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The reload cost spanning tree problem (RCSTP) is an NP-
hard problem, where we are given a set of nonnegative
pairwise demands between nodes, each edge is colored
and a reload cost is incurred when a color change occurs
on the path between a pair of demand nodes. The goal is
to find a spanning tree with minimum total reload cost.
We propose a tree–nontree edge swap neighborhood for
the RCSTP and an efficient way to search this neighbor-
hood using preprocessed information. We then embed
this edge swap neighborhood within a local search and
a tabu search heuristic. We also discuss an initial solu-
tion procedure that is used by the local search and tabu
search heuristic in a multistart framework. On a test set of
630 instances (that includes benchmark instances from
Gamvros et al. [6]), the local search solution improves
upon the initial solution in 416 instances by an average
of 23.62%, and the tabu search solution improves upon
the local search solution in 364 instances by an average
of 35.79%. Out of 495 test instances from this set that we
know the optimal solutions for, the initial solution is opti-
mal 113 times, the local search solution is optimal 224
times, and the tabu search solution is optimal 481 times.
On a second set of benchmark instances from Khalil and
Singh [9], the tabu search solution improves upon the
best known solution in 32 out of 44 instances. © 2015
Wiley Periodicals, Inc. NETWORKS, Vol. 65(4), 380–394 2015

Keywords: edge swap; local search; network optimization;
reload cost; spanning tree; tabu search; heuristic; neighborhood
search

1. INTRODUCTION

The minimum reload cost spanning tree problem (RCSTP)
is an NP-hard combinatorial optimization problem intro-
duced by Gamvros et al. [6]. Mathematically, the RCSTP
is defined on an undirected graph G = (V , E) where we are
given a color cij for each edge (i, j) ∈ E, and a set of non-
negative demands dst between all pairs of nodes (s, t) in V.
For each node i in V and for all pairs of its incident edges
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((i, j), (i, k)), let ri(cij, cik) be the per unit demand reload cost
based on the colors of the edges (i, j) and (i, k). Given a span-
ning tree T, the total reload cost between nodes s and t is the
sum of per unit demand reload costs incurred by the color
changes along the unique path from s to t in T multiplied by
the demand dst . The total reload cost of a spanning tree T is
given by the sum of reload costs of all pairs of nodes. The
objective is to build a spanning tree T over the nodes in V
with the minimum total reload cost.

There are many real-life settings where the concept of
reload occurs naturally. For instance, in telecommunication
networks, reload costs are incurred when data is transferred
between diverse technologies. In intermodal freight trans-
portation, unloading and loading the freight from one type
of carrier to the next results in a reload cost. In the energy
industry, the loss of energy during its transfer between car-
riers can be captured by introducing reload costs to the
network. Another important occurrence of reloads is in the
context of disaster relief. Here, links may collapse or con-
nection points/intersections may be blocked by obstacles,
which necessitates additional reload costs in the transporta-
tion network used to provide disaster relief. To elaborate,
suppose a bridge over a body of water collapses. Then another
mode of transport must be used to transport relief supplies
across the body of water. In this situation, a reload cost is
occurred on each end of the bridge, as supplies carried to one
endpoint of the bridge must be transferred into a ship incur-
ring a reload cost, then transferred from the ship back to a
mode of land transport at the other endpoint of the bridge,
incurring another reload cost. On the other hand if a disaster
results in a blocked intersection, an additional reload cost is
incurred for supplies moved through that intersection. This
corresponds to the cost of physically unloading and loading
supplies from one transportation vehicle to another at that
intersection.

Even though many real-life settings have reload costs, the
concept of reload did not receive much attention from the
research community up until the last decade. The first arti-
cle to feature reload costs was by Wirth and Steffan [11]
where they introduce the minimum diameter spanning tree
with reload costs. The problem is to build a spanning tree
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that has the smallest diameter with respect to the reload costs.
Subsequent to its introduction, Galbiati [4] solves an open
problem left by Wirth and Steffan [11] by showing unless
P=NP, the problem of finding a minimum diameter span-
ning tree for a graph with maximum degree of 4, cannot be
approximated within any constant α < 2 if the reload costs
are unrestricted, and cannot be approximated within any con-
stant α < 5/3 if the reload costs satisfy the triangle inequality.
Amaldi et al. [2] study the complexity and approximability
of the problems of finding optimal paths, tours, and flows
under a cost model including reloads and regular costs. In
Galbiati et al. [5], the authors consider the minimum reload
cost cycle cover problem and prove that it is strongly NP-hard
and not approximable within any ε > 0 even when the num-
ber of colors is 2, reload costs are symmetric and satisfy the
triangle inequality. Gourvès et al. [8] study the complexity
of the minimum reload cost s-t path, trail, and walk prob-
lems with reload costs. They consider both symmetric and
asymmetric reload costs and situations with general costs
and where the triangle inequality is satisfied. In addition to
proving complexity results, they identify some special cases
that are polynomially solvable. Gamvros et al. [6] show the
RCSTP is NP-hard, provide two mixed integer linear pro-
gramming formulations for the problem and show that both
models have the same linear programming relaxation bounds.
They introduce several variants of the RCSTP and perform
extensive computational experiments on the different formu-
lations, which we will use as benchmark instances in this
article.

