature. In the absence of
any capacity expansion (or installation) decisions or rerouting pen-
alties, the multi-period problem can be reduced to a series of sin-
gle-period problems. A single-period problem, while challenging,
can be posed as an integer multi-commodity flow (IMCF) problem.
The IMCF problem has been studied previously by researchers
(Alvelos and Valério de Carvalho, 2001, Barnhart et al., 2000, Holm-
berg and Yuan, 2003) who developed branch-and-price or branch-
and-price-and-cut techniques to solve it. Earlier papers on multi-
period network planning have largely focused on network dimen-
sioning or capacity planning decisions when demands vary over
time (Girard et al, 1991, Medhi and Tipper, 2000). Further,
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integrality on flows is generally not required or ignored, though it
is necessary in the satellite problem. A large number of researchers
have focused on the capacity planning or capacitated network de-
sign problem (Bienstock and Giinliik, 1996, Giinliik, 1999).

Optical network design and local access network design prob-
lems sometimes address multi-period problems and reconfigura-
tion concerns as traffic patterns change over time (Banerjee and
Mukherjee, 2000, Frantzeskakis and Luss, 1999, Labourdette,
1998, Labourdette et al., 1994). However, the approaches taken
usually focus on finding the best possible reconfiguration of the
network as long as the starting and ending states meet a previously
computed optimal criterion. In other words, the goal is to minimize
changes while targeting an already known network configuration.
In this sense the reconfiguration analysis takes a secondary role
and is not the main driving force behind the planning decisions.

The closest related problem in the literature is the multi-period
network design problem with incremental routing studied by Lar-
deux et al. (2007). Here, in the context of the design of the trans-
mission layer of an optical network, the authors consider a
network dimensioning (or configuration) problem over multiple
time periods where (i) demands increase over time, (ii) fractional
routing of demands is permitted, and (iii) no rerouting of past de-
mands is allowed (i.e., once a demand is routed it follows the same
path over the entire time horizon). This can be viewed as an ex-
treme case of the problem posed within this paper where the route
change penalties are infinite, and as such can easily be incorpo-
rated as a special case of the MPNP presented in this paper. The fo-
cus in Lardeux et al. (2007) is a polyhedral study, and is closely
related to works on the capacitated network design polytope. In
contrast, the MPNP problem seeks to minimize the overall cost of
routing traffic over an extended planning horizon while taking into
account the cost of rerouting traffic (which is permitted at a cost).
To the best of our knowledge multi-period routing with the notion
of well-defined and significant (in terms of their effect on the
objective function) path-based rerouting penalties has not been pre-
viously examined in the literature.

The rest of this paper is organized as follows. In the next section,
we model the multi-period network planning problem on a direc-
ted graph and present a path-based formulation with an exponen-
tial number of variables. In Section 3, we focus on the novel issues
of a branch-and-price-and-cut (BPC) procedure that is specifically
designed for our problem. In Section 4, by means of a large set of
computational experiments, we evaluate the strengths and weak-
nesses of our solution approach and compare it to a myopic peri-
od-by-period approach that can potentially be used for multi-
period planning in the satellite industry. We also compare the
BPC procedure with a heuristic strategy that generates columns
only at the root node of the branch-and-bound (B&B) tree. We
briefly discuss our experience with real-world instances. Finally,
in Section 5, we provide concluding remarks and discuss possible
directions for future work and problem extensions.

2. Problem formulation

We model our problem on a directed graph G = (N,A). The node
set N and arc set A consist of disjoint sets N, and A,, respectively,
each one representing the state of the network at time period
t=1,...,T, where T is the length of the planning horizon. Each of
the node sets N; contains one set of nodes that represents all origin
regions, a different set that represents all destination regions and
one node for each up-beam (this node can receive signals from ori-
gin nodes) and each down-beam (this node can send signals to des-
tination nodes) on all satellites for the given period. The reason for
having two disjoint node sets representing the origin and destina-
tion locations of possible customers is that in satellite networks it

is not uncommon for services to originate and terminate in the
same region. The arcs in our graph represent connections between
the origin nodes and up-beams, destination nodes and down-
beams, and on-board connectivity for satellites (i.e., up-beam to
down-beam connections). In the satellite context, the provider
owns the satellites while the customer owns the equipment at
the origin and destination nodes. Thus, the only arcs in this repre-
sentation to have a nonzero cost and capacity associated with them
are the ones representing the connections on-board the satellites.
We denote the cost per unit of bandwidth of arc (i,j) € A by ¢;
and its capacity by b;. Fig. 2 provides an example of this graph
for a two-period problem. Notice that G is not connected and it is
comprised of distinct components that represent the state of the
network at a specific time period t. We will refer to the component
that is associated with time period ¢, as G; = (N,A;).

When considering alternative on-board configurations (i.e.,
connections between up-beams and down-beams) for each satel-
lite, G needs to be augmented by additional node sets and arcs sets.
Specifically, for each satellite for which we wish to consider an
alternative configuration we replicate the node sets that represent
the up-beams and down-beams of the satellite for as many times
as the number of different configurations. Each replication of the
up-beam and down-beam node sets will represent the state of a
spacecraft in one of its possible configurations. As a result we need
to connect the up-beam and down-beam sets of each of these rep-
licas according to onboard connections of the configuration they
represent. Naturally, we also make the appropriate connections be-
tween the origin nodes and the up-beam nodes from all replica-
tions and similarly between the down-beam nodes and the
destination nodes. We denote the set of satellites in period t as S;
and the set of configurations for each satellite s € S; as U°. Fig. 3
shows how the graph G will be augmented to accommodate two
configurations for two different satellites.

We denote the set of service requests that we wish to route
with L. Each service request, [, has an origin, a destination and a de-
mand d' that is a function of time and can be positive only for con-
secutive time periods (if periods of positive demand are non-
consecutive, the request can be treated as multiple requests con-
sisting of positive demands with consecutive time periods). For
notational convenience each service request is treated as a sepa-
rate customer. Further, all demand for each request must be routed
on a single path (i.e., no demand splitting is allowed). Our problem
resembles a series of IMCF problems on each of the G, components
with some additional edge selection decisions. While we discuss
the MPNP problem in the context of the satellite communications
application where it arose, we should emphasize that our model
and solution technique is quite general and applies to MPNP prob-
lems on general graphs with (any type of) route change penalties.

A flow based formulation for graph G would require an extre-
mely large number of flow variables fiJ’f (i.e., one for each arc (i,j),

Time Period 1 Time Period 2

Satellites Satellites

Origins Destinati

°
O\ /.O
— >

e

Fig. 2. Graph G for two time periods.
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Fig. 3. Graph G; for a specific time period and two satellites, each one having two
alternative configurations.

for each customer/service request | and time period t). Moreover,
tracking the rerouting penalties with the use of flows would re-
quire additional decision variables and constraints that would be

able to capture the differences WH

ey —f,.J’F‘ for each arc (i,j) and
each time period t=2,...,T. These extra variables and constraints
make the flow-based approach intractable even for a small number
of time periods. Instead, we use a path-based formulation quite
similar to those discussed previously in the literature (Alvelos
and Valério de Carvalho, 2001, Barnhart et al., 2000, Holmberg
and Yuan, 2003) for the IMCF problem.

We introduce decision variables xi, that denote whether path p
will be used to route service request . Path p is not a path in the
conventional sense. It can be thought of as a “super-path” repre-
senting the entire sequence of paths across the different time peri-
ods over which customer I's traffic will flow. We denote the set of
all such “super-paths” p that can be used to carry customer I's traf-
fic with P. Specifically,

. { 1, if super-path p will be used to carry customer I's traffic,
P 0, otherwise.

