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In many applications, ranging from cellular communications to humanitarian relief logistics, mobile facilities
are used to provide a service to a region with temporal and spatially distributed demand. This paper intro-

duces the mobile facility routing problem (MFRP), which seeks to create routes for a fleet of mobile facilities that
maximizes the demand serviced by these mobile facilities during a continuous-time planning horizon. In this
setting, demand is produced by discrete events at rates that vary over time. Mobile facilities can be positioned
at discrete locations to provide service to nearby events. In addition, mobile facilities can be relocated at any
time, although the relocation times are significant in relation to the length of the planning horizon. The demand
serviced by a mobile facility depends on the arrival and departure times at each location it visits. Although
the MFRP is NP-hard, the optimal route for a single mobile facility can be computed in polynomial time. We
describe three heuristics for creating routes for the fleet of mobile facilities and evaluate their performance. Our
results demonstrate that these heuristics produce high-quality routes for mobile facilities, especially in scenarios
where the demand for service changes significantly over time.
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1. Introduction
Mobile facilities are used in many application do-
mains, ranging from cellular telephone coverage to
humanitarian relief logistics. For example, cellular
telephone service providers deploy portable cellu-
lar base stations, such as Cell-Site-on-Light-Trucks
(COLTs) and Cell-Site-on-Wheels (COWs), to provide
cellular service for events generating demand for ser-
vice at a higher rate than an established network
of fixed base stations can provide for, or when an
existing network of fixed base stations is not oper-
ational. These portable cellular base stations can be
positioned at a location and provide service to cellular
customers without any need for existing infrastruc-
ture nearby. To provide service, portable cellular base
stations must be stationary at a location. They can-
not service cellular phone calls while in transit. Over
100 COLTs and COWs were deployed to the Gulf
Coast of the United States after Hurricane Katrina
disabled the cellular networks in the region (see Jay
2006). COLTs and COWs have also been deployed
to provide additional coverage for large events such
as Superbowl XL (see Wendland 2006) and the 2009
Presidential Inauguration of Barack Obama (see Moss,
Alan, and Farren 2008). Portable cellular base stations
may be quickly relocated to provide service where it

is most needed. Consequently, in settings where the
demand for service changes over time, these mobile
facilities can potentially be used to provide service to
a large region more effectively than an equal num-
ber of fixed facilities with an equivalent capacity. The
challenge this creates is how to effectively deploy
such mobile facilities.

Similar mobile facilities are also used in other appli-
cation domains. In some contexts, mobile facilities are
used to provide services to dense urban areas where
the cost of establishing a permanent fixed facility is
prohibitive, or the demand for services is sporadic.
For example, the U.S. Postal Service, Royal Mail (see
United Kingdom Department of Transportation 2009),
and the Hong Kong Post (see Hong Kong Post 2008)
deploy mobile post offices in some urban areas to
provide services for customers beyond the delivery
and pickup of mail. A mobile post office may be
sent to a location, allowing customers to purchase ser-
vices without having to travel to a more distant, tra-
ditional post office. Similar to portable cellular base
stations, mobile post offices may only provide these
services while stationary at a location. No services
may be provided while in transit. The demand for
these services also varies over time. A decision maker
wishing to schedule such mobile facilities faces the
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challenge of determining a schedule that will pro-
vide as much service as possible. Another type of
mobile facility deployed in urban areas are trailer-
mounted radar speed monitors, which when placed
by the side of the road inform passing motorists of
their speed (some even photograph speeding viola-
tions). Law enforcement agencies use these mobile
facilities to encourage motorists to obey speed limits.
Over a planning horizon, an operator could wish to
deploy such mobile facilities to maximize the number
of vehicles observed, the number of vehicles observed
that are exceeding the speed limit, or to areas where
pedestrians interact with traffic at a high rate.

Mobile facilities are also used in humanitarian relief
to give relief organizations the ability to provide aid
to populations dispersed in large, remote regions, and
in dense urban areas. For example, the Red Cross has
mobile blood collection vehicles that it deploys to col-
lect blood donations. Mobile medical clinics are used
to provide care to rural areas (see Alexy and Elnitsky
1996) and in developing countries. Mobile vaccina-
tion clinics are also used in developing countries. In
each of these settings, operators of these mobile facil-
ities ideally would like to service all demand. How-
ever, in practice, limited budgets and resources can
force operators to instead maximize the amount of
service provided.

In all of the above applications, the operational set-
tings in which these mobile facilities are used are
quite similar. The rate at which service is demanded
at a location changes over time. The mobile facili-
ties provide a service while stationary but can also be
transported between locations. No service can be pro-
vided by a mobile facility that is in transit between
locations. Furthermore, the operational objective is to
maximize the service provided.

In this paper we study the problem of effectively
deploying a limited fleet of mobile facilities when
demand for the service they provide changes over
time. We call this problem the mobile facility rout-
ing problem (MFRP). The MFRP seeks to determine
routes for a fleet of mobile facilities to maximize the
amount of demand serviced in a continuous-time plan-
ning horizon. In the MFRP, there is a discrete set of
locations where a mobile facility may be positioned to
provide service (these could be, for example, where
appropriate permits have been obtained to place the
facilities) and a discrete set of event points generat-
ing demand (these could be towns, events, or indi-
viduals generating demand for service). While at a
location, a mobile facility may service demand from
a given subset of event points nearby. Mobile facili-
ties may depart one location for another location at
any time, although a mobile facility cannot service
demand while in transit. Because the rate at which
demand is generated by each event point varies over

time, the MFRP is novel among facility location prob-
lems in that the total demand serviced by the mobile
facilities is dependent on their arrival and depar-
ture time at each location visited. In the MFRP, the
planning horizon, the locations where a mobile facil-
ity may visit, the travel times between locations, the
event points generating demand, and their rates are
known ahead of time. We show that the problem is
NP-hard and describe several heuristics for generat-
ing effective routes for mobile facilities.

The remainder of this paper is organized as fol-
lows. Section 2 gives a formal introduction to the
MFRP and shows that it is NP-hard. In §3, we
present an algorithm that determines an optimal route
for a single mobile facility in polynomial time. Sec-
tion 4 describes several heuristics for the MFRP.
Section 5 discusses a time-discretized integer pro-
gramming model to calculate high-quality approxi-
mate solutions (that are lower bounds on the optimal
solution). Section 6 provides a large set of computa-
tional experiments evaluating the heuristics and the
time-discretized approximation. Section 7 provides
concluding remarks.

2. The Mobile Facility
Routing Problem

The MFRP is set on a complete graph in a continuous-
time planning horizon 601T 7 with a set M of mobile
facilities. The vertices of the graph are divided into
two subsets, E and L. The vertices in E represent event
points. The vertices in L represent locations where
the mobile facility may stop to service demand from
nearby event points. The length of the edge between
location l and location l′ is denoted by TTll′ and rep-
resents the time it takes a mobile facility to travel
from location l to location l′. These travel times are
assumed to satisfy the triangle inequality. Because the
graph is complete and travel times obey the triangle
inequality, a mobile facility may always travel from
location l to location l′ without passing through any
intermediate locations. The objective is to determine
a route for each mobile facility and an assignment of
demand from event points to the stops on the route
that maximizes the total demand serviced.

Because the model is set in a continuous-time plan-
ning horizon, demand is modeled as being gener-
ated at rates that vary over time. For each event
point e ∈ E, there is a nonnegative, real-valued instan-
taneous demand function de4t5 describing the rate at
which demand is generated by event point e at time t.
A mobile facility at a location l ∈ L is capable of ser-
vicing demand from a subset of event points El. The
subset El may consist of all event points within a spec-
ified distance of location l or possibly some other sub-
set of event points defined by service constraints par-
ticular to an application. For each location l ∈ L, we
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define fl4t5 to be the cumulative rate of demand gen-
eration by all event points in El (i.e., fl4t5=

∑

e∈El
de4t5).

The fleet of mobile facilities is homogeneous, and
each facility has rate capacity C (although the MFRP
does allow for uncapacitated mobile facilities, i.e.,
C = �). The maximum rate at which a mobile facil-
ity at location l at time t can service demand is the
minimum of the rate capacity of the mobile facil-
ity, C, and fl4t5; however, a mobile facility at loca-
tion l could service demand at a lower rate if demand
from one or more of the event points in El is serviced
by another mobile facility. Because de4t5 describes the
rate at which demand is generated, the total demand
generated by event point e between times � and �
is given by

∫ �

�
de4s5 ds0 Thus, between time � and

time � , a mobile facility at location l can service at
most

∫ �

�
min8C1 fl4s59 ds units of demand.

A route for a mobile facility is a sequence of stops,
4ln1�n1 �n5

N
n=0, where ln is the location visited during

stop n, �n is the arrival time at stop n, and �n is the
departure time from stop n. In other words, service
is provided at location ln during 6�n1 �n7. We specify
that a mobile facility begins providing service imme-
diately upon arrival at a location. Thus, for any route,
�n = �n−1 + TTln−1ln

for n = 11 0 0 0N . We do not assume
that the mobile facility must begin and end its route
at a depot, but rather that each mobile facility always
begins at stop 0 of its route at time 0 and ends at
stop N at time T . The requirement that each mobile
facility start and end at a depot D is equivalent to
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Figure 1 An Instance of the MFRP
Notes. Panel (a) shows a configuration of the locations and event points. The travel times between locations are denoted along the solid line connecting two
locations. A dashed line connects each location to each event point it can cover. Panel (b) displays the instantaneous demand function, de4t5, for each event
point in the configuration.

adding the constraint that no demand may be ser-
viced at a location l during 601TTDl5 and 4T −TTlD1T 7.
This constraint may be enforced by modifying the
definition of fl4t5 so that fl4t5 =

∑

e∈El
de4t5 for t ∈

6TTDl1T −TTlD7, and fl4t5= 0 otherwise. In this paper,
we will assume de4t5 to be a piecewise-constant func-
tion that may only take on nonnegative values during
the planning horizon 601T 7. Because any continuous
function may be approximated arbitrarily closely by
a piecewise-constant function, this assumption is not
very restrictive.

Figure 1 displays the locations and event points
for an instance of the MFRP. This example contains
four locations, L= 811213149, and three event points,
E = 8a1 b1 c9. Suppose that each mobile facility in this
example has a rate capacity of 10. A route for a single
mobile facility, for example, could start at location 1
and service demand from event point a from time 0
until 1.5. At this point the mobile facility could depart
location 1 for location 3. It would arrive at location 3
at time 3 and could continue to provide service from
there for event point b until time 7. The mobile facility
could then immediately depart location 3 and travel
to location 4, servicing demand from event point c
from time 8 until the end of the planning horizon.
In this route, 40.5 units of demand are serviced. The
mobile facility services demand from event point a
at rate 3 during 6011057, servicing 4.5 4=3 × 1055 units
of demand. It services demand from event point b
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at rate 4 during 63177, servicing 16 units of demand.
Finally, the mobile facility services demand at rate 10
from event point c during 681107, servicing 20 units
of demand. Note that this is an optimal route for a
single mobile facility with rate capacity 10.

A second mobile facility with rate capacity 10 could
then be sent on a route starting at location 1, provid-
ing service for event point a during 6105167. At time 6,
it could travel to location 2, arriving at time 7 and
servicing demand from event point b during 67187. It
could then be sent back to location 1 to provide ser-
vice during 691107 to event point a. In total, this route
would capture 22.5 units of demand.