Given the natural occurrence of reloads in many appli-
cations and the fact that the problem is NP-hard, there is a
need for heuristics that produce high-quality solutions for
reload cost problems. Yet, most of the work has been done
to produce exact solution approaches and prove theoretical
bounds on the approximability of the problem. To the best
of our knowledge, the only heuristic approach on the prob-
lem to date is by Khalil and Singh [9] where the authors
apply an ant colony optimization heuristic. The main goal
of this paper is to propose a high-quality heuristic and val-
idate its quality and efficiency by evaluating it on a large
set of test instances (including some benchmark instances
from the literature). We propose a local search neighbor-
hood for the RCSTP that involves a tree–nontree edge swap
and an efficient way to search this neighborhood using pre-
processed information. This enables us to effectively insert
this local search neighborhood within a tabu search frame-
work and rapidly find high-quality solutions to large RCSTP
instances.

In the literature, the tree–nontree edge swap neighborhood
has been used previously—especially for NP-hard spanning
tree problems. Ahuja and Murty [1] use the tree–nontree edge
swap neighborhood in a local search algorithm for the optimal
communication spanning tree problem (OCSTP).1There are
some similarities and significant differences between Ahuja

1 In the OCSTP, we are given nonnegative demands dst between all pairs of
nodes (s, t) on a graph G = (V , E). The cost of any edge is simply its cost

and Murty’s use of this tree–nontree edge swap neighbor-
hood which we will elaborate on later in this paper. Amaldi
et al. [3] use the tree–nontree edge swap neighborhood in
a local search, a tabu search, and a variable neighborhood
search algorithm in order to find good quality solutions to
the minimum fundamental cycle basis problem. Silva et al.
[10] use the tree–nontree edge swap neighborhood in a local
search heuristic for the spanning tree problem with the mini-
mum number of branch vertices. Here the goal is to design a
spanning tree with the fewest number of vertices with degree
greater than 2. In contrast to the previous three papers where
the tree–nontree edge swap is used to find an improved solu-
tion (within a heuristic for an NP-hard problem), there are
combinatorial optimization problems where the goal is to
find the best tree–nontree edge swap. For example, Wu et al.
[12] discuss a problem where there are k source nodes and
weights on each edge. Given a spanning tree, the total rout-
ing cost is defined as the sum of distances from all nodes to
sources. In this setting, a tree edge can undergo a transient
failure, in which case it needs to be replaced by a nontree
edge. The objective is then to find the best nontree edge such
that the total routing cost is minimized. The goal is to find for
each tree edge the best nontree edge to swap it with in the case
of a transient failure. Notice that the problem is polynomially
solvable and the relevant papers are focused on finding the
fastest algorithms to compute these best tree–nontree edge
swaps. Let |V | = n and |E| = m. Wu et al. propose an
O(m log n + n2) algorithm for the case of two sources and
an O(mn) algorithm for the case of more than two sources.
Gfeller [7] studies tree–nontree edge swaps for the minimum
diameter spanning tree, in a similar fashion to [12]. Here for
a given tree edge (that can undergo a transient failure), we
wish to replace it by the best nontree edge that minimizes the
diameter of the spanning tree. The goal is to find all of the
best swaps for the edges on the tree. Again the problem is
polynomially solvable. Gfeller improves the running time to
O(m log n) using O(m) space.

The rest of this paper is organized as follows. Section 2
describes the tree–nontree edge swap neighborhood. Section
2.1 discusses how to efficiently search through the neighbor-
hood and identify the best edge swap. Section 2.2 explains
how to update the relevant preprocessed information after
an edge swap is performed. Section 3 presents an initial
solution procedure, as well as the local search and tabu
search algorithms based on the edge swap neighborhood.
The local search and tabu search algorithms are run in a
multistart framework. In section 4, we consider the single-
source RCSTP and the single-source fixed RCSTP and adapt
the heuristics for these two variants. Section 5 reports on
our computational experience. Section 6 provides concluding
remarks. In the Appendix, we discuss how to obtain a slight
improvement in the running time of a single local search
iteration in Ahuja and Murty’s [1] algorithm.

multiplied by the demand flowing on it. The objective is to find a spanning
tree of minimum cost.
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FIG. 1. Removing eij partitions T into two subtrees T1 and T2.

2. EDGE-SWAPPING NEIGHBORHOOD FOR THE
RCSTP

Given a spanning tree T, we consider the tree–nontree
edge swap neighborhood of T. For all edges eij ∈ T , we
evaluate all possible edge swaps with edges ekl ∈ E\T such
that T\{eij} ∪ {ekl} is also a spanning tree, then we select the
best edge swap. While this neighborhood is simple to state,
care needs to be taken in implementing it. In order to effec-
tively search through it and build a high-quality heuristic, it
is very important to use any preprocessed information that
would allow us to exploit the properties of spanning trees as
it will greatly affect the efficacy and speed of the search. To
that end, we divide a local search iteration into two parts.
First, we identify the best edge swap efficiently by using
preprocessed information. Then we update the tree and the
associated information based on the edge swap performed.

