
INFORMS Journal on Computing
Vol. 17, No. 3, Summer 2005, pp. 290–304
issn 1091-9856 �eissn 1526-5528 �05 �1703 �0290

informs ®

doi 10.1287/ijoc.1040.0077
©2005 INFORMS

Heuristic Search for the Generalized Minimum
Spanning Tree Problem

Bruce Golden, S. Raghavan, Daliborka Stanojević
The Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742-1815, USA

{bgolden@rhsmith.umd.edu, raghavan@umd.edu, dstanoje@rhsmith.umd.edu}

The generalized minimum spanning tree (GMST) problem occurs in telecommunications network planning,
where a network of node clusters needs to be connected via a tree architecture using exactly one node per

cluster. The problem is known to be NP-hard, and even finding a constant factor approximation algorithm is
NP-hard. In this paper, we present two heuristic search approaches for the GMST problem: local search and
a genetic algorithm. Our computational experiments show that these heuristics rapidly provide high-quality
solutions for the GMST and outperform some previously suggested heuristics for the problem. In our com-
putational tests on 211 test problems (including 169 problems from the TSPLIB set), our local-search heuristic
found the optimal solution in 179 instances and our genetic-algorithm procedure found the optimal solution in
185 instances (out of the 211 instances, the optimal solution is known in 187 instances). Further, on each of the
19 unsolved instances from TSPLIB, both our local-search heuristic and genetic-algorithm procedure improved
upon the best previously known solution.

Key words : networks; tree algorithms; heuristics; local search; genetic algorithms
History : Accepted by Michel Gendreau, Area Editor for Heuristic Search and Learning; received January 2003;
revised October 2003; accepted February 2004.

1. Introduction
The generalized minimum spanning tree (GMST)
problem is an important network design problem that
arises within the scope of telecommunications net-
work planning. In this problem setting, we are given
an undirected graph G = �V �E�, with node set V and
edge set E, and a cost vector c ∈��E�

+ on the edges E.
We are also given a set of K mutually exclusive and
exhaustive node sets V1� � � � �VK (i.e., Vi ∩ Vj = �, if
i �= j , and

⋃K
k=1Vk = V). We wish to find a minimum-

cost tree that contains exactly one node from each clus-
ter. Figure 1 gives an example of a generalized span-
ning tree for a network with five clusters. One applica-
tion of the GMST problem, first introduced in Myung
et al. (1995), is in the regional connection of local area
networks (LANs). In this application, several LANs in
a region need to be connected with each other. For
this purpose, one gateway node needs to be identified
within each LAN, and the gateway nodes are to be
connected via a minimum-cost spanning tree (MST).
The GMST problem has been studied by only a

few researchers. Myung et al. (1995) showed that the
problem is NP-hard, and even finding a constant fac-
tor approximation algorithm is NP-hard. They also
developed a dual-ascent procedure based on a mul-
ticommodity flow formulation for the problem and
used this within a branch-and-bound framework to
solve problems with up to 100 nodes and 4,500 edges

to optimality. Feremans et al. (2002) described eight
different integer programming (IP) and mixed-integer
programming (MIP) formulations for the GMST prob-
lem and show that four of these formulations strictly
dominate the other four, in terms of the quality of
their linear relaxations. Recently, Raghavan (2002)
showed that the GMST may be modeled as a Steiner
tree problem with degree constraints on some of the
nodes. He showed that the resulting formulation is
equivalent in strength (in terms of the linear relax-
ation) to the four tightest formulations identified in
Feremans et al. (2002).
Feremans (2001) presented several new classes of

valid inequalities and developed a branch-and-cut
algorithm for the GMST problem. She reported suc-
cess in solving, to optimality, instances where the
cost function satisfies the triangle inequality with up
to 160 nodes in less than two hours of CPU time
(these instances are much more difficult than random
instances), and random instances (i.e., where the cost
function does not satisfy the triangle inequality) with
up to 200 nodes in less than two hours of CPU time.
As part of the branch-and-cut procedure, Feremans
(2001) employed a tabu-search heuristic to generate
an initial upper bound, and a local-search procedure
to improve upper bounds found during the course
of the branch-and-cut procedure. A subset of these
results is included in Feremans et al. (2004). However,

290

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS 291

Cluster 1

1

2

4
3

11

10

13
14

12

5

6

7

9
8

15

16

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Figure 1 An Example of a Generalized Spanning Tree for a Network
with Five Clusters

separate computational results of their tabu-search
and local-search heuristics, as stand-alone procedures,
are not reported.
Pop et al. (2000) provided a polynomial-size MIP

formulation for the GMST problem. They described
a relaxation procedure that seems to provide strong
lower bounds in their preliminary computations.
Although the GMST is inapproximable to a constant
factor, unless P = NP, Pop et al. (2001) described
a very interesting result. They showed that when
the cluster size is bounded (say by
), then it is
possible to provide a constant factor approximation;
they described a 2
-approximation algorithm for the
GMST with bounded cluster size.
Dror et al. (2000) studied a somewhat different vari-

ation of the GMST. In their problem, the clusters need
not be mutually exclusive (but are collectively exhaus-
tive). Further, instead of having exactly one node
from a cluster in the desired tree, they require that
at least one node from each cluster be in the tree
(thus, allowing multiple nodes from the same cluster
to be in the tree). Dror et al. (2000) described several
simple heuristics along with a genetic algorithm for
their problem. In all the examples considered in their
paper, the genetic algorithm provided better solutions
than did the simple heuristics. Feremans (2001) com-
pared the genetic-algorithm results against the opti-
mal solution, and found that the genetic-algorithm
solutions are, on average, 6.53% from optimality.
In this paper, we describe two heuristic search pro-

cedures for the GMST problem. First, we describe

a local-search heuristic for the GMST problem. We
then describe a more sophisticated genetic algorithm
that employs four different genetic operators—two
reproductive and two mutative. We test these heuris-
tics on two sets of large problem instances (instances
where the cost satisfies the triangle inequality and ran-
dom instances) and find that the local-search heuristic
generates solutions that are, on average, 1.26% from
optimality. The genetic algorithm generates solutions
that are, on average, 1.18% from optimality. On closer
examination, of the 211 problem instances, our local-
search heuristic took an average of 23.1 seconds and
found the optimal solution in 179 out of 187 instances
for which the optimal solution is known. Our genetic-
algorithm procedure took an average of 40.7 sec-
onds and found the optimal solution in 185 out
of 187 instances for which the optimal solution is
known. Over the 187 instances for which the optimal
solution is known, the local-search heuristic generates
solutions that are, on average, 0.07% from optimal-
ity, while the genetic-algorithm procedure generates
solutions that are, on average, 0.01% from optimality.
Thus, the value of the gaps (over all the 211 instances)
is exaggerated by the fact that, for many of the prob-
lem instances where the optimal solution is unknown,
the quality of the lower bound is poor.
The remainder of this paper is organized as follows.

In §2, we present simple lower and upper bounding
heuristics. The lower bound could be useful when it
is not possible to obtain lower bounds from the relax-
ations of the MIP formulations for the GMST problem
in a reasonable amount of time. The upper bounding
procedure could be used to generate initial solutions
for a local-search procedure, or as an upper bound for
a branch-and-bound algorithm for the problem. The
upper bounding procedures are adaptations of Prim’s,
Kruskal’s, and Sollin’s algorithms for the MST (see the
text by Ahuja et al. (1993) for a nice description of
those algorithms). However, there are some interesting
choices that need to be made in the adaptation of these
algorithms to the GMST that we explore within this
paper. In §3, we describe our local-search procedure.
We then develop our genetic algorithm for the GMST
problem in §4. Finally, in §5, we report on our compu-
tational experience with the two heuristic search pro-
cedures. In §6, we provide some concluding remarks.

2. Simple Lower and Upper Bounds
for the GMST

In this section, we describe simple lower and upper
bounding procedures for the GMST.

2.1. Spanning Tree Lower Bound
A lower bound for the GMST may be obtained by
solving the minimum spanning tree problem on the
following transformed graph H . Replace each clus-

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
292 INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS

ter by a single node. The cost of an edge between
two nodes in the transformed graph is equal to the
minimum-cost edge between the two clusters that the
two nodes represent. To calculate this lower bound,
it is not necessary to contract the graph. Instead, it
is fairly easy to modify the greedy algorithm for the
MST, to accomplish the same. For completeness, we
describe the steps below.