These two routes together define an optimal solu-
tion to this instance of the MFRP with two mobile
facilities, each with rate capacity 10. In this scenario,
it is easy to see that two mobile facilities cannot ser-
vice the demand from event point a during 66177,
event point b during 67187, and event point c dur-
ing 68197. At best, two out of the three can be ser-
viced. This solution is optimal because it services the
two of these three periods that generate the most
demand, and all other demand in the scenario. An
equal amount of demand would be serviced if the first
mobile facility departs location 1 for location 3 at any
time t ∈ 6011057 and the second mobile facility begins
servicing demand at location 1 at time t instead of
time 1.5. In this example, the optimal route for a sin-
gle mobile facility is also one of the two routes in an
optimal solution for two mobile facilities. However,
in general this need not be the case.

2.1. Formulating the MFRP as an
Infinite-Dimensional Mixed-Integer Program

The mobile facility routing problem may be for-
mulated as an infinite-dimensional mixed-integer
program (IDMIP). The program seeks to find func-
tions h̃mle4t5 that describe the rate that demand from
event point e is serviced by mobile facility m at loca-
tion l at time t. Let x̃ml4t5 be 1 if mobile facility m is at
location l at time t, and 0 otherwise. Let Le = 8l2 e ∈ El9
be the set of locations from which service may be pro-
vided to event point e. The MFRP can be formulated
as follows:

Maximize
∑

m∈M

∑

l∈L

∑

e∈El

∫ T

0
h̃mle4s5 ds (1)

subject to:
∑

e∈El

h̃mle4t5≤Cx̃ml4t5

for each m ∈M1 l ∈ L1 t ∈ 601T 73 (2)
∑

m∈M

∑

l∈Le

h̃mle4t5≤ de4t5

for each e ∈ E1 t ∈ 601T 73 (3)

x̃ml4t5+ x̃ml′4t
′5≤ 1

for each m ∈M1 l ∈ L1 t ∈ 601T 73

max801 t − TTl′l9 < t′ < min8T 1 t + TTll′90 (4)

h̃mle4t5≥ 0 for each m ∈M1 l ∈ L1

e ∈ El1 t ∈ 601T 73 (5)

x̃ml4t5 ∈ 80119

for each m ∈M1 l ∈ L1 t ∈ 601T 70 (6)

The objective function maximizes the amount of
demand serviced. If mobile facility m is at location l
at time t, constraint (2) ensures that the rate capacity
of mobile facility m is not violated. If mobile facility m
is not at location l at time t, then x̃ml4t5= 0, which in
turn forces h̃mle4t5= 0 for each event point e ∈ El. Con-
straint (3) ensures that for each time t, the rate that
demand is serviced from event point e is no greater
than the rate that demand is generated by event point
e. Constraint (4) enforces the travel times. If mobile
facility m is at location l at time t, then this constraint
says mobile facility m may not service demand from
any other location l′ at time t′ if either mobile facil-
ity m could not leave location l′ at time t′ and arrive
at location l by time t, or mobile facility m could not
leave location l at time t and arrive at location l′ by
time t′. There are an infinite number of such constraints,
because these constraints are defined for a continuum
of times.

Although there has been considerable work on
infinite-dimensional linear programs, to our knowl-
edge, not much is known in terms of solution meth-
ods for IDMIPs. Consequently, the focus of this paper
is on approximate solution methods for the MFRP.
In particular, we discuss three heuristics and a dis-
cretization of the IDMIP.

2.2. Related Work
Facility location is a well-studied field within oper-
ations research. For background on facility location
theory, see the excellent monographs by Mirchandani
and Francis (1990) and Daskin (1995). To the best
of our knowledge, the MFRP has not been studied
before.

In a certain sense, the MFRP may be viewed as
resembling a dynamic and continuous version of the
maximum covering location problem (MCLP). Given
a set of demand points and a set of potential facil-
ity sites, the MCLP seeks to site a fixed number of
facilities to cover the maximum possible amount of
demand. Typically, demand is considered to be cov-
ered if it is within a given service radius of a facility.
Daskin (1995, Ch. 4) is a good survey for background
on the MCLP. Other work on the MCLP includes
Current and Storbeck (1998), Pirkul and Schilling (1991),
Church, Stoms, and Davis (1996), and Karasakal and
Karasakal (2004).
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A unique feature of the MFRP is that the amount
of demand serviced from an event point is variable
and dependent on the arrival and departure times
of mobile facilities at nearby locations. In addition,
these arrival and departure times can occur at any
time during the planning horizon 601T 7, provided
that the travel times between locations along a route
are not violated. As a result, an explicit decision
must be made to determine when a mobile facility
should depart each location along its route. This dis-
tinguishes the MFRP from the MCLP, because the
amount of demand serviced from an event point in a
solution to the MFRP varies depending on the arrival
and departure times of mobile facilities at nearby
event points. On the other hand, the MCLP, which
seeks to find a static placement of facilities, speci-
fies the demand at each demand point as either cov-
ered or not.

Covering path problems also seek to determine one
or more paths for vehicles to cover demand. These
problems can be separated into two classes. The first
class contains those problems where all demand must
be covered, such as Current, ReVelle, and Cohon
(1984), Current and Schilling (1989), and Current,
Pirkul, and Rolland (1994). The second class contains
those problems that seek to maximize coverage, some-
times as one objective in a multiobjective optimiza-
tion problem, such as Current and Schilling (1994)
and Current, ReVelle, and Cohon (1985). The prob-
lems in this second class resemble the MFRP in that
they seek to determine a collection of paths that max-
imize demand coverage. However, unlike the MFRP,
demand in these problems only needs be covered at
some point along the path. In the MFRP, the demand
serviced from each event point is variable because it
is dependent on the arrival and departure times of the
mobile facilities at nearby locations.

The MFRP is also distinct from real-time vehicle
routing problems. Generally, in real-time vehicle rout-
ing problems, requests for service arrive stochastically
during a planning horizon 601T 7, and a policy must
be determined on how to service these customers.
Often the objective is to determine a policy that mini-
mizes costs or minimizes the time until the next avail-
able vehicle (see Ghiani et al. 2003 for a survey on
the subject). Although difficult in their own regard,
real-time vehicle routing problems are often designed
to make a series of discrete decisions, either when
a new customer request arrives or when sufficiently
many customer requests arrive to warrant dispatching
another vehicle. There may be minimum service times
associated with each customer request; however, the
demand serviced is otherwise not dependent on the
length of time spent at the customer. Conversely, a
solution to the MFRP must specify each route for the
entire planning horizon, including the times when a

mobile facility departs from and arrives at each stop
in its route. In addition, the MFRP seeks to maximize
coverage in a setting where the demand serviced by
a mobile facility at a location is dependent on the
arrival and departure times.

Gendreau, Laporte, and Semet (2001) consider the
problem of relocating ambulances to maintain cov-
erage constraints when ambulances respond to calls
that occur stochastically during a planning horizon
601T 7. The objective was to maximize the amount of
demand covered by at least two ambulances minus
a penalty for each ambulance relocated. (For a sur-
vey of research in ambulance location models, see
Brotcorne, Laporte, and Semet 2003.) In this problem,
the demand for coverage is constant, and relocation
of ambulances is driven by the need to maintain cov-
erage when ambulances cease to provide coverage
while responding to calls. These calls arrive stochas-
tically during the planning horizon. Herein lies the
distinction from the MFRP, where mobile facilities
provide service during the entire planning horizon
and the relocation of mobile facilities is driven by
the changing rate at which demand for service is
being generated at each event point and by the objec-
tive of maximizing the demand serviced. In addition,
although demand in the MFRP varies over time, it is
deterministic.

The MFRP is also distinct from other problems
in the literature that seek to locate facilities over a
planning horizon. One well-studied problem is the
dynamic facility location problem that seeks to locate
capacitated facilities to service all demand during
a multiperiod planning horizon at minimum cost.
(For references, see Ballou 1968, Wesolowsky 1973,
Wesolowsky and Truscott 1975, Erlenkotter 1981, Van
Roy and Erlenkotter 1982, and Canel et al. 2001.) The
multiperiod planning horizon consists of a discrete
set of periods. Facilities with sufficient capacity must
be sited to service all demand during each of these
periods. Typically, a cost is incurred to relocate, add,
or resize a facility; however, the problem does not
give specific consideration to the time it takes to per-
form these actions. This may be well suited for long
planning horizons when the facilities are infrequently
moved, or for scenarios where the time it takes to relo-
cate a facility is relatively short compared to the plan-
ning horizon. The continuous-time planning horizon
in the MFRP provides the ability to consider problems
when the time to relocate a mobile facility may con-
stitute a significant portion of the planning horizon,
as is the case, for example, in the telecommunications
setting.

Bespamyatnikh et al. (2000) and Durocher and
Kirkpatrick (2006) studied a problem related to
mobile facility location. Similar to the MFRP, this
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problem is set in a continuous-time planning hori-
zon. Given a collection of continuously moving points
in the plane, the objective is to find paths for each
of k continuously moving facilities so that at any
time t, the distances from the points to the closest
facility minimizes a given metric. Because facilities
move continuously and are always providing service,
the facilities in this problem differ from those used in
the MFRP, where mobile facilities may only provide
service while stationary. Additionally, demand in the
MFRP does not originate from moving customers and
varies over time.

2.3. Computational Complexity of the MFRP
We now show that the MCLP may be considered as
a special case of the MFRP where demands are gen-
erated at a constant rate and mobile facilities cannot
be relocated because of travel times that are longer
than the planning horizon. Consequently, the MFRP
is NP-hard. Given a set of demand points J , each with
demand dj , a set of potential facility sites I , and the
distances between each facility site and each demand
point, the MCLP seeks to site p or fewer facilities
to cover the maximum possible amount of demand.
A facility at a site i is capable of providing coverage
to a subset of demand points Ni. Megiddo, Zemel,
and Hakimi (1983) prove that the MCLP is NP-hard.
To realize an instance of the MCLP as an instance of
the MFRP, let the planning horizon end at time 1. For
each potential facility site i create a location l4i5, and
for each demand point j create an event point e4j5
generating demand for service at constant rate dj . Let
the travel time between any two locations be greater
than one, so a mobile facility can visit at most one
location during the planning horizon (and stays at
that location for the entire planning horizon, 60117).
Finally, create p mobile facilities, each with rate capac-
ity C =

∑

j∈J dj (this rate capacity ensures that a mobile
facility’s capacity is never exceeded).

3. The Single Mobile Facility
Routing Problem

In this section we show that the MFRP with a single
mobile facility (i.e., �M � = 1) is polynomially solvable.
We refer to the MFRP with a single mobile facility as
the single mobile facility routing problem (SMFRP).
Although the SMFRP is posed in a continuous-time
setting, our result that allows for a polynomial-time
solution is that the SMFRP can be equivalently consid-
ered in a discrete-time setting. To show this, we first
introduce some notation that we can use to describe
the piecewise-constant functions fl4t5.

For each location l ∈ L, let Kl be two plus the num-
ber of discontinuities of fl4t5 during 401T 5. (We add
two to account for times 0 and T .) Let ql1 = 0, qlKl

= T ,

and for 2 ≤ i ≤ Kl − 1, let qli be the ith discontinuity
of fl4t5. For 2 ≤ i ≤ Kl − 1, we refer to such a time qli
as a critical time of location l. Let gl

i be the value of
fl4t5 for t ∈ 6qli1 q

l
i+15 for each 1 ≤ i ≤ Kl − 1. Our main

result is that for the SMFRP, it suffices to restrict our
attention to critical times of the locations in L.

