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Motivated by the increasing use of auctions by government agencies, we consider the problem of fairly
pricing public goods in a combinatorial auction. A well-known problem with the incentive-compatible

Vickrey-Clarke-Groves (VCG) auction mechanism is that the resulting prices may not be in the core. Loosely
speaking, this means the payments of the winners could be so low, that there are bidders who would have been
willing to pay more than the payments of the winning bidders. Clearly, this “unfair” outcome is unacceptable
for a public sector auction. Recent advances in auction theory suggest that combinatorial auctions resulting in
efficient outcomes and bidder-Pareto-optimal core payments offer a viable practical alternative to address this
problem.
This paper confronts two critical issues facing the bidder-Pareto-optimal core payment. First, motivated to

minimize a bidder’s ability to benefit through strategic manipulation (through collusive agreement or unilateral
action), we demonstrate the strength of a mechanism that minimizes total payments among all such auction
outcomes, narrowing the previously broad solution concept. Second, we address the computational difficulties of
achieving these outcomes with a constraint-generation approach, promising to broaden the range of applications
for which bidder-Pareto-optimal core pricing achieves a comfortably rapid solution.

Key words : combinatorial auctions; core allocations; bidder-Pareto optimality; constraint generation;
VCG payments; proxy auctions

History : Accepted by Linda V. Green, public sector applications; received February 1, 2005. This paper was
with the authors 5 1

2 months for 2 revisions. Published online in Articles in Advance July 20, 2007.

1. Introduction
Classic auction theory shows that if a single item
is auctioned via the submission of sealed-bid price
offers, then bidders can be expected to report their
bids honestly under a second-price mechanism (i.e.,
one in which the highest bid wins and pays the
amount of the second-highest bid). Such a mechanism
is said to be incentive compatible, meaning that truth-
telling is a dominant strategy for every player, and
that there is no incentive for unilateral deviation from
the truth-telling strategy.
The analogous second-price mechanism for com-

binatorial auctions (in which bidders bid on combi-
nations of items) is the well-known Vickrey-Clarke-
Groves (VCG) mechanism, which has also been
shown to be incentive compatible (for primary
sources see Clarke 1971, Groves 1973, and Vickrey
1961). In the general version of this auction mecha-
nism, bidders each submit a price for each possible
combination of items. Winners are chosen to maxi-
mize the combined social value of awarded bundles
(with no item going to more than one bidder); such

an allocation is referred to as efficient. Each winner in
the VCG auction then pays an amount less than her
bid on the bundle she is awarded, receiving a dis-
count from her actual bid that is calculated to elimi-
nate her ability to gain from falsifying her preferences.
In particular, each winning bidder receives a discount
equal to the difference in value between the efficient
solution with all bidders and the efficient solution in
the absence of that particular bidder. The problem
of finding an efficient allocation for a given set of
bids is known as the winner-determination problem, and
is often computationally difficult (i.e., ��-hard; see
Rothkopf et al. 1998)
Although the VCG mechanism is widely discussed

in the auction literature, its drawbacks are so numer-
ous that it is rarely, if ever, used in practice. Indeed,
there are too many problems to name here; we there-
fore direct the reader to a few good references on the
problems with VCG mechanisms (see Ausubel and
Milgrom 2002, Rothkopf and Harstad 1995, Rothkopf
et al. 1990, and Sakurai et al. 2000). Principle among
these drawbacks is that the VCG payments may be
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so low (in a forward auction) that the outcome is not
a “core” allocation (defined formally in the next sec-
tion). Roughly stated, this means that a dissatisfied
coalition of bidders may be able to suggest an auction
outcome that is preferred by all the members of the
coalition and the seller. This situation is clearly unsat-
isfying, especially when the seller is a government
agency assigned the duty of fair allocation, and the
winners have not paid enough to establish themselves
as the fair recipients of the auction items relative to
the competition.
Given that the VCG mechanism is undesirable in

practice, one may next ask: What other payment
mechanism can be used in a combinatorial auc-
tion? The most obvious alternative is a first-price (or
pay-as-bid) mechanism, but this too has drawbacks.
In a sealed-bid combinatorial auction, this payment
rule encourages the bidders to submit bids that are
just barely enough to achieve the efficient allocation.
Indeed, bidding higher than the minimum amount
necessary to secure a particular bundle simply gives
more money to the seller in the pay-as-bid scenario.
But if each player is trying to predict the minimum
amount needed to win his efficiently awarded bun-
dle, uncertainty about the bids of others makes this
a precarious endeavor. With incomplete information
about the preferences of others, trying to bid the min-
imum possible amount will often lead to bidding not
quite enough, leading the auction mechanism to miss
the efficient outcome as a consequence.
Unsatisfied with the two “extreme” possibilities for

a payment mechanism (first-price and VCG), is there
some other “second-price” combinatorial auction pay-
ment mechanism that maintains most of the desirable
properties of the second-price mechanism for a single-
item auction, while not suffering from the undesirable
properties of the VCG mechanism? Stated differently,
we would like a mechanism that encourages truthful
bidding by charging less than the full amount bid on
a bundle, but does not suffer from the extremely low
seller revenues of the VCG mechanism.
Few combinatorial auction mechanisms other than

VCG have been studied extensively that result in
“second-prices,” payments that are typically lower
than what was bid and are determined by the bids
of others. One prominent example was proposed
recently by Ausubel and Milgrom (2002),1 an ascend-
ing proxy auction providing a viable practical alter-
native to the virtually unusable VCG mechanism for
real-world combinatorial auction applications. Assur-
ing competitive pricing and economic efficiency, the

1 A closely related mechanism is described by Parkes (2001), while
Hoffman et al. (2006) and Wurman et al. (2004) investigate varia-
tions on this theme.

proxy auction terminates at a desirable “bidder-
Pareto-optimal core outcome” (defined formally in
the next section). This presents an especially attractive
solution for several public-good allocation problems,
where the need for a “socially acceptable” outcome
outweighs revenue maximization for the seller.
Designed as a proxy implementation of an iter-

ative combinatorial auction, bidders in this mecha-
nism are insulated against the dangers of bidding
more than the minimum amount necessary to win
a particular bundle, as the proxy submits bid infor-
mation only at minimum increments. The particu-
lar algorithm for winner/payment determination in
the ascending proxy auction (as first proposed by
Ausubel and Milgrom 2002) is interpreted by de Vries
et al. (2007) as an implementation of the subgradi-
ent algorithm: at each moment in the process, the
algorithm solves an ��-hard set-packing problem,
determining a nonoverlapping set of bundles from
all those demanded by the bidders at some current
set of prices, and a net utility maximizing bundle for
each bidder. Each nonanonymous bundle price is then
adjusted up by one increment for each bundle that is
not contained in the “seller’s choice” allocation. This
process corresponds to incremental stepping in the
direction of a subgradient. As is commonly the case
with the subgradient algorithm, convergence is slow
and depends critically on the choices of step size.
Compounding the problem of rapid computation

is that each iteration of this algorithm requires the
solution of an integer program (IP) for winner deter-
mination. Although each IP can be solved reasonably
quickly given advanced computational techniques
(see, for example, Günlük et al. 2005) and software
(like CPLEX and XPRESS, for example), the repeated
solution and slow convergence limits practical imple-
mentation (see Hoffman et al. 2006).
Even since the relatively new development of the

ascending proxy auction, a few methods for arriving
at the same types of outcomes more rapidly have been
proposed, including the technique developed in this
paper. Hoffman et al. (2006) give experimental evi-
dence for slow performance of the subgradient-type
ascending proxy implementation and show how to
improve the computational speed of the proxy auc-
tion’s iterative implementation by starting at the VCG
solution, and by using a more sophisticated adjust-
ment (scaling) of the price increment. Their technique
requires the switch to a sealed-bid (nonproxy) auc-
tion allowing the auctioneer to use all of the informa-
tion reported by the bidders to solve instances of the
winner determination problem. Given that the auc-
tion mechanism can be trusted not to make the bid
information public (which may be legally enforced or
entrusted to a neutral third party), we argue that such
revelation is reasonable and should be implemented
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for large-scale applications because access to the full
set of bid reports may greatly accelerate computa-
tional performance. Wurman et al. (2004) provide a
different approach to accelerating the proxy imple-
mentation by computing the “inflection” or “change”
points in the iterative auction’s price trajectory. Their
technique also requires the full release of bid infor-
mation to the auctioneer, rather than withholding
it in a proxy. In §5, we look at these methods in
greater depth and compare them to the technique pre-
sented here.
More recently, Ausubel et al. (2006) provided a

practical clock-proxy auction design that terminates
with bidders submitting combinatorial bids in a
proxy auction after some initial rounds designed to
reveal price information. The final proxy phase is
strategically equivalent to a sealed-bid combinato-
rial auction, justifying our focus on sealed-bid price
mechanisms in the current treatment. Given the
widespread applicability of their technique in pub-
lic sector markets for electricity generation, spectrum
licenses, and airport landing-slot rights (to name a
few), the ability to produce final payments more
rapidly and to better understand the selection of
payment outcomes among the various possible core
solutions may have a deep impact on our ability
to successfully implement these market mechanisms.
Indeed, researchers associated with the FCC and FAA
have recently started experimenting with an imple-
mentation of the algorithm presented in this paper as
a possible pricing mechanism for future auctions.
In this paper, we provide a new, more direct com-

putational procedure for arriving at bidder-Pareto-
optimal core outcomes in any sealed-bid combinatorial
auction, using constraint generation and an explicit
definition of the core region in payment space. Our
technique may be viewed as an approximate VCG
mechanism, and we provide concrete justification for
the use of these mechanisms in general. At the crux
of our approach, we show how to overcome one of
the pitfalls of a linear programming (LP) approach
to payment determination in the core, using con-
straint generation to handle the exponential number
of constraints necessary to define the core. To accom-
plish this, we formulate the core separation problem,
finding the most violated core constraint (most upset
coalition) for any proposed payment vector. This core
separation problem is also ��-hard whenever win-
ner determination is ��-hard, and we show how to
integrate the separation technique into a procedure
that settles on a bidder-Pareto-optimal core point,
with no need for limiting (substitutability) assump-
tions on the preferences of the bidders. Along the
way, we solidify the concept of a coalitional contribu-
tion, measuring a winning bidder’s desire to join a
coalition at a particular payment vector. We demon-
strate the flexibility of our technique by showing a

few variations, and discuss the selection of a partic-
ular core outcome when several meet the “bidder-
Pareto-optimal” criterion. In particular, we show that
a mechanism that minimizes total payments conse-
quently minimizes the total availability of gains from
unilateral strategic manipulation, and is immune to
a certain form of group collusion which would be
profitable in any mechanism without this property.
Finally, we compare the computational performance
of our technique to others in the literature with a few
detailed examples, and discuss directions for future
research.
We begin the next section with the introduction

of our notation, followed by a motivating example.
In §3, we develop a general theory of bidder-Pareto-
optimal core mechanisms to support our approach.
In §4, we develop a specific algorithm for determining
bidder-Pareto-optimal core payments, with compar-
isons to existing techniques in §5. Further, in §5 we
reinforce our arguments on the selection of a bidder-
Pareto-optimal payment vector by showing discrep-
ancies among various solution techniques and by
demonstrating a form of collusion that is nullified by
our selection. We also provide a brief summary of
our experience solving instances from the CATS data
set. These comparisons demonstrate the effectiveness
of the algorithm for computing bidder-Pareto-optimal
payments presented in §4. Finally, in §6 we provide
concluding remarks.

