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The sample average approximation (SAA) approach is
a widely used technique, based on Monte-Carlo simula-
tion, often applied to large-scale stochastic optimization
problems. In this approach, a set of sample average
problems with multiple copies of sampled scenarios are
generated and solved exactly. In other words, there is
an implicit assumption that the sample average prob-
lems are solvable to optimality. In some instances, how-
ever, the sample average problems might be NP-hard
problems, often difficult or impractical to solve to opti-
mality. In this article, we broaden the scope of the SAA
approach and show that even without solving the sam-
ple problems to optimality, by combining a heuristic
and a lower bounding approach, high-quality solutions
with tight confidence bounds on the optimal solution
value can be obtained. We demonstrate this “inexact SAA
approach” on two problems. First, we apply it to the
Stochastic Connected Facility Location (SConFL) prob-
lem, the motivating application for this article, that arises
in the design of telecommunications networks. As an
additional application, we also use it for the Stochas-
tic Uncapacitated Facility Location (SUFL) problem. Our
computational results demonstrate the effectiveness of
the inexact SAA approach. © 2017 Wiley Periodicals, Inc.
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1. INTRODUCTION

The sample average approximation (SAA) method is an
approach for solving large stochastic optimization problems
using Monte Carlo simulation. Kleywegt et al. [17], Mak
et al. [27], Shapiro and Philpott [33], and Verweij et al. [37]
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provide good introductions to this approach. In this technique,
the expected objective function of the stochastic problem is
approximated by a sample average estimate derived from a
random sample. The resulting sample average approximat-
ing problem (or simply sample average problem), which is a
deterministic problem, is then solved exactly by optimization
techniques. The process is repeated with different samples to
obtain candidate solutions along with statistical estimates of
their variability and optimality gaps.

As indicated by Mak et al. [27], this approach assumes that
the instances of the sample average problem can be solved
for sufficiently large samples to yield “good” bounding infor-
mation. Unfortunately, in many settings, like the applications
considered in this article, it is computationally challenging
to even solve the sample average problem. This is particu-
larly, the case for discrete (or integer) optimization problems.
Instead of solving the sample average problem exactly, we
broaden the scope of the SAA method by applying a heuristic
and lower bounding technique to the sample average problem.
We then show how to use the heuristic solutions and lower
bounds to the sample average problems to construct confi-
dence intervals (or bounds) on the optimal value function of
the stochastic program. As we do not solve the sample aver-
age problems exactly, we refer to the technique as an “inexact
sample average approximation” method.

We first demonstrate the inexact SAA approach on the
Stochastic Connected Facility Location (SConFL) problem,
the motivating application for this article. The connected
facility location (ConFL) problem (see [2]) arises in a number
of applications that relate to the design of telecommunication
networks as well as data distribution and management prob-
lems on networks. This problem combines facility location
decisions with network design as the open facilities must be
connected through a core network.

Specifically, in the ConFL problem, we are given a graph
G = (V , E), and three disjoint sets: D ⊆ V , set of demand
nodes (or customers); F ⊆ V , set of potential facility nodes;
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and S ⊆ V , set of potential Steiner nodes, with D ∪ F ∪
S = V . The objective is to find a minimum cost network
where every demand node is assigned to an open facility,
and open facilities are connected through a Steiner tree T
constructed on the subgraph of G on the nodes F ∪ S (i.e.,
G(F ∪ S) = (F ∪ S, E(F ∪ S))). There are facility opening
costs, fi ≥ 0 for each facility i; assignment costs, aij ≥ 0,
for assigning a customer j ∈ D to a facility i ∈ n(j) where
n(j) is the set of facilities in F that node j can connect to;
and edge costs, bij ≥ 0, for an edge {i, j} ∈ E(F ∪ S) if it
is used on the Steiner tree T . The nodes in S may be viewed
as pure Steiner nodes and can only be used in the tree T as
Steiner nodes, while the nodes in F may be used as Steiner
nodes on the tree T incurring a facility opening cost even
when no customers are assigned to them.1 The final network
cost is given by

∑
j∈D ai(j)j +∑

i∈Y fi +∑
{i,j}∈E(T) bij, where

i(j) is the facility serving demand node j, Y is the set of open
facilities, and T is a Steiner tree connecting the open facilities.

The ConFL problem is deterministic; however, the moti-
vating applications arise in stochastic settings. In particular,
both Krick et al. [18] and Nuggehalli et al. [30] describe
network information caching problems, which are modeled
as ConFL problems. Information must be cached at various
nodes of the network to serve its users. However, at the time
that the network is designed the number of read and write
requests is unknown. Similarly, in the rent-or-buy problem
described by Karger and Minkoff [16], which is a special
case of the ConFL problem, the assignment costs might not be
available until the last moment when the assignment edges are
rented. In most cases, the literature assumes average values
as an approximation, and addresses the deterministic ConFL
problem. In this article, we seek to explore the value of explic-
itly modeling uncertainty in the assignment costs, and thus
consider the Stochastic ConFL (SConFL) problem.

In an instance of the SConFL problem the facility opening
costs and the connection costs between them are assumed to
be known a priori, while the assignment costs are unknown
and dependent upon a set of random scenarios. We are thus
in the setting of a two-stage stochastic optimization problem
with fixed recourse as introduced by Dantzig [8]. In the first
stage, a set of facilities must be opened and a Steiner tree
that connects them constructed. In the second stage, uncer-
tainty on the assignment costs is unveiled (i.e., one scenario
is realized) and customers must be assigned to open facili-
ties. Figure 1 shows an example where the location of the
customers is unknown but limited within a bounded area
represented by the rectangles (there are 10 rectangles for
the 10 customers). Each of the potential facility locations is

1 We should note that our definition of the ConFL problem follows Bardossy
and Raghavan [2]. They show that at the cost of doubling the number of nodes
in the network, this general definition of the ConFL captures other variants
where the sets D, F, S overlap; or where facilities incur a cost only when
customers are served from that facility. Consequently, this general definition
includes all known variants of the ConFL problem as well as the Steiner tree
star problem [21], and the rent or buy problem [13].

identified by the nodes in the figure. Figure 1a shows a core
network solution for the first stage of the problem, where a
Steiner tree is constructed connecting the facilities. Figure 1b
and c show two different realizations of customer locations
and their subsequent allocation to open facilities in the second
stage. Note that the second stage allocation will be different
under different scenarios; that is, customers are assigned to
their closest (when assignment costs are a function of dis-
tance) open facility depending on their actual location in the
second stage. The objective is to design the core network
in the first stage that consists of the open facilities and the
Steiner tree connecting them, to minimize the overall net-
work cost that includes the core network of the first stage and
the expected assignment cost of the second stage.

In the SConFL problem, there are two sources of uncer-
tainty in the assignment costs: (i) customer demand and (ii)
customer location (or travel time to potential facilities). Both
sources of uncertainty affect the assignment costs; however,
they have a very different impact on the objective function
of the problem that requires independent discussion. When
solely demand, quantities are unknown, we show that the
SConFL problem can be optimally solved by replacing the
demand quantities by their expected values. The two-stage
stochastic problem can nicely be reduced into a one stage
problem without recourse. The reason is that demand quan-
tities at a node affect all assignment costs from that node
in exactly the same way. Hence, once facilities have been
opened, demand nodes are assigned to the closest (per unit
of demand) facility (i.e., the quantity of demand does not
affect which facility is closest to the customer). There is no
recourse in the second stage and the problem can be solved in
one stage. The problem is still NP-complete but the value of
the stochastic solution is null (i.e., using average demand val-
ues as in [18] solves the problem). However, when customer
location is the source of uncertainty (in this category we also
include other sources of uncertainty in assignment costs that
have a similar effect and do not affect all assignment costs
in the same direction; i.e., some costs can increase and some
can decrease) this is not the case.

For the SConFL problem, there are three different models
for the second stage scenarios: (i) a finite-scenario model,
where one assumes that there are only a finite number of sce-
narios that occur with positive probability, and these can be
explicitly enumerated; (ii) an independent-activation model,
where the scenario-distribution is a product of independent
distributions (e.g., in Figure 1 the scenarios are generated by
letting each customer node be uniformly distributed in the
rectangle bounding its location); and (iii) a black-box model,
where nothing is explicitly assumed about the probability
distribution, other than the availability of an oracle that can
generate scenarios from the unknown distribution.