If we ignore the possibility of reconfiguration decisions we can for-
mulate a simpler version of the MPNP that deals exclusively with
the routing decisions of the service requests over the time horizon.
We call this simpler version, the multi-period traffic routing (MPTR)
problem and model it by the following integer programming
formulation.

(MPTR) ~ min)_ > cpx,
leL  pep!
subjectto " di (Y oK | <by, t=1...T.(j)eA, (1)
leL pePl
doxp=1, Vlel, 2)
peP!
xbe{0,1}, VleLpeP. 3)

In this model d} represents the traffic demand for customer [ in
time period t. 65 is one if super-path p uses arc (i,j) and is zero
otherwise. c{, denotes the cost of path p for customer I and includes
the arc costs as well as the rerouting penalties for path p.
Specifically,

T

T
=D > 55—46:7 + ; et (4)

t=1 (ij)eAc

where 9% is one if there is a rerouting for super-path p from period
t — 1 to period t (zero otherwise) and é! is the rerouting penalty cost
for customer [ in period t. Notice that for the first time period for
which a customer is routed and after the last time period in which
a customer has non-zero traffic demand there are no reroutings. For
example, for t=1 there are no reroutings and therefore )} =
0, Vp € P'. In this model, the objective is to minimize the overall
cost of routing the demand while taking into account the rerouting
penalties. Constraint set (1) ensures that the capacity of an arc is not
exceeded. Constraint set (2) ensures that exactly one of all the pos-
sible super paths for each customer is selected.

In order to model the MPNP problem we introduce additional
decision variables y{* that indicate the chosen configuration u, for
satellite s, at time period t. Specifically,

= 1, if satellite s is using configuration u during time period t,
t 10, otherwise.

The multiperiod network planning problem in satellite net-
works can now be modeled by the following integer programming

formulation.
(MPNP)  min > cix;
leL  pept

(1),(2),(3),
> X by <y
peP!

Syr=1, t=1,...TseS, (6)

uel®
yi' €{0,1},

Here ) is a coefficient which is set to one if super-path p is using
satellite s’s configuration u at time period t and zero otherwise. As
with MPTR the objective of MPNP is to minimize all routing costs,
including possible rerouting penalties. Constraint (5) ensures that
if a configuration for a particular satellite and time period is not se-
lected then all paths that use that configuration cannot be selected
either. Constraint (6) forces exactly one configuration to be selected
for each satellite and each time period and constraint (7) defines the
configuration selection variables as binary. Before we discuss our
solution approaches we note that the integrality constraints on
the configuration variables (i.e., constraint (7)) can be relaxed (as
long as the xi, variables are binary). This follows in a straightforward
fashion by observing that each y{* variable occurs in exactly two
constraints (once in constraint (5) and once in constraint (6)) result-
ing in a totally unimodular constraint matrix on the y§* variables.

subject to
t=1,....T,seS,ucU,lel, (5

t=1,....,T,seS,ucl’ (7)

3. Solution approach

We now describe our solution approach for the multi-period
network planning problem that uses the MPNP formulation in con-
junction with a branch-and-price-and-cut procedure.

3.1. Overview

Branch-and-price or IP column-generation has been known as a
theoretical solution technique for integer programming problems,
with an exponential number of variables, for the past 40 years.
However, it has only found computational success recently over
the past 15-20 years. Some applications, surveys and discussions
on specific issues relating to branch-and-price can be found in
Barnhart et al. (1998), Desrosiers et al. (1995), Savelsbergh
(1997), Vance et al. (1997) and Vanderbeck and Wolsey (1996).
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More recently Vanderbeck (2000) discusses and compares general
branching strategies for branch-and-price procedures and the book
edited by Desaulniers et al. (2005) consists of a collection on prac-
tical applications in different contexts and theoretical results. Gi-
ven the vast literature on IP column generation, in what follows
we assume familiarity with the basic concepts involved in the
BPC framework.

Our problem differs significantly from those studied previously
in the literature (Alvelos and Valério de Carvalho, 2001, Barnhart
et al., 2000, Holmberg and Yuan, 2003) due to the rerouting penal-
ties involved. Consequently, while the structure of the MPNP and
MPTR super-path based formulations is virtually identical to the
path based formulation for the IMCF problem, the BPC algorithms
developed for the IMCF problem cannot be applied to the formula-
tions presented here. The reason is that the solution to the pricing
problem for the IMCF problem no longer applies when there are
route change penalties. Instead, we now present a novel algorithm
for solving the pricing problem of the MPTR and MPNP formula-
tions. We also discuss (in the Appendix) how our procedure can
be generalized to deal with a much broader class of rerouting pen-
alties. After discussing pricing, we elaborate on the branching, cut-
ting, and initialization components of our BPC implementation.

3.2. Pricing in MPTR

For ease of exposition we first discuss the MPTR problem. In the
typical IMCF problem setting the pricing problem can be solved
with the use of a shortest-path algorithm on the original graph
with slightly modified costs. Specifically, the cost structure is usu-
ally defined in a way that allows the path costs cg for commodity [
(we use the notation c;’ to distinguish the path costs in the IMCF
problem from the path costs cllj in the MPTR problem) to be repre-
sented as the sum of the arc costs on the path, 3=, ¢y This in
turn leads to the computation of the reduced cost for path p and
commodity [ as,

ah =" d(c+my)d - d,
(ij)eA

where 7 is the dual of the capacity constraints (1) when written as
a > constraint and ¢ is the dual of the path selection constraints
(2). As a result, the cost of an arc (i,j) can be updated as d'(c,-j + 1)
and a shortest path algorithm can be used to find a path p for com-
modity I with the smallest possible cost (notice that 7; > 0 and alis
unrestricted in sign). If that cost is less than &', then the reduced
cost of this path is negative and the path is added to the restricted
master problem (RMP) and the updated RMP is reoptimized.

In the satellite routing problem the super-path variables XL in
MPTR represent a series of paths that commodity [ will follow
across the different time periods in the planning horizon. Therefore
the cost of each super-path consists of an arc-cost component and
a rerouting component, as seen in Eq. (4). Specifically, the reduced
cost for path p and commodity [ is given by,

T T
=" > dilcy+my)df+> eyt~ (8)
t=1 (ij)eA t=1
Unfortunately, the reduced cost defined in (8) cannot be calcu-
lated by using the traditional approach that finds a shortest path
on the original graph with updated costs, even if we separate it
by period. This is because, any approach that uses only the updated
arc costs will fail to capture the rerouting penalties (that are
dependent on path changes across time periods) associated with
some of the super-paths. Therefore, in order to find the super-path
p with the lowest reduced cost for each commodity [ we develop a
technique that calculates the minimum cost routing across all time
periods while taking into account rerouting penalties.

Period 1 Period 2
Paths Paths
Dummy Dummy
Origin Destination
~— A . ~— —y — ~— —y
Cost of path at the ~ Cost of path at the Zero cost

head of the arc
+

head of the arc

potential rerouting
cost

Fig. 4. Pricing graph, G/, for a problem with 2 time periods and 3 paths per period.