2. Problem Framework and Notation
Consider an environment where N distinct items are
to be auctioned among M bidders. We will typically
index each item in the set I = �1�2� � � � �N � of auction
items by the letter i, and each bidder in the set J =
�1�2� � � � �M� of all bidders by the letter j . For any set
S ⊆ I , let vjS� denote bidder j’s value for the bun-
dle of items S (the maximum amount he would be
willing to pay for S), and let bjS� denote the bid that
bidder j has submitted to the auction for the bun-
dle S. To maintain full generality, we assume an XOR
language throughout (i.e., every bidder submits an
exclusive bid for every possible bundle S), although
the technique we propose in §4 easily generalizes to
any bidding language that uses an IP formulation for
winner determination. Further, we will use bj and vj

to denote the full reports and valuations of bidder j
over all bundles S ⊆ I .
To find an allocation of the auction items that maxi-

mizes bid value, we will make use of the following IP
formulation for a general version of the winner deter-
mination (GWD) problem:

max
∑

j∈J

∑

S⊆I

bj S� · xjS� (GWD)

subject to
∑

S⊇�i�

∑

j∈J
xj S�≤ 1 ∀ i ∈ I� (1)
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∑

S⊆I

xj S�≤ 1 ∀ j ∈ J � (2)

xjS� ∈ �0�1� ∀S ⊆ I� ∀ j ∈ J � (3)

The solution of this problem finds the efficient allo-
cation for a given set of bids, represented by the
coefficients bjS� in the objective function. In this for-
mulation, each binary variable xjS� equals one if
and only if bidder j is awarded bundle S ⊆ I . (Con-
straints (3) tell us that these variables must be binary.)
Constraints (1) consequently ensure that each item is
assigned to at most one bidder, while constraint set (2)
prevents the auctioneer from accepting multiple bids
from the same bidder. With “demand” constraints for-
mulated as in (2), each bid is an exclusive offer made
by a bidder for a particular bundle, and may not be
combined or accepted in conjunction with any other
offer from that bidder. The implied bidding language is
therefore often referred to as an XOR language.2

Ausubel and Cramton (1999) make a strong and
compelling case for the use of a mechanism (such as
this one) that is efficient with respect to submitted
bids, showing that it is revenue maximizing if the auc-
tion items can be costlessly resold. We also note that
efficiency with respect to submitted bids contributes
to our objective of perceived fairness in a public sec-
tor setting.
After establishing a winning allocation through the

solution of an instance of GWD, we must also assign
payments to bidders for the bundles they will receive.
The variable � will be used to denote a payment
vector, with each component �j indicating the pay-
ment made by bidder j , and with superscripts used
to distinguish among different payment vectors. For
example, �VCG

j will indicate bidder j’s VCG payment,
while �t will indicate the vector of payments for all
bidders at iteration t in our payment adjustment pro-
cedure. In Theorem 3.2, notation of the form �bj� b−j �
will be used to denote the payment vector determined
after a report of bj by bidder j and a fixed set of
bids b−j by her competitors.
An outcome, � , refers to an allocation and set of pay-

ments for bidders in a combinatorial auction. Let the
coalition, C� , refer to the set of bidders receiving items
under outcome � .
Perhaps the most obvious problem with VCG pay-

ments in terms of ex-post satisfaction is that the VCG

2 When the bidders are constrained in the number of XOR bids
they can submit (by a polynomial function in N , as may often be
the case due to computing memory constraints), this XOR winner-
determination problem is ��-hard. For the problem in which
bidders always submit bids on all bundles, there exist winner-
determination algorithms which grow exponentially in the number
of items N , but polynomially in the size of input (which is also
exponential in N ).

outcome may not be a “core outcome.” The core con-
ditions for a one-sided (forward) auction can be stated
by the following definitions, where a bidder weakly
prefers outcome �1 to �2 if outcome �1 gives him util-
ity greater than or equal to the utility of outcome �2.
We assume quasilinear net utility throughout (i.e.,
utility of a bundle S to bidder j is simply vjS�−�j ).
Definition. An outcome � is blocked if there is an

alternative outcome �B which generates strictly more
revenue for the seller and for which every bidder
in C�B

weakly prefers �B to � . C�B
may be referred to

as a blocking coalition.
Definition. An outcome � that is not blocked is

called a core outcome.
Definition. A core outcome � is bidder-Pareto opti-

mal if there is no other core outcome weakly preferred
by every bidder in C� .

3. Bidder-Pareto-Optimal Core
Mechanisms

To motivate the specific algorithm developed fully
in §4, this section develops some general properties
of sealed-bid mechanisms that produce efficient and
bidder-Pareto-optimal core outcomes based on sub-
mitted bids.
We take as our primary motivation the well-known

fact that a VCG outcome may not be a core outcome,
and thus may be considered “socially unacceptable,”
and unfit for an auction of public goods. Consider
the following three-bidder, two-item example from
Ausubel (2006): Let b1AB�= b2A�= b3B�= 2. In the
efficient allocation, bidder 2 wins item A while bid-
der 3 wins item B. VCG payments for each winning
bidder are computed to be zero. This is not a core
outcome because bidder 1 would prefer to pay any
amount up to two units to receive both items, an
outcome which is clearly more desirable to the seller
than the VCG outcome, in which no payments are
collected. Even worse, if bidders 2 and 3 value the
items at v2A�= v3B�= 0�5, they can still place bids of
two units each, and under the VCG mechanism will
not be held financially accountable for displacing the
efficient winner, bidder 1. If instead bidders 2 and 3
each pay one unit given the bids of two units each,
the coalition containing just bidder 1 no longer blocks,
and the outcome is in the core. Further, the joint devi-
ation from truthful bidding that benefitted bidders 2
and 3 when their valuations were each less than one
is no longer profitable. Given this seemingly fatal flaw
of the VCG mechanism, it is important in a public
sector auction to eschew VCG payments in favor of a
more reasonable payment determination mechanism
that will be guaranteed to arrive at a core outcome.
Breaking away from the VCG mechanism is often

met with skepticism from auction theorists: What
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strategic behavior can we expect from bidders in a
nonincentive-compatible auction? Ausubel and Mil-
grom (2002) characterize the Nash equilibria exactly
for their own ascending proxy auction, describing a
set of stable outcomes for which no player can bene-
fit through unilateral deviation. Theorem 3.1 restates
their result in a more general setting, justifying the
auction design approach presented here.
To present our result, we employ Ausubel and

Milgrom’s (2002) notion of a semisincere bidding
strategy, in which a bidder bids her true valuation on
every bundle, minus some constant amount (or bids
zero where this difference is negative). Ausubel and
Milgrom (2002) show that such a strategy is a best
response (maximizes utility) when facing a bidder-
Pareto-optimal core mechanism, regardless of the bid
profile of the competitors (e.g., even when the com-
petitors do not play a Nash equilibrium strategy).
For a fixed profile of opponent’s bids, other strate-
gies do exist that give the bidder utility equal to the
best semisincere strategy when using either a bidder-
Pareto-optimal or VCG mechanism, but these strate-
gies can deliver less utility when the opponents do
not bid as expected. Intuitively, the semisincere strate-
gies provide equal attention to all bundles, bidding
value minus a fixed profit margin on each, while
other strategies focus greater attention on a particu-
lar bundle (or bundles), which will result in regret if
unexpected opponents’ bids demonstrate that atten-
tion was focused on the wrong bundle. We therefore
restrict our attention to semisincere strategies, as in
Ausubel and Milgrom (2002).

Theorem 3.1. Consider a mechanism that determines
an efficient allocation and bidder-Pareto-optimal payments
within the core, based on the submitted bids. Let A be the
winning coalition with payments �A and allocating bun-
dle SA

j to bidder j for any bidder-Pareto-optimal point in
the core based on the true valuations of the bidders. An
outcome in which every bidder bids bj·� = maxvj·� −
vjS

A
j � + �A

j �0� is a Nash equilibrium under the given
mechanism. Further, when using such a mechanism, any
Nash equilibrium in semisincere strategies achieves a bid-
der-Pareto-optimal core point with respect to the true val-
uations of the bidders.