For the case with a finite number of scenarios, we out-
line a transformation that essentially replicates each customer
(demand) node once for each scenario, to obtain an equivalent
but significantly larger deterministic ConFL problem. This
can either be solved exactly when feasible to do so (given the
size of the problem) using an exact method such as the one

20 NETWORKS—2017—DOI 10.1002/net



FIG. 1. Stochastic connected facility location problem example. [Color figure can be viewed at
wileyonlinelibrary.com]

described in Leitner et al. [24] or approximately/heuristically
as the dual-based local search (DLS) heuristic described in
Bardossy and Raghavan [2] (if we solve the deterministic
equivalent problem with the DLS heuristic we get a solu-
tion to the SConFL problem along with a lower bound that
provides a quality guarantee on how far the solution is from
optimality). As the number of scenarios grow solving the
deterministic equivalent problem becomes impractical. In
such a setting, it is common to apply the SAA method. The
SAA method requires (i) creating problems by sampling with
a smaller number of scenarios (say N) and solving this sample
average problem; and (ii) replicating this process R times (i.e.,
solving R sample average problems). However, as discussed
previously solving the sample average problem exactly for
the ConFL problem can be challenging in and of itself; mak-
ing it hard to apply the SAA method. Consequently, we
apply the inexact SAA method that we describe in this article
(recall we use the term inexact SAA as we obtain a heuristic
solution and a lower bound for each of the sample average
problems instead of solving them exactly) to the SConFL
problem.

We report on computational results on a comprehen-
sive set of randomly generated instances using this inexact
SAA approach. Our computational results indicate (at least
experimentally) the inexact SAA approach has significant
computational merits and can obtain approximate/heuristic
solutions and tight bounds on the optimal solution value
for large two-stage stochastic integer programming problems
rapidly. Over 1080 SConFL problem instances, it generates
solutions that are on average 2.23% from the optimal (with
99% confidence) taking an average of 137.7 seconds for each
problem instance. To demonstrate the applicability of the
inexact SAA approach to other large-scale two-stage discrete
optimization problems we consider the Stochastic Uncapac-
itated Facility Location (SUFL) problem (it is similar to the
SConFL problem but without the added requirement that
open facilities have to be connected). The results of the inex-
act SAA approach are promising. Over 460 SUFL problem
instances it generates solutions that are on average 2.63%

from the optimal (with 99% confidence) taking an average of
8.7 seconds for each problem instance.

The rest of this article is organized as follows. In Section
2, we review prior literature on the SAA approach as well
as the ConFL problem and related stochastic problems. In
Section 3, we describe the inexact SAA method. We discuss
the quality of the solution and provide confidence bounds on
the optimal solution. In Section 4, we provide a mathematical
programming formulation for the SConFL problem. We then
describe the deterministic equivalent formulation for uncer-
tain demand and locations in the finite scenario model. In
Section 5, we illustrate how to apply the inexact SAA method
to the SConFL and SUFL problems with an extensive set
of computational experiments. Finally, Section 6, provides
concluding remarks and directions for future research.

2. LITERATURE REVIEW

There has been considerable research on two-stage
stochastic optimization problems with recourse [see [5]];
however, many of these methods assume linearity on the deci-
sions of the first and second stage decision variables. Integer
(and binary) decisions in both stages make the stochastic
problem even harder to solve. Ahmed [1] provides a brief
introduction to the topic and outlines the difficulties that
arise especially when solving two-stage stochastic integer
problems. Schultz et al. [32] provide a comprehensive survey
of methodologies for two-stage stochastic integer program-
ming. When the number of scenarios is large, as discussed
previously, the sample average approximation (SAA) method
is an approach for solving large stochastic optimization prob-
lems using Monte Carlo simulation. Kleywegt et al. [17]
discuss the SAA method in the context of discrete optimiza-
tion. However, it is implicitly assumed within their article that
the sample average problems are solved to optimality (which
can be challenging in and of itself for a discrete optimization
problem). In this article, we present an approximate solu-
tion approach that can be applied in situations when there are
a large number of scenarios, to find heuristic solutions and
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construct tight confidence intervals on the optimal function
value.

Karger and Minkoff [16] introduced the ConFL problem,
in an application where they were attempting to solve a net-
work design problem with incomplete information. Gupta
et al. [12] coined the terminology ConFL while considering
a virtual private network design with demand uncertainty.
They then gave a 10.66 approximation algorithm for the
ConFL problem by adapting a rounding technique. Swamy
and Kumar [35] described a primal-dual approximation algo-
rithm for the ConFL problem with an approximation ratio of
8.55, which Jung et al. [15] later improved to 6.55. Eisen-
brand et al. [9] presented a randomized algorithm that further
improves the approximation ratio to 4 (the ratio slightly
degrades to 4.23 when the algorithm is derandomized).

With a focus on computationally solving the problem
Ljubić [25] introduced a variable neighborhood search
heuristic that is combined with reactive tabu search. She also
proposed a branch-and-cut approach for solving the ConFL
problem to optimality. Tomazic and Ljubić [36] proposed a
greedy randomized adaptive search procedure for the ConFL
problem that produced solutions that were on average as large
as 10% from the optimal in their test instances. Bardossy
and Raghavan [2] proposed a dual-based local search (DLS)
heuristic that provides both a tight lower bound and a high-
quality solution. The DLS heuristic works in three steps on the
ConFL problem. First, it ensures the ConFL problem instance
is as defined within their (and this) article (e.g., duplicating
a facility node when it does not incur a cost when it is used
on the Steiner tree and has no customers connected to it) and
then transforms this ConFL problem into a directed Steiner
tree problem with a unit degree constraint. Second, it applies
a dual-ascent procedure to find both a heuristic solution (i.e.,
a primal solution) and a lower bound to the ConFL problem
(this procedure is actually applied on the directed Steiner tree
problem with the unit degree constraint). Third, it improves
upon the heuristic solution obtained by dual-ascent through
local search moves. The result is a high-quality solution to the
ConFL problem with an accompanying measure of its quality
provided by the lower bound. Gollowitzer and Ljubić [11]
propose several mathematical formulations for the ConFL
problem based on direct graphs and compare their linear-
programming relaxations. Leitner et al. [24] present a new
formulation based on a mixed graph and investigate the asso-
ciated polytope. In a related article, Leitner et al. [22] adapt
this formulation to an asymmetric variant of the ConFL prob-
lem. While there has been a significant amount of research
focused on the ConFL problem, none of these works con-
sider uncertainty in the assignment costs (which actually is
the case in the motivating examples of [12, 16]). Our article
presents the first study of the stochastic variant of the ConFL
with uncertainty on the assignment costs.

There have been several articles in the literature that
deal with facility location or network design with uncertain
demands or edge lengths. Snyder [34] provides a compre-
hensive review on stochastic and robust facility location
models. The earliest articles dealing with stochastic facility

location are by Mirchandani [28] and Mirchandani and Odoni
[29] where they extend the concept of p-median location to
networks whose edge costs are random variables. Their main
motivation is the deployment of a service vehicle in a city
when the travel times vary randomly and throughout the day
due to traffic congestion. The objective of the problem is to
minimize the expected travel time to any destination node in
the network. Weaver and Church [38] address the same prob-
lem and develop a computational procedure. In these articles,
no recourse is defined in the problem. Berman [3] and Berman
and Odoni [4] add the option of relocating the service vehicle
once travel times are revealed (i.e., adding recourse). Berman
[3] introduces a heuristic for this problem, that is generalized
to multiple facilities by Berman and Odoni [4].

In another set of facility location problems, the uncer-
tainty is in the customer demands. Correia and Saldanha
da Gama [7] survey facility location under demand uncer-
tainty. They first discuss the stochastic uncapacitated facility
location problem, then review the stochastic capacitated facil-
ity location problem including chance-constrained variants.
Laporte et al. [20] analyze the capacitated facility location
problem with uncertain demand. They state the problem as a
two-stage program with recourse where the first stage deci-
sions define the location of the facilities, their capacities, and
the allocation decision (i.e., determination of which facil-
ity serves each customer); while the second-stage decisions
determine the distribution decisions (i.e., quantities delivered
to each demand node). Louveaux and Peeters [26] deal with a
more general version of the capacitated facility location prob-
lem that models both uncertain demands and edge costs. In
the first stage, decisions regarding location and capacities of
the plants are taken. Next, in the second stage, after demands,
prices and costs are revealed, both the allocation and distribu-
tion decisions are determined. They propose a deterministic
equivalent problem for the stochastic problem, and extend
the dual-based procedure of Erlenkotter [10] for the unca-
pacitated facility location problem and show its effectiveness
as a heuristic for this stochastic facility location problem.
However, their application of the procedure is limited to very
small instances in terms of the number of scenarios (only one,
three, or five scenarios).