Spanning Tree Lower Bound:
Step 1. Start with a completely disconnected graph

T with K clusters defined.
Step 2. Order the edges of the initial graph G in

ascending order of their cost.
Step 3. Starting from the beginning of the list, add

edges to T provided that this addition does not cre-
ate a cycle among the clusters, when each cluster is
contracted (in concept only) to a single node.
Step 4. Repeat Step 3 until K − 1 edges have been

added.
The cycle condition in Step 3 above can be eas-

ily checked in a typical implementation of Kruskal’s
algorithm by making the following minor modifica-
tion. Recall, in Kruskal’s algorithm, a linked list is
used to represent each forest in the network con-
structed at any stage of the algorithm. In the initializa-
tion of Kruskal’s, each node is represented as a linked
list with a single item. To calculate the lower bound
without contracting the graph, we initialize the algo-
rithm with each cluster represented as a linked list
containing the items in the cluster. Consequently, the
running time of the spanning tree lower bound proce-
dure is identical to Kruskal’s and is ���E�+�V � log �V ��.
We note that a slight speedup in Step 2 may be
obtained by noting that only the minimum-cost edge
between two clusters can be added in Step 3. Thus, by
spending an additional ���E�� time, we can determine
the edges that actually need to be sorted.

2.2. Upper Bound Procedures
As noted by Feremans (2001) and Feremans et al.
(2004), an upper bound may be easily obtained
by straightforwardly adapting Kruskal’s, Prim’s, or
Sollin’s algorithm for the MST to the GMST. However,
in an adaptation of Prim’s or Sollin’s algorithm, there
are several choices that could be made, which affect
the quality of the results. In this section, we exam-
ine the effect of these choices to develop an improved
upper bound heuristic.
To elaborate, we briefly review how Kruskal’s,

Prim’s, and Sollin’s algorithms operate. Kruskal’s
algorithm for the MST adds edges greedily (until
a spanning tree is obtained) unless the addition of
an edge causes a cycle. This may be adapted in a
straightforward fashion to the GMST as follows. Add
edges in ascending order, unless the edge creates a

cycle or is incident to a second node in any cluster.
The running time remains the same as Kruskal’s for
the MST and so is ���E� + �V � log �V �� time.
Prim’s algorithm for the MST starts from a node

and grows the MST. It does this by considering the
partially constructed tree and adding the minimum-
cost edge from nodes in the tree to nodes not in the
partially constructed tree. Thus, the very first step
in an adaptation of Prim’s algorithm to the GMST
requires the choice of a starting node (the choice of
the starting node can result in different solutions for
the GMST). Next, for the partially constructed tree,
we add the minimum-cost edge from nodes within
the tree to nodes that are in clusters distinct from
the nodes in the partially constructed tree. Since we
need to select a starting node for Prim’s adaptation
to the GMST, one possibility is to select a starting
node randomly. A second possibility is to try all �V �
nodes as starting nodes and output the best solution.
The running time for Prim’s adaptation is the same
as Prim’s for the MST, so is ���E�+ �V � log �V ��. (Actu-
ally, the running time is slightly faster. The number
of nodes and edges in the running-time equation can
be reduced to the number of nodes and edges in the
graph obtained by deleting all nodes, other than the
starting node, in the starting node’s cluster.)
Sollin’s algorithm for the MST starts with each node

representing a tree. In each iteration of Sollin’s algo-
rithm, it identifies, for each tree in the partial solu-
tion, the minimum-cost edge emanating from the tree.
It then adds these edges to the partial solution (thus
merging trees to build larger trees, and reducing the
number of trees in the partial solution). The iterations
of the algorithm are repeated until a spanning tree is
obtained. We adapt Sollin’s algorithm to the GMST
as follows. We first sort the edges of the graph into
increasing order. In each iteration of the algorithm,
for each tree (or cluster, if no edge in the forest con-
structed so far is incident to any node in the cluster)
select as a candidate edge the minimum-cost edge out
of the tree (or cluster) whose addition is feasible (i.e.,
adding the edge will not result in multiple nodes from
a cluster in the partial solution). Ties between edges,
for selection as candidate edge, are broken by choos-
ing the edge that appears first in the sorted order.
Consider the selected edges in sorted order and add
an edge to the partial solution if its addition is feasi-
ble. (Note that, although the edges were feasible when
selected, once we start adding edges to the partial
solution, a selected edge may no longer be feasible for
addition to the partial solution.) We repeat these iter-
ations until a feasible generalized spanning tree (GST)
is obtained. Each iteration of this adaptation takes
���E�+K� time as we go through the list of �E� sorted
edges to select the minimum-cost feasible edge out of
each tree (or cluster) and then consider at most K − 1

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS 293

edges to add in an iteration. In each iteration at least
one edge is added since it is always feasible to add
the first selected edge. Thus there are at most K − 1
iterations. Consequently, the overall running time is
���E�K� plus the time for initially sorting the edges.
Observe that, with Kruskal’s and Sollin’s adap-

tation, the heuristic solution is unique, while with
Prim’s the solution is dependent on the starting node
selected. It is also easy to establish that the tree gen-
erated by each of these algorithms is an MST on
the nodes in the tree. We conducted some prelimi-
nary experiments to compare the quality of the solu-
tions produced by the three adaptations. Specifically,
we compared Kruskal’s adaptation, Prim’s adaptation
with a random choice of starting node, and Sollin’s
adaptation. We found that Kruskal’s and Sollin’s algo-
rithm outperformed Prim’s algorithm. To illustrate
the differences, in Table 1 we compare the three algo-
rithms on TSPLIB instances from §5, where the opti-
mal solution is known. We find that, with each of the
different clustering types (§5 provides further details
on the dataset and clustering types), on average,
Kruskal’s and Sollin’s outperform Prim’s. Further, as
the average number of nodes in a cluster increases
(� may be thought of as representing the average
number of nodes in a cluster), the quality of Kruskal’s,
Prim’s, and Sollin’s upper bounds deteriorate.
In Table 1, we also evaluate the quality of the

spanning tree lower bound. We found that the span-
ning tree lower bound is poor. On average, on the
instances reported in Table 1, the value of the lower
bound divided by the value of the optimal solu-
tion was 64.06%. In other words, the average error
of the spanning tree lower bound was 35.94%. Fur-
ther, as the average number of nodes in a clus-
ter increases, the quality of the spanning tree lower
bound deteriorates.
Kruskal’s straightforward adaptation to the GMST

is also used by Feremans et al. (2004) to generate
upper bounds. We now propose two improvements
to the straightforward adaptation of Kruskal’s. First,

Table 1 Comparison of Straightforward Adaptations of Kruskal’s, Prim’s, and Sollin’s Upper Bound and the
Spanning Tree Lower Bound

Upper bound procedures
Spanning tree

Clustering Number lower bound Kruskal’s Prim’s Sollin’s
type instances avg error (%) avg error (%) avg error (%) avg error (%)

center 37 37.13 8�27 13�10 7�99
grid, �= 3 28 22.22 5�05 7�94 5�22
grid, �= 5 28 32.95 10�65 12�41 10�70
grid, �= 7 28 42.34 15�87 17�18 15�64
grid, �= 10 29 44.39 15�90 18�56 15�67

Overall 150 35.94 11�00 13�83 10�89

Note. Comparison on 150 TSPLIB instances reported in §5 where the optimal solution is known. Kruskal’s was best
in 85 instances, Prim’s was best in 41 instances, and Sollin’s was best in 79 instances. There were 55 ties between
Kruskal’s and Sollin’s.