Proof. See the online appendix (provided in the
e-companion).3 �

Theorem 3.1 tells us the behavior that can be ex-
pected in an environment of perfect information,
demonstrating that for the expected equilibrium be-
havior in such an environment, the core property
is obtained by using a mechanism that enforces

3 An electronic companion to this paper is available as part of
the online version that can be found at http://mansci.journal.
informs.org/.

this property based on the submitted bids. Because
the concept of a Nash equilibrium describes behav-
ior under the possibility of profitable unilateral
deviations (and not profitable group deviations),
Theorem 3.1 provides only a broad set of possible
outcomes (any of the bidder-Pareto-optimal points in
the core) which may be expected in the case of per-
fect information. Thus, it is hard to say based on
Theorem 3.1 alone which of the (sometimes many)
possible Nash equilibria bidders will coordinate to
achieve. We will show in §5, however, that under
perfect knowledge and the possibility of hidden side
payments to support group collusion, bidders can
profitably coordinate to a total-payment-minimizing
bidder-Pareto-optimal core point, narrowing the field
of possible outcomes further (although not necessarily
to a unique outcome).
Theorem 6 in Ausubel and Milgrom (2002) states

that if the VCG outcome is in the core, then it is
the only outcome that could be selected by such a
bidder-Pareto-optimal core mechanism. Even though
we have not fully specified all the details of the mech-
anism we intend to employ, we mention here that
based on Theorem 3.1, together with Theorem 6 from
Ausubel and Milgrom (2002), any mechanism that
computes bidder-Pareto-optimal core payments based
on the submitted bids dominates the VCG mecha-
nism when core stability is a true concern. Whenever
the VCG mechanism is well behaved (in the core),
any bidder-Pareto-optimal mechanism will perform
identically, and whenever the VCG outcome is poorly
behaved (not in the core), a bidder-Pareto-optimal
mechanism produces a better (i.e., core) outcome at
equilibrium.
In real-life applications, however, information about

competitors is not perfect, and may be costly to obtain
or approximate. The expected cost of obtaining the
information necessary to coordinate to an equilib-
rium may indeed be extremely high, when one con-
siders that it may be illegal to obtain or share the
pertinent information about one’s competitors, and
that violations of these legal restrictions result in
exorbitant penalties. (The FCC, for example, periodi-
cally posts notices of such penalties on their website,
www.fcc.gov.) What behavior should we expect in an
environment with such a high cost of obtaining infor-
mation about one’s competitors?
As a first approximation of such an environment,

we introduce the following two-player auction game.
Suppose that players 1 and 2 can obtain utilities uj

(for j = 1�2, respectively) by playing a particular Nash
equilibrium strategy as described by Theorem 3.1.
They do not, however, have enough information to
compute the proper bids initially because without
the knowledge of their competitor’s valuations they
cannot compute a bidder-Pareto-optimal core point.
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Let us suppose that each may obtain the necessary
information (including knowledge of her opponent’s
decision to make a similar investment) at cost cj .
Implicitly, cj includes the expected value of a penalty
for violation of the auctioneer’s anti-collusion rules.
Further, let rj denote the reward obtained by bidder j
if the other bidder tells the truth while j deviates from
truth-telling according to her knowledge bought at
cost cj , while pj denotes the penalty (extra payment)
incurred by bidder j when telling the truth while the
other bidder deviates.
Suppose next that the auctioneer in this situation

chooses a mechanism that computes the same bidder-
Pareto-optimal core outcome (when honest bids are
reported) as the Nash equilibrium that the bidders
coordinate to when both are able to obtain perfect
information.4 The two bidders in this situation find
themselves playing the following normal form game,
in which each player has to decide whether to simply
tell the truth (T) or pay the cost (F) to obtain the infor-
mation necessary to find a more profitable outcome
(let player 1 be the row player):

T F

T u1�u2� u1 − p1�u2 + r2 − c2�
F u1 + r1 − c1�u2 − p2� u1 − c1�u2 − c2�

Like the prisoner’s dilemma, the two players will
do best as a group if both play T, but for low val-
ues of cj it will be a unique (pure-strategy) Nash
equilibrium for both to play F, despite this being a
worse outcome for both individually. However, if the
values of cj are made to be higher than the values
of rj and pj (by the auctioneer enforcing large enough
anti-collusion penalties), the unique Nash equilibrium
becomes for both players to tell the truth. The bidders
in this case are rewarded with the best possible out-
come that they could coordinate to achieve, without
having to pay the cost of obtaining the information
necessary for such coordination. In an environment
of more than two bidders, we obtain a similar result
(concerning unilateral deviation) by letting this nor-
mal form game represent the problem facing a single
bidder and allowing player 2 to represent the collec-
tion of all other bidders.
This suggests that the equilibrium behavior ex-

pected in a few extreme cases results in outcomes

4 We assume that with perfect information comes perfect knowl-
edge as to which of the (sometimes many) Nash equilibria should
be coordinated to achieve. If this cannot be decided with perfect
information, the situation becomes worse for the bidders, who may
accidentally shade their bids to a noncore point and miss their
optimal package/payoff. This possibility would only add benefit
(safety) to the truthful strategy outcome, and does not drastically
alter our discussion.

with the desired core property. When information is
costlessly available, bidders will coordinate to a Nash
equilibrium via Theorem 3.1. When information is
extremely expensive, we expect the bidders to tell the
truth and allow the mechanism to prescribe a sat-
isfactory outcome as in the two-player game above.
In between (when the cost of information is moder-
ate), bidders may be expected to needlessly invest in
perfect information, being unable to trust their com-
petitors not to fink, as in the traditional prisoner’s
dilemma. In all cases, however, the expected behavior
results in a core outcome.
We note that our model treats the decision of invest-

ment in information as a 0–1 decision and that a
future analysis of partial investment for partial infor-
mation remains an interesting open problem. We con-
jecture that such analysis will verify the following
intuition: bidders will “shade” their bids as much
as possible with “cheap” information (e.g., the infor-
mation that is privately available to them without
illicit pre-auction information sharing), resulting in
the selection of a bidder-Pareto-optimal core point by
the convexity of the core. With equal shading ability,
this results in the same outcome as under honest rev-
elation, but otherwise, those who shade better will
be rewarded with a more preferred bidder-Pareto-
optimal core point.
The analysis thus far suggests the following design

objectives for an auction mechanism:
• Employ a mechanism that computes a bidder-

Pareto-optimal core outcome based on submitted
bids, a choice that dominates the use of a VCG mech-
anism when core stability is desired.
• Among all bidder-Pareto-optimal core outcomes,

select one that the bidders will naturally coordi-
nate to in the presence of perfect information. This
will diminish the need for investment in information
about one’s competitors, which may be illegal. (More
on the selection of an outcome will be discussed as
we proceed.) When information is costly, this will
make truth-telling a preferred outcome for every bid-
der relative to the outcome in which all fully invest
in information.
• Enforce harsh penalties for collusion (the illegal

sharing of information). We do not address the issue
of just how large these penalties should be, although
we have made a case for all bidders benefitting (and
the seller being indifferent) from a scenario in which
such penalties are arbitrarily large. In practice, a polit-
ical process typically determines the magnitude of
these penalties for public sector auctions.
• Make the reward for unilateral deviation from

truth-telling (in the case where all others tell the truth)
as small as possible. This helps encourage the situa-
tion of extremely costly information (and not moder-
ately costly information), in which costs of deviation
are high relative to the benefits of unilateral deviation.
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To address this last point, Theorem 3.2 provides a
bound on a bidder’s ability to benefit by unilaterally
deviating from the truthful reporting strategy given
that others each play a truthful strategy. In particu-
lar, the difference between a bidder’s payment using
the VCG mechanism and an alternative mechanism
(assuming truthful reports) is the maximum that a
bidder can gain by deviating in the alternative mech-
anism. Using the corollary that follows, these bounds
provide us with the ability to minimize the total gains
from deviation (over all bidders). These results pro-
vide support for an approximate VCG approach in
the most intuitive fashion: the closer you get to the
VCG payments, the less incentive there is to deviate.
Suppose that each bidder j reports a vector bj , and

that instead of assigning VCG payments �VCGbj� b−j �,
our auction mechanism uses a payment rule �bj� b−j �
that is guaranteed to assign payments greater than or
equal to the VCG payments. (This assumption is jus-
tified because core payments are always greater than
or equal to the VCG payments.) Also, assume that the
mechanism chooses the efficient allocation (based on
the reports), so that for the same reports the mech-
anism in question differs from the VCG mechanism
in payments only (i.e., allocations are the same under
both mechanisms for the same reports). We then have
the following result:

Theorem 3.2. For any efficient mechanism that pro-
duces payments �j greater than or equal to the VCG pay-
ments, the amount that bidder j can benefit by unilaterally
deviating from the honest report strategy is less than or
equal to �jvj� b−j �−�VCG

j vj� b−j �.

Proof. Suppose not: There is some report b̂j such
that

vj �Sj�−�jb̂j � b−j ��− vjSj �−�jvj� b−j ��

> �jvj� b−j �−�VCG
j vj� b−j ��

where �Sj is the bundle awarded to bidder j given the
reports b̂j � b−j �, and Sj is the efficiently awarded bun-
dle given the report vj� b−j �. After rearranging and
canceling, we have

vj �Sj�−�jb̂j � b−j � > vjSj �−�VCG
j vj� b−j �.

By assumption on the mechanism determining � (and
a standard assumption of quasilinear utility), we have

vj �Sj�−�VCG
j b̂j � b−j �≥ vj �Sj�−�jb̂j � b−j �,

and thus from the above two inequalities, we find

vj �Sj�−�VCG
j b̂j � b−j � > vjSj �−�VCG

j vj� b−j ��

But this contradicts the well-known incentive-com-
patability property of the VCG mechanism, thus the
supposition must be false. �

This theorem and its elementary proof lend theo-
retical support to several payment-setting techniques
for combinatorial auctions (or two-sided exchanges)
which eschew the VCG mechanism, but approximate
the VCG outcome as closely as possible within a fea-
sible set of payments. These bounds are first stated
in Parkes et al. (2001) in the context of a two-sided
exchange, who also demonstrate that they are tight
(that is, by bidding exactly the VCG payment, a bid-
der can always achieve this benefit, given that all
other bidders remain honest). We provide a rigor-
ous proof of these bounds in the context of a one-
sided auction and use them to justify the approach of
approximating VCG payments for one-sided auctions.
For example, suppose that we want to determine a

payment rule that assigns payments to winning bid-
ders in an efficient allocation, and additionally, that
these payments must satisfy some prespecified prop-
erties (for example, the payments are not blocked by
any coalition of bidders). If R is the region in payment
space containing all payment vectors satisfying the
prespecified properties (for example, the core), assum-
ing that R is bounded below by the VCG payments,
we have the following result:

Corollary 3.3. The payment rule that minimizes total
potential gains from deviation within the feasible region R
minimizes total payments over R.