A different path of research, pursued in the computer
science literature, has been the development of approxi-
mation algorithms for stochastic facility location problems.
Gupta et al. [14] find constant factor approximation algo-
rithms for the stochastic Steiner tree problem and single
sink network design problem. Kurz et al. [19] show that
the stochastic Steiner tree problem is in the class of fixed-
parameter tractable problems, and transfer their results to the
directed and prize-collecting variants of the problem. Ravi
and Sinha [31] consider two-stage finite scenario stochas-
tic versions of several combinatorial optimization problems
including the uncapacitated facility location problem. In their
version of the SUFL problem facilities are opened in the
first stage. In the second-stage demands are revealed, and
it is possible to open additional facilities at a higher cost
(so the second stage decisions determine which additional
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facilities to open and which open facility to use to serve
each customer). They find an 8-approximation algorithm for
this variant of the SUFL problem. As the number of sce-
narios grow in all of these challenging two-stage stochastic
combinatorial optimization problems (possibly due to an
independent-activation model for scenarios) our proposed
inexact SAA method is a viable solution approach to provide
high-quality approximate solutions.

3. INEXACT SAMPLE AVERAGE
APPROXIMATION METHOD

In this section, we describe the inexact SAA method for a
combinatorial two-stage linear stochastic programming prob-
lem. In contrast to the commonly applied SAA method in
the literature (where the sample average problems are solved
exactly), we solve the sample average problems (which are
also combinatorial problems) with a heuristic coupled with
a lower bound mechanism. Consequently, we refer to this
variation of the SAA method as the inexact SAA method.

A combinatorial two-stage linear stochastic programming
problem can be formulated as

min
p∈P

{
g(p) = cT p + E[Q(p, ω)]} (1)

where Q(p, ω) is the optimal value of the second-
stage problem minx∈X(p,ω)s(ω)T x. Here p is the first-
stage decision vector, and P is a discrete set repre-
sented as P = {p|Bp = b, p ≥ 0 and integer}. In other
words, B and b represent the data of the first-stage
problem. The second-stage decision vector is x, and
X(p, ω) = {x|A(ω)x = h(ω) − C(ω)p, x ≥ 0 and integral}.
In other words, X(p, ω) is also a discrete set dependent
on the scenario ω and the first stage decision vector p.
Here s(ω), A(ω), C(ω) and h(ω) represent the data of the
second-stage problem of the realized scenario ω.

In the SAA method, the expected value function
E[Q(p, ω)] is approximated by the sample average func-
tion Q̄N (p) = ∑N

n=1 Q(p, ωn)/N , where a sample{
ω1, ω2, . . . , ωN

}
of N sample scenarios is generated from

� according to probability distribution P(�). The sample
average problem

uN = min
p∈P

{
ḡN (p) = cT p + 1

N

N∑
n=1

Q(p, ωn)

}
, (2)

corresponding to the original two-stage stochastic problem is
then solved using a deterministic optimization algorithm. The
optimal value uN and an optimal solution p̂ to the sample aver-
age problem provide estimates of their true counterparts in the
stochastic program. By generating R independent samples,
each of size N , and solving the associated sample average
problems, objective values uN1, uN2, . . . , uNR and candidate
solutions p̂1, p̂2, . . . , p̂R are obtained. Let

ūN = 1

R

R∑
m=1

uNm (3)

denote the average of the R optimal values of the sample
average problems.

This procedure produces up to R different candidate solu-
tions. Out of these R different candidate solutions, we have
to select one as the approximation to the optimal solution
of the original stochastic program. One generally accepted
strategy is to generate a sample problem with a significantly
large number of scenarios, N ′ >> N . Then, it is natural to
take p̂∗ as one of the optimal solutions p̂1, p̂2, . . . , p̂R of the
R sample average problems that has the smallest estimated
objective value, that is,

p̂∗ ∈ arg min
{

ḡN ′(p̂)|p̂ ∈
{

p̂1, p̂2, . . . , p̂R
}}

(4)

where
{
ω1, ω2, . . . , ωN ′}

is the sample of scenarios chosen
to evaluate the candidate solutions.

When a heuristic is used to obtain upper bounds on
the sample average problems, we adapt the SAA method
as follows. We generate R heuristic candidate solutions
p1

H , p2
H , . . . , pR

H to the sample average problems with their
corresponding objective values, uN1

H , uN2
H , . . . , uNR

H . Then, we
take as the heuristic solution to the stochastic program the
heuristic solution p∗

H that has the smallest estimated objective
value in the sample problem with N ′ scenarios, that is,

p∗
H ∈ arg min

{
ḡN ′(pH)|pH ∈

{
p1

H , p2
H , . . . , pR

H

}}
. (5)

To provide quality bounds on this heuristic solution, we also
compute lower bounds, uN1

LB , uN2
LB , . . . , uNR

LB on each of the
sample problems. We discuss these bounds in the next section.

3.1. Quality of the Solution

Kleywegt et al. [17] provide performance bounds on the
quality of the solution obtained by the SAA method when
applied to discrete stochastic optimization problems. In this
section, we follow and extend their argument to provide per-
formance bounds on the quality of the solution produced by
the inexact SAA approach.

Given a first-stage feasible solution p ∈ P, we have to
evaluate the quality of this solution viewed as a candidate for
solving the true stochastic problem (i.e., taking into account
all possible scenarios). As the solution p is feasible, we
clearly have that g(p) ≥ u∗, where u∗ = minp∈Pg(p) is
the optimal value of the stochastic problem, and g(p) is the
true stochastic objective function. The quality of p can be
measured by the optimality gap

gap(p) := g(p) − u∗. (6)

A confidence interval on the true value of g(p) can be esti-
mated by Monte Carlo sampling; that is, an independent and
identically distributed random sample ωj, j = 1, . . . , N ′, of
ω is generated and g(p) is estimated by the corresponding
sample average ḡN ′(p) = cT p + Q̄N ′(p), where cT p is the
cost of the first-stage decisions, and Q̄N ′(p) is the average of
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the second-stage problem over the sampled scenarios. At the
same time the sample variance

σ 2
N ′(p) := 1

N ′(N ′ − 1)

N ′∑
j=1

[Q(p, ωj) − Q̄N ′(p)]2
(7)

of Q̄N ′(p) (and thus ḡN ′(p)) is calculated. Then we can cal-
culate an approximate 100(1 −α)% confidence upper bound
for g(p) by

UN ′(p) := ḡN ′(p) + zασN ′(p). (8)

This bound is justified by the Central Limit Theorem with the
critical value zα = �−1(1−α), where �(z) is the cumulative
distribution function of the standard normal distribution.

To calculate a lower bound for u∗ we proceed as follows.
Denote by uN

LB the lower bound yielded by the approximate
solution procedure to the sample average problem based
on a sample of size N . Note that uN

LB is a function of the
(random) sample and hence is random. To obtain a lower
bound for u∗ observe that E[ḡN (p)] = g(p), that is, the
sample average ḡN (p) is an unbiased estimator of the expec-
tation g(p). We also have that for any p ∈ P the inequality
ḡN (p) ≥ inf

p′∈P
ḡN (p′) ≥ uN

LB holds, so for any p ∈ P, we have

g(p) = E[ḡN (p)] ≥ E[ inf
p′∈P

ḡN (p′)] ≥ E[uN
LB]. (9)

By taking the minimum over p ∈ P of the left-hand side of
the above inequality, we obtain u∗ ≥ E[uN

LB].
We can estimate E[uN

LB] by solving the sample average
problems several times and averaging the lower bounds cal-
culated by the approximate solution procedure. Suppose we
generate R independent sample average problems, each with
N scenarios, and obtain a lower bound for each problem. Let
uN1

LB, uN2
LB, . . . , uNR

LB be the computed lower bound values for
these sample average problems. Then,

ūN ,R
LB := 1

R

R∑
j=1

uNj
LB (10)

is an unbiased estimator of E[uN
LB]. As the samples, and

hence uN1
LB, uN2

LB, . . . , uNR
LB, are independent, we can estimate

the variance of ūN ,R
LB by

σ 2
NR := 1

R(R − 1)

R∑
j=1

(
uNj

LB − ūN ,R
LB

)2
. (11)

A confidence 100(1 − α)% lower bound for E[uN
LB] is then

given by

LN ,R := ūN ,R
LB − tα,νσNR, (12)

where ν = R − 1 and tα,ν is the α-critical value of the t-
distribution with ν degrees of freedom. As u∗ ≥ E[uN

LB], we

have that LN ,R gives a valid statistical lower bound for u∗ as
well. Consequently,

ˆgap(p) := UN ′(p) − LN ,R (13)

gives a statistically valid (with confidence at least 1–2 α)
bound on the true gap(p). Alternatively, we can express this
gap as a percentage by

ˆgap(p)[%] := UN ′(p) − LN ,R

LN ,R
× 100[%], (14)

with the following interpretation: the heuristic solution is
within ˆgap(p)% from the true optimal solution with 1–2 α

confidence. It should be noted that the lower bound LN ,R is
somewhat conservative and depends on the quality of the
lower bounding mechanism.