The first step in this approach involves solving a K-shortest path
problem on G,, between the customer’s origin and destination, for
each time period t in which that customer has positive demand.
The arc costs, on graph G; are updated with the dual values of
the capacity constraints 7;; in exactly the same way as in the tradi-
tional pricing problem approach (i.e,, ¢; + m;;). The number of paths
K, that we need to find in time period t is not fixed and can be dif-
ferent for different commodities and time periods. We will specif-
ically discuss how K; is determined later in this section. Once we
have found the K; shortest paths for each time period we then con-
struct a “pricing graph” G’ = (N',A’) in which the node set consists
of a dummy origin node, a dummy destination node, and one node
for each of the shortest paths found in each time period. We define
the arcs of this graph as follows. We create arcs from the origin
node to all first period nodes (i.e., nodes that represent paths in
the first period that a customer has positive demand) and arcs from
the last period nodes (i.e., nodes that represent paths in the last
period that a customer has positive demand) to the destination
node. Furthermore we connect all nodes from period ¢t — 1 to the
nodes in period t and set the cost, hy, of an arc (i,j) equal to
h(g;) + e}, where h(g;) is the cost of the path, g; represented by node
j taking into account the demand; e! is the penalty cost introduced
only if the path g represented by node j is different from the path g;
represented by node i. In the satellite planning context two paths
in two different time periods are considered to be different when
any of the arcs they include represent different communication
links (i.e., origin to up-beam, on-board, or down-beam to destina-
tion links) or they represent the same links but the satellite config-
uration has been changed (configuration changes result when
there are changes in the onboard connectivity on a satellite or
when the satellite network itself changes; e.g., when a satellite is
relocated to a new longitude). For arcs (i,j) where i is the dummy
origin node we introduce no penalty cost' (ie. h;=h(g;) and
el =0) and when j is the dummy destination node we set h;=0
(ie. el,; = 0). Notice that a path in the pricing graph represents
a super-path p in the MPTR problem. Specifically, the nodes that
are used in the path on G’ (apart from the dummy origin and des-
tination nodes) represent paths in G. Consequently, when we cre-
ate a node in time period t of G’ for each path in G, there is a
one-to-one correspondence between the paths in G’ and the
super-paths in G. Fig. 4 presents the multi-period routing graph
for a problem with 2 time periods in which 3 shortest paths have
been calculated for each period.

! In practice, we might want to introduce penalties even when i is the dummy
origin node so that we can account for reroutings of existing service requests.
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Once the construction of the pricing graph is complete we solve a
shortest path problem from the dummy origin node to the dummy
destination node. The cost of this path is then compared to the dual
variable ¢' and if it is smaller we add the corresponding super-path p
to our model. If the cost of the path is larger than the dual variable of
the path selection constraints, then there are no super-paths for
commodity ! that can improve the current solution. Naturally, we
have to repeat the same process for all commodities [ in our model.

Clearly the size of the pricing graph is exponential if all paths for
each time period (i.e., all paths of G,) are generated and included as
nodes of G'. Instead of generating all paths for a time period, we
specify the following sufficient condition that can be used to deter-
mine whether a specific choice of {Ky,Ka,...,K7} ensures that we
have found the lowest cost super-path. Let g/, denote the n'™ short-
est path in time period t.

Proposition 1. The pricing graph G’ contains a lowest cost super-path
pifh(al,) (@) > el +eby fore=1,..T

Proof. Suppose not. Let p* be a lowest cost super-path. Then for
some time period t, p* contains a path ¢; distinct from qi, ..., qj,,

(i.e., j > K;) and therefore h(qj) > h(fﬁg). By replacing path g by
path ¢} in super-path p* we can get a super-path with cost less than
or equal to p*, since h (thq) —h(q%) > el +el,; and in the worst case

we will incur one penalty (e!) going from time period t — 1 to t and
another one (el ;) going from time period t to t + 1. Consequently
this new super-path is also optimal. Repeating this procedure for
each time period t in which p* contains paths distinct from

qi,...,qk, we obtain a lowest cost super path that belongsto G'. O

It is actually possible to generate significantly fewer paths in
each time period. This is critical, since the time spent in pricing will
be a function of the number of paths we generate and include as
nodes in the pricing graph G'. To explain how, we need some addi-

tional notation. Let R = {q§ .5, ... ,qf([} denote the set of K;-short-

est paths in time period t. Let P* denote the set of all feasible paths
in time period t. For each time period t, we define four quantities t,,
ty, t, and t4. Let

T—t, if h(qf@) —h(q)) <el+e,, and R =P, fori=tt+1,...,T,

ta= . .
min {i €[0.T-1: h(qu{lv) —h(q") > el +el,;,; or R = P”'}, otherwise.

Here t, tells us the first occurrence, in terms of the number of time
periods after t, of a time period where either the cost of the Kth-
shortest path (actually K., -shortest path in time period t +t;) is
greater than the cost of the shortest path for that time period plus
the rerouting penalty from the previous time period and the rerout-
ing penalty to the next time period, or the time period has gener-
ated all possible paths between the origin and destination. If no
such time period exists then t, is defined as T — t, the largest possi-
ble value it could take. Similarly, let

t-1, ifh(qf},) —h(q)) <el+el, and R =P, fori=1,2,....t,
ty =
min {i €0,t-1]: h(q{gjl) —h(g") > el +e ;,, or R :P"‘}, otherwise.

Here t, is similar to t, except that we are now looking for the first
time period prior to (and including) time period t. Let

T—t, if h(tﬂg) —h(q)) <el+e,, and R =P, fori=t,t+1,....T,
te=10, if t, =0,

to — 1, otherwise.

Here ¢, tells us the number of consecutive time periods after t for
which h(q}'(i) —h(q}) <el+el,, and R # P Similarly, let

1

t—1, if h(q}(() —h(q}) <el+e,,and R =P, fori=1,2,....¢t
ta= 10, if t, =0,
t, — 1, otherwise.

Here t; is similar to t. except that we are looking for the number of
consecutive time periods prior to t for which h(qm —h(q}) <
el+el,, and R # P.

For a given path g} in time period r, we are interested in know-
ing whether this path is feasible in another time period t. Let

F* (qj) = if path ¢f does not exist in time period t, and
F* (qj’) = ¢}, for some positive k if the path exists in time period t

(i.e., F (qu) € P"). In other words F(-) is a mapping of a path to time
period t, that tells us whether that path is feasible in time period t.
When F{(.) is applied to a set of paths A={ay,a,,...,a,}, it outputs
the set of paths obtained by applying F(-) to each of the paths in
A. That is, F(A) ={F(a;),F(ay),....F(ay)}. Let R} be the set of paths
from R° that are valid for time period t. That is, R} = F'(R°).

We now describe two methods to generate significantly fewer
paths in each time period. Let Q' = |J;Z,¢R; \ R". Q" includes all
the K, shortest paths from time periods r=t —t, to r=t+t, that
are distinct from R' (the K; shortest paths in time period t) and valid

for time period t. Notice, when h(qf([) —h(q}) > el +el,, orR=P,

Q"= . Also, observe that the cost of any path in Q' is greater than
or equal to the cost of all of the paths in R'. Let S*=R" U Q".

We construct the “pricing graph” G’ as described before, except
that the set of nodes (i.e., paths) in time period t are created from
the set S* (i.e., we create one node in time period t for each of the
paths in SY). We now show that if we ensure
r=t+tc

(1 FRY)#@ fort=1,....T, (9)

r=t—tg

then the pricing graph G’ is guaranteed to contain a lowest cost
super-path. Condition (9) says that when there is at least one com-
mon path for every maximal set of consecutive time periods that

satisfy h(qk) —h(q}) < el +el,, and R'»# P, the pricing graph G'
contains a lowest cost super-path.

