GENETICALLY ENGINEERED DECISION TREES: POPULATION
DIVERSITY PRODUCES SMARTER TREES

ZHIWEI FU

Fannie Mae, 4000 Wisconsin Avenue NW, Washington, DC 20016, zhiwei_fu@ fanniemae.com

BRUCE GOLDEN, SHREEVARDHAN LELE, and S. RAGHAVAN

Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742
bgolden@rhsmith.umd.edu * slele@rhsmith.umd.edu ¢ raghavan@umd.edu

EDWARD WASIL

Kogod School of Business, American University, Washington, DC 20016, ewasil@american.edu

The second author dedicates this paper to the memory of his mother, Gloria D. Golden (1927-2003).

When considering a decision tree for the purpose of classification, accuracy is usually the sole performance measure used in the construction
process. In this paper, we introduce the idea of combining a decision tree’s expected value and variance in a new probabilistic measure for
assessing the performance of a tree. We develop a genetic algorithm for constructing a tree using our new measure and conduct computational
experiments that show the advantages of our approach. Further, we investigate the effect of introducing diversity into the population used
by our genetic algorithm. We allow the genetic algorithm to simultaneously focus on two distinct probabilistic measures—one that is risk
averse and one that is risk seeking. Our bivariate genetic algorithm for constructing a decision tree performs very well, scales up quite
nicely to handle data sets with hundreds of thousands of points, and requires only a small percent of the data to generate a high-quality
decision tree. We demonstrate the effectiveness of our algorithm on three large data sets.

(Statistics, data analysis: data mining. Marketing, estimation/statistical techniques: decision trees. Computers/computer science, artificial

intelligence: genetic algorithms.)

Received February 2001; revisions received March 2002, October 2002; accepted December 2002.

Area of review: Computing and Decision Technology.

1. INTRODUCTION

Decision trees are a popular type of classification system
(e.g., see Ripley 1996, Jain et al. 2000). When compared
to other classification methods such as logistic regres-
sion, neural networks, and nearest neighbor rules, the chief
attraction of decision trees is that they are easy to inter-
pret in terms of the predictor variables that are used in
constructing the tree. Algorithms for constructing decision
trees vary according to the method employed for construct-
ing the different nodes of the tree and according to the
method used for collapsing unnecessary subtrees of the tree
(this is called pruning the tree).

In Fu et al. (2003), we considered the development
of decision trees using a genetic algorithm called GAIT
(genetic algorithm for intelligent trees). It was seen that
GAIT performed better than logistic regression and C4.5. In
this paper, we consider two distinct and significant issues—
one arising in the development of decision trees and the
second arising in the development of genetic algorithms.
We study these two issues in the context of decision trees
generated using GAIT.

First, we treat the classification accuracy of a tree as a
random variable. In contrast to most tree construction and
pruning algorithms that focus implicitly and exclusively on
the expected value of the classification accuracy, we con-
sider the variance of the tree’s accuracy as well. We use

Operations Research © 2003 INFORMS
Vol. 51, No. 6, November-December 2003, pp. 894-907

the expected value and variance properties of a tree by con-
sidering a new measure for assessing the performance of a
tree. The proposed performance measure is the probability
that the accuracy of the tree exceeds a prespecified thresh-
old. It is shown that, depending on the value of the thresh-
old that is specified, the probabilistic performance measure
used for tree development can be described as either risk
averse or risk seeking.

Second, we consider two distinct objectives in the fit-
ness function of our genetic algorithm. Instead of focusing
exclusively on optimizing a scalar performance measure
(such as either the expected value of the accuracy or the
probability of exceeding a threshold accuracy), we allow
our genetic algorithm to be simultaneously mindful of two
distinct probabilistic performance measures. We choose one
of these measures to be risk averse while the other is chosen
to be risk seeking. Because the genetic algorithm considers
both of these measures, a diverse population of decision
trees emerges. As a result, the genetic algorithm performs
very well.

Our computational experiments are conducted on three
large data sets. Initially, we focus on a real-life marketing
data set obtained from a firm in the transportation servi-
ces industry. This transportation marketing data set con-
tains demographic and usage information for approximately
440,000 customers and 11 key variables.

0030-364X/03/5106-0894
1526-5463 electronic ISSN

The rest of this paper is organized as follows. In §2,
we describe the probabilistic criterion for measuring the
performance of a decision tree. An overview of the uni-
variate GAIT algorithm that was developed in Fu et al.
(2003) is provided in §3. In §4, we describe the results
of our computational experiments using the probabilistic
performance measure as the univariate fitness function in
GAIT. In §5, we provide results on extending GAIT’s fit-
ness function to a bivariate function that keeps track of two
distinct probabilistic performance measures. Scaling issues
are addressed in §6 and two additional data sets are studied
in §7. Conclusions are given in §8.

We compare our approach with that of C4.5. Lim et al.
(2000) perform a comprehensive review and comparison
of 33 classification algorithms (22 of these are decision
tree algorithms, 9 are statistical algorithms, and 2 involve
neural networks). The authors record prediction accuracy
and training time over 32 data sets. They conclude that
C4.5 has good classification accuracy and that it is, by far,
the fastest of the 33 algorithms. Because our data sets are
substantially larger that those studied by Lim et al. and
a key focus of our work is computational effort, it seems
sufficient to use C4.5 as a benchmark.

2. A PROBABILISTIC CRITERION FOR
SCORING CLASSIFICATION TREES

Suppose we have a set of competing classification trees,
each of which is intended to classify items from a certain
population. We wish to assign a score to each tree that
measures the goodness of the tree in classifying items from
the given population. Such a score may be used to select
the best tree out of the set of available trees. One method of
assigning a score to each tree is to randomly select a subset
of the population, called the scoring set, and record the
overall classification accuracy of each tree on this common
scoring set. Let n denote the size of the scoring set.

Now, the accuracy of a tree with respect to a randomly
selected scoring set is actually a random variable. Its value
depends on the data set selected for scoring. Different data
sets, each of size n, may lead to different values of accuracy
for a given tree. Because the accuracy with respect to a
randomly selected data set is a random variable, it has an
expected value and a variance. Most scoring procedures
for classification trees focus on the expected value of the
classification accuracy (e.g., see Berry and Linoff 1997)
while ignoring the variance of the classification accuracy.

The variance of the accuracy of a tree measures the
consistency of the tree in correctly classifying items. Con-
sistency of accuracy is clearly a desirable property of a
classification tree. Furthermore, the variance of accuracy
has been linked to other desirable properties of a tree, such
as simplicity and explainability. For example, Fu (2000)
has shown that trees with smaller variances tend to have a
smaller depth and a smaller number of nodes (i.e., they are
less bushy). Ideally, we would like to select a tree that has
a high mean accuracy while simultaneously having a low
variance of accuracy.

Fu, GOLDEN, LELE, RAGHAVAN, AND WASIL / 895

To explicitly acknowledge the fact that the accuracy of
a tree with respect to a randomly selected data set is a
random variable, we consider the probability distribution of
the accuracy. In particular, we consider the probability that
the accuracy exceeds or falls below a preset threshold as a
criterion function.