Theorem 3.1. There exists an optimal route 4ln1�n1
�n5

N
n=0 where either the departure time �n is a critical time

of fln4t5, or the arrival time �n+1 is a critical time of fln+1
4t5,

for each n= 0111 0 0 0 1N − 1.

Proof. Define f C
l 4t5 = min8C1 fl4t59. The function

f C
l 4t5 describes the maximum rate at which demand

may be serviced by a single mobile facility with rate
capacity C at location l at time t. As we will show,
any stop with �n = �n may be removed from the
route without reducing the amount of demand ser-
viced. Consequently, we may assume that �n < �n for
n= 0111 0 0 0 1N . The amount of demand serviced as a
function of the departure times may be written as

ã4�01 0 0 0 1 �N 5

=

∫ �0

0
f C
l0
4t5 dt + · · · +

∫ �n

�n−1+TTln−1 ln

f C
ln
4t5 dt

+

∫ �n+1

�n+TTlnln+1

f C
ln+1

4t5 dt + · · · +

∫ �N

�N−1+TTlN−1 lN

f C
lN
4t5 dt0

Suppose the sequence 4ln1�n1 �n5
N
n=0 defines an opti-

mal route and there exists an n such that �n is not a
critical time of fln4t5 and �n+1 is not a critical time of
fln+1

4t5. It suffices to show that this route may be mod-
ified to create a new route servicing an equal amount
of demand that either leaves location ln at a critical
time of fln4t5, arrives at location ln+1 at a critical time
of fln+1

4t5, or skips stop n entirely. With this in hand,
a finite sequence of such modifications will produce
a route that satisfies the theorem.

Because neither is �n a critical time of fln4t5 nor is
�n+1 a critical time of fln+1

4t5, the piecewise-constant
function fln4t5, and thus f C

ln
4t5, is constant in a neigh-

borhood of �n and, similarly, f C
ln+1

4t5 is constant in a
neighborhood of �n+1. Consequently, ã4�01 0 0 0 1 �N 5 is
differentiable in a neighborhood of �n and

¡

¡�n
ã4�01 0 0 0 1 �N 5 = f C

ln
4�n5− f C

ln+1
4�n + TTlnln+1

5

= f C
ln
4�n5− f C

ln+1
4�n+150 (7)

Because by assumption the route is optimal, it follows
that

f C
ln
4�n5− f C

ln+1
4�n+15= 00 (8)

Because f C
ln
4t5 and f C

ln+1
4t5 are piecewise-constant func-

tions, Equation (8) holds true for the interval of time
around �n where both f C

ln
4t5 and f C

ln
4t+TTlnln+1

5 remain
constant.
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Let p̃ be the latest critical time of fln4t5 before
time �n and let q̃ be the latest critical time of fln+1

4t5
before time �n. Because both f C

ln
4t5 and f C

ln+1
4t +

TTlnln+1
5 are piecewise-constant functions, it follows

from Equation (8) that f C
ln
4t5 = f C

ln+1
4t + TTlnln+1

5 for all
t in the interval max8p̃1 q̃ − TTlnln+1

9 ≤ t ≤ �n. Thus, if
the mobile facility departs from stop n at time ¶�n =

max8p̃1 q̃ − TTlnln+1
1�n9 instead of time �n, the mobile

facility will service an equal amount of demand. Con-
sequently, this modified route remains optimal.

If ¶�n = p̃ or ¶�n = q̃ − TTlnln+1
, then either the mobile

facility departs stop n or arrives at stop n+1 at a crit-
ical time. If n≥ 1 and ¶�n = �n, then the mobile facility
may depart stop n the instant it arrives and service an
equal amount of demand. In this new optimal route,
zero demand is serviced at stop n. Because travel
times satisfy the triangle inequality, if the mobile facil-
ity were to leave stop n − 1 at time �n−1 and travel
directly to location ln+1, skipping stop n entirely, it
would arrive at location ln+1 at time ¶�n + TTlnln+1

or
earlier, and therefore services no less demand. Thus,
a new optimal route may be followed by leaving stop
n− 1 at time �n−1 and traveling directly to stop n+ 1,
arriving at time �n−1 + TTln−1ln+1

. Finally, if ¶�n = 0, the
mobile facility must be at the first stop in the route,
so n = 0. In this case, a new optimal route may be
defined by starting at location l1 at time 0 and fol-
lowing the remainder of the route. In either case, a
new optimal route may be defined that skips stop n,
proving the theorem. �

An immediate consequence of Theorem 3.1 is that
there is a discrete set of times when the lone mobile
facility can be expected to leave from or arrive at each
location. Furthermore, the size of this set is polyno-
mial in the number of critical times of each location.
In particular, if Sl is the set of times when the mobile
facility can be assumed to leave from or arrive at loca-
tion l in an optimal solution, then

Sl =

(

⋃

l′ 6=l

8ql
′

j +TTl′l � j=0111000Kl′1 ql
′

j +TTl′l<T 9

)

∪

(

⋃

l′ 6=l

8ql
′

j −TTll′ � j=0111000Kl′1

ql
′

j +TTll′ >09
)

∪8qlj � j=01110001Kl91

(9)

and because Sl only contains times in 601T 7,

�Sl� ≤Kl + 1 + 2
∑

l′ 6=l

Kl′ 0 (10)

Using this discrete sets of times, it is possible
to find the optimal solution for a single mobile
facility in polynomial time. To do so, we define a
directed acyclic graph (DAG) and find the longest

path between a designated source and sink node in
the graph. Let the set Sl be ordered by time and
denoted by 8sl0 < sl1 < · · · 9. For each location l and each
time slk ∈ Sl, we create a vertex vl

k in the graph. If
vl
k < T , an arc is created from vertex vl

k to vertex vl
k+1

and given a weight equal to the amount of demand
that the mobile facility could service if it was at that
location l during the time period 6slk1 s

l
k+17. For each

vertex vl
k > 0, an arc with weight 0 is created to ver-

tex vl′

k′ if slk + TTll′ = sl
′

k′ and sl
′

k′ < T . A source vertex
vstart is added along with arcs with weight 0 from vstart
to each vl

0 for each l ∈ L. Finally, a sink node vend is
added along with arcs with weight 0 from each node
vl

�Sl �
to vend for each l ∈ L.

Note that because each arc originates from a ver-
tex representing an earlier time than that of the ver-
tex at which the arc terminates, no cycles exist in the
graph. Thus, a path through this network from vstart to
vend can be thought of as representing a route for the
mobile facility. Each arc on the path from a vertex vl

k

to vertex vl
k+1 represents the mobile facility providing

service at location l from time slk to slk+1. Each arc on
the path from a vertex vl

k to a vertex vl′

k′ represents the
mobile facility traveling from location l to location l′.
The length of the path equals the amount of demand
the mobile facility can capture along this route.

Finding the longest path through the network from
vstart to vend can easily be accomplished in linear time
using a dynamic program that for the purposes of
this paper we will refer to as the single mobile facility
algorithm (SMFA). (Note that the problem is identical
to the well-known PERT problem in project manage-
ment, where one also seeks to find the longest (or
so-called critical) path in a DAG.)

Single Mobile Facility Algorithm:
Step 0: Set length4vend5 2= 0. Create a sorted list of

the remaining vertices in the network in decreasing
order of the time associated with each vertex and with
vstart at the end of the list.

Step 1: Remove the vertex v from the top of the list.
Set length4v5 = max4v1v′58weight4v1v′5 + length4v′59
and set next4v5 to equal the vertex v′ for which this
maximum is achieved. Ties are broken arbitrarily.

Step 2: If the list is empty, terminate. Otherwise,
repeat Step 1.
At the conclusion of the SFMA, length4vstart5 provides
the length of the longest path, and the actual path is
obtained by following the nodes stored in the next4v5
array (starting from vstart). The SMFA can be viewed
as being identical to running a single-sink shortest-
path algorithm on a DAG after the arc lengths have
been negated, and it is well-known that the running
time is linear in the number of vertices and arcs of
the DAG.

The DAG constructed contains 2+
∑

l∈L �Sl� vertices.
Vertex vend has no outgoing arcs, and each other vertex
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has at most �L� outgoing arcs. Therefore the DAG has
at most �L�+ �L�

∑

l∈L �Sl� arcs. Thus the SMFA has run-
ning time O4�L�2

∑

l∈LKl5, which is linear in the num-
ber of arcs in the DAG and polynomial in the number
of locations and critical times of the functions fl4t5.

4. Heuristics for the MFRP
The previous section describes how to quickly find an
optimal route for a single mobile facility. In this sec-
tion we consider the MFRP with multiple mobile facil-
ities, which is NP-hard. Unfortunately, Theorem 3.1
may not be extended to the case with multiple mobile
facilities. Recall the example problem in Figure 1 and
the optimal routes for two mobile facilities. In any
optimal solution the second mobile facility leaves
location 1 at time 6 and arrives at location 2 at time 7.
However, neither is time 6 a critical time of location 1,
nor is time 7 a critical time of location 2. This occurs
because the first mobile facility departs location 3 at
time 7. If one were to create a function representing
the amount of demand generated by event b that is
not serviced by the first mobile facility, then it may
be noted that there is a discontinuity at time 7 caused
by the departure of the first mobile facility from loca-
tion 3 at time 7. This discontinuity, which is not a
critical time of f24t5, causes the route of the second
mobile facility to depart location 1 at time 6 and arrive
at location 2 at time 7. Here, time 6 is produced by
subtracting TTl3l4 and TTl1l2 from critical time 8 of loca-
tion 4. Similar examples can be constructed where,
given �M � mobile facilities, the time a facility departs
from or arrives at a location is not a critical time of
that location but rather is a critical time of another
location plus or minus a sequence of travel times
between �M � pairs of locations.

In general, the potential departure times for a
mobile facility from a location l are dependent on
the critical times of the locations in L and on the
demand from the events in El that is serviced by the
other mobile facilities. Each time a mobile facility relo-
cates from one location to another in an optimal solu-
tion, it either departs or arrives at a critical time or
at a time when another mobile facility is arriving or
departing from some other location. If not, by a simi-
lar argument to the proof of Theorem 3.1, the mobile
facility could either leave earlier or later and service
more demand. For the MFRP, there seems to be no
obvious way to generate a polynomially bounded set
of discrete times when a mobile facility may depart
from or arrive at a location. It remains an open ques-
tion whether an optimal solution to the MFRP always
exists in which each time a mobile facility travels, it
departs a location at a time that is a critical time of
that location or of some other location plus or minus
a sequence of travel times between pairs of locations.

Even if this were true, and the sequence had length
at most �M �, the number of potential departure times
would still be exponential in �M �. Furthermore, even
if there was a method to reduce this set of poten-
tial departure times so that its size is polynomially
bounded, the problem of determining the optimal
routes for a fleet of mobile facilities is still extremely
difficult. For example, in perhaps the simplest case
where each mobile facility could arrive at each loca-
tion only at time 0 and depart only at time T , the end
of the planning horizon, we have observed that solv-
ing the MFRP is no easier than the MCLP. In fact, in
our experiments the MFRP appears to be significantly
more difficult!