we propose fixing a node to be in the generalized
spanning tree and running Kruskal’s adaptation (this
is somewhat akin to choosing a starting node for
Prim’s adaptation). This may be accomplished by sim-
ply deleting all edges out of other nodes in the clus-
ter, which the selected node is in, prior to the sort
operation performed in Kruskal’s. We propose run-
ning Kruskal’s algorithm �V � times, once for each pos-
sible choice of a node to be fixed in the solution, and
selecting the best solution obtained.
The second improvement deals with the circum-

stance where the upper-bound heuristic is unable to
find a feasible solution due to the fact that the under-
lying graph is not complete. Ideally, we would like
to add an edge in Kruskal’s adaptation only if the
addition of the edge does not cause the heuristic to
fail (i.e., make the problem infeasible). To do this,
we need to answer the following question. Given a
graph, clusters, and edges, does it contain a feasible
GST? (When we add an edge, we have selected a
node in a cluster. Thus, we can delete all other nodes
in the cluster and edges emanating from them, and
ask the question: Does the modified graph contain
a feasible GST?) Unfortunately, in general, from the
transformation given in Myung et al. (1995), even the
recognition of whether a graph contains a generalized
spanning tree is NP-complete. Consequently, we con-
sider the following heuristic to handle infeasibility. If
the algorithm results in an infeasible solution, we pro-
pose that the algorithm remove the most expensive
edge added to the tree from the problem and run the
heuristic again. We repeat this procedure until either
a feasible GST is obtained or one cluster has no edges
out of it. We call this improved version the improved
Kruskal’s heuristic (IKH).
If feasibility is not an issue (e.g., if the underly-

ing graph is complete), then IKH runs in ���V ��E� +
�V �2 log �V �� time. When feasibility is an issue, a crude
running-time bound for a single iteration of IKH
is ���E�2 + �E��V � log �V ��, and thus IKH runs in
���E�2�V � + �E��V �2 log �V �� time. However, this bound

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
294 INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS

is somewhat misleading, because when the graph is
dense (i.e., �E� is large), infeasibility is very unlikely.
Furthermore, observe that in Kruskal’s algorithm the
most expensive edge in the tree constructed is the last
edge that was added to it. Thus, instead of building a
tree from scratch, we may simply delete the last edge
added and continue to build the tree from there.
We also modified Prim’s straightforward adapta-

tion to the GMST to take care of the feasibility issue.
In this adaptation, which we call the improved Prim’s
heuristic (IPH), we propose running Prim’s algorithm
�V � times, once for each possible choice of starting
node, and selecting the best solution obtained. To deal
with the situation where the heuristic is unable to find
a feasible solution, we delete the most recently added
edge to the current tree and run the heuristic again.
If feasibility is not an issue (e.g., if the underly-

ing graph is complete), then IPH runs in ���V ��E� +
�V �2 log �V �� time. When feasibility is an issue, argu-
ing as for IKH, a crude running-time bound for IPH
is ���E�2�V � + �E��V �2 log �V ��. Again this is somewhat
misleading for the very same reason as in the case of
IKH. Also, as in the case for IKH, we can delete the
most recently added edge and continue to rebuild a
tree from there.
In a similar fashion to IKH and IPH, we improved

Sollin’s adaptation for the GMST by fixing one node
to be in the GST, running the adaptation �V � times
(once for each possible choice of a node to be fixed in
the solution), and selecting the best solution obtained.
To deal with the situation where the heuristic is
unable to find a feasible solution, we delete the
most recently added edge to the current solution and
run the heuristic again. We call this adaptation the
improved Sollin’s heuristic (ISH). If feasibility is not an
issue, then ISH runs in ���V ��E�K� time. When feasi-
bility is an issue, arguing as for IKH, a crude running-
time bound for ISH is ���E�2�V �K�.
We compared the three upper bound heuristics,

IKH, IPH, and ISH, on the 150 TSPLIB instances

Table 2 Comparison of Improved Adaptations of Kruskal’s (IKH),
Prim’s (IPH), and Sollin’s (ISH)

IKH IPH ISH
Clustering Number Average error Average error Average error
type instances (%) (%) (%)

center 37 4.80 6.81 4.82
grid, �= 3 28 3.42 5.06 3.60
grid, �= 5 28 6.48 6.45 6.59
grid, �= 7 28 8.98 7.43 8.67
grid, �= 10 29 8.43 6.76 8.07

Overall 150 6.34 6.52 6.27

Note. Comparison on 150 TSPLIB instances reported in §5 where optimal
solution is known. IKH was best in 74 instances, IPH in 58, and ISH in 65.
There were two ties between IKH, IPH, and ISH; and 45 ties between IKH
and ISH.

where the optimal solution is known. Table 2 presents
these results. In contrast to the earlier results reported
in Table 1, surprisingly, the results between Kruskal’s,
Prim’s, and Sollin’s are comparable. Compared to
the results in Table 1, the average error improves
markedly. Notice that when the average number of
nodes belonging to a cluster is small, IKH and ISH
are better than IPH. As the average number of nodes
in a cluster increases, IPH does better than IKH and
ISH. We note that, for the 150 instances in Table 2,
the average running times for our implementations of
IKH, IPH, and ISH were 0.27, 0.02, and 17.16 seconds,
respectively.

3. Local-Search Procedure
Local search has been successfully used to find near-
optimal solutions for a wide variety of combinatorial
optimization problems (see Aarts and Lenstra 1997
for an up to date discussion of local search in com-
binatorial optimization). In this section, we propose a
simple local-search heuristic for the GMST problem.
The local-search procedure starts with a randomly

generated feasible GST (obtained by randomly select-
ing a node in each cluster and constructing an MST
on the selected nodes) and then visits clusters in a
wraparound fashion following a randomly defined
order. It then replaces the node from the cluster
being visited with another node from the same clus-
ter and evaluates the cost of the new MST (any one
of the three minimum spanning tree algorithms may
be used for this purpose). It repeats this procedure,
trying every other node in the same cluster, and
selects the lowest-cost solution as the current solution.
The local-search procedure stops when no further
improvement is possible. This occurs when all clusters
are visited in sequence with no improvement in the
solution. We apply this local-search procedure using a
prespecified number of starting solutions (referred to
as X). The steps of the procedure are outlined below.

Local-Search Heuristic (LS):
Step 0. Specify the number of feasible solutions to

be generated, X. Repeat Steps 1 through 3 X times.
Step 1. Randomly select a single node from each

cluster. If the subgraph defined by the edges between
the selected nodes is connected, apply any one of
the minimum spanning tree algorithms to the sub-
graph defined on the selected nodes to build an MST.
Otherwise, repeat Step 1.
Step 2. Randomly define an order in which clusters

will be searched.
Step 3. Follow the order defined in Step 2 in vis-

iting clusters. Repeat the following steps until K
sequential cluster visits result in no improvement.
(a) While visiting a cluster, consider each node in

the cluster as a replacement for the current node in

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS 295

the cluster contained in the GST. Compute the cost of
the solution for each replacement.
(b) Among the solutions computed in the previous

step, identify the one giving the greatest improvement
in the objective function (i.e., greatest reduction in
solution cost). If there is an improvement, implement
it by replacing the node representing the cluster, and
update the current tree.
We briefly comment on the complexity of some of

the steps of LS. Observe that the subgraph defined
on the selected nodes contains K nodes and can be
identified in ���V � + �E�� time. With this observation,
it is easy to show that Step 1 may be accomplished
in ���E� + K2 + K logK� time if Kruskal’s and Prim’s
are used to construct the spanning tree, and in ���E�+
K2 logK� time if Sollin’s is used to construct the span-
ning tree. A key part of Step 3 is to compute the cost
of a minimum spanning tree when one node from the
existing MST is deleted and a new node is added to
the graph. Observe that when a node is deleted from
an existing spanning tree the resulting forest may con-
tain no edges (it is possible that all the edges in the
MST are connected to the node that was deleted).
Thus, to find the new MST we need to run an MST
algorithm again, and the complexity is ��K2+K logK�
(assuming Prim’s or Kruskal’s algorithm is used to
generate the tree). If there are �Vi� nodes in the cluster
being visited, then Step 3 takes ���Vi��K2 + K logK��
time.
The running time of Step 3 can be improved based

on the following claim. Given a graph G = �V �E�,
let TG denote the minimum spanning tree on G. Sup-
pose we add a new node p to the graph, and edges
Ep = ��p� i� � i ∈ V �. Let Gp = �V ∪ p�E ∪ Ep� denote
this new graph obtained by the addition of the new
node p, and let TGp denote the minimum spanning
tree on Gp.

Claim 1. TGp does not contain any edges in E\TG.