Suppose we use the probability that the accuracy exceeds
a preset threshold as the criterion function to evaluate the
goodness of a tree. Then, the tree that maximizes this cri-
terion function is the best tree in the set of available trees.
Let us call this criterion for determining the optimal tree
Form 1. On the other hand, we may use the probability that
the accuracy falls below a preset threshold as another crite-
rion function for evaluating a tree. In this case, the tree that
minimizes this criterion function is the best tree in the set
of available trees. Let us call this criterion for determining
the optimal tree Form 2.

Form 1 may be considered to be a risk-seeking criterion
as it seeks to maximize the likelihood of a desirable out-
come. Form 2 may be considered to be a risk-averse crite-
rion as it seeks to minimize the likelihood of an undesirable
outcome. For a fixed threshold, the two forms will lead to
identical solutions because maximizing the probability of
exceeding a threshold is equivalent to minimizing the prob-
ability of falling below that same threshold. The distinction
between the two forms in the sense of being risk seeking
and risk averse arises from the value of the threshold that
is used in the criterion function. We address the issue of
selecting the threshold value in greater detail below, and
again in §4.

Let T;(n) denote the accuracy of the ith tree (out of the
available set of trees) on a randomly selected scoring set
of size n. We abbreviate this to 7; because n will be held
fixed. Let u; and o; denote the mean and standard deviation
of T.. They can be estimated in two ways. Noting that 7; is
the mean of n Bernoulli random variables, it follows that
o =Vui(1—p;)/n.

Let a; denote the value of the accuracy of the tree on
a single scoring set of n cases. Then, u; can be estimated
by a;, and o; can be estimated by \/a;(1—a;)/n. How-
ever, this estimate of o; is extremely variable. To get a
more accurate estimator of o;, the tree can be scored on
m randomly selected data sets, each of size n. Let a; and
s; denote the mean and standard deviation of the m sample
accuracies. They are the estimates for u; and o, respec-
tively. In our study, we use this latter approach to estimate
w; and o;.

Let K denote a preset threshold value for the accuracy
T.. Because T; is a mean of n Bernoulli random variables,
its distribution tends to the normal distribution when #n is
large. Then, the probability that 7; exceeds the threshold
K, P{T, > K} is P{Z > (K —pu;)/0;}, where Z denotes a
standard normal random variable. This probability can be
estimated by plugging in the estimates for u; and o, i.e., by
P{Z > (K —a;)/s;}. Similarly, P{T; < K} can be estimated
by P{Z < (K —a;,)/s;}.

896 / Fu, GOLDEN, LELE, RAGHAVAN, AND WASIL

Let z; denote (K — a;)/s;, the z-score of K with respect
to the ith tree. Then, employing Form 1 of the criterion
function, i.e., maximizing P{7, > K}, is equivalent to min-
imizing z; (see Figure 1). Furthermore, employing Form 2
of the criterion function, i.e., minimizing P{7, < K}, is
also equivalent to minimizing z,. Therefore, the problem of
determining the best tree using either Form 1 or Form 2
of the criterion function reduces to finding the z-score of
each tree (with respect to threshold K) and then selecting
the tree with the lowest z-score.

We return to the issue of selecting the value of the thresh-
old, K. It is important to consider the value of the threshold
in the context of the range of probable accuracies of the
available trees. Let a,;, and a,,,, denote the smallest and
largest estimated mean accuracies in the set of available
trees. A selection procedure that maximizes the probabil-
ity that the accuracy of a tree exceeds a,,,, would be con-
sidered a risk-seeking selection procedure, as it attempts
to maximize the probability of an extremely desirable out-
come. Conversely, a selection procedure that minimizes the
probability that the accuracy of a tree falls below a,
would be considered a risk-averse selection procedure, as
it seeks to minimize the probability of an extremely unde-
sirable outcome. By choosing an appropriate value of K
between a,,, and a,,,, one can control the degree of risk
aversion of the tree-scoring procedure.

3. GENETIC ALGORITHM FOR
INTELLIGENT TREES

In Figure 2, we provide an overview of GAIT—the genetic
algorithm for classification trees that we developed in
Fu et al. (2003). The algorithm starts with an initial pop-
ulation of classification trees (referred to as trees here-
after). These are the set of trees (parents) at the start of
the first generation. GAIT then applies the typical genetic

Figure 2. GAIT overview.

Create the initial
population

A 4

Crossover and
mutation

A 4

A 4

Figure 1. Risk-seeking (Form 1) and risk-averse
(Form 2) criteria.
Form 1:
) K K :
Form 2:
« K " >

operations of crossover and mutation to generate new trees
(children). It then evaluates the fitness of all trees in a gen-
eration to determine the trees, among both the parents and
children, that survive the generation. The trees that sur-
vive a generation are taken to the next generation, and the
remaining trees are deleted. This procedure is repeated for
a specified number of generations, or until some specified
level of convergence is reached. We now elaborate on some
of the details of GAIT.

Initial Population of Trees. Our procedure splits the
data set available for tree generation purposes into two
parts: a training set and a scoring set. The training set
is used to generate the initial set of trees as follows.

Comments
Created by partitioning the

training set and using C4.5
on the partitions.

See Figure 3.

to next generation

Evaluate fitness and evolve

Fitness evaluated using
scoring set and z-score for
K criteria.

Repeat until stopping criteria satisfied

A 4

Results

If the training set consists of N, points, then GAIT gener-
ates the initial set of, say k, trees by randomly sampling
N,/k points, either with or without replacement from the
training set. (N, is chosen to be an integer multiple of £.) In
this paper, we sample with replacement from the training
set. A tree is generated using the popular C4.5 algorithm
(see Quinlan 1993) on this sample of N,/k points. The pro-
cess continues until k trees are generated.

Crossover and Mutation. The crossover operation
takes two parent trees to generate two new children trees.
It randomly selects a node in each parent and exchanges
the subtrees rooted at these nodes to obtain two chil-
dren trees. Roulette wheel parent selection ensures that the
best (most fit) current trees are given more reproductive
chances than other current trees (see Michalewicz 1996 for
details). Crossover is accepted with a probability equal to
the crossover rate. Following crossover, a mutation opera-
tor is applied and then accepted with a probability equal to
the mutation rate. Mutation involves the exchange of sub-
trees within a tree. Two nodes are selected at random within
the tree and the subtrees rooted at each of these nodes are
exchanged. We make sure that neither of these nodes is in
the other node’s subtree. In Figure 3, we show the crossover
and mutation operations.

Fitness Function. In a genetic algorithm, with an eli-
tist strategy, we score the population of feasible solutions
on a fitness criterion to determine the solutions that survive
from one generation to the next. In our application of GAIT
(see Fu et al. 2003), we use the classification accuracy of
a tree on the scoring set as the fitness criterion. We modify
the fitness function to the probabilistic criterion described
in §2. To be specific, we divide the scoring set of N, = nm
points into m sets of n data points each. We determine
the classification accuracy of the tree on each of these m

Figure 3.

(a) Crossover operation. (b) Mutation opera-
tion.

Fu, GOLDEN, LELE, RAGHAVAN, AND WASIL / 897

sets, and compute the average classification accuracy and
the standard deviation of the classification accuracy of the
classification tree on the scoring set. We then use this to
obtain the z-score of the tree for the particular choice of
the K criterion. Recall that a tree with a lower z-score rep-
resents a higher fitness value. In GAIT, the number of trees
that survive from one generation to the next is set equal to
the number of initial trees (i.e., k).