Consequently, our strategy has been to develop sev-
eral heuristics for generating routes for the MFRP,
which we describe below. We then apply a local
search method to improve the routes. As we stated
earlier, we utilize the SMFA when generating routes.
As each heuristic executes, a record is kept of the
demand that is not serviced in the instance of the
MFRP. We define the variable d̃e4t5, for each e ∈ E, to
be the rate at which demand that is not serviced is
generated at event point e at time t. Similarly, for each
location l ∈ L, we define the variable f̃l4t5 to be the
cumulative rate at which demand that is not serviced
is generated by the event points in El at time t. Thus,
f̃l4t5 =

∑

e∈El
d̃e4t5 for each t ∈ 601T 7. Furthermore, we

define d̃me4t5 to be the rate that demand is being ser-
viced by mobile facility m from event point e at time t
and f̃ml4t5 to be the rate that mobile facility m is ser-
vicing demand from location l at time t.

Given a subset of locations Lm that mobile facil-
ity m visits, the SMFA can be used to generate a
route that captures the maximum possible amount of
demand not being serviced from these locations. In
other words, the SMFA can be seen as a function that
takes in the remaining serviceable demand at each
location in Lm, the travel times between those loca-
tions, and the rate capacity of a mobile facility and
returns a sequence of locations for the mobile facility
to visit, the arrival and departure time at each loca-
tion in the sequence, and functions f̃ml4t5 that describe
the amount of demand serviced by mobile facility m
from location l at each time t.

4.1. Demand Assignment
After a route is created for a mobile facility with
the SMFA, the rate that demand is serviced at each
time t from each event point must still be deter-
mined. In applications where the mobile facilities
have no rate capacity or have a sufficiently high rate
capacity such that it cannot be exceeded (e.g., C >
maxl∈L1 t∈601T 7 fl4t5), a mobile facility is capable of ser-
vicing all nearby demand, in which case all maximal
assignments of demand in the model service the same
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amount of demand as in practice. Contexts where
mobile facilities have small service areas can poten-
tially be modeled by creating a single event that can
be serviced for each location. Overlapping coverage in
this setting corresponds to two or more mobile facil-
ities at the same location. In this case, the choice of
which mobile facility in the model services demand
does not affect the amount of demand serviced
in practice.

However, in applications where the rate capacity
of a mobile facility is a limiting factor, for each stop
made by a mobile facility the rate at which demand
is serviced from each nearby event point must be
determined. In many contexts where mobile facili-
ties at distinct locations can provide service to a sin-
gle event, operators of mobile facilities can explicitly
control how much demand will be serviced by each
mobile facility. For example, a cellular telephone ser-
vice provider can instruct individual cell phones to
use specific base stations. When providing humani-
tarian relief using mobile facilities after a disaster, the
population must be notified of the locations of the
mobile facilities. In such a case, instructions could also
be sent about which mobile facility the population
should go to in order to receive aid. These instruc-
tions can be broadcast over the radio or communi-
cated by relief workers sent out to each event point
in the model. Implementing such measures to control
demand assignment allows operators to maximize the
service provided by their mobile facilities. Addition-
ally, in contexts where the operator has limited ability
to control demand assignment, the MFRP can poten-
tially be used to provide a reasonable approximation
of the routing of mobile facilities.

The phase of our heuristics that determines the
demand from each event point serviced by each
mobile facility is called demand assignment. Given a
route, this phase assigns demand from event points to
each stop on the route individually. For stop n in the
route, each of our heuristics initially set d̃me4t5= 0 for
all e ∈ Eln

and all times t between the arrival time �n

and the departure time �n. The event points in Eln
are

sorted according to one of four criteria that we spec-
ify below. Taking the first event point e in the list, we
define d̃me4t5 at each time t ∈ 6�n1 �n7 to be the mini-
mum of the current rate demand that is not serviced
that is being generated at event point e (i.e., d̃e4t5),
and the unused rate capacity of the mobile facility.
Accordingly, we then subtract d̃me4t5 from d̃e4t5. This
process is then repeated for each event point in the
sorted list until either the list has been exhausted
or the rate capacity of the mobile facility has been
reached for the entire duration of the stop. The four
sorting criteria we consider are as follows.

Sort 1: Sort the event points in increasing order of
the number of locations from which a mobile facility

could provide service to the event point (i.e., �Le�). For
event points that are covered by the same number
of locations, we sort them in increasing order of the
amount of demand not serviced during Stop n.

Sort 2: Sort the event points in increasing order of
the number of locations from which a mobile facility
could provide service to the event point (i.e., �Le�). For
event points that are covered by the same number
of locations, we sort them in decreasing order of the
amount of demand not serviced during Stop n.

Sort 3: Sort the event points in increasing order of
the amount of demand not serviced during Stop n.

Sort 4: Sort the event points in decreasing order of
the amount of demand not serviced during Stop n.
Intuitively, Sort 1 and Sort 2 first assign demand
from those event points that can be serviced from
fewer locations, making it less likely that the route
of another mobile facility will be able to service
demand from those event points. Sort 1 and Sort 3
attempt to first assign demand from those event
points with small amounts of demand not serviced
by sorting the event points in increasing order of the
amount of demand not serviced. This would leave
more event points with large amounts of demand
that is not serviced, which would hopefully allow
other routes to be created having stops where a larger
amount of demand is serviced. Alternatively, sorting
the event points in decreasing order of the amount of
demand not serviced in Sort 2 and Sort 4 would leave
more event points with demand that is not serviced,
hopefully allowing any route created to minimize
travel time, during which a mobile facility services
no demand.

4.2. Sequential Routing for the MFRP
The sequential routing heuristic generates a route for
one mobile facility at a time. This heuristic initializes
by setting d̃e4t5 = de4t5 for each e ∈ E and f̃l4t5 = fl4t5
for each l ∈ L. Each subsequent stage of the algorithm
generates a route for a single mobile facility consider-
ing all locations (i.e., Lm = L) using the SMFA. Thus,
each time a route is generated, it will service the maxi-
mum possible amount of demand that was previously
not serviced. Because the SMFA only determines loca-
tions for the mobile facility to visit and a departure
time for each location in the route, after each iteration
a decision must be made on how demand should be
assigned from event points to the stops in the route of
the mobile facility. Finally, the variables d̃e4t5 and f̃l4t5
are updated to reflect the demand serviced by the new
route. The steps of the sequential routing heuristic are
outlined below.

Step 0 (Initialization): For each e ∈ E, initialize
d̃e4t5 2= de4t5. For each l ∈ L, initialize f̃l4t5 2= fl4t5.

Step 1 (Route Determination): Choose a mobile
facility without a route. (Because all mobile facilities
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are identical, this selection may be made arbitrarily.)
Run the SMFA, using the capacitated remaining
serviceable demand functions f̃ C

l 4t5 = min8C1 f̃l4t59
for each location l, to determine each location in the
route, and the arrival and departure time for each
stop in the route.

Step 2 (Demand Assignment): Compute the de-
mand serviced from each event point for each stop in
the route following the method for demand assign-
ment described in §4.1.

Step 3 (Demand Update): Update d̃e4t5 for each
e ∈ E and f̃l4t5 for each l ∈ L to reflect the demand that
is serviced by this route.

Step 4: If all mobile facilities have been assigned a
route or all demand is serviced, terminate. Otherwise,
return to Step 1.

4.3. Generating Routes with an Insertion Heuristic
The second heuristic we present is an insertion heuris-
tic. The heuristic associates a set of locations Lm with
each mobile facility m. Each mobile facility m will
only visit locations in Lm on its route. Each set Lm

is initially empty. At each stage of the heuristic, a
location l̃ is considered for insertion into each set Lm.
When location l̃ is being considered for insertion
into Lm, the SMFA is used to calculate the demand
serviced along the best route for mobile facility m,
assuming that it may only visit the locations in Lm

and location l̃, and assuming that mobile facility m
may only service demand that it is already servic-
ing or demand that is currently not serviced. If the
route followed by at least one mobile facility may be
improved by allowing it to visit location l̃, then loca-
tion l̃ is added to the set Lm for the mobile facility m
whose route may be most improved by the addition
of location l̃. The routes of the remaining mobile facil-
ities remain unchanged. The process is repeated until
no more improvements may be found. The details of
the insertion heuristic are outlined below.

Step 0 (Initialization): For each e ∈ E, l ∈ L, and
m ∈M , initialize d̃e4t5 2= de4t5, initialize f̃l4t5 2= fl4t5,
initialize the set Lm to be empty, initialize d̃me4t5 2= 0,
and initialize f̃ml4t5 2= 0. Furthermore, initialize the set
L̃ 2= L.

Step 1 (Insertion Selection): Select the location
l̃ ∈ L̃ with the largest total amount of demand that
is not serviced during the planning horizon. For
each mobile facility m with l̃ y Lm, do the following.
For each location l ∈ Lm ∪ 8l̃9, define the function
�l4t5 = min8C1 f̃l4t5 + f̃ml4t59. Calculate how much
demand could be serviced by mobile facility m by
executing the SMFA using the functions �l4t5 as the
rate that demand can be serviced at time t from
location l by this mobile facility and the travel times
between the locations in Lm ∪ 8l̃9.

Step 2 (Route Selection): If it was found in Step 1
that the route of no mobile facility can be improved by
allowing it to visit location l̃, then remove location l̃
from the set L̃ and go to Step 5. Otherwise, the route
that may be most improved by visiting location l̃ is
changed to follow the new route calculated in Step 1.
In the case where this maximum improvement may
be realized by inserting location l into several routes,
we choose the route that was first considered. Loca-
tion l̃ is added to Lm.

Step 3 (Demand Assignment): Demand from event
points is assigned to each stop in the route follow-
ing the method for demand assignment described in
§4.1. If no demand remains that may be serviced from
location l̃, or l̃ ∈ Lm for every mobile facility m, then
location l̃ is removed from L̃.

Step 4 (Demand Update): Update d̃e4t5 for each
e ∈ E and f̃l4t5 for each l ∈ Lm to reflect the demand
that is now serviced or no longer serviced by this new
route.

Step 5: If L̃ is empty, terminate. Otherwise, return
to Step 1.

4.4. Local Search for the MFRP
We now describe a local search algorithm that looks
for improvements to routes generated with our
heuristics. A naive method for looking for improve-
ments could examine solutions in a local search
neighborhood defined by the following two types of
exchanges:

• Choose a stop n in a route r . Try changing the
location visited in stop n to a different location, main-
taining either the arrival and departure times for
stop n, or the departure time from stop n− 1 and the
arrival time at stop n+ 1.

• Choose a pair of routes, r1 and r2, and a stop n1
in route r1. Delete stop n1 so that the demand ser-
viced at stop n1 by route r1 is no longer serviced.
Next, delete every stop of route r2 and recalculate
route r2 to service the maximum amount of demand
that is currently not serviced using the SMFA. (This
could improve route r2 by allowing it to service some
of the demand previously serviced during stop n1 of
route r1.) Finally, delete all the remaining stops in
route r1 and recalculate route r1 using the SMFA.

Implementing such a local search procedure has
two distinct problems. The first type of exchange
never improves the routes generated by either heuris-
tic. The insertion heuristic associates with each route
a set of locations that the route may visit and then
uses the SMFA to calculate a route that services the
maximum amount of demand that is currently not
serviced while visiting only the stops in that set. It ter-
minates when, for each route, no improvement may
be found by allowing that route to visit another loca-
tion. Consequently, each route generated by the inser-
tion heuristic cannot be improved by changing the
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location visited in a stop to any other location. In the
sequential heuristic, each route was created to ser-
vice the maximum amount of demand that was not
serviced immediately prior to the generation of that
route. Because the demand being serviced at some
stage of the sequential routing heuristic will remain
serviced during execution of the subsequent steps of
the sequential routing heuristic, the demand not ser-
viced immediately prior to the generation of any route
includes all demand that is not serviced by the final
routes produced by the sequential heuristic. Conse-
quently, after the sequential heuristic, if a stop in a
route is replaced with a stop at a different location, the
mobile facility will service no more demand after this
exchange than it did on its route before the exchange.