2.1. Identifying the Best Edge Swap

For any edge eij ∈ T , as depicted in Figure 1, the removal
of eij will result in two disjoint spanning trees T1 and T2

such that T = T1 ∪ T2 ∪ {eij} and i ∈ T1, j ∈ T2. Let R(T )
denote the total reload cost of tree T. Then R(T ) can be broken
down into two components. The first component is the total
reload cost of the subtrees T1 and T2, denoted by R(T1) and
R(T2), respectively (i.e., the total reload cost associated with
demands whose origin and destination are both in T1 or both
in T2). The second component is the total reload cost of the
demand going from T1 to T2 and from T2 to T1. We will
denote by R(T , T1 → T2) the total reload cost of the entire
demand from T1 to T2 carried in T. Thus, the total reload cost
of the spanning T can be stated as

R(T) = R(T1) + R(T2) + R(T , T1 → T2) + R(T , T2 → T1).

In order to calculate R(T , T1 → T2), we exploit the fact
that for a given node s ∈ T1, the entire demand

∑
t∈T2

dst has
to follow the unique path from node s to node j in T before
it enters T2. For notational convenience, P(s, j) denotes the
path from node s to j. Similarly, for a given node t ∈ T2, the
entire demand

∑
s∈T1

dst has to follow the path P(i, t) in T
after it leaves T1. We can think of eij as a bridge between T1

and T2, and any demand between T1 and T2 has to pass the

FIG. 2. After swapping eij and ekl the partitions T1 and T2 remain
unchanged. Note that it is possible to have i = k or j = l and the observation
is still valid.

bridge eij, so we have

R(T , T1 → T2) =
∑
s∈T1

R(T , P(s, j))
∑
t∈T2

dst

+
∑
t∈T2

R(T , P(i, t))
∑
s∈T1

dst ,

where R(T , P(s, t)) denotes the sum of unit reload costs on a
given path P(s, t) in T. Note that since the choice of T1 and
T2 is arbitrary, we only provide definitions for one subtree
and omit the definitions for the other (i.e., R(T , T2 → T1) is
analogously defined).

Let T ′ be the spanning tree we obtain after making the edge
swap eij ∈ T and ekl ∈ E\T as in Figure 2. We wish to calcu-
late the cost difference between T and T ′ efficiently. Since T
and T ′ differ by exactly one edge, T\T ′ = {eij}, T ′\T = {ekl},
the removal of eij from T and the removal of ekl from T ′
would create the same two disjoint spanning trees T1 and
T2. Without loss of generality, suppose k ∈ T1, l ∈ T2.
Let δ(T , T ′) = R(T ′) − R(T) denote the difference in the
total reload cost between T and T ′. The subtrees T1 and
T2 are the same for trees T and T ′ (see Fig. 2), therefore
the total reload cost of T ′ can be expressed as R(T ′) =
R(T1) + R(T2) + R(T ′, T1 → T2) + R(T ′, T2 → T1) where

R(T ′, T1 → T2) =
∑
s∈T1

R(T ′, P(s, l))
∑
t∈T2

dst

+
∑
t∈T2

R(T ′, P(k, t))
∑
s∈T1

dst .

Notice that the reload costs for demands whose ori-
gin and destination stay within the subtree (i.e., within T1

and T2) are not affected by the swap. Thus, the differ-
ence in cost is dependent upon how the total reload cost
associated with the demands from T1 to T2 and T2 to T1

change. δ(T , T ′) = [R(T ′, T1 → T2) − R(T , T1 → T2)] +
[R(T ′, T2 → T1) − R(T , T2 → T1)]. Even though any path
P(s, t) s, t ∈ T1, P(s, t) s, t ∈ T2 and their respective unit
reload costs R(T , P(s, t)) s, t ∈ T1, R(T , P(s, t)) s, t ∈ T2

stay exactly the same after the edge swap, paths P(s, t)
s ∈ T1, t ∈ T2, and P(s, t) s ∈ T2, t ∈ T1 are subject to
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FIG. 3. Removing epred(s,t),t partitions T into two subtrees �1 and �2.

change. Any path P(s, t) from T such that s ∈ T1, t ∈ T2,

P(s, t) = P(s, i) ∪ {eij} ∪ P(j, t),

becomes,

P(s, t) = P(s, k) ∪ {ekl} ∪ P(l, t),

in T ′ now that it has to cross the bridge ekl instead of eij. Thus,
we have

R(T ′, P(s, t)) = R(T , P(s, k)) + rk(cpred(s,k),k , ckl)

+ rl(ckl, cl,pred(t,l)) + R(T , P(l, t)), s ∈ T1, t ∈ T2,

where pred(s, t) denotes the predecessor node of t on the path
from s to t in the tree T.