Proof. Without loss of generality, assume all edge
costs are distinct. Suppose TGp contains an edge �i� j�
from E\TG. Path-optimality conditions for the mini-
mum spanning tree assure us that the cost of every
edge on the path, Pij , from node i to node j in TG is
less than the cost of edge �i� j�. On the other hand, the
cut-optimality conditions for the minimum spanning
tree state that the cost of edge �i� j� is less than the
cost of every edge in the cut formed by deleting edge
�i� j� from TGp . Now, one of the edges in Pij must be
in this cut; thus, we have a contradiction. �

The above result may now be used to improve
the running time of Step 3 as follows. First, con-
struct the minimum spanning tree on the nodes other
than the cluster being visited. Because there are K−1
nodes, the running time required for this is ��K2 +
K logK�. Now, determine the minimum spanning tree

when we replace the node in the current cluster. Based
on the above result, we may compute the MST on
a graph that contains the K − 1 edges in the MST
just computed, and the edges out of the node now
being visited in the current cluster (there are at most
K − 1 edges, one to each node representing the other
K − 1 clusters). In other words, we need to com-
pute the MST on a graph containing K nodes, and
at most 2K − 3 edges. Hence finding this MST takes
��K + K logK� time. Since we perform this calcula-
tion �Vi� − 1 times while visiting cluster i, once for
each potential replacement node, the overall running
time is ��K2 + K logK + �Vi��K + K logK��, or ��K2 +
�Vi�K logK�. We do not comment on the overall worst-
case complexity of LS, as, in general, for any neigh-
borhood structure the worst-case complexity analysis
for local-search heuristics is bad, while their average-
case complexity is good (see Tovey 1997).
Feremans (2001) also describes a local-search

heuristic for the GMST problem. She uses her heuris-
tic to improve upon feasible solutions found in her
branch-and-cut procedure. Her local-search algorithm
works as follows.

Feremans Local-Search Heuristic (FLS):
Visit the clusters once in increasing order of clus-
ter number �k = 1� � � � �K� and perform the following
steps during a visit to a cluster.
Step 0. Consider the set of nodes in the current

solution. For this set, delete the node representing the
cluster in the current solution, and add all the other
nodes in the cluster to it. Create the graph consisting
of this set of nodes and all edges between them.
Step 1. Apply the straightforward adaptation of

Kruskal’s to the graph defined in Step 0.
Step 2. If a lower-cost solution is found in Step 1,

replace the current solution by this lower-cost
solution.
Notice that LS explicitly tries every node in a clus-

ter as a substitute for the current node representing
the cluster in the solution. On the other hand, FLS
considers all the other nodes in the cluster and applies
the straightforward adaptation of Kruskal’s. How-
ever, when Kruskal’s is applied, the lowest-cost edge
from among the nodes in the cluster will be selected
first. Thus, FLS will select the node with the smallest-
cost edge out of the cluster to represent the cluster
being visited. Thus, it effectively tries only one other
node in the cluster as a substitute for the current node
representing the cluster. Consequently, we expect LS
to provide better solutions than FLS. On the other
hand, FLS visits the clusters in order once, and per-
forms Kruskal’s adaptation at most K times in Step 1.
Consequently, we expect the running time of FLS to
be significantly faster than LS. These expectations are
confirmed in our computational experiments.

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
296 INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS

Begin
t ←− 0
initialize P (t)
while (not termination-condition) do

t ←− t + 1
generate αP (t − 1) offspring using crossover operator on parents in P (t − 1)
generate βP (t − 1) offspring using tree separator operator on parents in P (t − 1)
generate γP (t − 1) offspring using random mutation operator on parents in P (t − 1)
generate δP (t − 1) offspring using local search (mutation) operator on parents in P (t − 1)
Select/Determine P (t) from generated offspring and P (t − 1)

end
end

Figure 2 Steps of our Genetic Algorithm

4. Genetic Algorithm
Genetic algorithms are powerful local-search algo-
rithms based on ideas of natural selection and genet-
ics in nature. Genetic algorithms were originally
proposed by Holland (1962), and have been success-
fully applied to numerous, hard combinatorial opti-
mization problems. In this section, we describe a
genetic algorithm that obtains high-quality solutions
for the GMST problem.
An outline of our genetic algorithm is shown in

Figure 2. We first generate an initial population of
feasible solutions. In every generation in the genetic
algorithm, we generate new solutions (offspring)
using one of four operators—crossover, tree separa-
tion, (random) mutation, and local search (mutation).
From among the parents and offspring produced in
a generation, we select a subset of the solutions to
survive to the next generation. This is continued until
the termination condition is met, and the best solution
obtained so far is output by the genetic algorithm.
We now elaborate on the details of our genetic

algorithm.

Representation. We represent a generalized span-
ning tree by a chromosome that is an array of size K.
In this representation, the ith entry (gene value) indi-
cates the node selected to represent cluster i in the
generalized spanning tree. Figure 3 shows the chro-
mosome representation of the generalized spanning
tree in Figure 1. We note that there are other possi-
ble representations, such as a binary string of size �V �
indicating nodes in the solution, or a binary string
of size �E� indicating the edges in the solution. The
representation/schema provided here is compact, and
is easy to construct and apply genetic operators to.
(It is important to build compact representations, as
Goldberg 1989 formally argues that short, low-order
schema result in high-quality solutions.)

Initial Population. To generate an initial popula-
tion, we select one node from each cluster randomly.

4 6 10 12 16

Figure 3 Chromosome Representation for the GST from Figure 1

We then construct a minimum spanning tree on these
nodes. (Any of the three algorithms for the MST may
be used. In our implementation, we use Prim’s.) If
there is no feasible spanning tree on the selected
nodes, the chromosome is discarded. Otherwise, we
record the fitness of the chromosome as the cost of the
minimum spanning tree and add the chromosome to
the initial population. We repeat this procedure until a
prespecified initial population size is reached. Notice
that the procedure generates an initial population that
is feasible, and that this initial population may con-
tain identical chromosomes.

Crossover. Our crossover operation, a standard
one-point crossover, takes two parents and combines
them to form two new solutions as follows. A cross-
ing site is selected at random—possible crossing-site
locations are immediately after the first gene, imme-
diately after the second gene, and so on, until imme-
diately after the �K−1�st gene. Two children are then
obtained by taking the contents of the first parent
before the crossing site together with the contents of
the second parent after the crossing site, and the con-
tents of the second parent before the crossing site
together with the contents of the first parent after the
crossing site. If there is no feasible tree over the nodes
in a child chromosome, the child is discarded. Fig-
ure 4 illustrates the crossover operation.

Tree Separation. Tree separation creates two off-
spring from a single parent. It may be viewed as a
self-reproduction genetic operator. The idea behind

Parent 1: Child 1:

4 6 10 12 16 4 6 11 14 15

Parent 2: Child 2:

1 8 11 14 15 1 8 10 12 16

Crossover Site

Figure 4 An Example of One-Point Crossover Operator

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS 297

Cluster 1

1
2

4

3

11

10

13 14

12

5
6

7

9 8

15

16

 Cluster 2

 Cluster 3

 Cluster 4

 Cluster 5

17

20

10

15

Second
subtree

Cluster 1

1
2

4

3

11

10

13 14

12

5
6

7

9 8

15
16

 Cluster 2

 Cluster 3

 Cluster 4

 Cluster 5

17

20

10

First
subtree

(a)

Cluster 1

1
2

4
3

11

10

13 14

12

5
6

7

9 8

15

16

 Cluster 2

 Cluster 3

 Cluster 4

 Cluster 5

Cluster 1

1
2

4

3

11

10

13 14

12

5
6

7

9 8

15
16

 Cluster 2

 Cluster 3

 Cluster 4

 Cluster 5

(c)

(b)

(d)

Figure 5 Example of the Tree Separation Operator
Note. In this example, we require each subtree to contain at least two nodes. (a) Initial tree. (b) Subtrees obtained by deleting the most expensive edge �10�16�,
and second most expensive edge �10�4�, result in single-node subtrees, but subtrees obtained by removal of the third most expensive edge �10�12� results in
two trees containing at least two nodes. (c) First child created from parent in (b). (d) Second child created from parent in (b).

the tree-separation operator is to create two new
children, each preserving some of the tree structure
from the parent chromosome. To accomplish this, our
genetic operator removes an edge in the parent tree to
create two subtrees. Two children are then created by
using each of these subtrees as a partial solution. Each
one is completed using a straightforward adaptation
of Prim’s to obtain a generalized spanning tree. To
ensure that each child has sufficient genetic material
from a parent and contains the lower-cost edges from
the parent, we start by removing the most expensive
edge in the parent tree. If the number of nodes in
each subtree is greater than or equal to a prespecified

minimum number of nodes, two new chromosomes
are created using the tree-completion procedure. Oth-
erwise, we delete the second most expensive edge,
and so on, until we obtain two subtrees, each contain-
ing more nodes than does the prespecified minimum.
Figure 5 illustrates the tree-separation procedure with
the minimum requirement of two nodes per subtree.