The second (and more severe) problem is that the
running time of a local search algorithm that con-
siders every exchange of the second type blows up
wildly. This is because the SMFA is executed each
time the second type of exchange is considered. In
our experience, searching over every exchange of
the second type could take an unreasonably long
time because most exchanges in the neighborhood
are fruitless. Motivated by identifying types of neigh-
borhoods that can yield improvements, we look at
a similar (but smaller) special type of local search
neighborhood where a lower bound on the improve-
ment may be computed rapidly.

Suppose we have two routes, route r1,
4l1n1�

1
n1 �

1
n5

N1
n=0, and route r2, 4l2n1�

2
n1 �

2
n5

N2
n=0, and that

route r1 was generated prior to route r2 in the
sequential routing heuristic. Furthermore, suppose
that route r1 and route r2 were allowed to visit the
same set of locations and were generated using the
SMFA. All demand serviced in route r2 was not being
serviced when route r1 was generated. Consequently,
route r1 cannot be improved by servicing demand
that is being serviced in route r2. However, it may be
possible to improve route r2 if the mobile facility in
route r2 was allowed to capture some of the demand
serviced in route r1.

For each pair of routes in a solution to the MFRP
generated by one of our heuristics, our local search
algorithm looks for opportunities to improve the solu-
tion by removing a stop from route r1, inserting it into
route r2, and filling in the gap in route r1 with demand
that is not serviced. Specifically, if stop 4l1n0

1�1
n0
1 �1

n0
5 is

removed from route r1 and inserted into route r2, we
temporarily assume that the arrival time and depar-
ture time of stop 4l1n0

1�1
n0
1 �1

n0
5 are preserved. Because

travel times are assumed to obey the triangle inequal-
ity, this produces a unique time t0 when the mobile
facility following route r2 must deviate from route r2
to arrive at location l1n0

at time �1
n0

and a unique
time t1 when the mobile facility returns to route r2
after departing location l1n0

at time �1
n0

. The demand

Before exchange(a)

(b)

T0

0 T

Route r2

Route r1

Route r2

Route r1

T0

0 T

After exchange

Figure 2 An Example of an Exchange in a Local Search Algorithm
Notes. Boxes above each timeline each represent a stop along a route. The
solid black box represents the stop that is moved from route r1 to route r2.
The demand lost in the swap is shaded by light gray. The demand added in
the exchange is shaded with dark gray.

covered along route r2 between time t1 and time t2 is
no longer serviced by this mobile facility.

Route r1 no longer contains stop n0, which allows
the mobile facility following that route to stay
longer at stops n0 − 1 and n0 + 1, possibly servicing
more demand. To calculate the amount of additional
demand serviced, we define the set S of potential
departure times from stop n0 − 1. By a similar argu-
ment to the proof of Theorem 3.1, one can show that
the mobile facility will either depart stop n0 − 1 at a
discontinuity of f̃ln0−1

4t5 or at �1
n0−1, or arrive at stop

n0 + 1 at a discontinuity of f̃ln0+1
4t5 or at �n0+1. Specifi-

cally, S will contain the discontinuities of f̃ln0−1
4t5 and

f̃ln0+1
4t + TTln0−1ln0+1

5 during the interval of time be-
tween the times �1

n0−1 and �1
n0+1 − TTln0−1ln0+1

. Sort S,
and denote the sorted order as S = 8s0 < s1 < · · ·< sK9.
The following procedure (illustrated in Figure 2) gives
an efficient method for computing the locally optimal
time the mobile facility should depart stop n0 − 1 for
stop n0 + 1.

Step 0: Initialize k 2= 1, D− 2= 0, D+ 2=
∫ �1

n0+1

s0+TTln0−1 ln0+1

f̃ln0
+14s5 ds. Then initialize kmax 2= 0 and Dmax 2=D+.

Step 1: Set D+ 2= D+ −
∫

sk+TTln0−1 ln0+1

sk−1+TTln0−1 ln0+1
f̃ln0+1

4s5 ds. Set

D− =D− +
∫ sk
sk−1

f̃ln0−1
4s5 ds.

Step 2: If D− +D+ >Dmax, set Dmax 2=D− +D+ and
kmax 2= k.

Step 3: If k =K, terminate. Otherwise, set k 2= k+1.
At the end of this procedure, skmax gives the locally
optimal time that the mobile facility following should
depart stop n0 − 1 for stop n0 + 1.

To see if this exchange produced an improvement,
one may wish to see if the demand serviced in
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route r1 and route r2 after the exchange is greater
than the demand serviced by the two routes before
the exchange. This is equivalent to computing the
difference in the amount of demand that is serviced
after the exchange but was not serviced before the
exchange and the amount of demand that was ser-
viced before the exchange but is not serviced after
the exchange. The additional amount of demand ser-
viced after the exchange is the amount of demand
serviced in route r1 between times �1

n0−1 and �1
n0+1. The

amount of demand that is no longer serviced after
the exchange is the amount of demand previously
serviced along route r2 between times t0 and t1. (We
note that this may count the demand from an event
point twice if it was covered by route r2 before the
exchange and route r1 after the exchange. However,
this demand will be canceled out in the final calcu-
lation.) The difference in these two is the net change
in the amount of demand serviced. If this net change
is positive, this is an improvement in the routes.
If an improvement is found, we could then delete
route r2 and delete stop n0 from route r1, leaving the
remainder of route r1 intact, and recompute route r2
using the SMFA to service the maximum amount of
remaining demand. After demand assignment to this
new route (to see if we could further increase the
amount of demand serviced), we could delete the
remaining stops in route r1 and recompute route r1
using the SMFA. However, this operation is computa-
tionally expensive. Thus, we will only perform such
an operation after considering all possible exchanges
and selecting the one that could potentially yield the
most improvement.

Notice that because the arrival time and departure
time of stop n0 of route r1 are preserved when it is
inserted into route r2, even if the difference in the
demand serviced after the exchange is negative, it
is possible that an overall increase in the amount of
demand serviced could be found when we recompute
route r1 and route r2 using the SMFA. For this reason,
we define a negative threshold value ã and will con-
sider all exchanges where the change in the amount
of demand serviced along the two routes after the
exchange is greater that ã.

To start the local search procedure, we define an
empty tabu list T that will keep track of exchanges
of a stop between routes that are not to be consid-
ered again. Each iteration of the local search algorithm
searches over all such exchanges of a stop between
two routes that are not in the tabu list and selects
the exchange that provides the greatest improvement.
If the greatest difference in the amount of demand
serviced is less than ã, we terminate. Otherwise,
we recalculate the two routes as follows. We first
delete the stop n0 that was moved from route r1 to
route r2 and delete all stops originally in route r2

(i.e., 4ln1�
2
n1 �

2
n5

N1
n=0), temporarily leaving the remain-

der or route r1 intact. Next, we recompute route r2
using the SMFA to generate a new route r2 that ser-
vices the maximum amount of demand currently not
serviced. Demand assignment is performed for the
new route r2 using the procedure described in §4.1.
Now, to recalculate route r1 we delete the remaining
stops in route r1 and then recompute route r1 using
the SMFA. Demand assignment is performed for the
new route r1 using the procedure described in §4.1. If
the total demand serviced along the new route r1 and
along route r2 is not more than before the exchange,
we revert to the two routes before the exchange and
add the exchange to the tabu list T. Otherwise, the
new routes are kept. The local search algorithm con-
tinues to iterate until no further improvement can be
found. The details of the local search procedure are
outlined below.

Step 0 (Initialization): Initialize route pointers r1
and r2, set n0 2= 0, � 2=ã, and T=�.

Step 1 (Explore All Solutions in Neighborhood):
For each pair of routes, route a and route b, and for
each stop n in route a, run Step 1a.

Step 1a (Compute Particular Neighborhood Solu-
tion): Consider moving stop n from route a to route b,
preserving the arrival and departure time at stop n.
Compute the demand that is no longer serviced in
route b if stop n must be visited and store it as �1.
Compute the locally optimal time that the mobile
facility following route a must leave stop n − 1 for
stop n+1. Store the additional demand serviced along
route a at stops n− 1 and n + 1 as �2. If � < �2 − �1,
set r1 2= a, r2 2= b, n0 2= n, and � 2= �2 − �1.

Step 2 (Attempt to Implement Improvement): If
�≤ã, terminate. Otherwise, delete stop n0 from route
r1 and route r2, leaving the remainder of route r1
intact. Recalculate route r2 using the SMFA and allow-
ing the mobile facility to visit any location. Run the
demand assignment phase to assign demand to each
stop in the new route r2. Next, delete the remaining
stops in route r1 and recalculate route r1 using the
SMFA. Run demand assignment to assign demand
to each stop in the new route r1. If this does not
produce an improvement, add the exchange of stop
4ln0

1� a
n0
1 �a

n0
5 from route r1 to route r2 to T and revert

to the previous routes. Return to Step 1.
Given a pair of routes generated by the sequential

routing heuristic, during Step 1a of this local search
procedure we only considered a pair of routes a and b
if route a was generated prior to route b in the sequen-
tial routing heuristic.

5. Calculating Lower Bounds for the
MFRP with Integer Programming

In this section, we discuss how mixed-integer pro-
gramming can be used to provide informative lower
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bounds for the MFRP that are useful in evaluat-
ing the performance of our heuristics. These lower
bounds provide feasible solutions to the MFRP and
are therefore heuristics in their own respect. How-
ever, because calculating the optimal solutions to
these mixed-integer programs (MIP) is computation-
ally very challenging, these can only be used to com-
pute solutions to very small problems.

5.1. Fixing Facility Locations
Mobile facilities in the MFRP can be relocated over
time. However, keeping each facility at one location
for the entire planning horizon 601T 7 is a feasible
solution to the MFRP and thus provides a lower
bound. We refer to such a solution as a static place-
ment of facilities. The optimal static placement of
facilities that services the most demand may be found
by solving an MIP, which we name the Static MIP
(SMIP). The optimal static solution may be used to get
a sense of the value of mobile facilities (in the sense
of how much more demand may be serviced with
mobile facilities) and identify when mobile facilities
provide the most value.