This result is particularly important for problems such as
the ConFL problem that are extremely challenging to solve
to optimality (see [24, 25]). It should be clear that ˆgap(p)%
for the inexact SAA will depend on the quality of the both the
upper and lower bounds obtained by the heuristic for the sam-
ple average problems, the sample average problem size (N),
and the variability in the solution values. This suggests that
large two-stage stochastic integer programming problems
where good heuristics and tight lower bounding mechanisms
are at hand may be good candidates for the inexact SAA
approach.

4. DETERMINISTIC EQUIVALENT FORMULATION
FOR THE SCONFL PROBLEM

In this section provide an integer programming formula-
tion for the SConFL problem. Next, when the uncertainty is
solely due to customer demands, we show that the SConFL
problem is equivalent to a deterministic ConFL problem
where each customer’s demand is equal to its average demand
in the SConFL problem. When there is location uncertainty,
we show that the finite scenario case can be transformed into
a larger deterministic ConFL problem where each demand
node is replicated as many times as the number of scenarios
in the problem.

We first define a cutset formulation for the deterministic
ConFL (i.e., a ConFL problem with known demand quanti-
ties and assignment costs). The formulation uses three sets
of binary variables. The xij variables represent whether (or
not) demand node j is connected to facility location i. The
yij variables represent whether (or not) edge {i, j} is in the
Steiner tree connecting open facilities. The zl variables rep-
resent whether (or not) node l is in the Steiner tree connecting
open facilities. The objective function (15a) has three terms:
the facility opening cost, the core tree cost and the assignment
cost. Constraints (15b)–(15d) impose the condition that the
open facilities are connected by a Steiner tree, while con-
straints (15e) and (15f) ensure that each demand node is
assigned to an open facility.
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Cutset formulation for the Deterministic ConFL prob-
lem:

Minimize
∑
i∈F

fizi +
∑

{i,j}∈E(F∪S)

bijyij +
∑
j∈D

∑
i∈n(j)

aijxij

(15a)

subject to
∑

{i,j}∈E(R)

yij ≤
∑

l∈R\k

zl, ∀R ⊂ (S ∪ F), |R| ≥ 3,

∀k ∈ R (15b)

yij ≤ zi, yij ≤ zj, ∀ {i, j} ∈ E(S ∪ F) (15c)∑
{i,j}∈E(S∪F)

yij =
∑

l∈(S∪F)

zl − 1 (15d)

∑
i∈n(j)

xij = 1, ∀j ∈ D (15e)

xij ≤ zi, ∀j ∈ D, ∀i ∈ n(j) (15f)

xij ∈ {0, 1} , ∀j ∈ D, ∀i ∈ n(j) (15g)

yij ∈ {0, 1} , ∀ {i, j} ∈ E(S ∪ F) (15h)

zl ∈ {0, 1} , ∀l ∈ S ∪ F. (15i)

In the stochastic version of the ConFL problem, assign-
ment costs, aij, are uncertain and depend on the realization of
a random variable ω or scenario. Then, aij(ω) represents the
assignment cost under scenario ω, and πω is the probability
of occurrence of scenario ω.

In the SConFL problem the first-stage decisions are the
set of open facilities, z, and the Steiner tree that connects
them, y (i.e., the first stage decision variables p in the generic
formulation (1) are (z, y) in the SConFL problem), and the
second-stage decisions involve the allocation of customers to
open facilities, x. Given that the second-stage decisions only
depend on the open facilities (i.e., z) and not on the tree that
connects them (i.e., y), we denote the second stage objective
by Q(z, ω) and the feasible discrete set of solutions to the
second stage by X(z, ω). The analogous cutset formulation
of the SConFL problem as a two-stage stochastic program
with fixed recourse is described below.

Cutset formulation for the Stochastic ConFL problem:

Minimize
∑
i∈F

fizi +
∑

{i,j}∈E(F∪S)

bijyij + Eω(Q(z, ω)) (16)

subject to (15b), (15c), (15d), (15h), and (15i).

In the stochastic version of the ConFL problem, the assign-
ment cost is unknown in the first stage and hence we replace
the third term in the objective function (15a) by its expected
value, (i.e., the expected value of the second stage decision
problem), yielding (16). In other words, the assignment deci-
sion for each demand node is determined in the second stage
when the recourse minimization problem (17) is solved.

Q(z, ω) = Minimize q(z, ω)(x) =
∑
j∈D

∑
i∈n(j)

aij(ω)xij (17)

subject to (15e), (15f), and (15g).

Clearly, once open facilities are defined in the first stage,
the recourse problem reduces to an assignment problem
where demand nodes are assigned to the open facility with
lowest assignment cost. To determine the best open facil-
ity for each demand node we must wait until assignment
costs are realized; consequently, the solution to the assign-
ment problem may vary for each scenario. Note, however,
the feasible region X(z, ω) only depends on z and not on ω.
Consequently, we remove the dependence on ω and denote
the feasible discrete set of solutions to the second stage by
X(z).

4.1. SConFL Problem with Uncertain Demands

In the case, where uncertainty on assignment costs is due
to unknown demand quantities, we assume that the per unit
assignment cost (denoted by kij) is fixed and known before-
hand. Here, when scenario ω is unveiled, we mean that the
demand quantity dj(ω) is discovered for each demand node j,
and hence the assignment cost aij(ω) = kijdj(ω) is revealed.
In this setting, the assignment costs are the only random
input parameter in the problem. For this specific realization
of events, we show that the value of the stochastic solution
is null. In other words, the optimal solution for this stochas-
tic ConFL is the optimal solution of a deterministic ConFL
problem when average demands are assumed.

Theorem 4.1. The optimal solution of the stochastic ConFL
with uncertain demands is equal to the optimal solution of
the deterministic ConFL obtained by replacing all random
variables by their expected values.

To prove Theorem 4.1, we use the following two lemmas.

Lemma 4.2. Given facility locations z from the first stage,
the optimal allocation solution, x∗, to the recourse problem,
Q(z, ω), for the SConFL with uncertain demands is invariant
to demand realizations.

Proof of Lemma 4.2. Let x∗ ∈ X(z) be an optimal
solution for Q(z, ω̃) for some ω̃ ∈ �. Then,

q(z, ω̃)(x∗)

=
∑
j∈D

⎛
⎝ ∑

i∈n(j)

aij(ω̃)x∗
ij

⎞
⎠ =

∑
j∈D

⎛
⎝ ∑

i∈n(j)

kijdj(ω̃)x∗
ij

⎞
⎠

=
∑
j∈D

dj(ω̃)

⎛
⎝ ∑

i∈n(j)

kijx
∗
ij

⎞
⎠ ≤

∑
j∈D

dj(ω̃)

⎛
⎝ ∑

i∈n(j)

kijxij

⎞
⎠ ,

∀x ∈ X(z).

In vector notation where kj = {
k1j, k2j, . . . , k|n(j)|j

}
and

xj = {
x1j, x2j, . . . , x|n(j)|j

}
,

∑
j∈D

dj(ω̃)(kT
j x∗

j ) ≤
∑
j∈D

dj(ω̃)(kT
j xj), ∀x ∈ X(z). (18)
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In fact, inequality (18) implies that the inequality holds not
only for the summation, but also for each individual term in it.
If there were a demand node j ∈ D, such that dj(ω̃)(kT

j x∗
j ) >

dj(ω̃)(kT
j x′

j) for some x′
j, then we could replace j’s assignment

in x∗ and obtain a lower objective function. Consequently,
dj(ω̃)(kT

j x∗
j ) ≤ dj(ω̃)(kT

j xj), ∀j ∈ D, ∀x ∈ X(z); which

implies kT
j x∗

j ≤ kT
j xj, ∀j ∈ D, ∀x ∈ X(z).

As x∗ ∈ X(z), it is a feasible solution for Q(z, ω), ∀ω ∈ �.
Now, assume that x∗ is not an optimal solution to Q(z, ω) for
some ω ∈ �. Then, there exists an x′ �= x∗ ∈ X(z) such that
q(z, ω)(x′) < q(z, ω)(x∗) for some ω ∈ �.

q(z, ω)(x′) = ∑
j∈D dj(ω)(kT

j x′
j) <

∑
j∈D dj(ω)(kT

j x∗
j )

⇒ dj(ω)(kT
j x′

j) < dj(ω)(kT
j x∗

j ), ∃j ∈ D

⇒ kT
j x′

j < kT
j x∗

j , ∃j ∈ D ⇒⇐

This yields a contradiction equation proving Lemma 4.2. ■

Lemma 4.3. Given a first-stage decision, z, the expected
value of the recourse program, Q(z, ω), for the SConFL with
uncertain demands equals the objective function value of the
recourse program with expected demands.