Consider a pair of nodes s and t in T as in Figure 3. Remov-
ing edge epred(s,t),t creates two subtrees �1 and �2 such that
s ∈ �1 and t ∈ �2. Let, q−

st denote the total demand from
node s to the nodes in �2. Similarly, let q+

st denote the total
demand to node s from the nodes in �2.

With this notation, we can state δ(T , T ′) as

δ(T , T ′) =
∑
t∈T2

[R(T ′, P(k, t)) − R(T , P(i, t))]q+
ti

+
∑
t∈T1

[R(T ′, P(l, t)) − R(T , P(j, t))]q+
tj

+
∑
s∈T1

[R(T ′, P(s, l)) − R(T , P(s, j))]q−
sj

+
∑
s∈T2

[R(T ′, P(s, k)) − R(T , P(s, i))]q−
si .

Recall m = |E| and n = |V |. Then there are exactly n – 1
edges in any given spanning tree T, which leaves m − n + 1
edges that are not in the spanning tree. Therefore, for any
spanning tree T, we have O((n − 1)(m − n + 1)) = O(mn)

different spanning trees T ′ that can be obtained by replac-
ing a tree edge with a nontree edge. Suppose we store
R(T , P(s, t)), q−

st , q+
st for all s, t ∈ T in matrices Rp and

Q−, Q+,2 then we could compute δ(T , T ′) in O(n) time
since we would have O(1) time access to R(T ′, P(s, t)) via

2 In other words, we store the reload cost of all paths in T and q−
st and q+

st
for all pairs of nodes in T.

R(T , P(s, t)) for all s, t ∈ T . In a local search iteration, we
start from a spanning tree T and iterate to another tree T ′ by
comparing each of the O(mn) edge swaps and select the edge
swap that minimizes δ(T , T ′). The iteration requires O(mn2)

time to complete in the worst case. After implementing an
edge swap, we need to update the Rp, Q−, Q+ matrices and
predecessors to ensure that we can calculate the cost of an
edge swap in the next local search iteration as efficiently.

2.2. Updating the Preprocessed Information

Suppose we accepted the edge swap eij ∈ T with ekl ∈
E\T such that i, k ∈ T1 and j, l ∈ T2 changing the current
spanning tree from T to T ′, then we only need to update the
entries of Rp for s ∈ T1, t ∈ T2 and s ∈ T2, t ∈ T1 since the
edge swap only affects the paths between T1 and T2. There-
fore, we replace the entries R(T , P(s, t)) with R(T ′, P(s, t))
for s ∈ T1, t ∈ T2 as in Algorithm 1; the algorithm for updat-
ing R(T , P(s, t)) for s ∈ T2, t ∈ T1 is omitted since it follows
a similar procedure. In the worst case, there are n/2 nodes in
both T1 and T2, which makes the update of Rp run in O(n2)

time.

Algorithm 1. Reload Cost Update

However, we need to keep predecessors to update Rp
which means we also need to update predecessors after the
edge swap so that we can access them in O(1) time in the
next iteration. Adding a nontree edge ekl to T creates a cycle;
let ϕ1 denote the list of nodes that are in the cycle and in T1

and let ϕ2 denote the list of nodes that are in the cycle and in
T2. Note that i, k ∈ ϕ1 and j, l ∈ ϕ2. Without loss of gener-
ality, assume the nodes in ϕ2 are ordered and indexed in the
cycle direction from node l and ending in node j. After the
edge swap, we only need to update the predecessors pred(s,
t) such that s ∈ T1, t ∈ ϕ2 and s ∈ T2, t ∈ ϕ1. The other pre-
decessors remain unaffected by the edge swap. We employ
the procedure stated in Algorithm 2 for the update which is
explained in Figure 4. Note that we only provide the update of
predecessors for the paths originating in T1 since the process
is identical for the paths originating in T2. There are O(n)

nodes in any given cycle, so updating predecessors from T to
T ′ is O(n2) in the worst case.

Before updating Q− and Q+, first we need to establish the
elements affected by the edge swap. Between T and T ′, all
q−

st and q+
st for s ∈ T1, t ∈ {T2\ϕ2 ∪ T1\ϕ1} and s ∈ T2, t ∈

{T1\ϕ1∪T2\ϕ2} remains unchanged. In other words, we only
need to update the elements q−

st and q+
st for s ∈ T1 ∪ T2, t ∈

ϕ1 ∪ ϕ2. Removal of any node t ∈ ϕ1 and all of its edges
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FIG. 4. After the edge swap between eij and ekl , the predecessors of nodes
t ∈ T1 ∪ T2\ϕ2 in the path P(s, t) do not change. However, we update the
predecessors such that the predecessor of l = ϕ2[1] becomes k, the prede-
cessor ϕ2[2] becomes ϕ2[1]; in general the predecessor of ϕ2[t] becomes
ϕ2[t − 1].

Algorithm 2. Predecessor Update

from T1 will create multiple subtrees. Let Tt,k
1 be the subtree

containing k after the removal of t ∈ ϕ1; similarly let Tt,i
1 be

the subtree containing i. A depiction of these subtrees is given
in Figure 5. The other subtrees are of no consequence since
the demands from/to those nodes to/from t and its children
are not affected by the edge swap.