Random Mutation. Our random mutation oper-
ator randomly selects a gene in the chromosome
and replaces it by another node in the same clus-
ter. The replacement node is chosen from among the
other nodes in the cluster at random (i.e., with equal
probability).

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
298 INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS

Local Search. We apply local search on a chromo-
some as a type of mutation operation. In the local-
search operator, a random ordering of clusters (or
genes) is selected and the clusters are visited repeat-
edly (in the ordering selected initially) until no further
improvement is possible (specifically, until all clusters
are visited once sequentially without any improve-
ment). When visiting a cluster, the local-search oper-
ator considers every other node in the cluster as a
replacement for the current node representing the
cluster, and it selects the node that provides the great-
est improvement in the fitness (cost of the tree) of the
chromosome.

Selection/Replacement. The selection procedure is
an important step in the genetic algorithm. If the
selective pressure is too strong (i.e., only the fittest
individuals are selected to survive), then it is possible
that some very fit chromosomes will dominate early
in the search process and lead the algorithm to a local
optimum, thus terminating the search. On the other
hand, if the selective pressure is too weak (i.e., even
individuals with low fitness survive), then the algo-
rithm will traverse the solution space aimlessly.
Our selection procedure is as follows. At the end of

each generation, from the offspring and parents we
select a fraction � of the population to survive and
constitute the next generation based on the following
criteria. We employ elitism to select the top 10%
of P�t�. Recall, the chromosome-fitness function is the
length of the minimum spanning tree defined over
nodes in the chromosome. The remaining 90% of the
population to be carried to the next generation is
selected based on the ranking-probability distribution
function (see Michalewicz 1996). (For example, if
50 individuals will survive to generation t, 5 are
selected by elitism and 45 are selected using the
ranking-probability distribution function.) Here the
probability with which we select a chromosome with
rank r is given by

Prob�r�=q�1−q�r−1× 1
1−�1−q���P�t−1��+��+�+�+���P�t−1��� �

where q represents a user-defined parameter that con-
trols the selective pressure of the algorithm. This
parameter takes values between 0 and 1, where higher
values indicate more selective pressure. Note that
��+�+� + ���P�t − 1�� represents the number of off-
spring generated using the genetic operators in gen-
eration t − 1, and thus the exponent of �1− q� in the
denominator represents the size of the total popula-
tion before the selection step.

5. Computational Experiments
We now report on our computational experiments
with the LS heuristic and the genetic algorithm (GA)

procedure. We coded both LS and GA in Microsoft
Visual C++ on a Pentium III 800 MHz PC with
256 MB of RAM. We found that, on small instances,
both LS and GA always found the optimal solution.
Consequently, we tested our heuristics on two classes
of large instances—those with edge costs that satisfy
the triangle inequality, and those with random edge
costs.
The instances where the edge costs satisfy the tri-

angle inequality are from TSPLIB, and are identical to
those in Feremans (2001) and Feremans et al. (2004).
These are actually a subset of the instances described
in Fischetti et al. (1997). They contain all prob-
lems from TSPLIB 2.1 (see Reinelt 1991) with 48 to
226 nodes (i.e., 48≤ �V � ≤ 226) and two 47 node prob-
lems, spain47 and europe47, generated by Fischetti
et al. (1997). (The naming convention of the TSPLIB
problems identifies the number of nodes in the prob-
lem at the end of the problem name.) Two clustering
procedures were used by Fischetti et al. (1997) to gen-
erate the clusters. For geographical instances, spain47
(cities in Spain), europe47 (European cities), gr96
(African cities), gr137 (American cities), and gr202
(European cities), clusters are chosen in a natural way
where clusters correspond to a country (or region for
spain47). For the remaining problems, Fischetti et al.
(1997) develop two clustering procedures to simu-
late geographical regions. The first procedure works
roughly as follows. It fixes the number of clusters K
to be ��V �/5
 and then determines K centers by con-
sidering K nodes that are as far as possible from one
another. The clusters are then obtained by assigning
nodes to their closest cluster. The second procedure,
called grid clusterization, works roughly as follows. It
constructs an H ×H square grid, and nodes contained
within a box of this square grid are assigned to a clus-
ter. The size of the square grid H is selected to be the
smallest H , so that the number of nonempty boxes in
this H ×H square grid is ≥ �V �/� (where � is a user-
defined parameter that may be thought of, roughly,
as the average number of nodes in a cluster).
The large random instances were generated using

the following procedure, which is similar to the
problem-generation technique described in Dror et al.
(2000). We are given the number of nodes �V �, the
number of edges �E�, and the number of clusters K,
as inputs. We first partition nodes into clusters as fol-
lows. For each cluster, we generate a random number
in the range 0�1!. The ratio of this random num-
ber to the sum of random numbers over all clus-
ters defines the percentage of nodes that will be
assigned to a given cluster. We then add edges to the
graph. First, we arbitrarily construct a feasible gen-
eralized spanning tree and create edges correspond-
ing to these edges. We then add �E� − �V � + 1 edges
(that are between clusters) to the graph. It is ensured

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS 299

that each node has at least one edge incident to it.
Edge costs are integer and are generated uniformly
in the range 1 to 50. Observe that edge costs can
be randomly assigned since edge cost in the random
instances does not represent distance between two
nodes. Instead, it may represent a cost that depends
on compatibility of two nodes to be connected.

Parameter Settings for LS and GA. After initial
testing, we selected the GA parameters as follows.
The size of the initial population P�0� was set to 500,
while �, �, �, and � were set to 0.1, 0.1, 0.7, and 0.1,
respectively. Thus, in each generation, 500 offspring
were generated. In the tree-separation operator, we set
20% of the nodes as the prespecified required number
of nodes. Additionally, we considered dropping only
the three most expensive edges. If that does not result
in a feasible solution, a new parent node is selected
for the tree-separation operation. The fraction � of the
population to survive was set to 0.5, and the user-
defined parameter q in the rank-based probability dis-
tribution function was set to 0.15. The stopping crite-
rion was 25 generations.
To compare LS fairly with GA, we provided LS the

same set of starting solutions as GA. Thus, we set the
number of starting solutions X = 500.
TSPLIB Instances. We now report on our compu-

tational experiences with the TSPLIB instances. For
these problems, we obtained the optimal solutions
and best lower and upper bounds (when no optimal
solution was available) from Feremans (2001). There
are a total of 169 instances, for which optimal solu-
tions are known in 150 instances. The results are pre-
sented in Tables 3 through 6.
The results of LS and GA on the TSPLIB instances

are quite compelling. Of the 150 instances for
which the optimal solution is known (see Tables 3
through 5), GA found the optimal solution in
149 instances, while LS found the optimal solution
in 145 out of 150 instances. In all the 19 instances
where the optimal solution is not known (see Table 6),
both LS and GA improved upon the best previously
known solutions. In these instances, the percentage
improvement ranged from 0.01% to 5.31%, with an
average improvement of 2.43% for LS and 2.51% for
GA. In 6 of these 19 instances, GA found a better
solution than LS. It is interesting to note that, over all
169 instances, LS never found a better solution than
GA, while GA improved upon LS in 10 instances. On
the other hand, the running time of LS is faster than
GA. On average, GA took about twice as long as LS,
albeit with very impressive results.
For the 19 instances where the optimal solution is

unknown, the average gap of the GA solution com-
pared to the lower bound is 12.35%. On the other
hand, on the 150 instances where the optimal solution
is known, the GA is 0.0001% above optimality. Given