Proof. When minimizing the sum of the (tight)
bounds provided by Theorem 3.2, the VCG payment
terms are constant relative to the payments, with the
result following. �

In Parkes et al. (2001), VCG payments were approx-
imated subject to budget balance in a two-sided com-
binatorial exchange. The authors investigated several
payment rules for VCG approximation, eventually
favoring a “threshold rule” in which payments are
selected that minimize the maximum difference from
VCG payments over all players. In the case of a
budget-balanced exchange, however, total payments
are constant (equal to zero), and thus Corollary 3.3 has
no bite. In the case of a one-sided auction in which
VCG payments are approximated within the core, one
approach may be to simply follow the lead of Parkes
et al. (2001) and attempt to find payments that min-
imize the maximum difference from VCG payments
within the core. Corollary 3.3, however, shows that we
must first minimize total payments, or else the global
ability to gain from deviation may not be minimized.
In §5, we provide an example demonstrating that a
set of payments that minimizes the maximum differ-
ence from the VCG payments may not minimize total
payments, and our algorithm developed in §4 shows
how to incorporate the minimization of the maximum
deviation from VCG as a secondary objective.
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Having established that our goal is to minimize
total payments within the core region in payment
space, we now explore the problem of properly defin-
ing the core using linear and integer programming.
Later we will see that the minimization of total pay-
ments is also beneficial with regards to our second
bulleted design objective (above) when one considers
the possibility of profitable group deviation.

4. Core Constraint Generation
We now provide a novel contribution, an algorithm
for determining core payments using constraint gen-
eration. Our technique requires the repeated use of a
slightly modified winner-determination problem, for
which GWD will serve as a starting point. Although
the XOR language may seem cumbersome to those
who appreciate the benefits of a more sophisticated
bidding language, we present our results in the XOR
language because it is fully expressive, allowing for
the expression of any demand function through com-
plete enumeration, and therefore most general. The
method we present, however, may be applied in the
context of any bid language, by simply performing
the technique introduced in the following section on
the corresponding winner-determination problem for
that particular bidding language.
As in Hoffman et al. (2006), our general approach is

to first solve several winner-determination problems
for a sealed-bid combinatorial auction, settling on a
particular set of winning bidders and VCG payments.
Given this fixed outcome �VCG, we denote the associ-
ated coalition of winners as W = C�VCG

and the asso-
ciated payments �VCG

j for each bidder j ∈W . Starting
from this VCG outcome, we wish to arrive at a bidder-
Pareto-optimal core outcome with the same efficient
allocation; for the same bids only payments (if any-
thing) will differ between the VCG outcome and the
final core outcome proposed here.
From a constrained optimization point of view,

it is difficult to categorize the bidder-Pareto-optimal
core payments for two reasons. First, an exponen-
tial number of possible coalitions must be consid-
ered to define the core region in payment space; each
coalition (subset of the set J of all bidders) is will-
ing to make some offer to the seller, and the total
payments of the winning bidders must exceed each
of these offers. Second, it is difficult to gauge how
much a winning bidder will contribute to a “coali-
tional value function” (the offer made to the seller)
without knowledge of his final payment.
Given the core definition provided in §2, it seems

convenient (at first) to define a core constraint for any
blocking outcome � as

∑

j∈W
�j ≥ zC�

�

where �j is a payment made by each bidder j ∈ W ,
and zC is the coalitional value of C. We define this coali-
tional value zC as the maximum total payments that
a coalition C would be willing to offer the seller in
any outcome � with C� = C. Noting that an expo-
nential number of such coalitions exist, each defining
a constraint on the acceptable outcomes in payment
space, how do we separate which constraints must be
applied from those that can be ignored without conse-
quence? Further, how do we compute the value of zC
for a particular coalition C?
To appreciate the subtlety of the second question,

observe that any bidder j ∈W would not want to join
a coalition and receive less surplus than he would at
his current payment �t

j , at any iteration of a price-
adjustment algorithm or point in time t. Trying to
solve the winner determination problem restricted to
the bidders in the coalition C therefore overstates the
amount that any winning bidder in C would con-
tribute to the coalitional value zC because he will not
be compensated his opportunity cost (the amount of
surplus he stands to gain at the current vector of
payments). The result would be the application of a
too restrictive constraint, therefore charging the win-
ning bidders too much. We must instead consider that
each winning bidder has an opportunity cost limiting
his contributions to a blocking coalition. We therefore
amend our notation to capture the fact that a coali-
tional value function depends on the current set of
payments �t , and thus change to zC�

t�.
We may now describe our general iterative ap-

proach as follows: at a current vector in payment
space, �t at each discrete iteration t, find the coali-
tion Ct with the highest coalitional value relative
to current payments, zC�t�. If this coalition blocks
the currently proposed allocation (the efficient solu-
tion with payments �t), apply the corresponding
core constraint and find a new bidder-Pareto-opti-
mal payment �t+1. If this coalition does not block,
then terminate at the currently proposed outcome.
Before demonstrating this technique in full detail,
we observe a few basic properties of each winning
bidder’s “coalitional contribution” relative to current
payments, leading us to a more useful LP characteri-
zation.
Let Sj be the bundle awarded to winning bidder j

in the efficient solution. Relative to the current pay-
ment vector, bidder j would not voluntarily join a
coalition that offers him less surplus than bjSj �−�t

j ,
his opportunity cost. If a coalition provides bidder j
with bundle S̄j (possibly the same as Sj , but in general
not), then bidder j would contribute at most bjS̄j �−
bj Sj � − �t

j � into the coalition value function; if he
contributed more, then he would perceive less ben-
efit (surplus) from the hypothetical outcome of the
coalition than the one proposed by the auctioneer at
iteration t. If bidder j is not in the set W , there is no
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opportunity cost to recover, and he would offer his
entire value for a bundle in an effort to block the set
of winning payments. In this case, bjSj =��=�t

j = 0
and his coalitional contribution would be bjS̄j �. In
general, we have the following definition:
Definition. Facing payment of �t

j for bundle Sj in
the efficient allocation, bidder j would be willing to
make a coalitional contribution of qjS̄j ��

t
j � = bjS̄j � −

bjSj �+�t
j to receive S̄j as part of the coalition C.

Lemma 4.1. We note the following basic properties of
the coalitional contribution qjS̄j ��

t
j �:

(1) If bidder j were to pay an amount �C
j that is greater

than qjS̄j ��
t
j � to join coalition C and win S̄j , then bidder j

would experience less surplus from the coalition than from
the auctioneer’s proposed outcome Sj with payment �

t
j .

(2) qjS̄j ��
t
j � increases linearly in �t

j ∀ j ∈W .
(3) ∀ j ∈ J , S̄j = Sj implies that qjS̄j ��

t
j �=�t

j .
(4) qjS̄j ��

t
j � = bjS̄j � and j ∈W ∩ C imply that �t

j =
bjSj �.
(5) qjS̄j ��

t
j �= bjS̄j � ∀ j �W .

Proof. Property (1) verifies that our definition of
the quantity qjS̄j ��

t
j � truly reflects what we mean

by coalitional contribution, and follows from the def-
inition: �C

j > qjS̄j ��
t
j � = bjS̄j � − bjSj � + �t

j implies
that surplus from the coalitional outcome is bjS̄j �−
�C

j < bjSj �−�t
j , where the right-hand side of the last

inequality is exactly the surplus from the auctioneer’s
outcome. Properties (2), (3), and (4) follow directly
from the definition, while Property (5) follows from
the standard assumptions that bj��= 0 ∀ j , and that
�t

j = 0 ∀ j �W . �

Now that we have established the importance of
opportunity cost and shown that bidder j’s coalitional
contribution will normally be less than his value for
the bundle given to him by the coalition, we formu-
late the core-constraint separation problem at payment
vector �t . At any point in payment space, �t , the inte-
ger program SEPt finds the most violated core con-
straint, or tells us that no blocking coalition can be
found:

z�t�=max
∑

j∈J

∑

S⊆I

bj S� · xjS�

− ∑

j∈W
bjSj �−�t

j � ·#j (SEPt)

subject to
∑

S⊇�i�

∑

j∈J
xj S�≤ 1 ∀ i ∈ I�

∑

S⊆I

xj S�≤ 1 ∀ j ∈ J\W�

∑

S⊆I

xj S�≤ #j ∀ j ∈W�

xjS� ∈ �0�1� ∀S ⊆ I� ∀ j ∈ J �

#j ∈ �0�1� ∀ j�

The added terms in the objective of this IP formu-
lation (starting from GWD in §2) ensure that any
winning bidder will be compensated his opportunity
cost if selected as part of the optimal solution to
SEPt . It is easy to verify that any bidder j ∈ J con-
tributes exactly qjS̄j ��

t
j �, his coalitional contribution,

and that this formulation is equivalent to an instance
of the winner-determination problem for the auction
in which each bid from a winning bidder is reduced
by his current opportunity cost.
If the objective z�t� >

∑
j∈W �t

j , then the bidders for
which xjS�= 1 form a coalition Ct which blocks the
efficient allocation with the current set of payments,
i.e., Ct is a set of bidders such that z�t�= zCt �t�. If
z�t�=∑

j∈W �t
j , then we have achieved an unblocked

core outcome; no coalition of bidders would be able
to offer an outcome that both they and the auctioneer
would prefer. Also note that z�t� <

∑
j∈W �t

j is not
a possibility because the feasible allocation of items
to the winning set W achieves an objective value of∑

j∈W �t
j . As a result, the algorithm developed in this

paper is ascending in terms of total payments.
Having found a coalition Ct that blocks the pro-

posed outcome with payment vector �t , we know
that the constraint

∑
j∈W �j ≥ zCt �t� is violated. We

could proceed to define the core using constraints
of this form, however, Property (2) from Lemma 4.1
indicates that any price increases on any bidder
j ∈W ∩C completely cancel with the corresponding
increase in coalitional contribution qjS̄j ��

t
j � on the

right-hand side of the constraint for Ct . Consequently,
our method is to find bidder-Pareto-optimal core pay-
ments by generating core constraints of the form∑

j∈W\Ct �j ≥ z�t�−∑
j∈W∩Ct �t

j . The right-hand side of
these constraints are computed once and remain con-
stant for the remainder of the algorithm, unlike the right-
hand side of the constraints in

∑
j∈W �j ≥ zCt �t�.