Theorem 1. When Condition (9) is satisfied, the pricing graph G
contains a lowest cost super-path.

Proof. Suppose not. Let p* be a lowest cost super-path. Then there
is some time period r in which p* contains a path g} that does not
belong to S". If r,=1,=0, then either R'=P" or h(q;(,)—
h(q}) > el + el ;. In the former case g € R" = S" and we have a con-
tradiction. In the latter case, replacing path g} by path qj strictly
reduces the cost of the super-path yielding a contradiction.

Consequently, assume r, + 1, > 0. Further, consider the subcase
where r,=1.+1 and r,=ry+1. The proofs of the other three
subcases: (1) rq=r.=T—r and r,=r4=1r—-1, (2) ry=r.+1 and
rp,=rg=r—1, and (3) ry=r.=T—r and r,=r4+1, follow
analogously. Let

Loosely speaking, starting at time period r,j, denotes the number of
time periods after time period r for which the path F (qj) appears
consecutively in the super-path p*. Similarly, let
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j;:max{izogig rp and Fr’i<qj),...,Fr’1<q}>, q ep*}.

In other words, the super-path p* consists of path gj repeatedly be-
tween time periods r —j; and r +j,, with no route change penalty.

Specifically,
PO (@) P (a). P (4). 6P (g), o P () <
Note that Ft< ) ¢ Stfort=r—ry,...r+r. Otherwise, the path

Ft (qj') would be in R' for some t=r—ry,...,r+71, and as a result
(whenever it is feasible) it would also be in S' for all

t=r—Tp,...,r+re If j, =rq then in time period r+rq, F' (q]’)

belongs to p*. But, since replacing F'*'s (q}) by g} strictly
decreases the «cost of the

t=T+T1q, h(F[<qu>>

sible (the other possibility R* =P is eliminated since

super-path  (because for

> h(q,f([) > h(q}) + el +el,,) this is not pos-

F* (q]) ¢ S' for t=r+r,). Thus j, < rq (and j}, < r¢). Arguing simi-
larly, ]/, <1, (and ],f\rd). Let g, be a common path across
R™" . R',... R Specifically, qj € NiZ/ 1 F"(R"). Observe that

h(F'(q})) < h(Ft (q )) for t=r—j;,...,r+j,. By replacing path
( ) by path F'(q}) in time periods t =1 —j,...,r +j;, we get a

super-path with cost less than or equal to p*. Consequently, this
new super-path is also optimal. Repeating this argument for time
periods where p* contains a path q; that does not belong to S"

completes the proof. O

In our second method to reduce the number of paths in G we
define, Q" = [JZJR} \ R". Q' now includes all the K, shortest paths
from time periods r=1 to r="T that are distinct from R’ and valid
for time period t. Observe that the cost of any path in Q' is greater
than or equal to the cost of all of the paths in R". Like the first meth-
od, the “pricing graph” G’ is constructed as before, with the set of
nodes in time period t created from the set S'=R'U Q". We now
show that if we ensure

h(ah,) ~h(@) > efor R =P fort=1,...T, (10)

then the multi-period graph G is guaranteed to contain the lowest
cost super-path.

Theorem 2. When Condition (10) is satisfied, the pricing graph G
contains the lowest cost super-path.

Proof. Suppose not. Let p* be a lowest cost super-path. Then for
some time period r, p* contains a path g not in S". Let

F(g)ep),

jgzmax{i:0<i<T—tand q},Fr“(q})y...

and

j/ﬂzmax{i:Ogig t—1and F”’(q}),...7Fr’1(q}),qjr ep*}.

Observe, that the paths F'™*! (qj) fori=0,...,j, and the paths
F"’(q}) for i=0,...j; do not
i=r—jg....1,...,T+j,. We construct a new super-path by
replacing the path F (q;) by ¢, in time periods
i= rfj;;, AU rJr]oc Notice that by using the new paths we

may incur up to Ji +Jj extra penalties (specifically Zl”ﬁ"} e

However, h(F‘(q})) = h(qy) > h(q}) +el, for all i=r—j,

belong in S for

.,r+j, and thus Zi’*ﬁ’j h(F‘ (qj)> > Zf*{“ﬁ (h(q}) +¢€l) >
Zgifﬂh(qi]) + Z,”i’j ., el As aresult the new super-path has a cost

that is strictly lower than the cost of p* which contradicts our ini-
tial claim that p* is the lowest cost super-path. O

In our implementation we generate a small number of paths,
say k, for each commodity and each period t and then check to
see whether Condition (9) or Condition (10) is satisfied. If neither
of these two conditions are satisfied, we then generate the next
set of x; shortest paths for all time periods in which R* # P* (i.e.,
we haven’t generated all feasible paths). This is repeated, until
either Condition (9) or Condition (10) is satisfied and the appropri-
ate pricing graph is constructed. Notice that by saving the state of
the K-shortest path algorithm in each time period it is possible to
determine the next set of k. shortest paths without having to
recompute paths that were already found.

3.3. Pricing in MPNP

We now look at the pricing problem for the MPNP formulation.
The reduced cost of an xi, variable in the MPNP formulation is given
by,

Z 37 dy(c + 7)o

t=1 (ij)eAr

ey S S R

t=1 seS uel’

(11)

where ¢;(> 0) is the dual variable associated with constraint set
(5), again when written as a > constraint. Observe, that compared
to the reduced cost Egs. (8), (11) has an additional term associated
with constraint set (5). There are two possible approaches that we
can take when solving the pricing problem and computing the re-
duced cost of the super-path variables.

The first approach for the pricing problem becomes apparent if
we rewrite Eq. (11) as,

Z > di( C+m+Yy ch“ﬁ;’[; G 6”+Zep/t— ;

t=1 (ij)cAr seSe uel®

(12)
where (ji' is a coefficient which is one if arc (i,j) belongs to config-
uration u of satellite s and zero otherwise. With this rewriting of
Eq. (11) the reduced cost of a super-path is composed of an arc
dependent term and a path dependent term as in Eq. (8). Thus we
can directly apply the approach in the previous section and use The-
orems 1 and 2 (which is what we do in our computational work).

In other words, when solving the pricing problem for commod-
ity I we have to update the cost of all arcs (i,j) € A both by m;; and
0y if the arc is part of configuration u of satellite s. This way when
we solve the K-shortest path problems for each time period t in or-
der to determine the nodes of the pricing graph we implicitly take
into account the dual information from constraints (5) that enforce
the configuration selections. Other than that the procedure re-
mains the same.

The second approach deals directly with the third term in Eq.
(11) as part of a more general rerouting penalty that depends not
only on the time period t and the commodity [ but also upon the
path p followed in time period t — 1. We discuss this approach (that
takes into account general rerouting penalties) in the Appendix.