Logic Checks and Pruning. It is possible for the
crossover and mutation operations to result in trees that
have logically inconsistent rules. This does not actually
affect the classification accuracy of a tree because logi-
cally inconsistent rules will never classify any data point
(because no data point will satisfy the logically inconsis-
tent conditions of the rule). However, it is advantageous
to prune the tree by deleting the branches corresponding
to these logically inconsistent rules. Consequently, within
the genetic algorithm, we check and correct these logical
inconsistencies in the trees (see Figure 4). Notice that the
logic checks could be conducted either immediately after a
crossover operation or a mutation operation, at the end of a
generation for just the trees that will survive, or at the end
of GAIT (i.e., ignoring logic violations until the end of the
algorithm). In Fu et al. (2003), we found it advantageous to
perform the logic checks immediately after a crossover or a
mutation, or at the end of a generation. These logic checks
improve the accuracy, reduce the space requirements, and
add very little to the running time. In terms of the trees
generated, there is no difference between performing the
logic checks immediately after a crossover or a mutation,
or at the end of a generation. The two are equivalent, but it
is computationally more efficient to delay the logic checks
to the end of a generation. We also employ the following
standard pruning criteria to increase the ability of the tree
to classify data sets other than the data set on which it is
generated. Pruning starts from the bottom (leaf) of the tree
and works its way up to the root of the tree. Each inter-
nal node (i.e., nonleaf node) is replaced with a leaf if its
replacement results in a decrease in classification accuracy
that is smaller than a prespecified value (e.g., 0.5%).

In §4, we will perform computational experiments using
GAIT with the new fitness-scoring function on the trans-
portation marketing data set. Because the fitness function
depends on the K value selected, for convenience we will
denote the genetic algorithm with the new classification
function by GAK. In our experiments, we will use multiple
K values to assess the behavior of the genetic algorithm.
Consequently, we use the term GA to refer to the set of
genetic algorithms with different K values, and GAK (with
K replaced by the appropriate value) to refer to the genetic
algorithm with a particular choice of the K value.

4. COMPUTATIONAL EXPERIMENTS WITH
THE GENETIC ALGORITHM

We apply our genetic algorithm with three different K val-
ues to the transportation marketing data set. Each customer

898 / Fu, GOLDEN, LELE, RAGHAVAN, AND WASIL

Figure 4. (a) Logic check. (b) Pruning.

Before logic check

After logic check

(a)
Yes & %N
9 Class A @
(202/1)
Yes No Yes No Yes &
Class A Class B
Class A Class A
(120/0) (120/0) (120/0) (51
Yes No Yes No
Number correctly classified/
Class A Class B Class A ClassB | — number misclassified
(80/0) (1/0) (0/0) (5/1) <"
Before pruning After pruning
(b)

record in this data set contains demographic and usage
information. Furthermore, each customer is identified on
the basis of whether or not the customer reuses the firm’s
services in a certain window of time following a market-
ing promotion. It is of considerable interest to the firm
to identify patterns among repeat customers. Recognizing
such patterns is beneficial not only for developing a focused
marketing strategy, but also for evaluating existing market-
ing efforts.

4.1. Experimental Design

From the entire set of 440,000 points in the transportation
marketing data set, we randomly select a training set of
N, =10,000 points, a scoring set of N, =4,000 points, and
a test set of 4,000 points. We set the test set aside and do
not use it to train or score decision trees.

We randomly sample with replacement from the training
set to generate kK = 200 unique decision trees. We partition
the scoring set into m = 40 subsets of n = 100 points each
and calculate the accuracy of each of the 200 decision trees
on each subset.

We then compute the average accuracy (a;) and standard
deviation (s;) of each decision tree on the 40 scoring subsets
and calculate the z-score of the ith tree with respect to a
threshold K; that is, z; = (K — a;)/s;. (The choice of K is
discussed below.) We sort the z-scores of the 200 decision

trees and select the 50 trees with the lowest z-scores to
form the initial population for our genetic algorithm.

We run our genetic algorithm for 50 generations with a
crossover rate of 1.00 and a mutation rate of 0.01 and save
the 50 best trees of each generation. We perform 10 repli-
cations that result in 10 best final trees. We partition the test
set into 40 subsets of 100 points and calculate the accuracy
of each of the 10 trees on the 40 subsets.

There are three choices for the threshold value K:
L which corresponds to the risk-averse criterion (Form 2),
U which corresponds to the risk-seeking criterion (Form 1),
and F which is a value between L and U. Thus, in the fit-
ness function of our genetic algorithm, the value of K is
setto L, U, or F.

We set the values of L, U, and F based on observa-
tions made in conducting preliminary experiments with
our genetic algorithm on a subset of the entire data set.
We set L = 0.5500, which is slightly below the smallest
classification accuracy that we observed, and U = 0.8200,
which is slightly above the largest classification accuracy
that we observed in our preliminary experiments. We set
F = 0.7780, which is the proportion of the majority class
(non-reusers) in the training set.

Finally, we denote our genetic algorithm run with the
three different values of K in the fitness function as GAL,
GAU, and GAF. In the case of GAL, the fitness function

Table 1. Computational results for the genetic algo-
rithm with different values of K on the trans-
portation marketing data set.

GAL GAU GAF

Criterion L U F

Accuracy 0.7770 0.7869 0.7871

Standard error 0.051 0.056 0.055

Depth 34 3.1 3.7

Number of nodes 6.0 59 7.4

z-score —4.475 0.597 —0.161

Time (minutes) 14.76 14.56 13.21

Note. Average results are reported on the test sets for the best final
tree that the algorithm generated.

for the ith tree is z; = (L — a;)/s;; for GAU, it is z; =
(U—a,)/s;; and for GAF, it is z; = (F—a,)/s;. Recall that,
to determine the best tree in all three cases (algorithms),
we find the z-score of each tree (with respect to threshold
K =L, U, or F) and then select the tree with the lowest
z-score.

4.2. Computational Results

In Table 1, we report the computational results on the
40 test subsets for the genetic algorithm with three different
values of the threshold K. We report results for GAL with
a threshold value of L; for GAU with a threshold value of
U; and for GAF with a threshold value of F.

The results in Table 1 are averages on the 40 test sub-
sets over 10 replications. For example, we ran the GAF
algorithm, generated a best final tree, evaluated the tree on
each of the 40 test subsets, and calculated average summary
measures. We repeated this 10 times and then averaged over
all 10 replications. In the case of GAF, the average accu-
racy of all 10 runs is 0.7871.

In Table 2, for comparison purposes, we report results
for C4.5. We ran C4.5 on 14,000 points (10,000 training +
4,000 scoring), and evaluated the single generated tree on
the 40 test subsets. We point out that all of the summary
measures except the z-score are the same because there
is only one tree that emerges from C4.5. Using the three
values for K (that is, L = 0.5500, U = 0.8200, and F =
0.7780), we compute the z-scores for C4.5 and show them
in the penultimate row of the table. Observe that the time

Fu, GOLDEN, LELE, RAGHAVAN, AND WASIL / 899

Table 2. Computational results for C4.5 on the trans-

portation marketing data set.