After finding each of these constraints using SEPt ,
we may solve the following linear program BPOt to
find a set of bidder-Pareto-optimal core payments, in
the core relative to all coalitions found through iter-
ation t. Our choice of objective function is motivated
by Corollary 3.3 (and is reinforced later by an anti-
collusion property in §5).

$t =min
∑

j∈W
�j (BPO)t

subject to
∑

j∈W\C%

�j ≥ z�%�− ∑

j∈W∩C%

�%
j

∀ % ≤ t� (CORE)

�VCG
j ≤�j ≤ bjSj � ∀ j ∈W�

We then use the value of each �j in the solution for
the next iteration (i.e., set �t+1

j = �j ). We now show
that the resulting ascending algorithm converges to
the desired outcome.
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Theorem 4.2. If z�t� = $t−1, then the solution to
BPOt−1 yields bidder-Pareto-optimal core payments.

Proof. First, we note that the payments �t are in
the core because if not a blocking coalition provides a
solution to SEPt greater than $t−1. By the minimality
of

∑
j∈W �j with respect to the constraints (CORE), if

any bidder experiences a payment reduction without
an increase in the payment of some other bidder, then
some constraint from (CORE) must be violated. Thus,
we find that the payments must be Pareto efficient
with respect to core constraints. The convergence of
this algorithm is guaranteed because only a finite
number of constraints may be generated, and because
the region (CORE) always contains at least the trivial
pay-as-bid solution. �

In some cases, there may be multiple optimal
solutions to BPOt for which we suggest the follow-
ing refinement, a linear program EBPOt which finds
equitable bidder-Pareto-optimal core payments:

$t&�=min
∑

j∈W
�j + &m (EBPOt)

subject to
∑

j∈W\C%

�j ≥ z�%�− ∑

j∈W∩C%

�%
j ∀ % ≤ t�

�j −m≤�VCG
j ∀ j ∈W�

�j ≤ bjSj � ∀ j ∈W�

�j ≥�VCG
j ∀ j ∈W�

with decision variables appearing only on the left-
hand side of each constraint. By taking a small
enough value of the scalar &, we have that

∑
j∈W �j

computed from the solution to this problem is equal
to $t from the corresponding instance of BPOt . We
then see that the effect of the new terms is to find
a set of payments that minimizes the maximum dif-
ference from the VCG payments over all bidders,
among all outcomes that minimize the total payments
of winning bidders. The entire process for determin-
ing equitable bidder-Pareto-optimal core payments is
summarized in Table 1.
Because a general instance of the winner-determi-

nation problem can be polynomially transformed to

Table 1 The Core Constraint Generation Algorithm

Initialize: Iteratively solve the winner-determination problem, finding
winners W and VCG payments; Set �1 = �VCG, and
�0���=∑

j∈W �VCG
j .

Iteration t : Solve SEPt

If z��t � > �t−1���

Add constraint
∑

j∈W\Ct �j ≥ z��t �−∑
j∈W∩Ct �

t
j to EBPOt and

solve, updating �t ���.
Set �t+1

j = �j , the values found from EBPOt .
Iterate: t = t + 1.

Else
Terminate.

the problem SEPt (by adding a fictional bidder who
wins everything and solving the separation prob-
lem when this bidder pays zero), the separation
problem is ��-hard whenever winner determination
is ��-hard. Consequently, by a well-known result
establishing the equivalence of separation and opti-
mization (see Grötschel et al. 1981), the problem of
optimizing a linear objective over the CORE region
is also ��-hard (whenever winner determination is
��-hard).
Thus, a variety of related payment rules are also

fundamentally difficult to compute. Among these are
a minimax deviation from the VCG payments rule
(or threshold rule), and a maximin deviation from the
bundle values (or equal-pay rule). Versions of these
rules are discussed by Parkes et al. (2001) in the con-
text of two-sided exchanges with budget balance. The
modified objective function in EBPOt allows one to
mimic the equity properties of the Parkes et al. (2001)
threshold rule as a secondary objective, while mini-
mizing the total ability of bidders to gain from unilat-
eral deviation according to Corollary 3.3.
In the next section, we illustrate this core con-

straint generation algorithm with an example, and
compare the results to those of the threshold rule, and
to the examples presented in Hoffman et al. (2006)
and Wurman et al. (2004) regarding proxy auction
outcomes. In §5.1, we establish the primacy of total-
payment minimization over the space of all bidder-
Pareto-optimal solutions, and consider a related Nash
bargaining game in §5.2.

5. Examples, Comparisons to Other
Techniques, and Some
Computational Experiments

To illustrate our technique for determining bidder-
Pareto-optimal core outcomes using core constraint
generation, consider the three-item, eight-bidder ex-
ample of Figure 1. Here we depict the three items as
pieces of a pie to indicate visually which bids are on
which items. Inspection shows that bidders 1, 2, and 3
constitute the set of winners in the efficient allocation,
as indicated. In accordance with our earlier notation,
we will say that W = �1�2�3�.
With the set of winners determined, we next com-

pute �VCG
1 = �VCG

2 = �VCG
3 = 10, and so set �1

1 = �1
2 =

�1
3 = 10. Solving SEP1, the separation problem at iter-

ation 1, we find the most violated blocking coalition
C1 = �3�4� with z�1� = 38 > 30 = ∑

j∈W �1
j . We then

add the constraint �1 + �2 ≥ 28 to the formulation
EBPO1 and solve to find the new set of payments
�2
1 = �2

2 = 14, �2
3 = 10. Next, we solve SEP2 and find

that the coalition C2 = �2�5� blocks the current set of
payments with z�2� = 40 > 38 = ∑

j∈W �2
j . We form

EBPO2 by adding the constraint �1 + �3 ≥ 26 and
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Figure 1 An Auction for Which Threshold Payments Do Not Minimize
Total Payments

Winning bids Nonwinning bids

b2 = 20 b3 = 20

b4 = 28 b5 = 26

b6 = 10

b7 = 10 b8 = 10

b1 = 20

solve, yielding �3
1 = 16, �3

2 = 12, and �3
3 = 10. Finally,

solving SEP3, we find that no blocking coalitions exist;
the process has terminated at a bidder-Pareto-optimal
core outcome.

5.1. The Threshold Rule and a Collusion Problem
The algorithm we have just demonstrated selects
a specific bidder-Pareto-optimal core outcome. We
now compare our method to the “minimax” rules for
finding bidder-Pareto-optimal core outcomes that are
analogous to the rules developed for finding balanced-
budget solutions in combinatorial exchanges (Parkes
et al. 2001). For example, reformulated in our own
notation, the threshold rule selects payments which
solve the following optimization problem:

minmax
j∈W

�j −�VCG
j �

subject to
∑

j∈W\C
�j ≥ nC ∀C ⊆ J �

(THRESH)

where nC denotes the portion of the coalitional value
for C that is attributable to nonwinners. This rule for
payment selection can computed as an LP:

min m

subject to
∑

j∈W\C
�j ≥ nC ∀C ⊆ J �

�j −�VCG
j ≤m ∀ j ∈W�

(THRESH-LP)

Solving this LP for the above example, we find
the solution �1 = �2 = �3 = 14, which is unfortu-
nately Pareto inefficient. There is, however, a bidder-
Pareto-optimal point among the optimal solutions to
THRESH-LP, and we may next consider the strength
of the threshold rule as a selection criteria among
the multitude of points on the Pareto frontier of the
core. As in our own formulation for selecting equi-
table payments, this may be accomplished with the
insertion of a secondary objective weighted by a tiny

value &:

minm+ & · ∑
j∈W

�j

subject to∑

j∈W\C
�j ≥ nC ∀C ⊆ J �

�j −�VCG
j ≤m ∀ j ∈W�

(Pareto-THRESH)

Solving this new LP for the example of this sec-
tion, we arrive at the solution �1 = �2 = 14 and
�3 = 12, which is indeed Pareto efficient and mini-
mizes the maximum deviation from the VCG pay-
ments. We note, however, that in accordance with the
bounds presented in Theorem 3.2, this solution pro-
vides 10 units of opportunity to gain from deviation,
while the EBPOt solution provides only eight units of
opportunity to gain from deviation, a global decrease
in the opportunities from deviation, although individ-
ual bidders may have greater opportunities.
The selection of a bidder-Pareto-optimal outcome

is by its very nature a matter of taste. Bidder-Pareto-
optimal points are by definition unable to be com-
pared with a strict dominance relationship; movement
from one Pareto optimal point to another results in an
increase in utility to one player if and only if another
player experiences a decrease in utility. Although it
seems reasonable to guarantee that total available
incentive to deviate be minimized, one could argue
that minimizing the maximum incentive to deviate is
more important (the previous example demonstrates
that there is a distinction). We note, however, the fol-
lowing important observation:

Proposition 5.1. A core outcome that minimizes the
total payments by bidders will be strictly preferred by the
bidders to any other bidder-Pareto-optimal core outcome if
side payments are possible.

According to Theorem 3.1, because collectively bid-
ding any bidder-Pareto-optimal point in the core con-
stitutes a Nash equilibrium, one must look outside
the concept of unilateral deviation to compare bidder-
Pareto-optimal outcomes. To select a payment mecha-
nism from all bidder-Pareto-optimal choices, we must
therefore consider multilateral collusion supported by
side payments.
Compare, for example, the outcome arrived at by

the solution of EBPOt , �1 = 16, �2 = 12, �3 = 10, and
the outcome arrived at by the solution of Pareto-
THRESH, �1 = �2 = 14, �3 = 12. In the former case,
the sum of the payments equals 38, while in the latter
case, the payments sum to 40. If asked which outcome
is preferred, in the presence of side payments the win-
ners will select the former. This is because the bidders
that stand to benefit from the change (bidders 2 and
3, in this case) can pay off the bidders who would
experience a payment increase (just bidder 1) to make
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them indifferent to the change. In this case, bidders 2
and 3 could compensate bidder 1 a payment of one
unit each in an effort to coax him into a move from the
latter to the former. Bidder 1 would then be indiffer-
ent, while bidders 2 and 3 will each still gain one unit
of surplus from the change. We note that the same
comparison holds for the “equal-pay rule” (in which
the maximum difference between the bundle values
and payments is minimized) because by the construc-
tion of the example in Figure 1 all winning bidders
have the same valuations and VCG payments.