Proof of Lemma 4.3. Eω(Q(z, ω)) = ∑
ω∈� πωQ(z,

ω) = ∑
ω∈� πωminx∈X(z)

∑
j∈D

∑
i∈n(j) kijdj(ω)xij. By

Lemma 4.2, we can take the minimization outside the
first summation. Moreover, we can rearrange the order of
summations. Thus,

Eω(Q(z, ω)) = min
x∈X(z)

∑
ω∈�

πω

∑
j∈D

∑
i∈n(j)

kijdj(ω)xij

= min
x∈X(z)

∑
j∈D

∑
i∈n(j)

kij

(∑
ω∈�

πωdj(ω)

)
xij

= minx∈X(z)

∑
j∈D

∑
i∈n(j)

kijEω(dj)xij. ■

Proof of Theorem 4.1. Theorem 4.1 now directly fol-
lows from Lemma 4.3. ■

4.2. SConFL Problem with Uncertain Locations

When variability in assignment costs is due to uncertainty
on customers’ location or other factors that do not affect
assignment costs proportionally, simplifying the problem by
replacing the random variables by their expected value does
not lead to good solutions. This is because the location of the
closest open facility depends on the realized scenario. In this
case, we transform the SConFL problem into a determinis-
tic ConFL problem with multiple copies of demand nodes.
Then, any high-quality method for the ConFL problem can be
applied to solve the deterministic equivalent problems (when
the number of scenarios is limited).

We assume there is a finite number of scenarios, ω ∈ �

with positive probability, πω that fully determine the entire set

of possible assignment costs, aij(ω)j ∈ D and ∀i ∈ n(j). That
is, aij(ω) is the cost of assigning demand node j to facility
node i when scenario ω is realized. Then, the SConFL prob-
lem is equivalent to a deterministic ConFL problem with |�|
copies of each demand node—one copy for each scenario—
and with assignment costs, aijω equal to πωaij(ω), where jω
is the copy of demand node j ∈ D for scenario ω ∈ � and
i ∈ n(j).2

Deterministic equivalent formulation for the Stochastic
ConFL problem:

Minimize
∑
i∈F

fizi +
∑

{i,j}∈E(F∪S)

bijyij

+
∑
ω∈�

∑
j∈D

∑
i∈n(j)

πωaij(ω)xij(ω) (19a)

subject to
∑

i∈n(j)

xij(ω) = 1, ∀j ∈ D, ∀ω ∈ � (19b)

xij(ω) ≤ zi, ∀j ∈ D, ∀i ∈ n(j), ∀ω ∈ � (19c)

xij(ω) ∈ {0, 1} , ∀j ∈ D, ∀i ∈ n(j) (19d)

and (15b) , (15c) , (15d) , (15h) , (15i) .

We should note that although, we have a deterministic
equivalent problem in hand, its size grows rapidly with the
number of possible scenarios. For example, a problem with
only two facilities, |F| = 2, and three demand nodes, |D| = 3,
where any demand node can be assigned to any facility node
with an uncertain assignment cost, aij, that can be either
low or high would have a total of 64 scenarios to consider,
|2||D||F|

. When the location of demand nodes are indepen-
dent from each other, the number of scenarios increases
rapidly and to simply solve the deterministic equivalent prob-
lem with multiple demand node copies is impractical and
computationally infeasible. The inexact SAA presented in
Section 3 addresses this situation (and ones in which the num-
ber of scenarios are exponential or uncountable) by solving
approximately the sample average problems. In particular, we
approximately solve the sample average problems using Bar-
dossy and Raghavan [2]’s DLS heuristic. The DLS heuristic
also provides a lower bound on the optimal solution value
(in this case for the sample average problem). The results
in Bardossy and Raghavan [2] suggest that the DLS heuristic
provides extremely tight bounds and runs very rapidly. These
two indicators suggest it might work well in the inexact SAA
approach.

5. COMPUTATIONAL EXPERIMENTS

In this section, we apply the inexact SAA method. First,
we consider the SConFL problem (the motivating application

2 This strategy of transforming a stochastic combinatorial problem into a
deterministic equivalent problem on a larger graph (where one copy of a
node is created for each scenario) has also been applied in other stochastic
network design problems; see Bomze et al. [6], Correia and Saldanha da
Gama [7], Kurz et al. [19], Louveaux and Peeters [26].
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for this approach). In addition, we consider the SUFL prob-
lem. All our computational experiments are conducted on a
Windows 7 machine with an Intel Core i7-3770 processor
with a speed of 3.40 GHz and with 32 gigabytes of RAM.

5.1. Problem Generation and Characteristics

We first describe how we generate instances for our test
problems and their corresponding sample average problems.
We use a similar approach to generate both the SConFL
and SUFL problem instances. The only difference is that
in the SUFL problem instances we do not generate any
Steiner nodes. Our ConFL problem instances follow the more
common convention that facility nodes that do not serve
customers do not incur a facility opening cost.

We start by generating a 100 × 100 square grid. The loca-
tion of each demand, facility, and Steiner node (in the SConFL
problem instances) is selected randomly on the grid. Further-
more, to represent the uncertainty in the assignment costs we
assume that the exact location of each demand node is uncer-
tain and in a random box around its coordinate j = (j1, j2)
on the grid. This is defined by an error term, e = (εj1, εj2),
drawn from a discrete uniform distribution according to a
given variability, v. In our first set of instances, v ranges from
5 to 20 in steps of 5; that is, if v = 5 then εj1 and εj2 are
uniformly distributed between −5 and 5. To generate the sam-
ple average problems, we generate scenarios where the exact
location of the demand nodes is randomly determined within
its box-uncertainty region.

The Euclidean distances rounded up to their nearest inte-
ger values were used as a basis for the edge lengths. The
assignment edge costs are equal to the edge lengths between
demand nodes and facility nodes, while tree edge costs (in the
SConFL problem) are equal to the edge lengths multiplied by
an M factor. The M factor illustrates the significantly higher
(in terms of cost per unit distance) connection cost of edges
in the tree T . The number of demand nodes and facility nodes
vary between 10 and 90 in steps of 10, with the total number
of demand and facility nodes equal to 100. The number of
Steiner nodes is 20 for all SConFL problem instances. The
facility opening costs are equal to 30 and the same for all the
facility nodes. These problem parameters cover a wide range
of characteristics and were specifically chosen to include
the hardest types of ConFL problem instances (for the DLS
heuristic) reported in Bardossy and Raghavan [2].

5.2. Parameter Selection for the Inexact SAA Approach

Most of our experiments are on the SConFL problem, and
we use it to select the parameters N , R, and N ′ in the inexact
SAA approach. There is a trade-off between sample size N
(i.e., number of scenarios per sample average problem), the
number of replications R (i.e., number of sample average
problems) and the computational effort. The larger the sample
size N , the more closely the sample problem will resemble
the stochastic problem and the longer it will take to solve.
Similarly, the larger the number of replications R, the lower

TABLE 1. Average 99% confidence interval percentage gaps and com-
putational times (in seconds) while varying R and keeping N fixed
at 20

R

M 10 15 20 25 30 35 40

3 Gap 3.33% 3.21% 3.12% 3.09% 3.08% 3.06% 3.05%
Time (s) 66.17 99.27 132.42 165.52 198.65 231.78 264.68

5 Gap 4.09% 3.97% 3.90% 3.84% 3.66% 3.55% 3.47%
Time (s) 81.59 122.59 163.32 203.94 244.64 285.29 325.87

7 Gap 3.40% 3.23% 3.15% 3.11% 2.99% 2.89% 2.88%
Time (s) 99.82 149.79 199.71 249.35 299.61 349.54 399.72

the variance of the lower bound and the tighter the lower
limit of the confidence interval. As indicated by Kleywegt et
al. [17], “if the computational complexity of solving the SAA
problem increases faster than linearly in the sample size N ,
it may be more efficient to choose a smaller sample size N
and to generate and solve several SAA problems”. We explore
this premise in this section and find the complexity of solving
larger ConFL problem increases faster than linearly. A third
parameter of the SAA method is the number of scenarios
N ′ used to test each of the solutions generated by solving
the sample average problems. In this case, a larger number
of scenarios N ′ decreases the sample variance of the upper
bound which can yield a tighter upper limit for the confidence
interval.