Table 3 Computational Results for LS and GA on TSPLIB Instances
with the Center Clustering Procedure Where the Optimal Solu-
tion Is Known

Problem Optimal LS time GA time
name K �E� solution (sec) (sec)

spain47 15 985 2�393 2 7
europ47 27 1�042 13�085 4 13
gr96 50 4�463 306 27 57
gr137 35 8�251 209 19 39
gr202 34 19�018 135 28 59
att48 10 1�010 10�923 1 6
gr48 10 1�017 1�282 1 6
hk48 10 995 4�119 1 6
eil51 11 1�158 132 1 6
brazil58 12 1�464 9�206 2 7
st70 14 2�248 233 3 8
eil76 16 2�660 186 3 9
pr76 16 2�661 46�514 4 11
gr96 20 4�292 221 6 14
rat99 20 4�609 402 6 15
kroa100 20 4�727 7�982 7 15
krob100 20 4�716 8�111 6 15
kroc100 20 4�714 8�041 7 15
krod100 20 4�716 7�643 7 15
kroe100 20 4�702 8�164 7 15
rd100 20 4�703 2�779 7 15
eil101 21 4�776 204 7 16
lin105 21 5�130 6�728 7 17
pr107 22 5�441 20�398 8 18
gr120 24 6�820 2�255 11 22
pr124 25 7�315 30�174 11 23
bier127 26 7�191 58�150 14 25
pr136 28 8�879 34�104 18 31
gr137 28 8�892 329 15 32
pr144 29 9�952 40�055 18 34
kroa150 30 10�809 9�815 23 39
krob150 30 10�807 10�048 22 39
pr152 31 11�080 39�109 23 41
u159 32 12�031 18�723 26 45
rat195 39 18�478 751 47∗ 79
kroa200 40 19�409 11�634 55 86
krob200 40 19�430 11�244 52 84

Note. Both procedures found the optimal solutions except as noted.
∗LS found a nonoptimal solution with value 753.

the experience on the 150 instances where the optimal
solution is known, we believe that lower bounds for
the unsolved instances are quite far from the optimal
integer solution. We strongly believe that the opti-
mal solution for these instances is equal to, or very
close to, the GA solution.

Large Random Instances. We now report on
our computational experience with large random
instances. For these instances, to determine the
quality of the solution produced by LS and GA,
we solved the linear-programming relaxation of the
mixed-integer programming formulation proposed by
Raghavan (2002) and described in the appendix.
When we solved the linear-programming relax-

ation, we actually solved the dual of the linear-pro-
gramming relaxation. The reason for this is twofold.

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
300 INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS

Table 4 Computational Results for LS and GA on TSPLIB Instances with Grid Clustering Procedure, �= 3 and 5, Where Optimal
Solution Is Known

�= 3 �= 5

Problem Optimal LS time GA time Optimal LS time GA time
name K �E� solution (sec) (sec) K �E� solution (sec) (sec)

att48 18 1�062 16�521 3 9 13 1�025 13�189 2 6
eil51 25 1�235 242 4 12 16 1�214 158 2 8
st70 24 2�329 297 6 14 16 2�277 214 3 9
eil76 36 2�789 306 13 28 16 2�695 149 3 9
pr76 31 2�770 58�038 11 20 16 2�661 29�788 3 9
gr96 33 4�413 298 13 28 22 4�315 234 7 16
rat99 36 4�753 521 18 34 25 4�692 410 9 19
kroa100 43 4�844 11�914 23 46 23 4�748 8�054 9 17
krob100 44 4�854 12�561 28 49 25 4�743 7�880 11 19
kroc100 42 4�847 12�284 24 44 25 4�762 8�084 11 20
krod100 42 4�846 11�827 25 45 24 4�724 8�741 9 18
kroe100 42 4�846 12�292 25 44 25 4�738 8�401 9 19
rd100 36 4�801 3�978 18 34 24 4�742 3�077 8 18
eil101 36 4�912 295 18 35 25 4�812 217 10 19
lin105 42 5�340 9�280 31 54 30 5�237 7�410 14 27
pr107 45 5�542 23�290 22 44 22 5�438 19�877 8 16
pr124 42 7�440 37�837 31 57 25 7�219 27�156 12 22
bier127 50 7�729 71�221 42 75 26 7�173 58�989 14 23
pr136 60 9�064 52�817 61a 107 34 8�888 37�735 25 40
gr137 49 9�122 391 43 80 32 8�908 338 18 35
pr144 48 10�084 43�725 39 74 30 9�928 36�279 18 33
kroa150 57 11�005 14�050 81 119 36 10�868 10�101 35 50
krob150 56 10�982 13�845 66 109 36 10�870 9�780 31 50
pr152 54 11�254 44�253 56 99 33 11�083 38�143 25 42
u159 58 12�321 24�214 73 115 32 12�046 17�059 25 40
rat195 51 18�745 1�111 190 290 49 18�600 796 77 114
kroa200 72 19�636 14�881 155b 259 47 19�464 11�628 78 108
krob200 76 19�661 15�320 186 336 48 19�511 11�113 78c 114d

Note. Both procedures found the optimal solutions, except as noted.
aLS found a nonoptimal solution with value 52,824.
bLS found a nonoptimal solution with value 14,897.
cLS found a nonoptimal solution with value 11,115.
dGA found a nonoptimal solution with value 11,115.

First, in most instances, solving the dual is faster than
solving the primal. Second, any feasible solution to the
dual is a valid lower bound for the problem. Thus,
even if we terminated (due to excessively long run-
ning times) Phase II of the simplex method, we have
a valid bound for the GMST. Further, since the edge
costs in the problem are integer, we may round up
the value of the lower bound (as the optimum integer
feasible solution will have an integer objective value)
to obtain an improved lower bound for the GMST.
In Table 7, we report on our computational experi-

ence with large random instances. We solved the dual
of the LP relaxation of the MIP formulations using
CPLEX 7.1 on a Sun Microsystems Enterprise 250
with 2× 400 MHz processors and 2 GB of RAM. The
running times (in seconds) to obtain these optimal
solutions were quite large. Several instances required
weeks of CPU time. Further, in many instances, we
manually terminated Phase II of the simplex when the
objective was within one unit of the solution found
by GA or if the running time was inordinately long.

Again, the results of LS and GA are quite compelling.
Out of the 42 instances, GA was strictly better than LS
in 5 instances, while LS was strictly better than GA in
1 instance.
The remaining 36 instances were ties. Of the

42 instances, we are able to show optimality of the
LS or GA solution in 37 instances, with LS finding
the optimal solution in 34 instances and GA finding
the optimal solution in 36 instances. In the remain-
ing five instances (where we cannot show that LS
or GA obtained the optimal solution), the objective
value of GA is within one unit of the lower bound
in four instances and within two units of the lower
bound in one instance. It is quite possible that LS or
GA obtained optimal solutions on these instances. For
example, in the instance with K = 20, �V � = 160, and
�E� = 5�000, we solved the mixed-integer program-
ming formulation to optimality, and found that the
optimal solution was 35, indicating that LS and GA
both found the optimal solution. We did not attempt
to do this on the remaining four instances (where the

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS 301

Table 5 Computational Results for LS and GA on TSPLIB Instances with Grid Clustering Procedure, �= 7 and 10, Where Optimal
Solution Is Known