3.4. Cutting

Barnhart et al. (2000) observe that IMCF problems exhibit sym-
metry effects that make them hard to solve when using solely a
branch-and-price approach. Therefore, it is necessary to use strong
cuts for the problem polytope that help eliminate the symmetry.
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For the standard IMCF problem the capacity constraints in the
flow-based formulation when translated to a node-arc representa-
tion define 0-1 knapsack inequalities. For the MPNP problem the
arc flow variables i}, represent the fraction of commodity [ flow
that uses arc (i,j). Using these arc-flow variables the capacity con-
straints can be written as,

ST dift <by. V(ij) €A
leL

We can now use lifted cover inequalities (LCIs) to strengthen
the formulation and reduce the symmetry effects. The general form
of a LCI with respect to the arc flow variables is,

leC leC

where the set C defines a minimal cover? and C = L\ C. By using the
flow decomposition theorem (see Ahuja et al., 1993), that states
fi =3 ,ep0fx, we can go from the LCI written in terms of flow vari-
ables to the LCI written in terms of the path variables (since we use a
path based model) as,

S Y g < -1, Vi) eA

leC pep! leC peP

In practice after we solve the linear programming (LP) relaxa-
tion of the Master Problem (MP) to optimality using column-gen-
eration and the pricing procedure presented earlier we look at all
the arcs of G that are saturated (i.e., have zero slack). We then cre-
ate a cover C (similar to Gu et al., 1998) by inserting into C first the
commodities for which f} = 1 and then f} < 1 so that Y, cd;; > b.
We then delete any commodities from the cover so as to make it
minimal and then use the sequence independent lifting procedure
proposed by Gu et al. (2000) to find the lifting coefficients o;. Using
this approach we generated one LCI for each saturated arc and
added all such LCIs into our model. The RMP is then re-solved
and the pricing procedure generates any necessary additional col-
umns. Notice that the cost of the arcs in G will now have to be up-
dated by taking into account the dual variables of the LCI
constraints as well. Specifically, when solving the pricing problem
for commodity [ the cost of arc (i,j) is updated as,>

nm
Cij + T + Z OC}T[ >
meM ij
where M is the set of all LCIs that refer to arc (i,j), o is the lifting
coefficient of commodity I in the m™ inequality and #™ (>0) is
the dual of that inequality when written as a > constraint.

In our BPC approach we generate cuts with the procedure de-
scribed above whenever possible and add them to the current
model. Since these cuts are globally valid we also add all of these
cuts to a global cut pool. At the start of each node in the BPC tree
the cut pool is compared against the cuts currently in the node
and any cuts that are missing from the node are added before solv-
ing the RMP.

3.5. Branching

In branch-and-price procedures branching presents an addi-
tional challenge since branching rules should not be allowed to
interfere with the structure of the pricing problem. Barnhart
et al. (2000) have developed a very successful branching rule for
IMCF problems, which we applied in our procedure.

2 Aset C C Lis a cover if Zlgcdﬁj > bjj. A cover is minimal if C\{I} is not a cover for
any le C.

3 In Barnhart et al. (2000) the new cost of arcs (i,j) are mistakenly updated by o'y
instead of oc;"n"’/d’ij.

The branching rule finds the first node (called the divergence
node) for which the path of a commodity [ splits in two (or more)
fractional paths. The rule then partitions the arcs emanating from
this divergence node into two sets, B and B. The two sets are con-
structed in such a way that one of the arcs emanating from the
divergence node and used by a fractional path for commodity [ be-
longs in set B; while a second arc emanating from the divergence
node and used by a fractional path for commodity [ belongs in
set B. The remaining arcs emanating from the divergence node
are assigned to either B or B while ensuring the cardinality of these
two sets is roughly equal. In the first branch commodity [ is not al-
lowed to use the arcs in B, while in the second branch commodity [
is not allowed to use the arcs in B. In our case this branching rule
can be easily enforced by deleting the arcs from the appropriate set
when solving the pricing problem for commodity L. By deleting
these arcs we ensure that when finding the K-shortest paths for
commodity | we will consider no paths (and as a result no super-
paths) that use these arcs.

We noted earlier that in the MPNP formulation the configura-
tion variables could have been defined as continuous and non-neg-
ative, yi € R,. Naturally, a model with fewer integer (or binary)
variables might be preferred since they do not require that we
branch on them and usually result in a smaller B&B tree and a fas-
ter solution time. However, in our case, at each node of our BPC
tree we are solving a restricted problem that does not contain all
variables. As a result by branching on the configuration variables
first we can impose restrictions on which path variables will be
considered. This has a twofold effect. First it can significantly re-
duce the number of branches required in the BPC tree since
branching on a configuration variable will reduce the number of
paths considered for all commodities. Additionally, when solving
the pricing problem there are fewer columns that could potentially
have negative reduced costs and this could lead to faster solutions
of the restricted LPs. We found a very significant computational
benefit by keeping the configuration variables binary and branch-
ing upon them first, followed by branching on the fractional path
variables; and thus followed this approach in our computational
experiments.

3.6. Initialization

Another issue that arises with the use of column-generation
procedures is the initial feasibility of the RMP (since it does not in-
clude all possible variables). The standard practice that is used to
ensure feasibility of the RMP at all nodes in the B&B tree is the
inclusion of auxiliary columns with appropriate coefficients for
the constraints and costs in the objective function (see Barnhart
et al., 1998, Desrosiers et al., 1995, Vanderbeck and Wolsey,
1996). In the case of the MPNP problem we add one path for each
commodity. These “feasibility” paths will have a coefficient equal
to one for the constraints which ensure that exactly one path is
chosen and a cost that must be greater than the cost of all the other
paths for that commodity.

With the addition of the “feasibility” paths we have ensured
that we are going to find a feasible (integer) solution to the prob-
lem when all demand can be met. However, in the case of the
MPNP problem and practical applications of the IMCF problem
we would still like to get a (integer feasible) solution when some
of the requests cannot be routed because of traffic congestion in
the network. For this reason we need to add special paths that car-
ry flow directly (i.e., bypassing the network) from the origin to the
destination. We refer to these as “unmet demand” paths and we
construct them with the help of the pricing graph G'. Specifically,
we augment graph G’ with one node for each time period. The
new nodes represent unmet demand paths in their respective per-
iod and we refer to them as “unmet nodes”. There are two ways in
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which we can use these nodes depending on how we wish to mod-
el unmet demand in our problem. The first option is to connect the
unmet node in period ¢t — 1 only with the unmet node in period ¢,
for all time periods. Naturally, the unmet node in the first period
is connected to the dummy origin node in G’ and the unmet node
in the last period is connected to the dummy destination node. This
way we allow for one super-path in the RMP (for each commodity)
that will represent unmet demand across all time periods and will
result in our model either routing customers or denying their ser-
vice for the entire planning horizon. The second option is to intro-
duce arcs that will connect all the nodes in period t — 1 with the
unmet node in period t, and the unmet node in t with all the nodes
in t+ 1, for all time periods. Under this scenario we will be able to
consider super-paths that allow a commodity to be routed for
some periods, then dropped and then possibly routed again. The
first option is probably better suited for actual planning purposes
since a satellite provider is usually unwilling to stop servicing an
existing customer because of the associated, high ill-will costs.
However, the second option provides us with the possibility of
considering these ill-will costs in the model (if we desire to do
so) and is more appropriate when comparing the results of the
MPNP formulation with a period-by-period optimization approach
(as we do in Section 4). In our implementation we assign a cost to
the arc that leads to the unmet node in period t equal to the reve-
nue generated by the service request at period t (plus the appropri-
ate penalty and ill-will costs). With this technique even in cases
when all demand cannot be routed we still get a feasible solution
that maximizes our profits.