The number of replications, R, enters into the computa-
tion of the lower bound. To improve the lower bound defined
by Equation (12), one must decrease the sample variance of
E[uN

LB] either increasing the number of scenarios, N , for each
sample average problem, or the number of replications, R.
Tables 1 and 2 show average 99%-confidence interval gaps
(as a percentage) and computational times for various sample
sizes, N , and number of replications, R, respectively. In Table
1, R is varied while N is kept fixed. In these instances, there
are 50 demand nodes, 50 facility nodes, and has variability up
to ±10 in demand node coordinates. Each entry in the table
is the average of ten instances. For example, when M = 3
and R = 10 (with N fixed at 20) the average 99% confidence
interval percentage gap is 3.33% and the average running time
is 66.17 seconds. Table 1 shows that the computational time
increases linearly while the average gap decreases slowly
with the number of replications. Interestingly, while increas-
ing the number of replications does not improve the quality
of the upper bound, it does decrease the lower bound sample
variance and consequently improves the lower bound. The
steady improvement in the gap for additional replications
has a clear computational cost and considering the trade-
off we selected the number of replications R to 20 for our
computational experiments.

In Table 2, N is varied while R is kept fixed. It shows that
the computational time grows faster than a linear function of
sample size N ; while the effect of the sample size N on the
gaps is somewhat unpredictable. The gaps seem to decrease
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TABLE 2. Average 99% confidence interval percentage gaps and com-
putational times (in seconds) while varying N and keeping R fixed
at 20

N

M 10 15 20 25 30 35 40

3 Gap 3.51% 3.41% 3.12% 3.19% 3.19% 3.13% 3.08%
Time (s) 57.70 92.59 132.59 186.26 232.65 295.89 355.08

5 Gap 3.71% 3.72% 3.66% 3.65% 3.77% 3.70% 3.81%
Time (s) 65.63 106.63 162.55 235.02 295.22 380.32 469.81

7 Gap 3.13% 3.01% 3.00% 3.44% 3.31% 3.30% 3.24%
Time (s) 77.89 128.20 199.81 287.79 372.80 484.11 606.35

when N is increased from 10 to 15 to 20 but for larger sample
sizes the gaps increase and decrease without a clear pattern.
Larger sample problems did not yield significantly better can-
didate solutions; consequently, for our experiments we settled
with N = 20.

In summary, the gap improvements from additional repli-
cations was greater than the one obtained by increasing the
number of scenarios per sample average problem. Given
a budget of computational time, these results indicate that
increasing the number of replications might be the preferred
strategy to produce tighter confidence interval around the true
optimal cost and improve the quality of the lower bound.
This behavior was representative of the entire set of problems
tested; hence, we set N = 20 and R = 20 for our remaining
computational experiments.

Earlier, we mentioned that we can use a large number of
scenarios to assess the quality of a solution and calculate an
approximate 100(1 − α)% confidence upper bound by using
equation (8). Clearly, the sample variance is one of the key
factors that determines the width of such a bound. Figure
2a shows how the sample variance of Q̄N ′(z) changes as the
number of scenarios, N ′, increases. This figure corresponds
to one instance of the problem studied in Tables 1 and 2
with N = 20, R = 20, and M = 3. (Notice, although there
were 20 replications only 11 unique solutions were obtained.)
The sample variance decreases abruptly at the beginning but
later it starts to level off around the 2000 scenarios. Sample
variance Q̄N ′(z) only affects the upper limit of the confidence
interval (which in turn affects the confidence interval percent-
age gap). Figure 2b shows the change in the 99%-confidence
interval percentage gap as the number of scenarios increases.
The gap decreases abruptly up to 1500 scenarios and then
stays stable within 0.05%. Although the variance decreases as
the number of scenarios, N ′, increases; there is variability in
the total cost of the solution (which together with the sample
variance affect the value of the upper limit of the confidence
interval). Thus the 99%-confidence interval percentage gap
does not necessarily decrease and stays relatively stable in our
computational experiments. Based on these observations, we
decided to fix N ′ = 2000 in our computational experiments.
Evaluating more scenarios would only increase computa-
tional time with practically no gain in terms of the quality

of the bound. Once again, these results were representative
of the entire set of problem instances.

5.3. SConFL Problem Results

Tables 3 and 4 show our computational results for the
SConFL problem using the inexact SAA method and the
DLS heuristic. Each entry in Table 3 shows the average gap
and average time over 10 instances, while Table 4 shows the
maximum gap and maximum computational time for those
10 instances. The values reported are average 99% confi-
dence interval percentage gaps. That is, with 99% confidence
the optimal value of the true stochastic problem is ˆgap(z)%
from the (upper bound) solution obtained by the inexact SAA
method. Overall, these gaps follow the behavior observed
for the deterministic instances in Bardossy and Raghavan
[2]. Lower gaps are observed for either high proportions of
demand nodes or facility nodes. On the contrary, higher gaps
are observed for balanced instances with similar numbers of
demand nodes and facility nodes. Furthermore, these confi-
dence interval gaps increase for higher levels of uncertainty.
We can provide two explanations for this behavior. First, as
the uncertainty level increases, the optimality gaps (i.e., per-
centage gaps between the upper and lower bounds) obtained
by DLS increase; we observe this behavior for the individual
sample average problems. Second, as the uncertainty level
increases, the sample variance increases as well, and the
width of the confidence interval increases. The magnitude
of the 99% confidence interval percentage gaps are quite rea-
sonable. Their average value ranges between 0.28% to 4.27%;
while the maximum value is 7.17%.

In terms of computational times, we observe that for
all values of M and v as the proportion of demand nodes
increases the computational time increases reaching a peak
at 30 demand nodes and 70 facility nodes and then decreases
again. Overall, computational times increase as the M factor
increases. The behavior of the DLS heuristic and the inex-
act SAA method is quite stable as the maximum running
times are close to the averages; indicating that the run time
across the 10 instances does not exhibit much variability. The
maximum running time across the 1080 instances is 282.27
seconds (less than 5 min).

While the gaps of the inexact SAA method applied to
the SConFL problem are quite reasonable, natural questions
arise. How much have we gained in terms of running time
(and thus our ability to solve large-scale problems)? How
much have we lost in terms of the gaps? To assess this issue,
we obtained a state-of-the-art code capable of solving large
ConFL instances to optimality [23]. We used it within the
SAA method and compared its results to those obtained by
the inexact SAA method.

To conduct this comparison, we considered a subset of our
test instances with v = 10. Table 5 summarizes the results
of this comparison. It shows that the (exact) SAA method
yields solutions with average 99% confidence interval per-
centage gaps less than 1%; and maximum 99% confidence
interval percentage gaps less than 1.39%. Conversely, the
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FIG. 2. Effect of increasing number of scenarios, N ′. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3. Average 99% confidence interval percentage gaps and times (in seconds) for the Inexact SAA method applied to the SConFL problem

v

5 10 15 20

M |D| |F| Gap Time (s) Gap Time (s) Gap Time (s) Gap Time (s)

10 90 0.54% 108.58 0.98% 110.06 1.06% 111.94 1.87% 113.50
20 80 2.40% 159.55 2.66% 161.28 2.60% 163.29 3.29% 168.71
30 70 2.63% 169.52 2.67% 172.60 3.55% 176.26 3.90% 178.55
40 60 2.34% 155.47 2.94% 158.19 3.55% 160.46 4.14% 163.49

3 50 50 2.86% 130.18 3.27% 133.14 3.42% 136.77 3.85% 138.73
60 40 2.86% 98.36 3.00% 99.43 3.11% 101.46 3.33% 103.94
70 30 1.77% 69.30 1.96% 70.46 2.14% 71.54 2.53% 72.56
80 20 0.73% 50.86 1.07% 48.64 1.32% 48.73 1.61% 48.55
90 10 0.28% 38.60 0.55% 39.31 0.74% 38.52 0.76% 39.26

10 90 0.41% 141.15 0.94% 142.48 1.38% 144.23 1.54% 146.30
20 80 1.41% 190.87 1.64% 193.96 1.86% 197.17 1.93% 200.34
30 70 2.22% 206.35 2.33% 209.70 2.72% 215.23 3.05% 220.36
40 60 3.19% 196.05 3.28% 198.73 3.42% 202.38 3.78% 204.06

5 50 50 3.35% 159.62 3.75% 162.36 3.75% 165.55 4.11% 168.76
60 40 2.69% 123.41 2.86% 123.47 3.07% 124.33 3.37% 126.47
70 30 2.20% 87.94 2.43% 88.36 2.59% 88.93 2.80% 89.75
80 20 1.22% 61.42 1.65% 60.88 2.05% 60.20 1.99% 60.15
90 10 0.44% 40.31 0.63% 41.21 0.82% 41.39 0.93% 42.20