�= 7 �= 10

Problem Optimal LS time GA time Optimal LS time GA time
name K �E� solution (sec) (sec) K �E� solution (sec) (sec)

att48 7 947 6�667 1 5 7 947 6�667 1 5
eil51 9 1�143 100 1 6 9 1�143 100 1 5
st70 16 2�277 214 3 9 9 2�160 147 1 6
eil76 16 2�695 149 3 9 9 2�545 94 1 6
pr76 16 2�661 29�788 3 9 9 2�532 20�501 1 6
gr96 15 4�170 186 3 9 15 4�170 186 3 9
rat99 16 4�583 308 4 11 16 4�583 308 4 11
kroa100 16 4�647 5�987 5 11 16 4�647 5�987 4 11
krob100 16 4�652 6�058 5 11 16 4�652 6�058 5 11
kroc100 16 4�651 5�534 5 11 16 4�651 5�534 5 11
krod100 16 4�647 5�904 5 11 16 4�647 5�904 5 11
kroe100 16 4�607 6�450 5 11 16 4�607 6�450 5 11
rd100 16 4�606 2�287 4 11 16 4�606 2�287 4 11
eil101 16 4�757 141 4 11 16 4�757 141 4 11
lin105 16 5�005 4�542 5 11 16 5�005 4�542 5 11
pr107 16 5�322 17�547 5 11 12 5�196 16�754 3 8
pr124 19 7�077 23�164 7 15 14 6�896 18�554 4 10
bier127 19 7�039 52�097 7 15 14 6�240 43�778 4 10
pr136 20 8�724 22�541 8 17 16 8�548 21�732 5 13
gr137 22 8�746 264 9 20 15 8�504 197 4 12
pr144 21 9�762 33�947 9 19 16 9�508 32�510 5 13
kroa150 25 10�703 7�944 15 27 16 10�506 5�229 7 14
krob150 25 10�725 7�293 17 28 16 10�455 5�494 7 14
pr152 24 11�008 35�429 14 25 16 10�828 33�340 6 14
u159 23 11�896 12�659 14 23 23 11�896 12�659 14 23
rat195 36 18�454 639 44a 66 25 18�225 482 20 34
kroa200 35 19�335 9�640 45 63 25 19�100 6�895 23 35
krob200 36 19�362 9�742 45 67 25 19�082 6�922 24 36
pr226 — — — — — 27 24�137 43�389 22 40

Note. Both procedures found the optimal solutions, except as noted.
aLS found a nonoptimal solution with value 648.

optimal integer solution is not known) as it was com-
putationally prohibitive to do so.

Comparing LS Against FLS. We finally report on
some computations we performed to compare LS
against FLS. As we indicated in §3, FLS considers only
one other node as a substitute for the current node in
the cluster, while LS considers all other nodes in the
cluster as possible substitutes. We wanted to see to
what extent this difference in neighborhood structure
affected the quality of the solutions (and the ability
of the local-search heuristics to find the optimal solu-
tion). We coded FLS (in Microsoft Visual C++ on the
same machine as LS) and ran it on the 211 instances
with the identical set of 500 starting solutions for
each problem instance as LS. We found that out of
the 211 instances, FLS found the optimal solution in
only 24 instances, as compared to LS, which found
the optimal solution in 179 instances. In 187 instances,
the solution obtained by LS is strictly better than the
solution obtained by FLS, while FLS never obtained
a better solution than LS. Over the 187 instances for
which the optimal solution is known, FLS generated

solutions that are, on average, 3.28% from optimality
(compared to 0.07% for LS). For the 211 instances, the
average running times were 23.10 seconds for LS, and
2.09 seconds for FLS.
We note that, compared to LS, FLS performs an

abbreviated search, visiting each cluster just once.
Since we want to compare the difference in neigh-
borhoods, we developed an improved version of FLS,
called complete FLS, where local search is performed
until no further improvement is possible. Complete
FLS is identical to LS, except that the neighborhood
structure is as in FLS. We coded complete FLS (in
Microsoft Visual C++ on the same machine as LS)
and also ran it on the 211 instances (with the iden-
tical set of 500 starting solutions for each problem
instance as LS). On examining the results for complete
FLS, we found it is better than FLS, but its results fall
short of LS. Out of the 211 instances, complete FLS
found the optimal solution in 83 instances. Further,
in 121 instances, LS is strictly better than complete
FLS, while complete FLS is strictly better than LS in
2 instances. Over the 187 instances for which the opti-

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
302 INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS

Table 6 Computational Results for LS and GA on TSPLIB Instances Where the Optimal Solution Is Unknown

LS GA
Problem Lower Previous
name K �E� bound best Soln Time (sec) Soln Time (sec)

TSPLIB instances, center clustering
d198 40 18,841 5�743 7�232 7�044 51 7�044 84
gr202 41 19,532 217 250 244 43 243 85
ts225 45 24,650 62�131 62�506 62�400 69 62�315 115
pr226 46 24,626 50�206 55�971 55�515 59 55�515 115

TSPLIB instances, grid clustering, �= 3
d198 67 19,101 7�129 8�599 8�285 131 8�283 216
gr202 68 19,826 265 302 293 105 293 220
ts225 75 24,900 78�028 81�962 79�085 182 79�019 298
pr226 84 25,118 44�078 63�148 62�527 174 62�527 321

TSPLIB instances, grid clustering, �= 5
d198 40 18,772 5�775 7�291 7�098 51 7�098 79
gr202 41 19,303 202 243 234 40 232 78
ts225 45 24,726 56�018 62�242 60�713 70 60�659 107
pr226 50 24,711 55�800 56�822 56�721 67 56�721 118

TSPLIB instances, grid clustering, �= 7
d198 32 18,372 5�273 6�759 6�501 32 6�501 52
gr202 31 18,872 180 207 203 27 203 49
ts225 35 24,544 50�281 53�661 50�813 47 50�813 69
pr226 33 24,355 47�965 48�254 48�249 34 48�249 59

TSPLIB instances, grid clustering, �= 10
d198 25 18,149 4�999 6�351 6�185 20 6�185 34
gr202 21 17,904 161 185 177 12 177 26
ts225 25 24,300 40�298 41�162 40�339 22 40�339 37

mal solution is known, complete FLS generated solu-
tions that were, on average, 0.55% from optimality.
The average running time for complete FLS over the
211 instances was 6.87 seconds.
These results confirm our earlier assertion that LS

is expected to provide better results than FLS, while
the running time of FLS is expected to be significantly
faster than LS. They also show that the neighborhood
considered by LS is very effective in converging to
the global optimum, while the neighborhood consid-
ered by FLS generally gets stuck at a locally optimal
solution.

6. Conclusions
In this paper, we presented two heuristic search
techniques—local search and a genetic algorithm—for
the GMST problem. We also presented simple lower
and upper bound heuristics for the GMST problem.
There are several noteworthy contributions in this
paper that we now summarize.
We considered the three well-known algorithms for

the MST problem, and considered various approaches
of adapting them to the GMST problem. In adapting
these algorithms (as heuristics) to the GMST problem,
we showed how to deal with infeasibility, when the
graph is not complete, in a computationally effective
manner. Feremans (2001) and Feremans et al. (2004)

assert that Kruskal’s adaptation to the GMST problem
dominates Prim’s and Sollin’s adaptations. However,
we showed that by repeating Kruskal’s, Prim’s, and
Sollin’s adaptation �V � times, once each for a choice of
a particular node in the generalized spanning tree, the
quality of the solution produced by all three heuris-
tics improves substantially and all three heuristics are
competitive (i.e., neither dominates the other two). In
our computational experience, when the number of
nodes in a cluster is small, Kruskal’s adaptation does
better, while Prim’s adaptation does better when the
number of nodes in a cluster is large.
In developing our local-search procedure, we

showed that LS searches the neighborhood of a gener-
alized spanning tree more effectively than does FLS.
Specifically, we showed that FLS considers only one
other node in the cluster as a substitute for the cur-
rent node representing the cluster, while LS consid-
ers every other node in the cluster as a potential
substitute. We also showed that this neighborhood
structure is particularly effective, compared to the
neighborhood structure proposed by Feremans et al.
(2004).
Finally, we tested our heuristics LS and GA on a test

set of 211 large problem instances. Our results were
quite compelling, and indicated that both LS and GA
rapidly generate optimal or near-optimal solutions for
the GMST problem.