4. Computational results

We now present several computational experiments on various
data sets. Due to the confidentiality of real-world instances, our
computational analysis is mainly focused on simulated data sets.
Most of the characteristics of our problem sets are designed to rep-
licate the key attributes of real-life satellite networks and are per-
tinent to the MPNP problem. We were able to obtain the attributes
of actual satellite networks in the course of our project with the sa-
tellite communications services company. Our computational
work is split into two main directions. First we look at the benefits
of applying a multi-period optimization procedure as opposed to a
period-by-period optimization process for varying problem char-
acteristics. Then we compare the full blown BPC procedure with
a “Root-Node” procedure that uses column-generation only at
the root node of the B&B tree and only generates cuts (as opposed
to cuts and columns) during the entire search. The BPC and Root-
Node procedures were coded in C++with the use of ILOG CPLEX
v9.0 and the ILOG Maestro libraries, while the period-by-period
process uses only ILOG CPLEX v9.0. All computational work was
conducted on a Pentium IV Xeon processor, with 3 GHz clock speed
and 2 GB of RAM.

Our computational analysis is done on randomly generated
problem sets. Each problem set contains 10 instances. The prob-
lems correspond to a network with 2 satellites each with 3 onboard
configurations (approximately 100 nodes and 280 arcs in each time
period) and a planning horizon of 5 time periods. The arcs repre-
senting the on-board connections of the satellites have an average
capacity of 1.5 traffic units (one traffic unit is equivalent to 36 MHz
of bandwidth) and an average cost of $150,000 (per traffic unit per
time period). The network consists of 10 regions that can act as ori-
gins and destinations for each of the 50 customers that have aver-
age demands of 0.8 traffic units. The demand for each customer is
drawn in each period from a uniform distribution on the interval
[0.75,0.85]. A customer that is generated in period t has a 90%
chance of “surviving” in the next period and in each period after

the first we generate 5 new customers. The unmet demand cost
was set to $750,000 (per traffic unit per time period), which
approximates the average revenue generated by a satellite cus-
tomer (leasing 1 traffic unit) over a one year period. The rerouting
penalties in the satellite industry are usually defined as discounts
that are offered to the affected customers and are typically set to
40%. The rerouting penalty was therefore set to $300,000 per traffic
unit per time period (i.e., el = $300,000 x min (d; ,,d.)). In order
to replicate the dynamic topology of satellite networks we also de-
fine a survival probability for the on-board connections (instead of
modeling launches, relocations and discontinuation of service for
entire satellites) which we set to 90%, so roughly 10% of the on-
board links in each configuration will be changed in each period.
This survival probability for onboard connections (90%) is actually
set artificially low compared to the situation in practice. By setting
this probability artificially low we can increase the difficulty of the
simulated problems considered and make their difficulty (even
with 2 satellites) approach those of real-world instances that con-
tain a larger number of satellites. The set of attributes that we have
defined comprise a baseline problem scenario. Individual charac-
teristics of this baseline are then altered so as to explore different
aspects of the multi-period traffic routing problem.

For all problem sets presented in the following sections the run-
ning time of the BPC procedure was limited to 4 hours. Additionally,
following the example of Danna and Pape (2005) our BPC procedure
is augmented by heuristics that allow our approach to quickly find
integer feasible solutions. The first heuristic that we use is to pro-
vide the BPC approach with the Period-by-Period solution and the
associated super-paths. Also, at the root node of the BPC tree and
every 100 nodes we provide all the super-paths and cuts found
up to that point to a regular branch-and-bound procedure and
ask for an integer feasible solution within a 10 minute time limit.

4.1. Multi-period versus period-by-period

From a practical standpoint it is important to provide tangible
proof to executives in the satellite industry as to the benefits of a
multi-period approach over a period-by-period optimization pro-
cess. By period-by-period optimization we refer to the process of
myopically routing all of the commodities in period t and then
looking at the routing problem for the next period, t + 1, without
being able to change any of the routes in period t. We achieve this
solution with the use of a typical flow-based formulation. The for-
mulation uses the variables ljf which represent the fraction of flow
of commodity /, in time period t, that uses arc (ij) and the y* vari-
ables. We now present the period specific network design (PSND)
formulation for period t,

(PSND;) ~ min) > chff (13)
leL (ij)eAr
-1 ifi=0"
subjectto Y fifl— Y fi=<1 ifi=D" =~ VieN,lel,
DA JiDeA 0 otherwise,

(14)

ST diflf <by, V(i) €A, (15)
leL

SOfp<yy, vtseS, uelf, lel, (16)
(i)eAe

dyr=1, ¥t seS, (17)
uel®

¥t e{0,1}, Vt, seS, uel’, (18)

e (0,1}, VIeL(ij) €A 19)
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where 0%, D" are the origin and destination nodes of commodity I at
time period ¢ and p' is one if arc (i,j) is part of configuration u on
satellite s and zero otherwise. Note that we avoid infeasibility when
all demand cannot be met by augmenting the set A; with arcs
(0", D") that have cost equal to the unmet demand cost, for each
commodity | and time period t. In order to take into account the
rerouting penalties we have two options. Solve the PSND problem
for each time period without penalties and then add the penalties
based on the solution. Observe that this approach might be the only
course in the MPNP problem on general graphs. However, in the
case of the satellite network the rerouting penalties are effectively
applied only when the onboard connection used changes. Thus we
can incorporate the cost of a route change penalty by modifying
the cost ¢; of the arcs corresponding to the onboard connections.
Therefore we set clf equal to Cijdf'j + el (where el is the rerouting pen-
alty) if commodity [ has not used arc (i,j) in period t — 1 and (i,j)
represents an on-board connection. We make this change in order
to allow the period-by-period approach to take into account, at
some level, the route change penalties.

Table 1 presents computational results for the BPC and period-
by-period approaches on five different problem sets. These prob-
lem sets are characterized by a varying load-factor, which we de-
fine as the ratio of the total demand over the aggregate capacity
in the network (in each period). The first column in the table spec-
ifies the load-factor generated for each problem set. The second
and third columns present the solution found by the period-by-
period approach and the time required (in seconds) to reach that
solution, respectively. The three columns under the heading Mul-
ti-Period (BPC) specify the best primal solution found by the BPC
procedure, the gap of that solution to the best dual bound, and
the running time (all running times are reported in seconds). The
last column in the table gives the average percentage gap between
the solution of the period-by-period approach and the BPC proce-
dure over all 10 instances. The runs were conducted using the sec-
ond of the two options for dealing with unmet demand (see
Section 3.5) and for both procedures customers were not allowed
to be routed in the future once they had been denied service at
some point in the past. In the period-by-period approach we
achieve this by setting ger'r =1 for each time period, t, after the
one in which the customer was routed over an unmet demand
arc. The same effect can be achieved in the multi-period procedure
when constructing the multi-period pricing graph G’ by allowing
only one outgoing arc from the node that represents the unmet
path in period t to the node that represents the unmet path in
t+ 1. Also, for both procedures we imposed an extra penalty when

Table 1

Comparison of Period-by-Period to Multi-Period optimization for different load-factors.

a customer that was routed is dropped in some future time period.
This penalty represents the ill-will cost associated with denying
service to an existing customer and we set it equal to the unmet
demand cost. The results show that as the load factor changes
the percentage gap between the two procedures varies from a
low of 5.40% to a high of 7.66%. What is important to note is that
in all cases the BPC procedure achieves gaps that are within 1%
of optimality.