10 90 0.46% 170.67 0.85% 171.63 1.40% 173.23 1.54% 174.98
20 80 0.33% 235.50 0.77% 239.51 0.88% 242.81 1.28% 245.90
30 70 1.57% 245.71 1.60% 249.34 2.00% 254.21 2.34% 258.37
40 60 2.54% 230.22 2.68% 234.37 2.95% 239.18 3.40% 242.39

7 50 50 3.16% 196.59 3.01% 200.92 3.41% 203.84 3.59% 207.51
60 40 3.43% 152.18 3.75% 152.18 3.99% 155.16 4.27% 157.55
70 30 2.82% 109.93 2.89% 108.65 2.93% 110.98 3.11% 113.08
80 20 1.41% 72.79 1.54% 72.31 1.77% 73.84 1.98% 76.02
90 10 0.56% 40.75 0.76% 41.21 0.90% 41.05 1.03% 41.16

inexact SAA method shows average 99% confidence interval
percentage gaps up to 3.75%, and maximum 99% confidence
interval percentage gaps up to 6.00% (achieved when v = 10,
M = 7, |D| = 50, |F| = 50). Regarding the computational
times, the (exact) SAA method seems to be very sensitive

to the input data and times vary greatly between instances.
The computational times for the SAA method average 16 min
over the 270 test instances, with some instances taking as long
as 2 h. Conversely, the computational times for the inexact
SAA method are quite robust and average 2 min over the
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TABLE 4. Maximum 99% confidence interval percentage gaps and times (in seconds) for the inexact SAA method applied to the SConFL problem

v

5 10 15 20

M |D| |F| Gap Time (s) Gap Time (s) Gap Time (s) Gap Time (s)

10 90 0.72% 123.99 1.39% 125.23 1.80% 126.45 2.25% 126.98
20 80 3.62% 175.57 3.51% 176.43 3.76% 176.25 6.18% 185.48
30 70 4.06% 183.97 4.22% 181.77 5.02% 187.54 7.17% 187.05
40 60 3.88% 164.44 4.56% 164.06 4.83% 164.56 5.30% 169.03

3 50 50 4.70% 138.78 5.25% 142.36 5.04% 142.05 5.35% 143.02
60 40 4.06% 105.81 3.77% 105.96 3.79% 106.86 4.54% 108.74
70 30 4.07% 72.91 3.59% 74.31 3.57% 75.50 3.72% 77.18
80 20 1.29% 59.49 2.01% 55.36 2.08% 50.41 2.31% 50.33
90 10 0.58% 41.50 1.26% 41.54 1.61% 42.05 1.36% 42.45

10 90 0.85% 166.89 1.35% 167.35 1.82% 167.61 2.97% 167.59
20 80 2.82% 213.59 2.82% 215.98 3.26% 216.74 3.15% 220.24
30 70 5.13% 223.04 4.56% 228.44 4.95% 232.74 6.04% 239.52
40 60 5.26% 207.57 5.03% 210.47 4.69% 213.76 6.12% 215.83

5 50 50 5.34% 167.25 5.36% 175.63 6.07% 178.28 6.37% 178.56
60 40 4.91% 136.76 4.91% 134.48 5.13% 132.29 4.61% 131.17
70 30 3.73% 98.38 3.81% 97.99 4.23% 98.58 4.64% 100.30
80 20 2.64% 70.19 3.64% 71.75 3.78% 69.38 2.94% 73.35
90 10 0.92% 46.63 1.16% 46.54 1.49% 45.27 1.42% 46.00

10 90 0.75% 185.59 1.26% 186.54 2.00% 187.31 2.25% 188.28
20 80 0.47% 270.62 1.04% 273.41 1.18% 276.95 1.75% 278.24
30 70 2.70% 265.43 3.25% 271.51 4.10% 277.62 4.29% 282.27
40 60 4.95% 244.97 5.55% 251.48 5.68% 260.06 6.69% 266.13

7 50 50 6.61% 212.78 6.00% 213.30 6.66% 211.80 6.80% 213.41
60 40 5.76% 159.72 5.81% 160.57 6.44% 164.32 6.09% 167.45
70 30 4.69% 117.20 3.97% 117.20 3.93% 120.05 4.23% 123.52
80 20 2.13% 80.40 3.17% 79.67 3.63% 84.60 3.39% 85.64
90 10 1.09% 50.84 1.99% 50.90 1.94% 50.76 2.32% 51.01

270 test instances, with no instance taking more than 5 min
to solve. In general problems with fewer candidate facility
nodes are faster to solve with both the SAA and inexact SAA
method.

We wanted to get a better sense of whether the greater gap
with the inexact SAA method was due to the quality of the
upper or lower bound. To this end, we evaluated the upper
end of the confidence interval generated by the inexact SAA
method against the lower end of the confidence interval gen-
erated by the (exact) SAA method. This is shown in the last
two columns of Table 5. This comparison shows gaps closer
to the SAA method, indicating that the DLS produces high-
quality solutions, while the lower bounds may not be as tight.
In fact, on average the upper end of the confidence interval
for the inexact SAA method is 0.30% greater than the upper
end of the confidence interval for the SAA method; while
the lower end of the confidence interval of the inexact SAA
method is 1.22% lower than the lower end of the confidence
interval for the SAA method.

5.4. SUFL Problem Results

The SUFL problem can be viewed as a special case of the
SConFL problem without the requirement that open facilities

have to be connected. Correia and Saldanha da Gama [7] state
the SUFL problem and provide a deterministic equivalent
formulation which we arrive at from Formulation (19) by
eliminating the yij variables.

Deterministic equivalent formulation for the SUFL prob-
lem:

Minimize
∑
i∈F

fizi +
∑
ω∈�

∑
j∈D

∑
i∈n(j)

πωaij(ω)xij(ω) (20)

subject to (19b) , (19c) , (19d) and (15i) .

We apply the inexact SAA method to the SUFL prob-
lem. To get a heuristic solution and lower bound for each
sample average problem we used dual-ascent. We converted
the UFL problem to a directed Steiner tree problem and
applied our dual-ascent algorithm. Table 6 describes these
results. The table reports on the average 99% confidence
interval percentage gap and the average computational time
(averaged over ten instances). The results of the inexact
SAA approach are promising. Over 460 problem instances
it generates solutions that are on average 2.63% from the
optimal (with 99% confidence) taking an average of 8.7 s
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TABLE 5. Comparing the quality of solutions and computational time for the Inexact SAA Method and (Exact) SAA Method applied to the SConFL
problem (on instances with v = 10)

SAA (Leitner et al. [23]) Inexact SAA (DLS)

Gap Time (s) Gap Time (s) Gap to SAA Lower Confidence Limit

M |D| |F| Average Max Average Max Average Max Average Max Average Max

10 90 0.98% 1.39% 888.60 1692.59 0.98% 1.39% 110.06 125.23 0.98% 1.39%
20 80 0.73% 1.06% 156.23 296.15 2.66% 3.51% 161.28 176.43 1.34% 1.97%
30 70 0.59% 0.92% 1186.81 2934.26 2.67% 4.22% 172.60 181.77 0.92% 1.50%
40 60 0.58% 1.02% 1662.28 4459.16 2.94% 4.56% 158.19 164.06 1.29% 2.86%

3 50 50 0.61% 0.85% 3235.62 6692.01 3.27% 5.25% 133.14 142.36 1.05% 1.90%
60 40 0.56% 0.70% 2086.72 4533.44 3.00% 3.77% 99.43 105.96 1.06% 1.71%
70 30 0.48% 0.68% 717.26 1616.15 1.96% 3.59% 70.46 74.31 0.71% 1.13%
80 20 0.43% 0.63% 171.52 343.16 1.07% 2.01% 48.64 55.36 0.52% 0.98%
90 10 0.39% 0.65% 69.77 107.59 0.55% 1.26% 39.31 41.54 0.45% 0.98%

10 90 0.94% 1.35% 1308.83 1647.14 0.94% 1.35% 142.48 167.35 0.94% 1.35%
20 80 0.66% 1.03% 400.29 1198.11 1.64% 2.82% 193.96 215.98 0.73% 1.26%
30 70 0.47% 0.61% 211.48 441.17 2.33% 4.56% 209.70 228.44 0.60% 1.01%
40 60 0.46% 0.63% 614.30 1456.21 3.28% 5.03% 198.73 210.47 1.33% 2.75%