Let F be the set of fixed facilities. Given a scenario,
let S = 80 = s0 < s1 < · · · < sK = T 9 be the collection of
all critical times of all locations in L. For each f ∈ F
and l ∈ L, define the binary variable xfl to be 1 if fixed
facility f is positioned at location l and 0 otherwise.
For each f ∈ F , l ∈ L, e ∈ E, and k = 0111 0 0 0 1K − 1,
define the nonnegative continuous variable dfek to be
the amount of demand serviced by fixed facility f
from event point e during 6sk1 sk+15. Let Dek be the
total amount of demand generated by event point e
during 6sk1 sk+15. The SMIP is formulated as follows:

(SMIP) Maximize
∑

f∈F

∑

e∈E

K−1
∑

k=0

dfek (11)

subject to:
∑

l∈L

xfl = 1 for each f ∈ F 1 (12)

∑

e∈E

dfek ≤C4sk+1 − sk5

for each f ∈ F 1 k = 0111 0 0 0 1K − 13 (13)
∑

f∈F

dfek ≤Dek

for each e ∈ E1 k = 0111 0 0 0 1K − 13 (14)

dfek ≤Dek

∑

l∈Le

xfl for each f ∈ F 1 e ∈ E1

k = 0111 0 0 0 1K − 13 (15)

dfek ≥ 0 for each f ∈ F 1 e ∈ E1

k = 0111 0 0 0 1K − 13 (16)

xfl ∈ 80119 for each f ∈ F 1 l ∈ L0 (17)

The objective of the SMIP, given by (11), is to maxi-
mize the amount of demand serviced. Constraint (12)
assigns each facility to a single location l. Because the
rate at which each event point generates demand is
constant during each interval of the form 6sk1 sk+15,
constraint (13) preserves the rate capacity of the facil-
ity by dictating that the amount of demand serviced
during 6sk1 sk+15 by the facility cannot exceed the max-
imum amount of demand it could serve during that
time. Constraint (14) says that the amount of demand
serviced by the facilities during period k from event
point e is less than or equal to the amount of demand
generated by event point e during period k. Con-
straint (15) says that a facility may service demand
from event point e only if the facility is positioned at
a location l ∈ Le. Constraints (16) and (17) specify the
values the variables may take on.

5.2. Time Discretization of the IDMIP
An approximation of the IDMIP formulation of the
MFRP may be obtained by discretizing time. This pro-
vides an approximate solution and a lower bound for
the MFRP. The finer the discretization, the better the
approximation. On the other hand, the size of this
time-discretized formulation is extremely large and
grows rapidly with the level of discretization.

For the time discretization, let 8t01 t11 0 0 0 1 tK9 be the
set of times when any mobile facility can be assumed
to either arrive at or depart from any location. Fur-
thermore, to discretize the IDMIP, the rate at which
each event point generates demand must be constant
during each interval of time 6tk1 tk+15. Notice that the
set

⋃

l∈L Sl satisfies this condition. We use this time
discretization in our computational experiments.

To formulate this time-discretized MIP (TDMIP),
let P be the set of time periods between these times,
84tk1 tk+152 k = 01 0 0 0 1K−19. For each p ∈ P , define �p =

tp+1 − tp, the length of period p. By design, during
each period p, a mobile facility will either be trav-
eling from one location to another or be providing
service from a location for the entire period. Let D

p
e

be the total demand generated at event point e dur-
ing period p. Define the binary decision variable x

p

ml

to be 1 if mobile facility m is providing service from
location l in period p, and 0 otherwise. For each e ∈ E,
l ∈ Le, and p ∈ P , define the nonnegative real-valued
decision variable d

p

el to be the amount of demand gen-
erated from event point e during period p that is ser-
viced by mobile facilities at location l. The TDMIP can
be formulated as follows:

(TDMIP) Maximize
∑

p∈P

∑

e∈E

∑

l∈Le

d
p

el1 (18)

subject to:
∑

l∈Le

d
p

el ≤Dp
e for each p ∈ P1 e ∈ E1 (19)
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∑

e∈El

d
p

el ≤ 4C�p5
∑

m∈M

x
p

ml for each p ∈ P1 l ∈ L1 (20)

x
p

ml + x
p′

ml′ ≤ 1 for each m ∈M1 p1p′
∈ P1 l1 l′ ∈ L1

such that

4tp′1 tp′+15∩ 4tp − TTl′l1 tp+1 + TTll′5 6= �1 (21)

d
p

el ≥ 0 for each p ∈ P1 e ∈ E1 l ∈ Le1 (22)

x
p

ml ∈ 80119 for each p ∈ P1 m ∈M1l ∈ L0 (23)

The objective function (18) seeks to maximize the
amount of demand serviced. Constraint (19) ensures
that the amount of demand serviced during period p
from event point e does not exceed the amount of
demand generated by event point e during period p.
Constraint (20) ensures that the amount of demand
serviced by mobile facilities at location l during
period p does not exceed the amount of demand that
those mobile facilities may capture during period p,
which is C�p for each mobile facility. Because the
instantaneous demand functions are constant during
each period, the rate capacity of a mobile facility
will not be exceeded if this constraint is met. Con-
straint (21) ensures that the route of each mobile facil-
ity is feasible, respecting the travel times between
locations. Constraints (22) and (23) specify the ranges
of the variables.

6. Computational Results
In §4, we described two heuristics to generate routes
for mobile facilities and a local search procedure that
attempts to improve a set of routes. During execution,
both of these heuristics employ one of four sorting
orders that are defined in §4.1 to assign demand cov-
erage. To test these heuristics, we have developed a
variety of simulated data sets. These data sets are gen-
erated with varying parameter values and demand
profiles to represent a wide range of data. The one
parameter we keep fixed is the rate capacity of each
mobile facility, which we fix at 10. Fixing this param-
eter value does not restrict the scope of the data sets.
In every data set, all locations and events are posi-
tioned at random points in a rectangular region of the
plane. The travel time between each pair of locations
is given by the Euclidean distance between them. A
mobile facility at a location may provide service to
events within a given distance of that location.

It is important to note the scope of demand pro-
files for the MFRP when simulating the demand in
data sets. In particular, we are interested in study-
ing the use of mobile facilities to provide service over
a large geographic region with a dynamic demand
profile. When demand is generated at a relatively con-
stant rate for a large portion of the planning hori-
zon, it is unlikely that mobile facilities could be used

more efficiently than fixed facilities. In such a case, a
static model may be more appropriate for determin-
ing fixed locations for the facilities. Thus, we do not
wish to study scenarios where there are many event
points that each generate demand at a relatively con-
stant rate for a large percentage of the planning hori-
zon. Similarly, we also do not wish to study scenarios
with many locations where demand could be serviced
at a relatively constant rate for the entire planning
horizon. Keeping this in mind, we have created two
distinct types of simulated scenarios for the MFRP.

The first type of scenario simulates, at a high level,
demand profiles that we might expect to occur in
practice, such as when routing a fleet of portable cel-
lular base stations over a day. We refer to these sce-
narios as “realistic” scenarios. Each realistic scenario
simulates part of a single day, beginning at 7 a.m. and
ending at midnight in a 10 by 15 rectangular region
of the plane. The demand profile of each event point
in the scenario simulates the forecasted demand from
a single event that might occur in practice, such as a
sporting event, rush hour traffic, a county fair, a con-
vention, etc. For each type of event point, we define
a time window during which that type of event point
may generate demand. For each event point e of that
type, we choose at random a time tstart when demand
generation begins and a later time tend when demand
generation ends inside that window, although we
specify that each event point must generate demand
for at least one hour (i.e., tend − tstart > 1). During that
time period, de4t5 gradually increases to a maximum
level, remains at that maximum level for a period of
time, and then gradually decreases to 0. To ensure
that each event point provides a significant maximum
level of demand, the maximum level is selected from
a uniform distribution on 6005 ∗ C1C7. The rates of
increase and decrease are constant and are also chosen
randomly but allow the maximum level to be reached
at least momentarily and demand to decrease back to
0 during the time period tstart and tend. Outside of the
time period between tstart and tend, no demand will be
generated by event point e.

The demand profiles at the event points in a real-
istic scenario share a specific structure. Namely, the
demand is generated during a single interval of time,
and during that interval demand gradually increases
to, remains at, and then decreases from a maximum
rate of demand generation. To see how our heuris-
tics perform in less structured data sets, we created
a second type of scenario. We refer to these scenar-
ios as mathematically challenging scenarios. As the name
suggests, the mathematically challenging data sets are
designed to be less structured, and therefore more dif-
ficult, than the realistic scenarios. The planning hori-
zon of each of these scenarios begins at time 0 and
ends at time 100. Each of these scenarios is set in a
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25-unit square region of the plane. The demand pro-
file for an event point is generated as follows. The
number of pieces in the piecewise-constant function
de4t5 for an event point e is chosen at random from a
specified range. To generate a wide range of demand
profiles, we specified that each event point would
have at least 5 and no more than 35 pieces. To find
the length of each piece, we assign each piece a ran-
dom number between 0 and 1. These numbers are
then normalized so that their sum equals the length
of the planning horizon. Each normalized number is
taken to be the length of the corresponding piece. The
rate that demand is generated by that event point (i.e.,
the height of de4t5) during that time is 0 with prob-
ability p = 007, and otherwise chosen randomly from
a lognormal distribution with a standard deviation of
either 1, 1.5, 2, or 2.5.

In our results, the names of realistic scenarios will
begin with the letter “R” and the mathematically chal-
lenging scenarios will begin with the letters “MC.”
This is followed by a unique index for the scenario.
Table 1 gives the number of mobile facilities, loca-
tions, event points, and coverage radius in each sce-
nario. Computational results were compiled on a Dell
Optiplex 740 with an AMD Athlon 64 X2 5000+ dual
core processor with 3GB of RAM running Microsoft
Windows XP. The heuristics were coded and compiled
in Microsoft Visual C++ 2005.

Table 1 The Number of Mobile Facilities, Locations, and Event Points
and the Coverage Radius of a Mobile Facility at a Location for
Each Type of Scenario

Data set Facilities Locations Event points Coverage distance

R0 3 25 75 1
R1 5 25 75 1
R2 7 25 75 1
R3 10 25 75 1
R4 3 25 35 1
R5 5 25 35 1
R6 7 25 35 1
R7 10 25 35 1
R8 3 15 35 105
R9 5 15 35 105

R10 7 15 35 105
R11 10 15 35 105
R12 3 15 20 105
R13 5 15 20 105

MC0 3 25 75 305
MC1 5 25 75 305
MC2 7 25 75 305
MC3 10 25 75 305
MC4 5 10 20 405
MC5 10 25 50 405
MC6 5 15 20 405
MC7 10 15 20 405
MC8 5 10 20 1
MC9 5 10 15 405

6.1. Sequential Routing vs. Insertion Heuristic
Table 2 displays the performance of the two route
generation heuristics when different sorting orders
are used with each heuristic on a variety of data
sets. Each row displays the averaged results from
25 realistic data sets or 40 mathematically challeng-
ing sets generated with varying demand parame-
ters. We make two key observations. First, notice that
regardless of the sorting order used in the demand
assignment step, the sequential routing heuristic typ-
ically outperforms the insertion heuristic. Second, it
appears that in both heuristics, using Sort 2 produces
routes that on average service the most total demand.
Because the difference in the average demand ser-
viced is small, the Wilcoxon signed rank test (see
Wilcoxon 1945) was used to see if Sort 2 outper-
forms the other sorting methods in a statistically sig-
nificant manner. For the sequential routing heuristic,
the hypothesis that Sort 2 outperforms Sort 3 and
Sort 4 was validated at a 0.00066 significance level
for the realistic data sets and at a 0.0000002 signif-
icance level for the mathematically challenging data
sets. For the insertion heuristic, the same hypothesis
was validated at a 0.0000101 significance level for the
mathematically challenging data sets. The Wilcoxon
signed rank test on the realistic data sets shows
that for the insertion heuristic, Sort 2 outperforms
Sort 3 at a 0.002 significance level, but the test was
inconclusive when comparing Sort 2 and Sort 4. In
addition, the Wilcoxon test was inconclusive when
comparing Sort 1 to Sort 2. This is possibly because
Sort 1 and Sort 2 only differ by the secondary sorting
criteria. (Intuitively, the reason Sorts 2 and 1 outper-
form Sorts 3 and 4 may be because they first assign
demand from event points that can be serviced from
fewer locations.) Consequently, the demand assign-
ment phase of our heuristics is unlikely to produce
significantly different results using either Sort 1 or
Sort 2. (For example, when used with the sequen-
tial routing heuristic, Sort 1 and Sort 2 produce the
same solution for 279 of the 350 realistic instances and
201 of the 400 mathematically challenging instances.)
Because on the remaining instances Sort 2 on aver-
age outperforms Sort 1, we chose to use Sort 2 in the
demand assignment phase of our heuristics for the
remainder of our computational experiments.