C4.5
Criterion L U F
Accuracy 0.7680 0.7680 0.7680
Standard error 0.082 0.082 0.082
Depth 5.0 5.0 5.0
Number of nodes 9.0 9.0 9.0
z-score —2.672 0.637 0.123
Time (minutes) 1.08 1.08 1.08

Note. C4.5 is run on the 14,000 point (training + scoring) set. Aver-
age results are reported on the test sets for the final C4.5 tree eval-
uated on three different criteria.

for one run of C4.5 is much less than the average time for
one run of the genetic algorithm.

In Table 3, we provide the results of a paired-difference
t-test for the improvement of GAL, GAU, and GAF over
C4.5 on the test sets when C4.5 is run on 14,000 points. We
see that GAL, GAU, and GAF are significantly more accu-
rate than C4.5 (p-values < 0.0018) and generate z-scores
that are significantly lower than C4.5 (p-values < 0.0753).

Based on our computational study, we conclude that our
genetic algorithm outperforms C4.5 in terms of accuracy
and z-score. Furthermore, GAF (genetic algorithm with
threshold value F) generates trees that are, on average, more
accurate than GAL and GAU.

In the next section, we try to address the problem of
how to set the “correct” value of K by developing a
genetic algorithm that considers two threshold values at the
same time.

5. THE BENEFITS OF DIVERSITY

The open literature frequently espouses the benefits of
population diversity within a genetic algorithm (e.g., see
Maulin 1984; Whitley 1989; Michalewicz 1996, p. 58).
However, it is often difficult to quantify or measure the ben-
efits of introducing such diversity into genetic algorithms.
There appear to be several reasons for this. We highlight
the two main ones. First, it appears that diversity is intro-
duced in an ad-hoc manner in most genetic algorithms.
Thus, it becomes difficult to quantify the improvements in
a genetic algorithm due to the introduction of diversity.

Table 3. Results of a paired-difference ¢-test for the improvement of GAL, GAU, and GAF over
C4.5 on the test sets from the transportation marketing data set.
GAL GAU GAF
Comparison to C4.5 C4.5 C4.5
Criterion L U F
t-statistic p-value t-statistic p-value t-statistic p-value
Accuracy 3.9130 0.0018 15.4375 0.0000 15.1579 0.0000
Standard error —18.5698 0.0000 —36.7496 0.0000 —15.4557 0.0000
Depth —-7.2 0.0000 —6.9 0.0000 -25 0.0166
Number of nodes -7.1 0.0000 —-3.7 0.0027 —1.0 0.1756
z-score —15.1011 0.0000 —1.5711 0.0753 —13.5334 0.0000

900 / Fu, GOLDEN, LELE, RAGHAVAN, AND WASIL

Second, there appear to be few controlled experiments to
validate the benefits of diversity. We address both of these
issues in our investigation of diversity. To begin, we moti-
vate the methodology used to introduce diversity by means
of a simple graphical analog.

Suppose we represent any classification tree as a point on
a two-dimensional graph, where the x-axis represents the
standard deviation, o, and the y-axis measures the mean
classification accuracy of the tree, w. The probabilistic fit-
ness function has a very simple interpretation here. Notice
that the z-score of a tree i, which we denote as z;, is equal
to (K — u;)/0;. Rearranging terms gives the equation of a
line u; = —z;0;+ K. Recall that for any particular K value,
we wish to find the tree with the lowest z-score. That cor-
responds to finding the line with maximum slope (—z,) and
specified intercept K, with the restriction that the line pass
through a point (o;, ;) associated with a classification tree.
We illustrate this concept in Figure 5.

We observe that classification trees are actually gener-
ated within the genetic algorithm. Therefore, the genetic
algorithm via its crossover and mutation operations, and
its fitness function and elitist strategy, generates points in
this two-dimensional representation. It also finds the point
(among the points it generates) that maximizes the slope of
the line with specified intercept K.

In this two-dimensional representation, concentrating on
the U criterion (when appropriately set) is equivalent to
trying to discover points in the northeast corner of the uni-
verse of points. The L criterion is equivalent to focusing on
the northwest corner of the universe of points. The F cri-
terion is equivalent to focusing on the northern part of the
universe of points. In other words, each criterion tries to
discover and construct classification trees in different parts
of this universe.

To introduce diversity into this process, we consider the
effect of simultaneously relying on two K criteria (L and U)
that are, for the moment, different from our final K criterion

Figure 5.

(F). The idea is to examine whether using fitness functions
that are designed to discover points that are to the left and
right of our desired objective combined with the operations
of the GA can find better trees with respect to our desired
objective (i.e., scored with respect to the F criterion).

With this motivation in hand, we now describe an adap-
tation of our GA to handle two fitness criteria.

5.1. Bivariate Genetic Algorithm

The bivariate genetic algorithm (BGA) is a simple adap-
tation of the basic GAIT algorithm. The main difference
between GAIT and BGA is in determining the trees that
survive and are carried over to the next generation. We
elaborate further on this distinction.

At each generation, BGA maintains two lists—an L list
consisting of trees ranked by the L criterion (in increasing
order of z-scores) and a U list consisting of trees ranked by
the U criterion. Suppose the number of trees that survive a
generation is N. Then, the length of each list is N. Notice
that the number of distinct trees in these two lists is at least
N and no more than 2N. For the moment, assume that the
trees on the L and U lists are distinct. In this case, we
choose the N trees that survive by selecting the top N/2
trees on the L list and the top N /2 trees on the U list.

To deal with the situation where the trees on the two
lists are not distinct, we modify the selection algorithm as
follows. Let SU and SL denote the ranked lists of trees that
survive the generation. At the start of each generation both
of these lists are empty and the maximum size of both lists
is N/2 trees. We select the first item on the U list and add
it, in ranked order, to the SU list if the tree is neither on
the SU list nor on the SL list, and the SU list is not full.
Next, we consider the first item on the L list and add it,
in ranked order, to the SL list if the tree is neither on the
SL list nor on the SU list, and the SL list is not full. This
procedure continues by considering the second item on the
U list and the second item on the L list, the third item on

(a) For any particular K value we wish to find the line with maximum slope and specified intercept K that

passes through a point in this graph. Observe all points (trees) lie below the lines. (b) Will diversity help us
discover better trees (points)? Points below the curve are those discovered by GA using different K values.
Points above are what we hope to obtain by simultaneously using two K criteria.

H

A

v

v

(b) e

the U list and the third item on the L list, etc., until both the
SU list and the SL list are full. At that point, we have N /2
trees on the SU list and N /2 trees on the SL list for a total
of N distinct trees that survive the generation. Notice that
this approach is identical to the stable marriage algorithm
(see Gale and Shapley 1962). We took this approach to
ensure that we have N trees that survive the generation. We
want to have a fair representation of the U lists choices for
the N /2 slots it commands and a fair representation of the
L lists choices for the N /2 slots it commands.

In the last generation of BGA, we generate as output
the best tree as scored by the U criterion, as scored by the
L criterion and, because we wish to investigate the benefits
of diversity, as scored by the F criterion.