5 50 50 0.48% 0.75% 1900.01 6188.95 3.75% 5.36% 162.36 175.63 1.00% 1.63%
60 40 0.50% 0.72% 1765.26 4362.83 2.86% 4.91% 123.47 134.48 0.66% 1.19%
70 30 0.44% 0.62% 808.04 2176.64 2.43% 3.81% 88.36 97.99 0.82% 1.91%
80 20 0.41% 0.52% 226.09 505.20 1.65% 3.64% 60.88 71.75 0.78% 2.99%
90 10 0.32% 0.47% 70.58 115.82 0.63% 1.16% 41.21 46.54 0.38% 0.65%

10 90 0.85% 1.26% 1603.79 1872.76 0.85% 1.26% 171.63 186.54 0.85% 1.26%
20 80 0.77% 1.04% 2069.57 2592.70 0.77% 1.04% 239.51 273.41 0.77% 1.04%
30 70 0.46% 0.62% 396.27 1145.23 1.60% 3.25% 249.34 271.51 0.58% 1.13%
40 60 0.48% 0.61% 310.61 483.29 2.68% 5.55% 234.37 251.48 0.94% 2.65%

7 50 50 0.39% 0.62% 751.39 4069.91 3.01% 6.00% 200.92 213.30 0.72% 1.40%
60 40 0.31% 0.53% 1267.10 5152.87 3.75% 5.81% 152.18 160.57 1.22% 3.54%
70 30 0.39% 0.56% 625.07 1460.82 2.89% 3.97% 108.65 117.20 1.00% 1.90%
80 20 0.36% 0.58% 297.52 737.58 1.54% 3.17% 72.31 79.67 0.51% 1.10%
90 10 0.30% 0.45% 83.46 154.21 0.76% 1.99% 41.21 50.90 0.42% 1.24%

TABLE 6. Average 99% confidence interval gaps and times (in seconds) for the inexact SAA method applied to the SUFL problem

v

5 10 15 20

|D| |F| Gap Time (s) Gap Time (s) Gap Time (s) Gap Time (s)

10 90 0.86% 3.28 2.34% 3.52 3.14% 4.21 5.32% 4.32
20 80 2.35% 6.23 3.38% 6.80 4.56% 8.07 6.97% 8.07
30 70 3.01% 8.29 3.44% 8.93 4.21% 10.43 6.94% 10.70
40 60 2.69% 9.81 3.26% 10.19 4.75% 11.90 5.93% 12.01
50 50 2.01% 10.34 3.18% 10.75 3.60% 11.90 4.33% 12.32
60 40 1.50% 10.16 2.07% 10.45 2.38% 11.21 3.22% 11.56
70 30 0.70% 10.04 1.23% 9.90 1.35% 10.42 1.66% 10.51
80 20 0.35% 8.09 0.68% 8.06 0.63% 8.35 0.82% 8.27
90 10 0.30% 6.01 0.44% 5.95 0.55% 6.08 0.62% 5.98

for each instance. We notice that the run times of the inexact
SAA are quite stable and marginally affected by the level of
uncertainty (v).

To assess the quality of the gaps provided by the inexact
SAA method for the SUFL problem and to get a better sense
of the speedup obtained using the inexact SAA method we
also implemented the SAA method where the sample average

problems are solved exactly with CPLEX. Table 7 displays
these results, reporting on the average 99% confidence inter-
val percentage gap and the average computational time (over
ten instances). In contrast to the inexact SAA method, the
SAA approach generates solutions that are on average 0.94%
from the optimal (with 99% confidence) taking an average of
475 s for each instance.
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TABLE 7. Average 99% confidence interval gaps and times (in seconds) for the SAA method applied to the SUFL problem

v

5 10 15 20

|D| |F| Gap Time (s) Gap Time (s) Gap Time (s) Gap) Time (s)

10 90 0.64% 197.09 1.29% 273.38 1.70% 350.06 2.29% 396.65
20 80 0.66% 487.78 1.18% 680.20 1.55% 913.97 2.16% 1109.60
30 70 0.55% 646.20 1.00% 820.65 1.28% 1165.66 1.68% 1500.63
40 60 0.48% 661.96 0.94% 843.31 1.20% 1238.24 1.53% 1391.68
50 50 0.48% 230.72 0.93% 291.78 1.13% 408.88 1.43% 503.40
60 40 0.43% 317.17 0.76% 411.47 0.93% 495.58 1.19% 587.55
70 30 0.32% 181.45 0.63% 196.03 0.74% 218.46 0.93% 243.42
80 20 0.26% 71.26 0.55% 73.17 0.54% 77.89 0.67% 75.25
90 10 0.30% 14.45 0.44% 14.04 0.53% 14.42 0.62% 14.32

Going further and comparing the gaps on each instance
we found on average the upper end of the confidence interval
for the inexact SAA method is 1.02% greater than the upper
end of the confidence interval for the SAA method; while
the lower end of the confidence interval of the inexact SAA
method is 0.63% lower than the lower end of the confidence
interval for the SAA method. This suggests that there may be
some slight room to improve on the upper bound solution pro-
duced by the dual-ascent heuristic. Indeed, we implemented
the dual-ascent heuristic for the UFL without any additional
local search phase (as we did for the ConFL) that adds and
drops facilities.

6. CONCLUSIONS

In this article, we proposed an inexact SAA method that
broadens the scope and increases the applicability of the SAA
method to large two-stage stochastic integer programs. To
apply it, one only needs a good heuristic and a tight lower
bounding procedure for the sample average problems to yield
tight confidence intervals on the stochastic problem.

We considered the SConFL problem that arises in appli-
cations in data management and telecommunications. We
studied the impact of two alternate sources of assignment
cost uncertainty and described the value of the stochastic
solution for each case. For uncertain demand quantities, we
showed that the problem can be solved optimally by replacing
uncertain values by their average values. In the more gen-
eral case, where variability in costs occurs on the assignment
edges, we showed how to transform the SConFL problem
into a deterministic equivalent ConFL problem with a larger
number of customer nodes; which then can be solved by
already proposed methods, such as the DLS heuristic, when
the number of scenarios is limited. For SConFL problems
with a large number of scenarios, that are impractical to
solve by solving their deterministic equivalent problem, we
illustrated the inexact SAA approach with strong results
and tight confidence intervals on the objective function
value.

As the inexact SAA method expands the scope and allows
one to apply heuristics to the sample average problems (when
there is a good lower bound at hand), we expect (and hope)
this approach will be adopted by other researchers as a com-
putational solution procedure of choice for a wide range of
two-stage stochastic integer programs, where good heuristics
and tight lower bounding mechanisms are at-hand. Certainly,
additional questions remain to be answered from a theoreti-
cal perspective. For example, it may be useful to characterize
the number of samples for the sample average problem and
the number of replications for a given level of convergence.
Furthermore, one can explore variance reduction techniques,
such as common random streams, to improve the computa-
tional efficiency of our method. These are topics for future
research.
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[25] I. Ljubić, A hybrid VNS for connected facility location, Proc
4th Int Conf on Hybrid Metaheuristics, Hybrid Metaheuris-
tics, Lecture Notes in Computer Science, Vol. 4771, Springer,
2007, pp. 157–169.

[26] F. Louveaux and D. Peeters, A dual-based procedure for
stochastic facility location, Oper Res 40 (1992), 564–573.

[27] W.K. Mak, D.P. Morton, and R.K. Wood, Monte Carlo bound-
ing techniques for determining solution quality in stochastic
programs, Oper Res Lett 24 (1999), 47–56.

[28] P.B. Mirchandani, Analysis of stochastic networks in emer-
gency service systems, Technical report, IRP-TR-15-75,
Operations Research Center, MIT, 1975.

[29] P.B. Mirchandani and A.R. Odoni, Locations of medians on
stochastic networks, Transp Sci 13 (1979), 85–97.

[30] P. Nuggehalli, V. Srinivasan, and C.F. Chiasserini, Energy-
efficient caching strategies in ad hoc wireless networks, Proc
4th ACM Int Symp Mobile ad hoc Networking & Comput,
Annapolis, MD, 2003, pp. 25–34.

[31] R. Ravi and A. Sinha, Hedging uncertainty: Approxima-
tion algorithms for stochastic optimization problems, Math
Program 108 (2006), 97–114.

[32] R. Schultz, L. Stougie, and M. Vlerk, Two-stage stochas-
tic integer programming: A survey, Statistica Neerlandica 50
(2008), 404–416.

[33] A. Shapiro and A. Philpott, A tutorial on stochastic program-
ming, Unpublished Manuscript 2007.

[34] L.V. Snyder, Facility location under uncertainty: A review,
IIE Trans 38 (2006), 547–564.

[35] C. Swamy and A. Kumar, Primal-dual algorithms for con-
nected facility location problems, Algorithmica 40 (2004),
245–269.
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