Table 2 provides another comparison between the multi-period
and period-by-period approaches on four different problem sets.
The table has the same structure as before and the problem sets
are characterized by different rerouting penalties. This table can
provide some insight as to when the rerouting penalty value is high
enough to make the use of a multi-period approach beneficial. For
this comparison we disabled the heuristic that provides the BPC
procedure with the solution generated by the period-by-period ap-
proach. Observe that for the extreme case in which the rerouting
penalty is zero (e.g., on terrestrial fiber optic traffic routing) the
period-by-period approach can be, in theory, as good as a multi-
period approach. However, other restrictions, such as the fact that
we do not allow for customers that have been dropped to be routed
in future time periods and the fact that we impose an extra penalty
for dropping customers will always allow a multi-period approach
to maintain the advantage. In Table 2 the first column gives us the
penalty value as a percentage of the unmet demand cost used (i.e.,
$750,000). Note that for high values of the rerouting penalty the
difference between the two approaches becomes as high as
10.06%. For a rerouting penalty equal to zero the period-by-period
approach actually does better when looking at the average over all
the instances. Obviously, this is due to the fact that we used a
4 hour time limit for all problem runs and the fact that the runs
of the BPC procedure did not converge (as is evident from the
24.91% gap observed). From this comparison we can have a clear
indication as to the effect of the rerouting penalty size and gauge
the potential benefits of a multi-period versus a period-by-period
approach as that penalty changes.

Tables 3 and 4 compare the two approaches as the number of
time periods and the number of alternative configurations in-
creases. Observe that the running time for the BPC algorithm does
not change significantly from the baseline (5 time periods) as the
number of periods increases. The same is not true however for
increasing the number of configurations considered from the base-
line (3 configurations). Notice that when considering multiple con-
figurations the size of the wunderlying network increases
significantly. This seems to suggest that our BPC procedure is not

Load factor Period-by-period

Multi-period (BPC)

Primal gap (%)

Primal Time (s) Primal Gap (%) Time (s)
0.4 43,260,909 1.2 40,950,651 0.02 4232 5.64
0.5 59,658,995 13 55,862,551 0.16 5404 6.67
0.6 73,755,286 1.5 70,025,220 0.16 10,954 5.40
0.7 95,354,132 2.2 88,573,897 0.13 10,563 7.66
0.8 119,884,983 1.2 112,817,535 0.18 10,126 6.23
Table 2
Comparison of period-by-period to multi-period optimization for different rerouting penalty values.
Penalty (% of unmet cost) Period-by-period Multi-period (BPC) Primal gap (%)
Primal Time (s) Primal Gap (%) Time (s)
0 55,998,362 164.8 66,142,850 2491 14,454 -10.12
10 63,138,975 32 61,583,609 0.21 14,407 2.37
40 73,755,286 1.5 70,025,220 0.16 10,954 5.40
100 95,421,076 14 86,668,356 0.10 8,695 10.06
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Comparison of period-by-period to multi-period optimization for different time periods.

No. of time periods Period-by-period Multi-period (BPC) Primal gap (%)
Primal Time (s) Primal Gap (%) Time (s)
3 34,740,282 1.2 33,147,239 0.09 3136 4.85
5 73,755,286 1.5 70,025,220 0.16 10,954 5.40
7 118,963,137 32 108,809,792 0.03 9242 9.36
Table 4
Comparison of Period-by-Period to Multi-Period optimization for different number of alternative on-board configurations.
No. of onboard configurations Period-by-period Multi-period (BPC) Primal gap (%)
Primal Time (s) Primal Gap (%) Time (s)
1 79,549,049 0.3 75,699,962 0.20 6605 5.08
3 73,755,286 1.5 70,025,220 0.16 10,954 5.40
5 73,888,278 4.5 72,542,398 9.38 13,783 2.02

adversely affected by the size of the planning horizon but larger
number of configurations can require significantly more time to
solve. Luckily, in practice network operators prefer to make this
decision outside our model (i.e., for the perspective of our model
there is only a single given configuration in each time period) or
limit the number of configurations severely to at most 2 or 3 for
each satellite. Also, observe that the percentage gap between the
solutions for the two procedures remains relatively constant in Ta-
bles 1, 3 and 4. This is a another indication of the considerable ef-
fect of the rerouting penalty on MPNP problems and the value of
applying a multi-period approach when that penalty is significant.

Table 5 provides a comparison of the two approaches as the
number of customers that are routed increases. For these problems
we kept the load factor constant while increasing the number of
customer which resulted in individual customers with smaller de-
mands on average. We observe that the difference between the
two procedures is higher for smaller number of customers. This
could be attributed to the fact that the rerouting penalties are pro-
portional to customer demands and problems with larger demands
are likely to result in a larger number of reroutings in the period-
by-period optimization.

Table 6 presents a comparison of the period-by-period ap-
proach to the BPC procedure for larger problem instances with a
single satellite configuration per time period. The problem set
name SxCy specifies that x satellites were available in the network
and y customers were routed. The problems were generated in ex-
actly the same way as the earlier random instances with satellite

Table 5

and customer characteristics drawn from the same distributions
as before. Each row in this table corresponds to a single instance.
The results show that the savings in the operational costs for large
networks can reach up to $50 million over 5 time periods for the
largest network considered. Notice that even for these larger net-
works the BPC procedure can still achieve gaps that are in most
cases within 1% of optimality within 4 hours.

4.2. BPC versus Root-Node

It is common in the mathematical programming literature to
compare BPC procedures with heuristic approaches that use col-
umn-generation only at the root node and then go through the
B&B tree without introducing new variables. These comparisons
are usually indicative of the potential benefits of generating col-
umns throughout the B&B tree but can also suggest that column-
generation at the root node only can be used as a heuristic in prac-
tice without a significant disadvantage.

In Table 7 we compare the BPC and Root-Node procedures when
varying the number of alternative onboard configurations. This ta-
ble has a similar structure to Table 4 and provides the primal solu-
tion, IP-LP percentage gap (the lower bound used for computing
this gap is from the BPC procedure as the lower bound from the
root node procedure is not a valid lower bound for the problem)
and computational time (in seconds) required for both procedures.
Also, it provides the percentage difference between the primal
solutions found by the two approaches over all instances. These

Comparison of period-by-period to multi-period optimization for different number of customers.

No. of customer requests Period-by-period

Multi-period (BPC) Primal gap (%)

Primal Time (s) Primal Gap (%) Time (s)
25 127,884,592 0.3 118,805,325 0.00 912 7.66
50 73,755,286 1.5 70,025,220 0.16 10,954 5.40
75 58,167,396 388.2 54,655,210 0.51 14,406 5.21
Table 6
Comparison of period-by-period to multi-period optimization for larger problem instances.
Problem set Period-by-period Multi-period (BPC) Primal gap (%)
Primal Time (s) Primal Gap (%) Time (s)
S5C100 154,528,944 14 135,960,568 0.72 14,404 13.66
S10C100 505,948,001 14 470,800,971 0.20 14,404 7.47
$10C200 248,211,923 1,303.7 224,283,824 3.52 14,409 10.67
$20C200 1,021,336,240 6.8 970,311,929 0.58 14,445 5.26
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Comparison of Root-Node to branch-and-price-and-cut for different number of alternative onboard configurations.