We compared BGA to GAL, GAU, and GAF by con-
ducting an identical set of experiments to those described
in §4. Recall that N was 50 in these experiments (that is,
50 trees survived a generation). We summarize these results
in Tables 4 and 5.

The results in Table 4 are averages on the 40 test sets
over 10 replications. In other words, we ran BGA and, at
the end of the algorithm, obtained three trees: the best tree
with respect to the L criterion, the best tree with respect
to the U criterion, and the best tree with respect to the
F criterion. We evaluated each of these trees on the test
set to calculate average summary measures for each tree.
We repeated this procedure 10 times and averaged over the
10 replications to obtain the summary measures reported in
Table 4. The average computation time of BGA was 71.05
minutes, which was significantly greater than GAL, GAU,
and GAF.

The results in Table 4, as compared with the results
reported in Table 1, are quite interesting. They show that
BGA(L, U) generates more accurate trees, with smaller or
equal standard error, smaller depth, fewer nodes, and lower
z-score for all three scoring criteria (L, U, and F)! Given
that the algorithm does not consider the F criterion except
in the last generation, this shows that diversity has enabled
this discovery of better trees than GAL, GAU, and GAF.
Furthermore, we observe that diversity has also benefited
the L and U criteria in the sense that we have obtained
better trees with respect to the L criterion, when we intro-
duced diversity by keeping good U trees in the population.

To test the significance of these improvements, we con-
ducted a paired-difference z-test between the results of

Fu, GOoLDEN, LELE, RAGHAVAN, AND WASIL / 901

Table 4. Computational results for the bivariate genetic
algorithm using L and U as the two K criteria

on the transportation marketing data set.

BGA(L,U)
Criterion L U F
Accuracy 0.7790 0.7889 0.7890
Standard error 0.051 0.055 0.053
Depth 3.0 3.0 3.2
Number of nodes 5.4 5.7 5.6
z-score —4.531 0.566 —0.211

Note. Average results are reported on the test sets for the best final
tree that the algorithm generated for the L, U, and F criteria. Average
running time of BGA is 71.05 minutes.

BGA and GAL, GAU, and GAF, respectively. These results
are shown in Table 5. The results show that BGA generates
significantly more accurate trees than GAL, GAU, and GAF
(p-values < 0.0105) and generates z-scores that are signifi-
cantly lower than GAL, GAU, and GAF (p-values < 0.004).
The results also show that BGA generates leaner trees (as
measured by depth and number of nodes) than GAL, GAU,
and GAF.

Although the running time of BGA is significantly
greater than GA, one advantage of BGA over GA occurs
when the decision maker is unsure about the choice of the
value for K. In this situation, the decision maker could run
BGA choosing a low K value (L) and a high K value (U).
At the end of the last generation, by saving all of the trees
in that generation, the decision maker can experiment with
many different K values to test the various qualities of the
trees (accuracy, depth, etc.). Unlike GA, the decision maker
would not have to rerun the algorithm, because, as we have
seen, the diversity in the population generates good trees
for K values that lie between L and U. After evaluating
the trees generated with different values for K, the decision
maker may be in a better position to make a choice of the
final K criterion (F).

5.2. Bivariate Genetic Algorithm
with Convergence

The results of the previous section raise a natural ques-
tion: Can guiding the BGA to a final K criterion provide
even better classification trees? To answer this question, we

Table 5. Results of a paired-difference #-test for the improvement of BGA over GAL, GAU, and
GAF on the test sets from the transportation marketing data set.
BGA(L, U)

Comparison to GAL GAU GAF
Criterion L U F

t-statistic p-value t-statistic p-value t-statistic p-value
Accuracy 2.7894 0.0105 4.4721 0.0008 4.3846 0.0009
Standard error —1.5884 0.0733 —2.8809 0.0091 —2.3911 0.0202
Depth —0.4 0.0186 —0.8944 0.1972 —1.6270 0.0691
Number of nodes —2.5100 0.0167 —0.8944 0.1972 —1.5486 0.0779
z-score —4.5879 0.0007 —3.3960 0.0040 —5.5062 0.0002

902 / Fu, GOLDEN, LELE, RAGHAVAN, AND WASIL

modify BGA to obtain a bivariate genetic algorithm with
convergence (BGAC) as follows.

We are given three K values—a starting L value, a start-
ing U value, and a final F value that lies between L and
U. We want to obtain good classification trees as scored
by the F criterion. Each generation of BGAC is identi-
cal to BGA, except that we modify the L and U values
at each generation, increasing L and decreasing U, so that
they converge to F at the final generation of BGAC. In
particular, the increase in L at each generation is given by
(F —L)/(number of generations), and the decrease in U at
each generation is given by (U — F)/(number of genera-
tions). In the final generation, both U and L are equal to F,
and the best trees on both the U list and the L list are the
best trees with respect to the F criterion.

We ran an identical set of experiments on BGAC, as we
did on BGA. Recall that the number of generations is 50.
In the first column of Table 6, we report these results. The
results show that the trees generated by BGAC are more
accurate, have smaller standard error, smaller depth, smaller
number of nodes, and lower z-score than BGA (using the
F criterion) and GAF. This indicates that BGAC benefits
from both diversity and the guidance to the final F crite-
rion. BGAC’s average computation time (70.97 minutes) is
comparable to BGA’s time (71.05 minutes).

To test the validity of our conclusions, we ran a paired-
difference #-test between the results of BGAC and BGA.
The ¢-test results are reported in the second and third
columns of Table 6 and are with respect to the F criterion.
We see that BGAC generates significantly more accurate
trees than BGA (p-value = 0.0052) and trees with lower
z-scores (p-value = 0.0047). The results also validate the
conclusion that BGAC generates trees with smaller depth
and smaller number of nodes.

Based on our computational study, we conclude that,
except for computation time, BGAC outperforms BGA
(i.e., BGAC generates trees that are of greater accuracy,
smaller depth, smaller number of nodes, and lower z-score
than BGA), which in turn outperforms GAF, which in turn
outperforms C4.5. A tree with smaller depth and fewer

Table 6. Computational results for BGAC and paired-
difference ¢-test results for the improvement of
BGAC over BGA on the transportation mar-
keting data set.
BGAC(L, U, F)
F criterion t-statistic p-value
Accuracy 0.7923 3.2273 0.0052
Standard error 0.052 —2.3658 0.0211
Depth 2.7 —2.2361 0.0186
Number of nodes 4.8 —1.4446 0.0912
z-score —0.274 —3.2925 0.0047

Note. Average results are reported on the test sets for the best final
tree that the algorithm generated with L = 0.5500, U = 0.8200, and
F = 0.7780. Average running time of BGAC is 70.97 minutes. The
z-score is with respect to the F criterion and the t-test is for the
improvement on the test sets.

nodes has a simpler set of rules. Consequently, with each
succeeding algorithm, we are obtaining more accurate trees,
with simpler rules and smaller variability.

For the current experiment, the computation times of
BGAC and BGA are comparable, GA is faster than BGA,
and C4.5 is faster than GA. However, before we draw any
further conclusions about the computation time, we note
that it is important to see how the algorithms scale. In the
next section, we compare how the different genetic algo-
rithms scale to handle larger training sets and scoring sets.