Proposition 5.2. For any auction mechanism termi-
nating at a bidder-Pareto-optimal core outcome, it is prof-
itable for the winning bidders to collude to bid (and
pay) exactly the final payments prescribed under a total-
payment-minimization mechanism (e.g., EBPOt).

This result is achieved by using covert side pay-
ments to support any difference from the mechanism
selected by the auctioneer, as shown in the preced-
ing example. Further, as in the preceding example,
this collusion will be advantageous because total pay-
ments are reduced, leaving money available to sup-
port the covert side payments.
Interestingly, if the public were made aware of the

side payments, and each bidder’s apparent final pay-
ment for her awarded bundle is adjusted accordingly,
the resulting solution is no longer in the core. For
example, if bidders facing the threshold rule make
side payments to support a move to the EBPOt solu-
tion for the Figure 1 auction as mentioned earlier, the
adjusted final payments (adding or subtracting side
payments) are �1 = 14, �2 = 13, �3 = 11. But this out-
come is blocked; bidder 4 would be willing to pay up
to 28 monetary units for the items won by bidders 1
and 2 for just 27 monetary units.
Because this possibility of colluding to a noncore

point exists whenever the auction mechanism does
not minimize total payments within the core, we
argue that the auction mechanism should necessarily
minimize total payments within the core. By selecting
an outcome that would be emulated under the collu-
sive strategy, we eliminate the incentive to engage in
such collusion with illicit payments.

5.2. Nash Bargaining
With arguments in the previous subsection proposing
the selection of an outcome that winners may try to
achieve through collusion under a different mecha-
nism, we must naturally consider the connections to
the theory of bargaining. In a seminal paper, Nash
(1950) introduces a solution concept for a set of play-
ers bargaining over a convex set of feasible outcomes
in payoff space. Under a few mild assumptions, it can
be shown that the players should immediately settle
on the point that maximizes the product of their util-

ities within this convex set. Because the convexity of
the core is a well-known property, one may wonder
if there is an interpretation of our auction mechanism
as a Nash bargaining game, and whether the out-
comes coincide. After all, we are proposing to select
the outcome that bidders can profitably collude to
under some other mechanism. Is this the same solu-
tion that Nash bargaining says these bidders will nat-
urally agree to? Consider the following game:
Bidders are told that they are participating in a

VCG auction and therefore respond with their true
valuation for every bundle. The auctioneer releases
the auction (VCG) outcome including the efficient
winners and their payments, causing great discontent
among losing bidders because the solution is not in
the core. As a political solution to the public out-
cry, the auctioneer asks the winning bidders to decide
among themselves on a set of payments that no group
of dissatisfied bidders could complain about (i.e., a
core outcome), or else the auction results will be can-
celed with no trade. This is a Nash bargaining game
with the core as a feasible region. The solution is the
point in the core that maximizes the product of the
winning bidder utilities.
Is the solution of this bargaining game the same as

the solution found using core constraint generation?
For some examples yes, but in general the answer is
no. Again, take the example in Figure 1. The unique
solution to the Nash bargaining problem for this auc-
tion is �1 = 16−), �2 = 12+), �3 = 10+), where

)= 14− 2
√
43

3
�

Finding this solution requires the solution of a nonlin-
ear programming problem, which in general may be
quite difficult. It is easy to verify that the product of
all winning bidders’ utilities is higher under this solu-
tion than the one found using core constraint genera-
tion. To verify that this is indeed the optimal solution
to the Nash bargaining problem, one need only ver-
ify the pseudoconcavity of the objective function (the
product of three quasilinear nonnegative utility func-
tions) over the core, and that this point satisfies the
Karush-Kuhn-Tucker optimality conditions (see, for
example, Bazaraa et al. 1979). The derivation of this
solution is a bit tedious, but would make a healthy
exercise for a student of nonlinear programming.
Is this a better core solution for this auction than

the one found using core constraint generation? We
first note that it suffers from the same problem as
the threshold solution (noted in §5.1) that total pay-
ments are not minimized (payments sum to 38+),
rather than the minimal 38). Thus, if an auction mech-
anism selects the payment vector within the core
that maximizes the product of apparent utility, there
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will be a greater total incentive to deviate via Corol-
lary 3.3. Further, taking into consideration the com-
ments on side payments from §5.1, if the winning
bidders were allowed to select a “socially acceptable”
outcome within the core as depicted above, they
would prefer to choose a payment minimizing out-
come, with bidders 2 and 3 each covertly paying bid-
der 1 the amount )/2. The bidders would announce
the “socially acceptable” outcome �1 = 16, �2 = 12,
�3 = 10, but with side payments would be achieving
the “socially unacceptable” outcome �1 = 16−), �2 =
12+ )/2, �3 = 10+ )/2. The Nash bargaining model
does not take into consideration the expansion of the
feasible region by use of side payments, nor does it
consider the incentive properties of the auction giving
rise to this feasible region, although it is interesting
to note the connection and the disparity between the
two solution concepts.

5.3. Accelerated Proxy Methods
Having established with the example of Figure 1 that
the outcome of the core constraint generation proce-
dure may deviate from the threshold outcome as for-
mulated in Hoffman et al. (2006) and Parkes (2002),
and from a related Nash bargaining game solution,
we now demonstrate that this technique may pro-
vide computational advantages over existing iterative
proxy methods. Consider the following example from
Hoffman et al. (2006):

Bidder 1 2 3 4
Package AB BC∗ AC A∗

Value 20 26 24 16

where ∗ in their notation denotes the winners in the
efficient allocation. They present a comparison of sev-
eral methods for obtaining core outcomes, and here
we present their results for this problem in terms of
number of rounds, along with the VCG and thresh-
old payments, with an added row displaying the
new results using Core Constraint Generation. Table 2
shows that where each of their iterative techniques5

may require several rounds to solve this problem, core
constraint generation terminates after a single round
of price adjustments. Starting at the VCG payments,
�VCG
2 = 8, �VCG

4 = 0, we find the most violated block-
ing coalition consisting of just bidder 3. We then equi-
tably divide the burden of overcoming this coalition

5 “Pure proxy” refers to the algorithm described by Ausubel and
Milgrom (2002) (increment= 0�01), while “safe start” runs this same
algorithm starting from the VCG payments. “Increment scaling”
uses a similar algorithm with a changing increment value, start-
ing either from zero payments or from VCG (i.e., w/ “safe start”),
proposed by Hoffman et al. (2006), who give full details on these
methods.

Table 2 Comparison of Core Constraint Generation to Proxy Methods

Method Rounds Revenue Payment by 2 Payment by 4

Pure proxy 3�100 2402 1201 1201
Safe start 800 2402 1601 801
Increment scaling 20 2402 1701 701
Increment scaling 15 2402 1601 801

w/ safe start
VCG payments — 800 800 000
Threshold payments — 2400 1600 800
Core constraint 1 2400 1600 800

generation

(using EBPOt) and find that no other blocking coali-
tion exists. Note that this procedure obviates the need
to consider a constraint for the coalition �1� which is
made redundant by the constraint of coalition �3�.
Comparisons to all other examples worked out

by Hoffman et al. (2006) verify this apparent dom-
inance of the core constraint generation technique.
For every problem instance presented fully there, core
constraint generation terminates after a single price
adjustment. We also note that in no case presented in
Hoffman et al. (2006) do our computed payments dif-
fer from the threshold payments, and conclude that
the phenomenon present in the example of Figure 1
is missing from the examples generated by Hoffman
et al. (2006).

5.4. The Inflection Point Method
A different technique for direct computation of proxy
outcomes (i.e., bidder-Pareto-optimal core outcomes)
is provided by Wurman et al. (2004), who observe the
existence of change points or inflection points in the
price trajectories followed in the typical proxy auc-
tion as introduced by Ausubel and Milgrom (2002).
At each inflection point, the behavior of the ascend-
ing proxy auction changes; at a particular payment
vector, a bidder will no longer find it profitable to
compete for the same bundle or bundles he has
been pursuing for the previous rounds and will
change his attention to compete for a different bun-
dle. Wurman et al. (2004) provide a mixed-integer
linear program (MIP) which traces the payment tra-
jectory, telling at each stage which bundles a bid-
der is continuing to pursue between inflection points,
and the allocation(s) supporting each payment vector
along the trajectory. Although this research remains
interesting for its ability to “jump” to the points of
interest in the ascending proxy auction, we argue
that for large-scale practical applications, the trajec-
tory information is irrelevant to the final outcome.
Because this additional information (illustrating how
the final payments are arrived at through an ascend-
ing procedure) is achieved only through additional
computational complexity, we argue that the core con-
straint generation procedure presented here provides
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a more viable computational solution for applications
in which intermediate payment adjustments can be
ignored.
To demonstrate a direct comparison of our algo-

rithm to the inflection point method, we apply
our technique on the following worked example of
Wurman et al. (2004):

A B AB C AC BC ABC

Buyer 1 10 3 18 2 18 10 20
Buyer 2 4 9 15 3 12 18 20
Buyer 3 1 3 11 9 16 17 25
Buyer 4 7 7 16 7 16 16 20

This auction has two efficient solutions (both recog-
nized by the inflection point method) with the fol-
lowing outcomes (with payments computed by the
inflection point method): Buyers 1, 2, and 3 get A, B,
and C, respectively, with �1 = �2 = 8, �3 = 9; buyer 1
gets A, buyer 2 gets B and C, with �1 = 8 and �2 = 17.
The process solves 11 MIPs to achieve these solu-
tions, each one more computationally complex than
the winner-determination problem for the auction.
The core constraint generation algorithm first selects

a particular efficient solution, so, for the sake of com-
parison, we ran our algorithm twice, once for each
efficient solution. For the first (with three winners),
we solve the initial winner-determination IP, followed
by the solution of three winner-determination prob-
lems (one with each of the three winners removed) to
determine the VCG payments. We then solve a sin-
gle instance of the separation problem SEPt , adjust
prices once from the VCG payments, and terminate
at the solution �1 = 7�5, �2 = 8�5, �3 = 9. In total, five
IPs must be solved, each computationally equivalent
to the winner-determination problem. For the alter-
nate efficient outcome, we again find the final pay-
ments after just a single payment adjustment. For this
instance, we solve just four IPs to arrive at the final
payments, �1 = 7�5, �2 = 17�5, with one less IP because
there is one less VCG payment to compute.
We first observe that although the total number of

IPs/MIPs to find all solutions is similar for this exam-
ple (9 versus 11), in practice only a single auction out-
come is necessary, so that the comparison becomes
4 or 5 versus 11. In addition, each instance of the
inflection point MIP effectively finds every solution
to the winner-determination problem for a particular
vector of information released to the proxy, making
it necessarily more complex than each IP solved by
our algorithm, which finds a single solution to the
winner-determination problem.
As the example of Wurman et al. (2004) shows,

the ascending proxy and inflection point methods
do not necessarily compute the VCG payments, and

may therefore produce a solution with an inferior dis-
tribution of deviation incentives.6 More importantly
though, the added complexity of the MIP introduced
by Wurman et al. (2004) is overkill; every optimal solu-
tion to an ��-hard winner-determination problem is
found for several payment vectors. (The theory of #�
complexity tells us that finding all solutions of a prob-
lem in �� is fundamentally harder than finding sin-
gle solutions.) Further, many of the iterations of the
procedure reveal information that is irrelevant to the
final auction outcome, while each iteration of the core
constraint generation algorithm seems to produce (in
all investigated instances) a core constraint that is
tight (has zero slack) in the final payment outcome.