For any node s ∈ T1, q−′
sl is equal to q−

sj since the nodes l
and its children in T ′ are the same nodes as j and its children in
T. Recall that ϕ2[1] = l. Consequently, q−′

s,ϕ2[2] can be found
by calculating the difference between the total demand from
s to T2 and q−

s,ϕ2[1], which is given by q−
sj − q−

s,ϕ2[1]. As we
iterate over the cycle ϕ2, the general expression becomes,
q−′

s,ϕ2[t] = q−
sj − q−

s,ϕ2[t−1]. The update for Q+ is the same as

for Q− (and can be computed and updated at the same time
as the Q− update).

For t ∈ ϕ1, q−′
st depends on the domain of s. If s ∈ Tt,i

1 , then
the total demand from s to T2 must traverse t in T ′ though
this was not the case for T ; therefore q−′

st becomes q−
st plus

the total demand from s to T2 (q−
sj ). If s ∈ Tt,k

1 , then the

total demand from s to T2 no longer traverses t in T ′, so q−′
st

becomes q−
st minus q−

sj . Finally, if s ∈ T1/(T
t,k
1 ∪ Tt,i

1 ), the
total demand from s to T2 has to traverse t for both T and
T ′ so q−′

st = q−
st . The procedure for updating Q− and Q+

is summarized in Algorithm 3; as in Algorithm 2, we only

FIG. 5. Subtrees Tt,i
1 and Tt,k

1 created by removing t ∈ ϕ1 and all of its
edges from T1.

provide the update for s ∈ T1. In the worst case, we do O(n2)

updates for Q− and Q+.

Algorithm 3. Q−, Q+ Update

3. INITIAL SOLUTION AND EDGE-SWAPPING
ALGORITHMS

In this section, we discuss our initial solution procedure,
and the local search and tabu search algorithms that use the
tree–nontree edge swap neighborhood.
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3.1. Initial Solution Procedure

Suppose we select a color c. Let εk
c be the number of edges

of color c connected to node k. First we select the node s such
that it has the maximum εs

c (breaking ties arbitrarily). Then we
start the breadth-first search (BFS) from s only using edges
with color c. If it is possible to span the network only using
color c we will have an initial solution at the end of the BFS
(as well as the optimal solution since it will have zero cost).
If it is not possible to span the entire network via BFS using
a single color, we add the remaining nodes one by one to
the partially constructed tree by selecting the edge that will
create the minimum increase in the total reload cost (i.e., in
a greedy fashion). At the end of this process, we will have
a spanning tree. Let C denote the total number of colors in
the graph. We apply this initial solution procedure C times,
once for each color. Thus, we obtain up to C different initial
solutions. We then select the tree with the least total reload
cost and report it as the Initial Solution (IS).

3.2. Local Search Algorithm

Given a feasible spanning tree T, our local search algo-
rithm identifies the best edge swap and (if it results in an
improvement) updates T iteratively until no improvement can
be found in the tree–nontree edge swap neighborhood. Algo-
rithm 4 outlines the local search procedure for a given initial
feasible spanning tree T. We use the local search in a mul-
tistart framework, applying it once to each of the C initial
solutions found by our initial solution procedure. We then
select the tree with the least total reload cost and report it as
the Local Search Solution (LS).

Algorithm 4. Local Search Procedure for a given T

3.3. Tabu Search Algorithm

In our tabu search algorithm, the process of exploring the
neighborhood and updating the preprocessed information are
identical to that of the local search algorithm. However, in the

tabu search algorithm, after a tree edge eout ∈ T is swapped
with a nontree edge ein ∈ E\T , eout and ein are declared
tabu, that is, eout cannot reenter to the current tree and ein

cannot leave the current tree for the next κ edge swaps. Even
though using edges as tabu elements has its advantages, it is
possible to reject an edge swap that might improve the best
known solution. To remedy that, we introduce an aspiration
criterion; a tabu swap is accepted only if it improves the best
known solution. Therefore, in one iteration of the tabu search
algorithm, the best edge swap is implemented if it improves
the best known solution, otherwise the best nontabu edge
swap is implemented.

Given a feasible spanning tree T, the tabu search algorithm
identifies an edge swap as described and updates T iteratively
until it makes X consecutive edge swaps without improving
the best known solution. Observe that with the aspiration cri-
terion, the tabu search algorithm makes the same tree–nontree
edge swaps as the local search algorithm until the first nonim-
proving iteration. Thus, it is not possible for the tabu search
algorithm to terminate with an inferior solution to that of the
local search algorithm. As with the local search procedure,
we use the tabu search procedure in a multistart framework,
applying it once to each of the C initial solutions found by
our initial solution procedure. We then select the tree with
the least total reload cost and report it as the Tabu Search
Solution (TS).