6. SCALABILITY EXPERIMENTS

In this section, we increase the size of the training set and
the size of the scoring set for C4.5 and the three algorithms
(GAF, BGA, and BGAC performed well in the previous
experiments) to investigate issues of scalability. As before,
all accuracy measures are obtained from the test set, which
is not used in the training and scoring of the algorithms.

6.1. Experimental Design

In the scaling experiments, we use the transportation mar-
keting data set of approximately 440,000 data points and
randomly select 4,000 points that are set aside to form a
test set. We then generate a series of training and scoring
combinations to assess scalability, as shown in the first two
columns of Table 7. For each combination, the training set
and scoring set are selected at random from the remaining
436,000 points.

Next, we partition each scoring set into a number of
subsets. Each subset will include exactly 100 points. For
example, for 3% of the original data set with a scoring set
of 4,000 points, there are 40 scoring subsets of 100 points
each. For 25% of the original data set with a scoring set of
32,000 points, there are 320 scoring subsets of 100 points
each, and so on. In the same way, we partition the test set
of 4,000 points into 40 subsets of 100 points each.

As we scale up the training set from 10,000 points to
310,000 points, each tree of the initial 200 trees (produced
by C4.5) is generated using a greater number of data points.
For instance, when the training set contains 10,000 points,
each initial tree is generated using 50 points. When the
training set contains 80,000 points, each initial tree is gen-
erated using 400 data points, and so on for the remaining
three training sets.

For each scaling experiment on each training and scoring
combination, we record the z-score, classification accuracy,
and standard error on the test set and computing time on the
training and scoring sets for C4.5, GAF, BGA, and BGAC.
With respect to C4.5, we use the training set and scoring
set data as input and compute the accuracy on the test set.
Note that although the sizes of the training, scoring, and
test sets for the experiment with 3% of the data are the
same as in §§4 and 5, we perform the experiment afresh
in this section. Each experiment is replicated 10 times and
the performance measures are computed on the test set of
4,000 points.

Fu, GOLDEN, LELE, RAGHAVAN, AND WASIL / 903

Table 7. Computational results for scaling experiments on the transportation marketing data set.
Size C4.5 GAF
Training Scoring Standard Time Standard Time
(N,) (N) % Accuracy Error z-score (min) Accuracy Error z-score (min)
10,000 4,000 3 0.7730 0.0719 0.0695 1.40 0.7877 0.0539 —0.1805 14.74
80,000 32,000 25 0.7820 0.0621 —0.0651 36.22 0.7939 0.0508 —0.3148 24.28
160,000 64,000 51 0.7870 0.0582 —0.1542 93.67 0.7949 0.0499 —0.3378 33.91
240,000 96,000 72 0.7880 0.0568 —0.1768 176.82 0.7952 0.0494 —0.3495 51.25
310,000 124,000 99 0.7880 0.0563 —0.1982 432.55 0.7954 0.0492 —0.3566 77.46
Size BGA BGAC
Training Scoring Standard Time Standard Time
(N,) (N) % Accuracy Error z-score (min) Accuracy Error z-score (min)
10,000 4,000 3 0.7895 0.0520 —0.2234 70.31 0.7926 0.0513 —0.2846 70.53
80,000 32,000 25 0.7950 0.0494 —0.3449 78.38 0.7962 0.0488 —0.3735 81.31
160,000 64,000 51 0.7957 0.0483 —0.3690 91.49 0.7972 0.0474 —0.4049 92.75
240,000 96,000 72 0.7962 0.0480 —0.3792 108.32 0.7974 0.0467 —0.4144 11.17
310,000 124,000 99 0.7963 0.0475 —0.3885 128.12 0.7977 0.0467 —0.4211 132.36

Note. Results for five training and scoring combinations are based on the average of 10 replications for C4.5, GAF, BGA, and BGAC.

6.2. Computational Results and Analysis

In Table 7, we present the average accuracy, standard error,
z-score, and running-time results for C4.5, GAF, BGA, and
BGAC. We observe that the z-scores for all four algorithms
decrease and, for the most part, accuracy increases as the
size of the training and scoring combination increases.
In addition, BGAC outperforms BGA, which outperforms
GAF, which outperforms C4.5 with respect to both accu-
racy and z-score.

We also see that the computation time increases when
the size of the training and scoring combination increases
for C4.5, GAF, BGA, and BGAC. For the most part, we
see that GAF takes the least amount of computation time in

training and scoring. BGA and BGAC take nearly the same
amount of computation time and require more computation
time than GAF. C4.5 has, by far, the fastest growth rate in
computation time. Its computation time is less than that of
BGA and BGAC when the size of the training and scoring
combination is small (up to 51%), but its computation time
increases greatly thereafter. For example, when 99% of the
total data set is used, C4.5 takes more than three times as
long as BGAC.

To better illustrate the differences in performance, Fig-
ure 6 plots the classification accuracy of each algorithm
(on an enlarged scale) against the size of the training and
scoring combination as a percentage of the size of the

Figure 6. Classification accuracy of C4.5, GAF, BGA, and BGAC on five training and scoring combinations from the
transportation marketing data set.
0.80
BGAC <

S oG
Z 079 GAF
= ® °
3
<
o
.S
g
=078 -
8 C4.5
Q

0.77

3 25 51 72 99

Percentage (%) of Total Data Size

904 / Fu, GOLDEN, LELE, RAGHAVAN, AND WASIL

Table 8. Computational results for C4.5, GAL, GAU, and GAF on the adult data set.

C4.5 GAL GAU GAF
Criterion L U F L U F
Accuracy 0.7980 0.7980 0.7980 0.8010 0.8039 0.8070
Standard error 0.0680 0.0680 0.0680 0.0390 0.0410 0.0401
Depth 5.0 5.0 5.0 3.6 3.6 3.5
Number of nodes 11.0 11.0 11.0 7.5 7.3 7.4
z-score —2.9098 0.6173 —0.6731 —5.1529 0.8780 —1.3659
Time (minutes) 1.34 1.34 1.34 17.05 16.98 17.12

Note. L =0.6000, U = 0.8400, and F = 0.7522.

data. We see that GAF, BGA, and BGAC clearly outper-
form C4.5. We also observe that classification accuracy
jumps most dramatically when the training and scoring size
increases from 3% to 25%. Beyond that point, classification
accuracy levels off. It is important to remark that, using
only 3% of the data, BGA and BGAC outperform C4.5
using 99% of the data. Furthermore, GAF, using 3% of the
data, is comparable to C4.5 using 99% of the data. As noted
earlier, BGAC outperforms BGA, which outperforms GAF.

We make two observations from these experiments. First,
GAF, BGA, and BGAC generate much more accurate trees
than C4.5, and their computation times increase linearly as
the size of the training and scoring combination increases.
Second, GAF, BGA, and especially BGAC, require only a
small percent of the data to generate high-quality decision
trees.

7. ADDITIONAL COMPUTATIONAL
EXPERIMENTS

We analyzed two other large real-life data sets. One was the
“adult” data set that has become well known in the data-
mining literature; the other data set was obtained from a
direct marketing campaign for a financial product.