5.5. Variations on the Core Constraint
Generation Algorithm

At no point in the development of the core constraint
generation algorithm was it necessary for the separa-
tion procedure to begin at the VCG payment vector. In
truth, the separation problem SEPt will find the most
violated coalition of bidders starting with an efficient
allocation and any payment vector. This provides the
possibility of many variations of the algorithm, each
starting from a different set of payments. Theorem 4
from Ausubel and Milgrom (2002) suggests that the
VCG payments should be a good starting point for the
algorithm because it will also be the stopping point if
the VCG payments are in the core. Additionally, moti-
vated by the approach of Hoffman et al. (2006), and by
the beneficial incentive properties suggested by The-
orem 3.2 and Corollary 3.3, we propose that the VCG
payments provide the strongest starting point for the
separation portion of the algorithm, but are open to
the possibility of an alternative starting point.
Is it possible that by starting at a different set of

initial payments that we reduce the overall compu-
tational burden as measured by the number of IPs
solved? If we save computational time by not com-
puting the VCG payments, will total computational
burden be reduced? The following example demon-
strates that the answer may be ambiguous, even for a
single auction.
The most natural alternative starting point to con-

sider is the zero payment vector, and we tested this
variation of the core constraint generation algorithm
on the inflection point example from Wurman et al.
(2004). Because the VCG payments are not available,
we must alter the formulation EBPOt , giving it some
other basis for selecting among all possible payment
vectors which minimize the sum of payments within

6 One can easily check via Theorem 3.2 that bidder 1 can benefit by
unilateral deviation from truth-telling up to one unit under either
Wurman solution, while our solution spreads this incentive out,
giving 0.5 units of deviation incentive to both bidders 1 and 2.
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Table 3 Computational Results Using the CATS Data

WD CPU time Total CPU time No. of SEP instances Total no. of IPs

Goods Bids Worst case Average Worst case Average Worst case Average Worst case Average

16 10 0015 00018 0015 00027 1 004 8 296
16 25 0016 00022 0016 00102 4 054 16 448
16 50 0016 00048 0047 00269 6 122 22 602
16 100 0047 00103 0359 01014 6 174 22 776
16 250 0063 00191 0750 02190 5 186 14 780
16 500 0297 00535 2625 06820 10 268 27 1132
16 1�000 0156 00821 2031 10610 8 264 25 1152

32 10 0015 00021 0016 00030 2 006 7 266
32 25 0016 00028 0032 00102 2 058 10 468
32 50 0047 00067 0422 00395 5 112 16 620
32 100 0172 00253 1484 02157 5 156 16 824
32 250 0719 01432 12032 25161 10 382 26 1386
32 500 1609 03726 39328 90243 10 446 27 1592
32 1�000 1375 01832 27422 48200 12 568 32 1866

64 10 0016 00016 0016 00031 1 002 7 290
64 25 0031 00047 0125 00165 7 088 14 476
64 50 0172 00226 1438 02205 8 156 16 664
64 100 0703 00872 11172 11957 10 166 25 956
64 250 7516 18669 148547 397604 31 514 58 1782
64 500 48765 5795 2�202156 2446347 33 892 62 2724
64 1�000 67954 78513 3�703391 5110841 22 782 51 2610

128 10 0016 00012 0016 000184 0 0 6 308
128 25 0016 00029 0094 00165 4 096 12 554
128 50 0188 00260 2391 03298 9 302 22 1036
128 100 0938 01614 19000 250408 10 31 27 1198
128 250 58000 62901 814235 1645285 15 594 44 2398
128 500 1�381656 1550251 51�824359 6�8126973 169 2026 218 4710

Note. Each data point represents 50 simulated auction instances. All times are in seconds. The total number of IPs represents SEP instances together with the
initial winner determination instance and one IP to compute each winning bidder’s VCG payment.

the core. Although there are several possibilities, we
used the most simple: simply replace the VCG pay-
ments in the EBPOt formulation with zeros, so that
the algorithm finds a payment vector that minimizes
the maximum payment of any bidder among all pay-
ment vectors that minimize total payments.
We ran this alternative algorithm twice on the ex-

ample from Wurman et al. (2004), again, once for
each efficient solution. For the first efficient solution
(with three winners), we solve six IPs: the initial
winner-determination problem, and five instances of
the separation problem. Compared with the five total
IPs solved when using the VCG starting point, this
technique seems inferior. Surprisingly however, if we
choose the alternative efficient solution for the same
problem (with just two winners), we solve only three
IPs, compared with four when starting at the VCG
payments. Clearly, there is no dominance for one tech-
nique over the other in terms of computational bur-
den alone, even for the same auction! (The results are
identical in both final payments and number of IPs
solved if we use the equal-pay secondary objective
discussed in §5.2.)
Interestingly though, starting at payments of zero

and minimizing the maximum difference from zero

payment over all bidders, we find exactly the same
payments as we do using the inflection point method
(and hence the generic ascending proxy auction)
for this example. As noted earlier, this solution has
inferior incentive properties, causing us again to lean
toward the use of a VCG starting point. The less
costly starting point does not always lead to overall
improvement of performance and forfeits the ability
to approximate VCG payments explicitly.

5.6. Some Computational Experiments
Table 3 summarizes our experience implementing in-
stances of the core constraint generation algorithm
to solve instances generated using CATS (Combi-
natorial Auction Test Suite) to model real-life auc-
tions. Leyton-Brown et al. (2000) provide details of
how combinatorial auction XOR bids are generated
to emulate several economically relevant auction pro-
files using CATS. In our case, we generated 50 auction
instances for several arbitrarily chosen combinations
of goods and bids. Using the “arbitrary hybrid” fea-
ture of CATS, we randomly selected a distribution
from among the several economic scenarios devised
by CATS with equal probability for each instance. (We
omit the legacy distributions which are not intended,
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as the rest of CATS is, to reflect real-life implementa-
tions.) All other parameters were left at their default
values for CATS 2.0. Computations were performed
using CPLEX 9.0 on a 3.2 GHz Pentium 4 CPU with
1.0 GB of RAM.
As indicated by this data, bidder-Pareto-optimal

core payments can be computed using the core con-
straint generation technique at a reasonable pace
for many realistically sized auctions. With even the
largest instance taking around 14 hours, our experi-
ence with these 1,350 instances indicates that it would
be reasonable to expect that the outcome of a sealed-
bid combinatorial auction in this size range could be
reported by the auctioneer on the following day, if not
in the first few seconds for smaller instances.

6. Concluding Remarks
Recent trends indicate that combinatorial auctions,
in which bidders submit bidding information on
many bundles, are fast becoming viable for sev-
eral large-scale business-to-business and governmen-
tal auctions. Because of their adherence to efficient
allocations, core outcomes which cannot be chal-
lenged by disgruntled bidders, and bidder-Pareto-
optimality, guaranteeing that bidders do not suffer
high payments unnecessarily, bidder-Pareto-optimal
mechanisms are especially attractive solutions for the
allocation of public goods. Ausubel et al. (2006) pro-
vide the practical clock-proxy-auction design, moti-
vated by a great deal of real experience conducting
high-stakes combinatorial auctions. Further, this auc-
tion format has received a great deal of attention as
a candidate for existing and proposed governmen-
tal auction applications (Kwerel 2004). Consequently,
the improvements described in this paper, addressing
critical issues related to the proxy auction and bidder-
Pareto-optimal mechanisms in general, promise to
have a wide-ranging impact.
The clock-proxy auction incorporates a demand

revelation phase which is followed by (and terminates
with) a proxy auction, which is essentially a sealed-
bid combinatorial auction with a particular payment
rule. This sealed-bid phase can be run a number of
different ways, but as laid out in the earlier ascending
proxy auction of Ausubel and Milgrom (2002), there
are only a few essential features: efficiency based on
reported values, and the use of a payment rule that
finds a bidder-Pareto-optimal (as opposed to a VCG
or pay-as-bid) point in the core. In this paper, we have
presented a new “direct” method of finding auction
outcomes which meet these same criteria, promising
to deliver faster results in the practical environment,
to allow for auctions with a greater number of items
(relevant, for example, to the large number of landing-
slots in proposed FAA applications), and to assure
bidders of a transparent paradigm for fair payments.