Implementing the local search procedure with the
routes generated with either the sequential routing
heuristic or the insertion heuristic provided improve-
ment. Tables 3 and 4 display the demand serviced
in solutions created with the two route generation
heuristics before and after the local search proce-
dure, as well as the runtimes of the heuristics in sec-
onds. The sequential routing heuristic typically finds
higher-quality solutions than the insertion heuris-
tic but has a longer runtime. Although the inser-
tion heuristic runs the SMFA more frequently than
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Table 2 Performance of the Sequential Routing Heuristic and the Insertion Heuristic with Different Sorting Orders

Sequential heuristic Insertion heuristic

Data set Sort 1 Sort 2 Sort 3 Sort 4 Sort 1 Sort 2 Sort 3 Sort 4

R0 134055 134055 134046 134055 130017 130017 130018 129096
R1 197039 197057 197022 197052 193070 193065 193044 193056
R2 260067 260077 260033 260071 254071 254071 255004 254089
R3 316049 316077 316029 315022 311042 311092 310012 310055
R4 87012 87012 87011 87012 83028 83061 83028 83061
R5 133025 133034 133019 133004 129045 129057 129022 130011
R6 150051 150055 150056 150051 148044 148034 148046 148070
R7 169080 169077 169078 169077 169049 169038 169061 169006
R8 91064 91064 91048 91037 90046 90046 90001 90019
R9 134019 134021 134011 134017 131088 131081 131040 131080

R10 156057 156050 156051 156033 155010 155018 154080 154098
R11 170055 170055 170023 170042 170013 170020 169087 170036
R12 65061 65061 65059 65061 63068 63068 63068 63068
R13 88010 88010 88010 88000 86044 86049 86069 86092
Average (R) 154003 154007 153093 153088 151031 151037 151013 151027

MC0 21494071 21494096 21492052 21492000 21436039 21436055 21433020 21427083
MC1 41042053 41040043 41031052 41024026 31936063 31934095 31921062 31907047
MC2 51390001 51394017 51369033 51374052 51236050 51234001 51218015 51217011
MC3 71117066 71122076 71079051 71086065 61853098 61855066 61826091 61832050
MC4 21360031 21360058 21357073 21357074 21322006 21322004 21322019 21319002
MC5 61014099 61019046 51993012 51996095 51806029 51804062 51791046 51792032
MC6 21248001 21247033 21244027 21243067 21205004 21204013 21201072 21198037
MC7 31471089 31469071 31470063 31466091 31414045 31415097 31408082 31410038
MC8 21430020 21430029 21425040 21426083 21405090 21405041 21402018 21397019
MC9 11947057 11947070 11946006 11946075 11929034 11933073 11928095 11932074
Average (MC) 31751079 31752074 31741001 31741063 31654066 31654071 31645052 31643049

Note. Each row displays the averaged results from either 25 realistic data sets or 40 mathematically challenging data sets.

the sequential routing heuristic, the insertion heuris-
tic found no improvement the vast majority of the
time when trying to add a location to the collection
of locations that may be visited on a route. In fact,
routes generated by the insertion heuristic typically
contained just one or two stops. Thus, each time the
SMFA was run in the insertion heuristic, it was run
on a substantially smaller network and therefore exe-
cuted much more quickly.

The sequential routing heuristic produces higher-
quality routes than the insertion heuristic. When the
sequential routing heuristic generates a route, it con-
siders the demand that is not serviced at every loca-
tion. As a result, it can produce routes where the
mobile facility makes a number of stops visiting loca-
tions during periods where demand can be serviced
at a high rate. In addition, by considering all locations
in the SMFA, the sequential routing heuristic also
implicitly considers the spatial and temporal config-
uration of demand that is not serviced. On the other
hand, the insertion heuristic initially generates routes
where each mobile facility makes one stop at a loca-
tion where a large amount of demand for service is
generated over the planning horizon, regardless of the
proximity of other locations or temporal configuration
of other demand. This makes it unlikely during the

execution of the insertion heuristic that a route will be
improved by insertion of another location into the set
of locations a mobile facility can visit. As a result, the
insertion heuristic has trouble deviating from these
initial routes.

After local search, the gap in the runtimes and solu-
tion quality between the sequential routing heuris-
tic and the insertion heuristic narrows. The sequen-
tial routing heuristic with local search significantly
outperforms the insertion heuristic with local search
on the mathematically challenging data sets, whereas
the difference in the performance of the two heuristics
with local search on the realistic data sets is minimal.
More specifically, the hypothesis that the sequential
heuristic with local search produces higher-quality
solutions than the insertion heuristic with local search
was verified by the Wilcoxon signed rank test at a
0.0005 significance level for the mathematically chal-
lenging data sets but only at a 0.329 significance level
for the realistic data sets. The local search procedure
also seems to provide proportionally more improve-
ment for realistic data sets than it does for mathemat-
ically challenging data sets. This may be because the
demand at each event point in a realistic data set is
generated during a distinct interval of time, whereas
the demand at an event point in a mathematically
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Table 3 Performance of Sequential Heuristic with and Without Local Search

Sequential routing heuristic

Sequential heuristic With local search Improvement (%)

Data set type Demand serviced Run time (s) Demand serviced Run time (s) Maximum Minimum Median

R0 134055 50018 135030 199024 3041 0000 0000
R1 197057 18085 199011 135060 4043 0000 0031
R2 260077 38003 264037 369058 5015 0000 1016
R3 316077 116088 320088 11144015 4029 0000 1035
R4 87012 5061 87057 39018 3093 0000 0000
R5 133034 3064 134062 27035 5037 0000 0068
R6 150055 12049 152056 87025 4080 0000 0081
R7 169077 33084 171085 105023 2096 0000 1012
R8 91064 4068 92022 32008 4039 0000 0000
R9 134021 0091 135071 6027 4086 0000 0046

R10 156050 2036 158044 14003 6067 0000 0098
R11 170055 6042 171098 21068 3050 0000 0047
R12 65061 0010 66021 0061 13010 0000 0000
R13 88010 0020 89003 1025 3071 0000 0041
Average (R) 154007 21001 155070 155096 5004 0000 0055

MC0 21494096 142061 21495018 164006 0093 0000 0000
MC1 41040043 24013 41046092 27093 1053 0000 0000
MC2 51394017 166073 51409085 229041 2042 0000 0001
MC3 71122076 116072 71140036 191080 2018 0000 0012
MC4 21360058 3051 21377057 5048 3070 0000 0059
MC5 61019046 128057 61042036 304020 2062 0000 0021
MC6 21247033 8048 21259029 20011 3077 0000 0036
MC7 31469071 8014 31493089 39036 3013 0000 0073
MC8 21430029 6006 21450000 11058 5012 0000 0053
MC9 11947070 3033 11962074 9051 5094 0000 0039
Average (MC) 31752074 60083 31767082 100034 3013 0000 0029

Notes. Each row displays the averaged results from either 25 realistic or 40 mathematically challenging data sets. The maximum, minimum, and median
improvement found by local search is given for each row.

challenging data set could be generated at many dif-
ferent periods in the planning horizon. This could
produce more opportunities to find improvements by
moving stops between routes for realistic data sets
than between routes for mathematically challenging
data sets.

6.2. The Static Placement of Facilities
As discussed in §5.1, when evaluating the quality
of solutions produced by our heuristic, it is natu-
ral to ask the following question. How much more
demand could be serviced by the solutions produced
by our heuristics than in the optimal static solution?
If our heuristics outperform the optimal static solu-
tion, it gives an indication of their effectiveness of
utilizing the capabilities of the mobile facilities to relo-
cate over time. To answer this question, we compare
the demand serviced in our heuristic solutions to the
demand serviced in an optimal static placement of
the same number of fixed facilities with equal rate
capacity. Solving the SMIP given by (11)–(17) can be
computationally challenging because K can be quite
large. We implemented the SMIP in ILOG OPL 5.2.
For many of the mathematically challenging data sets,

the SMIP was computationally intractable. For the
data sets where we were able to solve the SMIP to
find the optimal static solution, Table 5 presents a
comparison of solutions to MFRP instances generated
by the sequential routing heuristic with local search
and the optimal static solution. On average, using the
sequential heuristic with local search to route mobile
facilities allows 604% more demand to be serviced
than the optimal static solution for the mathematically
challenging data sets. This improvement increases to
1606% when comparing results of the realistic scenar-
ios. We observed improvement as high as 61083%. In a
few instances we did observe the optimal static solu-
tion outperform our heuristic solution, although by
less than 3% in all but six instances and typically by
less than 1%.

To further evaluate the trade-off between the solu-
tions generated by our heuristics and the optimal
static solution, we developed a third type of scenario.
We begin the name of each of the third type of sce-
nario with the letter “T.” These scenarios are designed
to test the performance of the heuristics relative to
the percentage of time each event point is generating
demand. Each of these scenarios is defined together
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Table 4 Performance of the Insertion Heuristic with and Without Local Search

Insertion heuristic

Insertion heuristic With local search Improvement (%)

Data set type Demand serviced Run time (s) Demand serviced Run time (s) Maximum Minimum Median

R0 130017 0017 135008 307034 12056 0000 3094
R1 193065 0029 199011 191078 7024 0000 1099
R2 254071 0031 264020 677030 9062 0000 3024
R3 311092 0030 320082 11283030 6055 0023 2027
R4 83061 0005 87073 61025 16026 0000 4060
R5 129057 0008 134043 16012 12027 0000 3015
R6 148034 0007 153011 41026 8070 0000 2095
R7 169038 0005 171053 32036 5024 0000 0093
R8 90046 0004 92026 10036 9075 0000 0016
R9 131081 0005 135062 28083 8038 0000 2032

R10 155018 0004 158032 10024 10090 0000 1012
R11 170020 0004 172011 14018 3061 0000 0085
R12 63068 0001 66043 8083 31088 0000 2035
R13 86049 0001 88022 10062 12029 0000 0095
Average (R) 151037 0011 155064 185081 11009 0002 2020

MC0 21436055 0049 21461006 47036 8025 0000 0000
MC1 31934095 1006 41015027 14029 7027 0000 1084
MC2 51234001 1073 51380002 161076 9072 0000 2017
MC3 61855066 2080 71119038 182076 11034 0000 3076
MC4 21322004 0013 21370097 8052 7057 0000 1066
MC5 51804062 2000 61031009 360015 17062 0004 2067
MC6 21204013 0017 21259030 21031 9061 0000 1062
MC7 31415097 0035 31502045 51077 5051 0000 1057
MC8 21405041 0010 21457052 9023 6033 0000 1018
MC9 11933073 0010 11966064 8044 7087 0000 0093
Average (MC) 31654071 0089 31756037 86055 9011 0000 1074

Notes. Each row displays the averaged results from 25 realistic or 40 mathematically challenging data sets. The maximum, minimum, and median improvement
found by local search is given for each row.