7.1. Adult Data Set

The adult data set can be obtained from the UCI Machine
Learning Repository (see Blake and Merz 1998). This data
set consists of observations on 48,842 adult individuals
along 14 demographic variables. The objective is to pre-
dict one of two income categories for an individual based
on the given demographic variables. The two income cat-
egories are low (for individuals earning less than $50,000)
and high (for individuals earning more than $50,000). The
proportion of the majority class (low income) in the data set
is 75.22%. For this data set, we set L = 0.6000 (which is
approximately the lowest classification accuracy observed
in preliminary experiments), U = 0.8400 (which is approx-
imately the highest accuracy observed), and F = 0.7522
(which is the proportion of the majority class, or the accu-
racy of the naive rule that predicts the majority class for
all observations).

In Tables 8, 9, and 10, we provide the analysis for this
data set. Table 8 presents results for C4.5, GAL, GAU,
and GAF. The columns corresponding to C4.5 are similar

to Table 2, while those corresponding to GAL, GAU, and
GAF are similar to Table 1. Recall that for C4.5, all of the
summary measures except the z-score are the same because
there is only one tree that emerges from C4.5. Table 9
presents the results for BGA and BGAC. The columns cor-
responding to BGA are similar to Table 4, while the col-
umn corresponding to BGAC is similar to the first column
of Table 6. Recall that with a single run of BGA, we obtain
three trees (one for the L, U, and F criteria, respectively).
Consequently, the running times for BGA(L, U) under the
various criteria in Table 9 are identical.

The results for this data set corroborate our findings
with the transportation marketing data set. For exam-
ple, in Table 8 we see that GAL, GAU, and GAF
perform significantly better than C4.5. Furthermore, in
Table 9 we see that the bivariate version BGA(L, U)
performs significantly better than each of the univari-
ate algorithms and that BGAC(L, U,F) performs signifi-
cantly better than BGA(L, U). We also conducted paired-
difference t-tests for the improvements of BGAC over
BGA; BGA over GAL, GAU, and GAF; and GAL, GAU,
and GAF over C4.5. We found that improvements in
accuracy and z-score were statistically significant, with
p-values of 0.02 or less, while the improvements in
standard error, depth, and number of nodes were sta-
tistically significant with p-values of 0.09 or less. The
scalability experiments summarized in Table 10 reveal a
pattern that is similar to that found for the transportation
marketing data.

7.2. Financial Services Data Set

This data set was obtained from a direct marketing cam-
paign at a major financial services firm. This data set con-

Table 9. Computational results for BGA and BGAC on
the adult data set.

BGA(L, U) BGAC(L, U, F)
Criterion L U F F
Accuracy 0.8099 0.8110 0.8119 0.8190
Standard error 0.0390 0.0400 0.0390 0.0340
Depth 3.3 3.1 3.1 2.6
Number of nodes 6.7 6.8 7.0 52
z-score —5.3837 0.7247 —1.5328 —1.9646
Time (minutes) 2321 2321 23.21 22.39

Note. L =0.6000, U =0.8400, and F =0.7522.

Fu, GOLDEN, LELE, RAGHAVAN, AND WASIL / 905

Table 10. Computational results for scaling experiments on the adult data set.
Size C4.5 GAF
Training Scoring Standard Time Standard Time
(N,) (N,) % Accuracy Error z-score (min) Accuracy Error z-score (min)
10,000 4,000 32 0.7980 0.0670 —0.6836 1.84 0.8070 0.0400 —1.3700 16.85
15,000 6,000 48 0.8100 0.0620 —0.9323 15.20 0.8260 0.0380 —1.9432 20.38
20,000 8,000 64 0.8180 0.0572 —1.1503 31.77 0.8299 0.0370 —2.1027 24.10
25,000 10,000 80 0.8210 0.0560 —1.2286 60.22 0.8310 0.0370 —2.1297 31.25
30,000 12,000 95 0.8220 0.0560 —1.2464 104.53 0.8329 0.0370 —2.1834 40.41
Size BGA BGAC
Training Scoring Standard Time Standard Time
(N,) (N) % Accuracy Error z-score (min) Accuracy Error z-score (min)
10,000 4,000 32 0.8119 0.0390 —1.5335 22.98 0.8189 0.0340 —1.9649 21.92
15,000 6,000 48 0.8320 0.0380 —2.1000 26.38 0.8360 0.0340 —2.4649 27.31
20,000 8,000 64 0.8339 0.0370 —2.2109 33.49 0.8379 0.0330 —2.6002 32.75
25,000 10,000 80 0.8350 0.0360 —2.3001 42.19 0.8400 0.0330 —2.6608 41.98
30,000 12,000 95 0.8360 0.0360 —2.3288 50.98 0.8410 0.0330 —2.6911 51.30

Note. Results for five training and scoring combinations are based on the average of 10 replications for C4.5, GAF, BGA, and BGAC.

sists of over two million customer records. The objective
is to predict whether or not a customer will accept a credit
card promotion that is being offered within a certain win-
dow of time. There are 66 predictor variables describing
each customer’s demographics, credit history, and prior
behavior with respect to promotions. Of these 66 variables,
62 are categorical and four are numerical. The proportion
of the majority class (those who do not accept the pro-
motion) is 83.50%. Using a similar rationale to that used
for the adult data set, we set L = 0.5900, U = 0.9400, and
F =0.8350 for this data set.

In Tables 11, 12, and 13, we provide the analysis for this
data set (these tables correspond to Tables 8, 9, and 10,
respectively, for the adult data set). We see that the results
from this data set point in exactly the same direction as the
results from the other two data sets except that the improve-
ment here is substantially more dramatic. Again, we con-
ducted paired-difference z-tests to test for the improvements
of BGAC over BGA; BGA over GAL, GAU, and GAF;
and GAL, GAU, and GAF over C4.5. We found that all
improvements were statistically significant with p-values of
0.0004 or less.

8. CONCLUSIONS

In this paper, we showed how to treat the classification
accuracy of a decision tree as a random variable. We com-
bined a tree’s expected value and variance in a new prob-
abilistic measure for assessing the performance of a tree.
We developed a genetic algorithm for constructing a tree
using our new measure (GA) and conducted computational
experiments with three different variants (GAL, GAU, and
GAF) and a standard decision tree package (C4.5) on three
large data sets. In all three cases, GA outperformed C4.5
in terms of accuracy and z-score, and GAF-generated trees
were, on average, more accurate than the trees generated
by GAL and GAU.

We also investigated the effect of introducing diver-
sity into the population used by our genetic algorithm.
We allowed the genetic algorithm to simultaneously focus
on two distinct probabilistic measures—one that is risk
averse and one that is risk seeking—and tested two vari-
ants of our bivariate genetic algorithm (BGA and BGAC)
on the three data sets. Our results showed that in terms of
accuracy, depth, number of nodes, and z-score, BGAC out-
performed BGA, which in turn outperformed GAF, which
in turn outperformed C4.5.

Table 11. Computational results for C4.5, GAL, GAU, and GAF on the financial services data set.
C4.5 GAL GAU GAF
Criterion L U F L U F
Accuracy 0.8820 0.8820 0.8820 0.8950 0.9039 0.9060
Standard error 0.0580 0.0580 0.0580 0.0460 0.0470 0.0450
Depth 8.0 8.0 8.0 6.4 6.5 6.6
Number of nodes 35.0 35.0 35.0 14.5 14.4 14.6
z-score —5.0344 1.0000 —0.8103 —6.6306 0.7660 —1.5778
Time (minutes) 3.48 3.48 3.48 19.45 19.56 20.02

Note. L =0.5900, U = 0.9400, and F = 0.8350.