4. SINGLE-SOURCE VARIANTS

In some telecommunications, applications demand only
occurs between a single node (e.g., a central office) and the
other nodes in the network. Further, when equipment costs
are high (as in the case of telecommunications applications)
and predominate other (variable) costs one is interested in
minimizing the fixed installation costs. This motivates two
special variants of the RCSTP—the single-source RCSTP
and the single-source-fixed RCSTP—that we discuss in this
section.

4.1. Single-Source RCSTP

The single-source RCSTP is a special case of the RCSTP
introduced in Gamvros et al. [6]. In the single-source RCSTP,
a node s ∈ V is given as the source node and there is demand
only from node s to every other node in V, dsj ≥ 0, for
all j ∈ V and dij = 0, for all i �= s, j ∈ V . Gamvros et al.
[6] show that the single-source RCSTP is also NP-hard. The
earlier initial solution procedure remains valid and is used to
generate C initial solutions. In addition, we introduce another
initial solution procedure to take advantage of one of the prob-
lem characteristics. Specifically, there are no reloads between
edges connected to node s since there is no demand that tra-
verses through node s (i.e., uses node s as an intermediate
node between its origin and destination). Therefore, unlike
the RCSTP, it is possible to obtain a zero cost spanning tree
without having to span the graph with a single color, so long
as each subtree rooted at s is spanned by a single color. We
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first start by adding all edges connected to s to the initial tree
T. Then we apply a BFS starting from each of these nodes
connected to s using the same color as the edge connecting
it with s (i.e., if esi has color c1 we apply a BFS from node
i only considering edges with color c1). If the resulting tree
is a spanning tree, the procedure terminates. Otherwise we
add the edge that will create the minimum increase in reload
cost (breaking ties arbitrarily). We refer to this as a greedy
step. We continue by applying a BFS from the node that was
just added to the tree using the color of the edge that was just
added to the tree. We refer to this as the BFS step. We continue
in this fashion alternating between a greedy step and the BFS
step until we obtain a spanning tree. The best of these initial
C + 1 solutions is reported as the initial solution (IS). The
local search algorithm and the tabu search algorithm for the
single-source problem remain unchanged (as the edge swap
neighborhood is still valid and the algorithm is designed to
work with any set of demands). The only difference is that
they are now run in a multistart framework, applying them
once to each of the C + 1 initial solutions.

4.2. Single-Source-Fixed RCSTP

In the single-source-fixed RCSTP, a node s ∈ V is given as
the source node and the set of feasible solutions are spanning
trees rooted at node s. For a given spanning tree T rooted
at s and a node i ∈ V\{s}, the total reload cost incurred in
node i is calculated as follows. Consider the color cpred(s,i),i

of the incoming edge into node i (on the path from the node
s to node i). Consider the set of colors �i of all the other
outgoing edges incident to node i. For each color c ∈ �i with
c �= cpred(s,i),i, a fixed reload cost ri(cpred(s,i),i, c) is occurred.
Then the total fixed reload cost Rf (T , s) for spanning tree T
rooted at s is given by

Rf (T , s) =
∑
i∈T
i �=s

∑
c∈�i

c �=cpred(s,i),i

ri(cpred(s,i),i, c).

Observe that unlike the RCSTP reload costs do not depend
on demands (in fact there are no demands in the problem).
To emphasize this difference in how the reload costs are cal-
culated, we use the term fixed in the name of the problem.
Further, notice that at each node a reload cost is only incurred
once for each color change that takes place at the node. The
objective in the single-source-fixed RCSTP is to minimize
the total fixed reload cost incurred.

The procedures proposed for the single-source RCSTP
also apply to the single-source-fixed RCSTP save for the cost
calculation step. Consequently, in the initial solution proce-
dure, we generate C + 1 initial solutions and report the best
one as the initial solution. For the edge-swap neighborhood,
the calculations are slightly different because of the fixed
costs. We elaborate on the calculation of the change in reload
cost in a tree–nontree edge swap. Consider a spanning tree T
and the edge swap eij ∈ T and ekl ∈ E/T that results in the
spanning tree T ′ after the swap. We would like to calculate
δf (T , T ′, s) = Rf (T ′, s) − Rf (T , s). The removal of eij from

FIG. 6. Subtree Tω created by the nodes in ϕ2 and their immediate
successors.

T creates two subtrees T1 and T2 as discussed previously.
Without loss of generality, assume i, k, s ∈ T1 and j, l ∈ T2.
Let ω = {t|pred(s, t) ∈ ϕ2} ∪ ϕ2 where ϕ2 is the list of
nodes in the cycle in T2 created by adding ekl to T. In other
words, ω is the set of nodes in ϕ2 and their immediate suc-
cessors. Then, we define Tω as the subtree of T formed by
the nodes in ω. Figure 6 illustrates Tω. Let Tω,i = Tω ∪ eij

and Tω,k = Tω ∪ ekl. Further, let �i(T , s) represent the set
of colors incident to node i in the tree T with source s, when
considering all edges incident to node i except for cpred(s,i),i.
Then, we have

δf (T , T ′, s) = (Rf (T
ω,k , k) + Rk(T1, ekl))

− (Rf (T
ω,i, i) + Ri(T1, eij))

where

Rk(T1, ekl) =

⎧⎪⎨
⎪⎩

0 if ∃c ∈ �k(T1, s)s.t.

c = ckl,

rk(cpred(s,k),k , ckl) otherwise.