Table 5 A Comparison of the Total Demand Serviced in the Optimal Static Solution and in the Solution to
the MFRP Generated by the Sequential Routing Heuristic with Local Search

Improvement (%)
Data set Static Sequential heuristic Instances
type solution with local search Maximum Minimum Median improved

R0 117019 133041 32046 4056 15005 25/25
R1 169076 199011 32057 7090 17006 25/25
R2 232078 264030 29007 1094 12020 25/25
R3 283008 320064 20090 4044 13080 25/25
R4 71008 87057 49084 7083 22070 25/25
R5 111081 134062 39074 9002 20027 25/25
R6 129006 152060 40093 6065 17050 25/25
R7 152043 171085 30066 2067 12008 25/25
R8 78084 92022 47062 0099 15053 25/25
R9 119003 135071 33069 0093 13046 25/25

R10 144078 158044 21076 1057 8070 25/25
R11 162067 171099 13023 1017 5032 25/25
R12 53096 66021 61083 1099 26054 25/25
R13 77041 89003 37013 2094 13092 25/25
MC0 21473036 21495069 11032 −4003 0066 30/40
MC1 31996097 41065089 5094 −2087 1050 35/40
MC4 21202041 21377022 21014 −9085 7076 38/40
MC6 21109078 21259030 28001 −13092 6007 35/40

Notes. Each row contains the averaged results of either 40 mathematically challenging data sets or 25 realistic data
sets. The maximum, minimum, and median improvement for the data sets in each row is displayed, as well as the
proportion of data sets for which an improvement was found.
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with a parameter � ∈ 40117. Upon creation, an event
point e in one of these scenarios is assigned a total
amount of demand that it will generate during the
planning horizon, De, and a randomly chosen time in
the planning horizon, te. For a fixed �, event point
e will generate demand at rate De/4�T 5 during the
interval of time 641 − �5te1 te + �4T − te55 and at rate
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Figure 3 An Example of the Demand Profile of a Single Event Point
from the Third Types of Scenarios for Three Different Values
of �

Notes. In all three graphs, De = 10, T = 10, and te = 4. Panel 3(a) displays
the rate demand that is generated at the event point for � = 0025. Panel
3(b) displays the rate demand that is generated at the same event point for
�= 0050. Panel 3(c) displays the rate demand that is generated at the same
event point for �= 1.

0 outside of that interval. Thus, the total amount
of demand generated by a particular event point
e is equal for every value of �. Figure 3 displays
an example of the instantaneous demand function,
de4t5, for a single event point e and several values of
the parameter �. Notice that as � approaches 0, the
demand becomes more “spiky.”

Each of these scenarios is generated in a 25 by
25 region of the plane with a planning horizon of
length 100. Each location is generated at a random
position where at least one event point can be cov-
ered. We chose a moderately wide coverage radius
of 3.5 to encourage the existence of locations that
can cover multiple events. The rate capacity of each
mobile facility is 4

∑

e∈E De/4�T 55. By definition, this
rate capacity will never be exceeded for any value
of �. Furthermore, because any particular event point
generates the same amount of total demand for every
value of �, this rate capacity guarantees that the opti-
mal static solution is the same for every � ∈ 40117.

Figure 4 shows four graphs comparing the demand
captured in solutions generated by the sequential
heuristic with local search and in the optimal static
solution for several instances of this type of scenario
as � takes on values between 0 and 1. These four
were chosen as being qualitatively representative of
the types of behavior displayed by these data sets.
These plots demonstrate that the amount of demand
the mobile facilities are able to service relative to
the amount of demand serviced by the optimal static
placement of facilities increases as the length of time
each event point generates demand decreases, and
the overall demand profile becomes more “spiky.”
It should also be noted that as the coverage radius
decreases, each facility is able to cover less nearby
demand while at a location, and the quality of our
heuristic solution for the MFRP relative to the static
solution should be expected to increase.

6.3. Time-Discretized IDMIP
In general, the TDMIP given by (18)–(23) is compu-
tationally intractable for any problem of reasonable
size. As mentioned previously, we solved the TDMIP
using

⋃

l∈L Sl as the set of times defining the periods
in P in ILOG OPL 5.2. Even for small problems, �P �

can be very large. Table 6 displays a comparison of
the demand serviced in the routes generated with the
TDMIP and with the sequential routing heuristic with
local search for small instances of the problem with
two mobile facilities and four or five event points and
locations. We specified in each of these scenarios that
for location l, El must contain the two closest event
points, in addition to any event points within the
coverage range from location l. In implementing the
TDMIP, we found that problems with more than two
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Figure 4 Results from Four Scenarios of the Third Type
Notes. The horizontal line displays the amount of demand serviced in the optimal static solution, which is equal for every value of �. The second curve displays
the demand serviced in the solution to the MFRP generated by the sequential routing heuristic with local search for several scenarios as � takes on values
between 0 and 1. Each of these data sets has 25 events and 75 locations. T10 has 5 mobile facilities, T11 has 10 mobile facilities, T12 has 7 mobile facilities,
and T13 has 3 mobile facilities.

Table 6 A Comparison of the Demand Serviced by Solutions Obtained by Solving the TDMIP Given by (18)–(23) and the Demand Serviced by the
Solutions Obtained by the Sequential Routing Heuristic with Local Search

TDMIP TDMIP Solution Sequential heuristic Percentage
Data set �M� �L� �E� solution runtime (s) gap (%) with local search of TDMIP (%)

MC10.0 2 4 4 11310040 31029 0000 11306073 99072
MC10.1 2 4 4 11148087 2032 0000 11148087 100000
MC10.2 2 4 4 711053 6090 0000 701097 98066
MC10.3 2 4 4 11365070 1060 0000 11334022 97069
MC10.4 2 4 4 11826099 2031 0000 11826099 100000
MC10.5 2 4 4 11642082 30059 0000 11642082 100000
MC10.6 2 4 4 641021 3007 0000 623048 97023
MC10.7 2 4 4 749018 2057 0000 749018 100000
MC10.8 2 4 4 11251038 3000 0000 11189016 95003
MC10.9 2 4 4 515086 3026 0000 515086 100000

MC11.0 2 5 5 11409038 141400000 1054 11391001 98070
MC11.1 2 5 5 11318038 21522028 0000 11315068 99079
MC11.2 2 5 5 11300005 141400000 0019 11300005 100000
MC11.3 2 5 5 11436013 141400000 3032 11387075 97023
MC11.4 2 5 5 11396010 11053080 0000 11389024 99051
MC11.5 2 5 5 11211044 21999003 0000 11211044 100000
MC11.6 2 5 5 711000 19079 0000 711000 100000
MC11.7 2 5 5 998024 141400000 2032 998024 100000
MC11.8 2 5 5 690014 71483068 0000 658063 95043
MC11.9 2 5 5 11329055 81656025 0000 11329055 100000
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mobile facilities, more than five event points or loca-
tions, and more than five pieces in each piecewise-
constant demand profile were too large to load into
memory. Furthermore, some MFRP instances with
five event points and five locations were difficult to
solve to optimality. Because each event point in a real-
istic scenario only produces demand during a single
interval of time, a realistic data set with only four
or five event points could easily have no more than
two events generating demand at any given time.
Consequently, we present results for mathematically
challenging problems generated having two mobile
facilities, four or five locations, and four or five event
points, with each having between two and five pieces
in their piecewise-constant demand profile.

Even when considering problems of such a small
size, the TDMIP can take a long time to solve. Con-
sequently, the TDMIP was terminated if it had not
finished running after four hours and the best solu-
tion found was taken. The solution gap produced
by the TDMIP at termination is also displayed in
Table 6. The table does not display the runtimes of
the sequential heuristic with local search because it
was under 0.01 seconds in all instances. The solu-
tions to the MFRP given by the sequential heuristic
with local search are competitive with the solutions
found by solving the TDMIP. The heuristic solutions
to these instances were computed almost instantly,
whereas the TDMIP sometimes could not be solved
within four hours. In only four of the larger test MFRP
instances was the optimal solution to the TDMIP
found in under one hour, running in 20 seconds,
18 minutes, 43 minutes, and 50 minutes, respectively.

The inability to load the TDMIP into memory for
problems when restricting mobile facilities to depart
from or arrive at a location l at times in Sl and the
large amount of time it takes to solve small data sets
with the TDMIP suggest that in a practical setting,
heuristics are the best choice to determine routes for
mobile facilities in the MFRP. We used our sequential
routing heuristic with local search to generate routes
for these problems. For each of these data sets, our
heuristic executed almost instantly, returning a run-
time of under 0.01 seconds. The solutions generated
by our heuristics were competitive with the solutions
produced by the TDMIP, on average servicing 98.95%
of the amount of demand serviced in the routes com-
puted with the TDMIP. Because there are only two
mobile facilities, we believe that the TDMIP solution
is near optimal for these small instances. The very
fact that the heuristics were on average able to ser-
vice 98.95% of the demand serviced by the TDMIP is
a strong endorsement of our heuristic methods. We
note that the data sets that the TDMIP could solve
are in some sense outside the scope of the problem.
Because these data sets are very small in size, the rate

that demand is generated by each event point varies
less dramatically than in the larger data sets, which
are more representative of the type of demand profiles
a mobile facility would encounter in practice, and for
which our heuristics are designed.

7. Conclusion
In this paper, we introduced the MFRP. We showed
that the optimal route for a single mobile facility may
be found in polynomial time, although in general the
MFRP is NP-hard. We presented several heuristics
for routing mobile facilities to maximize the amount
of demand serviced. Our computational results on
a variety of data sets confirm the effectiveness of
our heuristics. In comparison to the optimal place-
ment of fixed facilities, we generated routes for a
fleet of mobile facilities that service larger amounts
of demand when demand levels are more “spiky.” In
addition, the heuristics performed competitively with
a time-discretizated MIP formulation of the MFRP,
which could only be solved for small instances of the
problem.

A number of related problems have the potential
to be fruitful avenues of future research. For exam-
ple, no exact method is known for solving the MFRP.
Such a method would be useful in evaluating the
quality of heuristic solutions. Practical considerations
of routing mobile facilities may introduce additional
constraints that would affect the heuristics proposed
in this paper. For example, to increase customer sat-
isfaction and ensure that customers have an ade-
quate opportunity to use the services provided by
a mobile facility, operators of mobile facilities may
wish to ensure that minimum levels of service are
provided at each stop. To do so, operators may wish
to specify a minimum amount of time that a mobile
facility must spend at each location or a minimum
amount of demand that must be serviced at each loca-
tion. Alternatively, an operator may wish to specify a
maximum amount of time that a mobile facility can
spend at each location in an attempt to maximize the
number of event points serviced over the planning
horizon.

Opportunities exist to study applications where
the model for operating mobile facilities may dif-
fer slightly from the MFRP. For example, the MFRP
assumes that the instantaneous demand function of
each event point is known for the entire planning
horizon. In practice, the rate that demand is gen-
erated at an event point may deviate from a fore-
cast due to unforeseen circumstances. Event points
may also appear stochastically during the planning
horizon if the population unexpectedly relocates, or
for other reasons, such as the failing of a fixed
base station in a cellular network. The addition
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of stochastic elements to the MFRP may provide
an improved decision-making tool in such environ-
ments. The MFRP assumes that if demand is not
serviced, then it is lost. However, there may be appli-
cations where demand for services at an event point
accumulates when not being serviced by a mobile
facility.
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