906 / Fu, GOLDEN, LELE, RAGHAVAN, AND WASIL

Table 12. Computational results for BGA and BGAC

on the financial services data set.

BGA(L, U) BGAC(L, U, F)

Criterion L U F F
Accuracy 0.9080 0.9119 0.9130 0.9200
Standard error 0.0390 0.0400 0.0390 0.0350
Depth 5.2 5.1 5.1 4.4
Number of nodes 9.7 9.8 10.0 7.8
z-score —8.1539 0.6999 —2.0012 —2.4287
Time (minutes) 79.26 79.26 79.26 79.84

Note. L =0.5900, U = 0.9400, and F = 0.8350.

Finally, we tested how four algorithms (C4.5, GAF,
BGA, and BGAC) scaled up to handle large data sets. We
found that GAF, BGA, and BGAC generated more accu-
rate trees than C4.5 and their computation times increased
linearly with the size of the training and scoring sets. Fur-
thermore, our genetic algorithm, especially the BGAC vari-
ant, required only a small percent of the data to generate a
high-quality decision tree.

The genetic algorithms appear to scale better than C4.5
because of the sampling approach we have applied within
the genetic algorithm to generate the initial trees. Observe,
for example, that when 99% of the transportation market-
ing data set is used, C4.5 is run on 310,000+ 124,000 =
434,000 points. On the other hand, to generate the initial
200 trees within the genetic algorithms, C4.5 is run (200
times) on only 1,550 points. This is a key reason for
the dramatic savings in running time for the large data
sets. Within the genetic algorithm, a larger data set does
not impact the running time of the genetic operators
(i.e., performing crossover and mutation) except for
scoring. However, scoring is a rather straightforward cal-
culation. Consequently, the running times of the genetic

algorithms increase at a much slower rate than the running
times of C4.5.

The three data sets used for testing the algorithms were
quite different in size, number of variables, and appli-
cation domain. The adult data set was small, containing
48,842 data points and 14 variables. The transportation
marketing data set was medium to large, containing about
440,000 data points and 11 variables. Finally, the financial
services data set was very large, containing more than two
million data points and 66 variables. The behavior of the
genetic algorithms appears to be quite robust as the results
for running time, accuracy, z-score, depth, and number of
nodes is remarkably consistent across all three data sets. On
all three data sets, the genetic algorithms consistently scale
well, while BGAC outperforms BGA, which outperforms
GAL, GAU, and GAF; each of which outperforms C4.5.

It is important to note that, in addition to an improved
z-score (our objective), our genetic algorithms generate
trees with improved accuracy, smaller depth, and fewer
nodes. A smaller depth and fewer nodes indicate that the
trees generated by our genetic algorithm are fairly small,
containing fewer rules and simpler rules (i.e., there are
fewer variables in a rule). Notice that we are obtaining
these qualitative improvements in the simplicity of the rules
generated by our decision tree without sacrificing either
accuracy or z-score.

Our research demonstrates the benefits of using a genetic
algorithm approach to build high-quality classification trees
for very large data sets. Furthermore, it shows that increas-
ing diversity in the population via fitness function pertur-
bation yields a significant payoff with respect to building
classification trees. We are hopeful that this research might

Table 13. Computational results for scaling experiments on the financial services data set.
Size C4.5 GAF
Training Scoring Standard Time Standard Time
(N,) (N) % Accuracy Error z-score (min) Accuracy Error z-score (min)
10,000 4,000 3 0.8830 0.0570 —0.8421 3.48 0.9060 0.0460 —1.5434 19.45
80,000 32,000 25 0.9080 0.0566 —1.2898 39.47 0.9201 0.0430 —1.9768 28.27
160,000 64,000 51 0.9140 0.0562 —1.4057 103.93 0.9230 0.0420 —2.0954 40.27
240,000 96,000 72 0.9160 0.0560 —1.4464 187.40 0.9240 0.0410 —2.1709 57.87
310,000 124,000 99 0.9170 0.0560 —1.4643 437.51 0.9249 0.0410 —2.1957 78.17
Size BGA BGAC
Training Scoring Standard Time Standard Time
(N,) (N,) % Accuracy Error z-score (minutes) Accuracy Error z-score (min)
10,000 4,000 3 0.9129 0.0400 —1.9501 79.40 0.9210 0.0360 —2.3890 79.72
80,000 32,000 25 0.9270 0.0380 —2.4213 87.42 0.9360 0.0350 —2.8860 89.04
160,000 64,000 51 0.9301 0.0370 —2.5677 101.85 0.9379 0.0340 —3.0298 103.49
240,000 96,000 72 0.9310 0.0370 —2.5952 120.77 0.9390 0.0340 —3.0598 120.02
310,000 124,000 99 0.9321 0.0360 —2.6950 146.17 0.9401 0.0330 —3.1822 147.62

Note. Results for five training and scoring combinations are based on the average of 10 replications for C4.5, GAF, BGA, and BGAC.

motivate vendors to develop genetic variants of their clas-
sification tree software for commercial application.

REFERENCES

Berry, M., G. Linoff. 1997. Data Mining Techniques. John Wiley
and Sons, New York.

Blake, C., C. Merz. 1998. UCI Repository of Machine Learn-
ing Databases. Department of Information and Computer
Science, University of California, Irvine, CA, available at
www.ics.uci.edu/~mlearn/MLRepository.html.

Fu, Z. 2000. Using genetic algorithms to develop intelligent
decision trees. Ph.D. dissertation, University of Maryland,
College Park, MD.

—, B. Golden, S. Lele, S. Raghavan, E. Wasil. 2003. A genetic-
algorithm-based approach for building accurate decision
trees. INFORMS J. Comput. 15(1) 3-22.

Gale, D., L. S. Shapley. 1962. College admissions and the stability
of marriage. Amer. Math. Monthly 69 9-15.

Fu, GOLDEN, LELE, RAGHAVAN, AND WASIL / 907

Jain, A., R. Duin, J. Mao. 2000. Statistical pattern recognition:
A review. [EEE Trans. Pattern Anal. Machine Intelligence
22(1) 4-37.

Lim, T.-S., W.-Y. Loh, Y.-S. Shih. 2000. A comparison of predic-
tion accuracy, complexity, and training time of thirty-three
old and new classification algorithms. Machine Learning 40
203-229.

Maulin, M. L. 1984. Maintaining diversity in genetic search. Proc.
Fourth National Conf. Artificial Intelligence. AAAI Press,
Menlo Park, CA, 247-250.

Michalewicz, Z. 1996. Genetic Algorithms + Data Structures =
Evolution Programs. Springer-Verlag, New York.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA.

Ripley, B. D. 1996. Pattern Recognition and Neural Networks.
Cambridge University Press, Cambridge, U.K.

Whitley, D. 1989. The GENITOR algorithm and selection
pressure: Why rank-based allocation of reproductive tri-
als is best. Proc. Third Internat. Conf. Genetic Algorithms.
Morgan Kaufmann Publishers, San Mateo, CA, 116-121.