After the edge swap, the only affected part of the tree is
Tω ∪ {eij, ekl}. We capture the difference in total fixed reload
costs between T and T ′ by calculating only the costs related
to the affected subtree. For any T and s, Rf (T , s) can easily be
calculated by applying a BFS starting from node s. We store
and update predecessor information as in section 2. One local
search iteration for the single-source-fixed RCSTP is O(mn2)

as in the RCSTP since evaluating one edge swap is O(n).
As before, the local search algorithm and the tabu search
algorithm are run in a multistart framework, applying them
once to each of the C + 1 initial solutions.

5. COMPUTATIONAL RESULTS

We conducted a large set of computational experiments to
examine the quality of the heuristics. They contain instances
used in Gamvros et al. [6] and Khalil and Singh [9], as well
as additional test instances that we generated. As parameters
of the tabu search algorithm, we used κ = n/4 and X = 1000,
that is, once declared tabu, an edge cannot reenter or leave
the tree for n/4 edge swaps unless it satisfies the aspiration
criterion, and the algorithm terminates after 1000 consecutive
edge swaps without improving the best solution. The
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heuristics are coded in C++ and all computations are con-
ducted on a computer with an Intel Core i7-2600 CPU @
3.40GHz and 16 GB RAM running Windows 7.

The Gamvros et al. [6] instances consist of four types.
The types differ based on whether they have unit reload costs
(reload costs between all pairs of colors are set to 1) or nonunit
reload costs, and whether they have a single-source (in single-
source problems all demands that do not originate at the
designated source node s are set to 0) or demands between
all pairs. Thus, there are four different types of instances that
we refer to as (i) unit reload cost, (ii) nonunit reload cost, (iii)
single-source unit reload cost, and (iv) single-source nonunit
reload cost (if we do not use the qualifier single source then
all pairs of demands are permitted). For all four types, the
demand between pairs of nodes is set to 1 (i.e., this set of
instances do not contain nonunit demand). For single-source
instances, the demand from s to all other nodes is 1. We
should note that [6] actually contains 55 unit reload cost, 20
nonunit reload cost, 75 single-source unit reload cost, and 40
single-source nonunit reload cost instances. After a prelim-
inary computational study on these instances, we observed
that for the instances that have a large number of nodes and
edges but few colors (e.g., 50 nodes, 300 edges, and 3 colors)
it is more than likely that the whole network can be spanned by
a single color thus providing a zero total reload cost spanning
tree. These instances tend to be easy for our initial heuristic
to solve (though they seem to be hard for CPLEX), and con-
sequently we excluded these somewhat trivial instances from
our computational experiments. Instead we generated addi-
tional instances (as described in [6]) that have a larger number
of colors as the number of nodes and edges in the instance
increase. By using a subset of the Gamvros et al. [6] instances
and the additional instances, we generated and obtained a set
of 105 test instances for each of the four types of problems.
These 105 instances are labeled as NxEyCz where x, y, and z
represent the number of nodes, number of edges, and number
of colors, respectively. Note that the topology of the instance
remains the same across the four types of problems (i.e., the
graphs for the instances are identical); we simply change the
reload costs and/or demands across the four problem types. In
our tables, we identify in bold letters the subset of instances
that are reported upon in [6].

In our computational experiments, we compare the tabu
search solution to the local search solution and initial solu-
tion. This provides one measure of the benefit of the tabu
search procedure. We also compare the heuristic solutions to
the optimal solution when available.

5.1. Gamvros et al. Instances

Tables 1–4 report on the four types of Gamvros et al.
[6] instances. The first column in these tables identifies the
instance set. The second column indicates the number of
instances contained in the set. Our data set has five instances
for each set. For each set of instances, we report on the aver-
age value of the objective function, and the number of optimal
solutions obtained for each of the heuristics. Specifically, IS

represents the solution found by the initial solution proce-
dure, LS represents the solution found by the local search
procedure, and TS represents the solution found by the tabu
search procedure. Recall, our initial solution procedure is run
multiple times (it is applied C + 1 times for the single source
problems and C times for the all-pairs problems) and the
local search and tabu search algorithm are run in a multistart
framework. To ascertain the optimal solution to the instances,
we note that if TS (or for that matter IS or LS) has cost zero,
then it must be an optimal solution. For the problems where
tabu search does not provide a zero cost objective (ZCO),
we apply the colored graph formulation from Gamvros et
al. [6] and solve it using CPLEX (version 12.5) with a 6-h
time limit (our CPLEX implementation of the colored graph
formulation is in C++). Taken together, instances that have
ZCO and instances that CPLEX is able to solve to optimality
provide us a set of instances for which we know the opti-
mal solution. Interestingly, for instances that CPLEX did not
optimally solve in 6h, it did not provide useful upper bounds
(TS was always significantly better) or lower bounds (they
were generally equal to the trivial lower bound of 0). The set
of columns associated with the “Average Objective Value”
provide the average across the five instances for IS, LS, and
TS; the average under the column OPT is only provided when
we know the optimal solution for all five instances. The set
of columns associated with “Number Optimal” provide the
number of optimal solutions found by IS, LS, and TS, the
number of instances with ZCO, and the number of problems
that CPLEX solves to optimality across the five instances.