Along the way, we refined several key concepts
governing these auction outcomes. A few general re-
sults indicated the virtue of the bidder-Pareto-optimal
mechanism, justifying an approach which minimizes
total payments within the core primarily, and mini-
mizes the maximum difference from VCG payments
as a secondary objective. Our treatment provides a
more clear understanding on the selection of a bidder-
Pareto-optimal point from the core, where in the past,
this notion was somewhat vague.
As the primary justification for total-payments min-

imization within the core, Propositions 5.1 and 5.2
describe a form of collusion that is nullified using
total payment minimization, while the example of
Figure 1 demonstrates how bidders can collude to
achieve a “socially unacceptable” outcome using
alternative techniques. As a secondary benefit of total-
payment minimization, Corollary 3.3 demonstrates
that total individual incentives to deviate are also
minimized. As discussed in §3, this property gains
importance in the presence of costly information.
As a final remark on the selection of a core out-

come, we note that the public perception of fairness
may be the strongest motivation to adopt a total-
payment-minimization mechanism. For governmental
auctions in particular, many will take comfort that
the auctioneer is not selecting an outcome according
to self-interest, but in the combined best interests of
the bidders. Indeed, the Air Transportation Associa-
tion, representing the concerns of airlines who would
bid in the recently proposed auctions for airport land-
ing slots, voices a concern that “slot auctions should
not be designed to maximize payments from air-
lines” (Airline Business Report 2005, p. 1). What could
be a more accommodating response to these public
demands than a mechanism assuring total-payment
minimization over the space of socially acceptable
outcomes? In private sector B2B auctions, on the other
hand, assurance of an auction that reaps benefits in a
minimal fashion may be the best method to maintain
long-term trade relationships and encourage repeated
participation. In both cases, only the core constraints,
representing competition, should drive up the pay-
ments, not the artificial device used to determine pay-
ments. Looking back at the classical auction literature,
we see that the second-price single-item auction also
minimizes payments with respect to core constraints,
reinforcing our payment mechanism as a viable gen-
eralization of the second-price auction to the realm of
multiple goods.
Additionally, the core constraint generation method

offers computational benefits over other techniques
described in the recent literature. By solving the sep-
aration problem at each point in payment space, we
only consider coalitions that actually threaten to block
a potential outcome, obviating the need to apply the
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entire exponential set of constraints. Our definition
of core constraints (as in CORE) are equivalent to
those defined as core constraints in Hoffman et al.
(2006) and Parkes (2002) through a linear change of
variables, but reformulating the constraints in terms
of payments, rather than payoffs, provides the proper
intuition for our observations on coalitional contri-
bution, facilitating the formulation of the separation
problem. To our knowledge, the formulation of the
separation problem for violated core constraints and
the development of a price adjustment procedure uti-
lizing this approach are novel contributions to the
literature.
Further, the core constraint generation algorithm

takes place without the need for a price increment
as in the ascending proxy technique, accelerated
or otherwise. EBPOt upholds every generated core
constraint for the remainder of the procedure. This
ensures that the same coalition will not appear repeat-
edly as blocking in our procedure. Experience with
the ascending proxy method, on the other hand,
shows that after an increment and re-solution of
the winner-determination problem, the same coalition
may appear for several iterations.
Wurman et al. (2004) find a different way around

this issue with the use of a MIP that jumps to each
“change point” or “inflection point” at which the
relevant coalitions change, but we argued against
that technique for several reasons. Most importantly,
the inflection point method finds more information
than is needed for most practical implementations,
at the cost of significant additional computational
complexity.
The strength of the ascending proxy technique

(with the accelerating techniques of Hoffman et al.
2006, the inflection point method of Wurman et al.
2004, or otherwise) is that an auction with iterative
revelation of demand is either performed explicitly
or simulated. But, because the information is submit-
ted to a proxy (and cannot be changed by the bidder)
iterative revelation of demand is strategically irrele-
vant, and merely makes a nice story to explain the
process to bidders. We propose the core constraint
generation procedure as an alternative that bypasses
the iterative revelation of demand to achieve the final
outcome more directly. Only allocations that affect the
final payments of the winning bidders are considered;
many allocations that are only feasible at intermedi-
ate, irrelevant payment vectors can be ignored.
Our core constraint generation algorithm shows

much promise as the method of choice for the deter-
mination of bidder-Pareto-optimal core outcomes in
public sector combinatorial auctions. As the examples
provided in this paper show, our technique clearly
dominates the proxy-auction algorithm, the acceler-
ated proxy developed by Hoffman et al. (2006), and

the inflection point approach of Wurman et al. (2004).
We hope that ongoing studies (performed by the
authors and by researchers associated with the FAA
and FCC) testing large-scale implementations will
confirm the rapidness, robustness, and scalability of
our approach, thereby providing a practical method-
ology for computing fair solutions in public sector
combinatorial auctions.

7. Electronic Companion
An electronic companion to this paper is available
as part of the online version that can be found at
http://mansci.journal.informs.org/.
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Online Appendix
Proof of Theorem 3.1
First, we prove the initial statement, that any bidder-Pareto-optimal core point corresponds to a Nash
equilibrium in semisincere strategies when using a mechanism that is bidder-Pareto-optimal with
respect to submitted preferences. To construct a proof by contradiction, suppose that for any spe-
cific point in the core ��A�A�, all bidders bidding bj�·� =max�vj�·� − vj�S

A
j � + �A

j �0� is not a Nash
equilibrium. Thus, there is a bidder l who may profitably deviate from this bid profile (unilaterally),
achieving a new winning coalition D with payment vector �D, and allocating bundle SD

j to each bid-
der j . It may be worth noting that l must have been a winner in the allocation A. (If not, l must bid
more than bl on some bundle, which implicitly equals vl, because when losing SA

l = � and �l = 0.
But when this losing bidder increases a bundle bid to the minimum amount necessary to be included
in an efficiently determined allocation, she will pay her bid, which would be greater than her value,
contradicting the profitability of the deviation.)
The profitability of the new deviation strategy for bidder l implies that vl�S

A
l �−�A

l < vl�S
D
l �−�D

l ,
or equivalently, vl�S

D
l �−vl�S

A
l �+�A

l > �D
l . Because the left side of this inequality is exactly the bid of l

prior to deviation, we may write this as follows:

Observation 1. bl�S
D
l � > �D

l .

Next, note that because of bidder-Pareto optimality in the core of the mechanism (with respect to
submitted bids) and the bid profiles bj�·�, for any winning bidder j there is a coalition not including j
whose maximum total bids on the entire set of auction items is equal to the payments of the winners.
If this were not true, the mechanism could find a Pareto improvement, lowering the payment of j
without disturbing the surplus of other players and without leaving the (apparent) core. In particular,
for the initial allocation to the coalition A, we note the following:

Observation 2. There is a coalition B such that l � B and
∑

j∈B bj �SB
j �=

∑
j∈A �A

j .

Thirdly, we note that under the initial strategies (prior to deviation by l) we have
∑

j∈A �A
j ≥

∑
j∈D�vj�S

D
j �− vj�S

A
j �+�A

j �=
∑

j∈D bj�SD
j �, with the first inequality following because ��

A�A� is in the
core with respect to true valuations. We re-state this as the following:

Observation 3.
∑

j∈A �A
j ≥∑

j∈D bj�SD
j �.

Putting these facts together, and considering what bidders in B are willing to offer the auctioneer
after the deviation of bidder l according to their own undeviated bids, we have the following string
of inequalities:

∑

j∈B
�bj �S

B
j �− b�SD

j �+�D
j � =

∑

j∈A
�A

j +∑

j∈B
��D

j − bj�S
D
j �� by Observation 2 and the selection of B

≥ ∑

j∈D
bj�S

D
j �+

∑

j∈B
��D

j − bj�S
D
j �� by Observation 3

> �D
l + ∑

j∈D\l
bj �S

D
j �+

∑

j∈B
��D

j − bj�S
D
j �� by Observation 1

ec1
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= ∑

j∈D
�D

j + ∑

j∈B\D
��D

j − bj�S
D
j �� by canceling terms in B ∩D

= ∑

j∈D
�D

j

because each SD
j =� for bidders not in D, and thus �D

j = bj�S
D
j �= 0 for all bidders j in B\D. Altogether

this implies that ∑

j∈B
�bj �S

B
j �− b�SD

j �+�D
j � >

∑

j∈D
�D

j �

But with Lemma 4.1, this implies that the coalition B would be willing to pay strictly more for the
bundles SB

j following the deviation by bidder l than coalition D actually pays following the deviation,
contradicting the core property of the mechanism based on the submitted bids. Thus, every bidder-
Pareto-optimal core point has a semisincere bid profile supporting that point as a Nash equilibrium.
To prove the second claim in the statement of the theorem, suppose that we have strategies bj�·� for
each j that together form a Nash equilibrium with winning coalition A who pay �A

j and each receive
bundle SA

j , and that this outcome is not in the core with respect to true valuations. That is, there is
some coalition B that objects to the the payments �A

j :

∑

j∈A
�A

j <
∑

j∈B
�vj�S

B
j �− vj�S

A
j �+�A

j �

even though ∑

j∈A
�A

j ≥∑

j∈B
�bj �S

B
j �− bj�S

A
j �+�A

j �

by the core property of the mechanism with respect to submitted bids. Rearranging we have∑
j∈B�vj�S

B
j �− bj�S

B
j �� >

∑
j∈B�vj�S

A
j �− bj�S

B
j �� and thus vl�S

B
l �− bl�S

B
l � > vl�S

A
l �− bl�S

A
l � for at least one

bidder l ∈ B. But this says that in a Nash equilibrium bidder l shades (reduces her bid) more on
bundle SB

l than on bundle S
A
l , while Theorem 3a of Ausubel and Milgrom (2002) shows that a semi-

sincere strategy with equal shading on all bundles is always a best response for every bidder when
the mechanism is bidder-Pareto optimal in the core with respect to the submitted bids, a contradiction.
(Theorem 3a of Ausubel and Milgrom 2002 is stated in terms of the ascending proxy auction, but
because the only property of that auction used in the proof is bidder-Pareto optimality in the core
with respect to the submitted bids, the result immediately generalizes.) Thus, every Nash equilibrium
profile of bids results in a core outcome with respect to true valuations.
Finally, we must show that every Nash equilibrium in semisincere strategies is bidder-Pareto optimal
within the core. If a collection of �A

j s and SA
j s represent a Nash equilibrium that is not bidder-Pareto

optimal in the core, then there is some alternative bidder-Pareto-optimal outcome in the core with �B
j

and SB
j for each bidder and at least one bidder l that prefers outcome B, while every other bidder

is at worst indifferent. By deviating to bl�·� = max�vl�·� − vl�S
B
l � + �B

l �0� bidder l can obtain utility
of vl�S

B
l � − �B

l because no other outcome is bidder-Pareto optimal in the core with respect to the
preferences reported following the deviation. By our selection of l this deviation obtains positive gains,
contradicting our assumption of a Nash equilibrium. �
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