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS 303

Table 7 Computational Results for LS and GA on Large Random Instances

Problem characteristics Dual of LP relax LS GA
Lower

K �V � �E� LP soln Time (sec) bound† Soln Time (sec) Soln Time (sec)

15 120 2�000 35 3�541 35 35 5 35 10
3�000 23 978 23 23 5 23 10
6�000 20�5∗ 7�477 21 21 5 21 10

150 3�000 30 13�724 30 30 6 30 14
5�000 24 12�858 24 24 6 24 12
9�000 18�71 142�245 19 19 6 19 12

180 4�000 25�83∗ 25�874 26 26 7 26 14
7�000 16 4�304 16 16 7 16 14

14�000 15 51�000 15 15 7 15 13

20 120 1�500 47 2�209 47 47 8 47 15
3�000 31 4�077 31 31 8 31 15
6�000 26�8 55�947 27 27 7 27 15

160 3�000 36 24�428 36 38 11 36 19
5�000 34 54�778 34 35 11 35 19
10�000 23 120�879 23 23 10 23 18

200 5�000 35�47∗ 63�539 36 36 14 36 23
10�000 28�32∗ 366�275 29 29 14 29 23
15�000 20�41∗ 84�765 21 21 12 21 22

25 150 3�000 54 10�428 54 54 16 54 26
6�000 41 51�957 41 43 14 41 25
9�000 33�09∗ 102�743 34 34 14 34 25

200 5�000 41 61�085 41 41 22 41 33
10�000 37�38 770�168 38 39 20 39 33
15�000 26 142�046 26 26 19 26 32

30 120 2�000 73�59∗ 17�704 74 74 16 74 28
3�000 55�2∗ 17�803 56 56 16 56 29
6�000 42 62�476 42 42 14 42 28

150 3�000 63 17�945 63 63 22 63 35
6�000 47�5∗ 82�436 48 48 20 48 34
9�000 39�33 421�907 40 41 19 41 34

180 4�000 59 120�860 59 59 27 59 42
7�000 47 193�727 47 47 26 48 40

14�000 33�18∗ 192�303 34 34 23 34 40

40 120 1�500 117�33∗ 5�650 118 118 29 118 48
3�000 73 9�405 73 73 29 73 47
6�000 55 72�261 55 55 26 55 46

160 3�000 91�19∗ 13�859 92 92 41 92 62
5�000 78�75∗ 99�332 79 80 39 79 62

10�000 53�17∗ 110�445 54 54 37 54 60
200 5�000 86�88 532�824 87 91 51 89 78

10�000 58�41∗ 1�111�914 59 61 48 60 78
15�000 45�02∗ 1�702�291 46 46 44 46 74

∗These problems were interrupted before the dual of the linear-programming relaxation was solved to optimality.
†Bold values identify instances where the lower bound is equal to the upper bound.

Acknowledgments
The authors thank Dr. Feremans for providing the TSPLIB
data set. They are also grateful to an anonymous referee for
suggestions concerning Sollin’s adaptation.

Appendix

Modeling the GMST as a Steiner Tree with Degree
Constraints
We first convert the undirected graph to a directed graph
by replacing each edge �i� j� by two directed arcs �i� j� and
�j� i�. The costs of arc �i� j� and �j� i�, denoted by cij = cji,

are equal to the cost of the undirected arc. Let the clusters
be numbered 1�2� � � � �K. We add nodes and connect them
to the existing graph as follows.
1. Arbitrarily select a cluster r . Add a vertex sr , and con-

nect it to the selected cluster r by adding arcs �sr � i� for all
i ∈ Vr . The cost of these arcs is csr i

= 0.
2. For each cluster k = 1� � � � �K, k �= r , create a sink

node tk. Add arcs �i� tk� for all i ∈ Vk, with cost citk
= 0. Let T

denote the set of sink nodes created.
Consider the following variant of the directed Steiner tree

problem on the transformed graph. Let sr be the root node,

Golden et al.: Heuristic Search for the Generalized Minimum Spanning Tree Problem
304 INFORMS Journal on Computing 17(3), pp. 290–304, © 2005 INFORMS

and the set of sink nodes T are the required nodes. We want
a minimum-cost directed Steiner tree, with root node sr ,
and containing all the nodes in T . Additionally, we need
to ensure that exactly one node in each cluster is in the
directed Steiner tree (as a Steiner node).
The following standard multicommodity flow model

applies to the problem. Let yij be one if arc �i� j� is in the
design, and be zero otherwise. Define a set of commodi-
ties H in the model as follows. For each tk ∈ T , create a
commodity h ∈H with origin sr and destination tk. Let O�h�
denote the origin of commodity h, D�h� denote the destina-
tion of commodity h, and f h

ij denote the flow of commod-
ity h on arc �i� j�. Given a node set S, we denote the set of
arcs directed into this node set as �−�S�, and the set of arcs
directed out of this node set as �+�S�.

Directed Flow-Formulation for the GMST Problem:

Minimize
∑

�i� j�∈A

cijyij (1)

subject to:
∑

�j� i�∈�−��i��

f h
ji −

∑
�i� l�∈�+��i��

f h
il =





−1 if i =O�h�,

1 if i =D�h�,

0 otherwise;

for all i ∈ V and h ∈H (2)

f h
ij ≤ yij for all �i� j� ∈A and h ∈H (3)
∑

�i� j�∈�−�Vk�

yij = 1 for k = 1� � � � �K� k �= r (4)

yij + yji ≤ 1 for all �i� j� ∈ E (5)

f k
ij � f k

ji ≥ 0 for all �i� j� ∈ E and h ∈H (6)

yij ∈ �0�1� for all �i� j� ∈A. (7)

In this formulation, constraints (4) ensure that the inde-
gree of each cluster is 1, while the remaining constraints
are as in the standard multicommodity flow formulation for
the Steiner tree problem (Wong 1984). The above formula-
tion is equivalent to the multicommodity flow formulation
described by Myung et al. (1995) for the GMST. Myung et al.
introduce node variables in their formulation to represent
whether a node is selected to be in the GMST, while we
expand the graph to create additional arc variables. In our
computational experiments, we found that, although the

two formulations are equivalent as linear programs, CPLEX
solves the above formulation significantly faster.

References
Aarts, E. H. L., J. K. Lenstra. 1997. Local Search in Combinatorial

Optimization. John Wiley and Sons, Chichester, UK.
Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows: Theory,

Algortihms and Applications. Prentice-Hall, Englewood Cliffs,
NJ.

Dror, M., M. Haouari, J. Chaouachi. 2000. Generalized spanning
trees. Eur. J. Oper. Res. 120 583–592.

Feremans, C. 2001. Generalized Spanning Trees and Extensions. Ph.D.
thesis, Institut de Statistique et de Recherche Opérationnelle,
Université Libre de Bruxelles, Bruxelles, Belgium.

Feremans, C., M. Labbé, G. Laporte. 2002. A comparative analysis
of several formulations for the generalized minimum spanning
tree problem. Networks 39 29–34.

Feremans, C., M. Labbé, G. Laporte. 2004. The generalized mini-
mum spanning tree problem: Polyhedral analysis and branch-
and-cut algorithm. Networks 43 71–86.

Fischetti, M., J. J. Salazar-Gonzalez, P. Toth. 1997. Symmetric gen-
eralized traveling salesman problem. Oper. Res. 45 378–394.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization Ma-
chine Learning. Addison Wesley Longman, Inc., Reading, MA.

Holland, J. H. 1962. Outline for a logical theory of adaptive systems.
J. Association Comput. Machinery 3 297–314.

Michalewicz, Z. 1996. Genetic Algorithms+Data Structures= Evolu-
tion Programs. Springer, Heidelberg, Germany.

Myung, Y. S., C. H. Lee, D. W. Tcha. 1995. On the generalized min-
imum spanning tree problem. Networks 26 231–241.

Pop, P. C., W. Kern, G. J. Still. 2000. The generalized minimum
spanning tree problem. Technical report, Department of Oper-
ations Research and Mathematical Programming, University of
Twente, Twente, The Netherlands.

Pop, P. C., W. Kern, G. J. Still. 2001. An approximation algorithm
for the generalized minimum spanning tree problem with
bounded cluster size. Technical report, Department of Opera-
tions Research and Mathematical Programming, University of
Twente, Twente, The Netherlands.

Raghavan, S. 2002. On modeling the generalized minimum span-
ning tree. Technical report, The Robert H. Smith School of Busi-
ness, University of Maryland, College Park, MD.

Reinelt, G. 1991. TSPLIB—A traveling salesman problem library.
INFORMS J. Comput. 3 376–384.

Tovey, C. A. 1997. Local improvement on discrete structures.
E. H. L. Aarts, J. K. Lenstra, eds. Local Search in Combinatorial
Optimization. John Wiley and Sons, Chichester, UK, 57–90.

Wong, R. T. 1984. A dual ascent approach for Steiner tree problems
on a directed graph. Math. Programming 28 271–287.