No. of onboard configurations Root-Node BPC Primal gap (%)
Primal Gap (%) Time (s) Primal Gap (%) Time (s)

1 75,720,657 0.6 11.9 75,699,962 0.20 6,605 0.02

3 94,960,430 64.0 629.3 70,025,220 0.16 10,954 35.99

5 98,801,734 771 4,715.5 72,542,398 9.38 13,783 36.37

gaps are computed as the difference of the primal bound of the
Root-Node procedure minus the primal bound of the BPC proce-
dure over the primal bound of the BPC procedure. What we ob-
serve from the results is that the Root-Node approach does
significantly worse than the BPC procedure for all but one of the
problem sets. The only situation in which we could potentially
use the Root-Node approach is the one in which we only consider
one alternative configuration. In all other cases the Root-Node ap-
proach discovers super-paths at the root node that use specific
configurations. However once the root node is solved because of
branching we end up using only a single configuration which
might not be associated with many of the super-paths found at
the root node. Therefore in the end the Root-Node procedure drops
many of the customers because it lacks any feasible paths over the
configurations chosen. Obviously this problem is absent when we
only consider satellites with a single configuration and the ap-
proach can do significantly better. This behavior is confirmed in
additional experiments described in Gamvros (2006) for different
problem settings where satellites have multiple configurations.
Consequently, we do not recommend the use of the root node pro-
cedure except possibly in situations where the satellite onboard
configurations are all determined a priori.

4.3. Real-world instances

In the satellite industry large providers can have over 20 satel-
lites and more than 10,000 service requests to route over the plan-
ning horizon they are considering. Our Root-Node procedure? has
been successfully tested on real-world instances with up to 30 satel-
lites, 1500 service requests (the requests were aggregated in order to
reduce their number to a manageable size) and 5 time periods (typ-
ically one time period was equivalent to one year). Since it is current
practice at the satellite company that we worked with to make con-
figuration decisions a priori (i.e., outside the model), in these cases
we considered only one onboard configuration for each satellite in
each time period. In all cases, our procedure achieved results that
were between 40% and 60% better than previous period-by-period
practices (which might have been poorer than the period-by-period
approach specified here). These improvements represented a poten-
tial operational cost reduction equivalent to roughly $200 million.

5. Concluding remarks

In this paper we described a multi-period traffic routing and
planning problem that appears in geosynchronous satellite net-
works. Because of the rerouting penalties that are imposed when
a customer’s route through the network changes the problem pre-
sents new challenges that, to our knowledge, have not been exam-
ined previously in the literature. We developed a BPC procedure
that uses a path-based multi-commodity formulation to solve this
problem. The key challenge in this procedure is the solution of the
pricing problem. Standard techniques for column-generation in
IMCF problems could not be used because of the rerouting penal-

4 We were only able to use our Root-Node procedure on real-world instances
because of licensing restrictions with the Maestro libraries.

ties involved. Therefore, we devised a novel solution technique
capable of generating new multi-period super-paths while taking
into account rerouting penalties. The technique involves the solu-
tion of a K-shortest path problem for each time period in which a
commodity has non-negative demand and the computation of a
shortest path on a specially generated “pricing graph”.

Our computational analysis focuses on the comparison of multi-
period optimization with a period-by-period approach and the dif-
ferences between a BPC algorithm and a “Root-Node” approach.
Based on our interactions with a leading company in the satellite
services industry we were able to generate problem sets that mi-
mic the characteristics of real-life networks. Our results indicate
that a multi-period optimization algorithm can result in cost sav-
ings up to 13%. Even for networks with two satellites this corre-
sponds to savings of millions of dollars. For large satellite
providers with networks that consist of dozens of satellites the po-
tential cost reduction could reach several hundred million dollars.

One possible extension to the MPNP problem for satellite net-
works would be to incorporate additional network design and
planning decisions, such as satellite relocations and launches, in
the optimization process. It is not uncommon for large satellite
communication providers to own more orbital locations than sat-
ellites. Therefore, some operators have the ability to move satel-
lites between longitudes in order to satisfy more demand and
generate more revenue. Also, because of the limited lifespan of sat-
ellites service providers in the satellite industry constantly con-
sider new launches. New launches or relocations of satellites can
potentially have a dramatic impact on the routing of existing and
future demands. Therefore it would be beneficial to consider these
additional decisions in the same model when planning for satellite
networks. This is part of our current research.

Appendix. General rerouting penalties

We generalize the approach we developed in Section 3.2 to sit-
uations where the route change penalty is a function of the path
followed in period t — 1 and the path taken in period t. This allows
us to address the situation of a much more general route change
penalty cost. Unfortunately, Proposition 1 and Theorems 1 and 2
are not valid for these types of penalties.

We use the same notation as before, where g, denotes the n
shortest path in time period t, R* denotes the set of K.-shortest
paths in time period t and P* denotes the set of all feasible paths

in time period t. Also, let e! (qf* , q]f) denote the rerouting penalty

of commodity (customer) I that depends on path g!~! (the ith path
in period t — 1) and path g} (the jth path in period t). We specify the
following sufficient condition, which is a generalization of the con-
dition defined in Proposition 1, and can be used to determine
whether a specific choice of {K;,K5,...,Kr} ensures that we have
found the lowest cost super-path with the new rerouting penalties.
This generalization states that if we can find a path ¢}, in period t
that is lower in cost than the most expensive path (i.e., gi,) in that
period by an amount greater than or equal to the greatest two pen-
alties incurred when switching to g;, from the previous and the
next period then G’ will contain the lowest cost super-path.
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Theorem 3. The pricing graph G’ contains a lowest cost super-path p,
if 3n.efl,...K.—1}, such that h(ng) —h(q},) > max;_

Ke_1el(gt~1,q,) + max_q Kme’(qgr, f“) or R'=P, for each
t=1,...,T.

Proof. Suppose not. Then for some time period t, R' # P* because
otherwise the pricing graph G’ will contain all feasible paths and
therefore the lowest cost super-path. Let p* be a lowest cost
super-path. Then for some time period r (for which R" # P"), p* con-
tains a path q]fw distinct from qj,...,qk, and therefore
h(q}pv) > h(qy,). Here q. tells us the path used in time period r
by the lowest cost super-path p*; with j,. providing the path num-

ber. Let
i = max{i :0<i<T-tand qu‘,F'“ (q}p*),...,F’”(q}p‘) € p*},
and

Jiy = max {i :0<i<t—1and F”’(q;p*),...,Fr’] <q}p*>,q}p* ep*}.

By replacing paths F' (q}p,() by path g for i=r—j,...,
r,...,T +Jy in super-path p* we can get a super-path with cost less
than or equal to p*. Specifically, by switching to paths qfn we incur
the following penalty costs,

1 i1 1ty T+ e 1t ot
(a0 a0 ) e (ad gt e Y ata) @
t=r—jy+1

(i.e., ji, +Jj; + 2 penalties). Since,
t t | t—1 t
h(gk) ~h(a) > max ¢(d".a)

I At t+1
+i:¥}§:§” e (qn[,qi ) fort+1,...,T
and h qj?p*?] >h q;QZ‘ for t = T*j;,‘..,r‘f’j; we can write for the
difference between the cost of the old and the cost of the new paths
on the super-path the following,

Iy,
t t

> (n(d, ) ~n(an))
t=r—jy

iy

1 -1 ! 1
=3 (maxle,__.,x,,le(qf 05,) + max €(q,.q ))
t:r—j;f = hesheg 1

which amounts to 2(j, +j;+1) penalties that are the greatest
possible penalties (when switching to path g}, ) between any two
periods and is therefore greater than or equal to the j, +j;j + 2 spe-
cific penalties stated previously in Eq. (20). Therefore the new super
path will have cost less than or equal to p*. O

For the MPNP problem we can define a general penalty as,

ep=ef+ > Bl

seSt yeyb

Notice that é’tp, unlike the rerouting penalties we considered in

Section 3.2, can assume different values even when solving the

pricing problem of a specific commodity and for the same time per-
iod t. Therefore for &}, we would have to use Theorem 3 to solve the
pricing problem.
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