To evaluate the benefit of tabu search, we also track the
improvement in the solution from IS to LS, and from LS
to TS. These are reported in the columns associated with
“Improvement.” We provide both the number of instances (#)
for which the solution is improved (from IS to LS and from
LS to TS) as well as the percentage (%) improvement (the
average across five instances in each row). Finally, we provide
the average running time for the tabu search algorithm as well
as for CPLEX. The CPLEX average running time is only
across instances that CPLEX solved to optimality.

Table 1 presents results for the unit reload cost instances.
Out of 105 instances, we know the optimal solutions for 48
instances (6 are ZCO and 42 optimal solutions are obtained
through CPLEX). Because the colored graph formulation
from Gamvros et al. [6] is a flow-based formulation, it
becomes intractable very quickly (in terms of number of
variables and constraints) for all-pairs problems and CPLEX
is unable to solve instances with 50 or more nodes, while
TS rapidly finds solutions for these instances. For the 48
instances for which we know the optimal solution, IS is opti-
mal for 19 instances, LS is optimal for 34 instances, while TS
is optimal in all 48 instances. Taking a look at improvements,
there is an IS to LS improvement in 70 out of 105 instances
with an average improvement of 5.66%, while there is an LS
to TS improvement in 61 out of 105 instances with an average
improvement of 1.72%. As the instances get harder, i.e., the
number of nodes and colors increase, tabu search improves
upon local search in a greater number of instances.
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TABLE 1. Unit reload cost instances.

Improvement
Number

Average
Average objective value Number optimal IS to LS LS to TS Run time (s)

of
Instance Name instances IS LS TS OPT IS LS TS ZCO CPLEX # % # % TS CPLEX

N10E25C3 5 37.6 12.0 12.0 12.0 2 5 5 2 3 3 42.50% 0 0.00% 0.05 0.75
N10E25C5 5 35.6 22.8 22.4 22.4 2 4 5 1 4 2 21.82% 1 0.95% 0.10 0.52
N10E25C7 5 56.0 52.4 51.6 51.6 2 4 5 0 5 3 5.60% 1 1.54% 0.16 0.66
N15E50C5 5 76.4 70.4 67.6 67.6 2 3 5 0 5 3 5.14% 2 2.54% 0.35 13.52
N15E50C7 5 124.4 118.0 115.6 115.6 1 2 5 0 5 4 5.25% 3 2.18% 0.47 16.19
N15E50C9 5 181.6 165.2 159.2 159.2 0 2 5 0 5 5 9.19% 3 3.39% 0.57 25.82
N20E100C5 5 36.0 36.0 36.0 36.0 5 5 5 0 5 0 0.00% 0 0.00% 1.03 11775.66
N20E100C7 5 83.2 82.0 80.0 80.0 2 3 5 0 5 1 1.11% 2 1.68% 1.43 1837.56
N20E100C9 5 162.4 149.6 147.2 147.2 0 3 5 0 5 5 7.23% 2 1.26% 1.86 3241.34
N50E300C5 5 248.4 247.2 243.2 − 0 0 0 0 0 1 0.42% 3 1.22% 9.83 −
N50E300C7 5 639.6 620.4 618.0 − 0 0 0 0 0 3 2.39% 2 0.34% 15.89 −
N50E300C9 5 1541.6 1481.6 1414.4 − 0 0 0 0 0 5 3.85% 5 4.38% 25.04 −
N50E300C11 5 1944.8 1858.0 1752.0 − 0 0 0 0 0 5 4.35% 5 5.26% 30.16 −
N75E695C7 5 174.4 174.4 172.8 − 2 2 2 2 0 0 0.00% 2 0.46% 39.52 −
N75E695C9 5 927.2 920.4 909.6 − 0 0 0 0 0 4 0.84% 4 1.08% 92.12 −
N75E695C11 5 2061.2 2028.0 1970.0 − 0 0 0 0 0 4 1.48% 4 2.80% 127.89 −
N75E695C13 5 2994.0 2870.4 2829.2 − 0 0 0 0 0 5 4.10% 5 1.38% 179.98 −
N100E1225C9 5 738.4 736.4 732.8 − 1 1 1 1 0 2 0.18% 3 0.44% 199.80 −
N100E1225C11 5 1668.8 1661.2 1638.8 − 0 0 0 0 0 5 0.43% 4 1.12% 306.03 −
N100E1225C13 5 2488.0 2453.6 2404.8 − 0 0 0 0 0 5 1.32% 5 2.05% 469.71 −
N100E1225C15 5 3489.2 3430.8 3360.4 − 0 0 0 0 0 5 1.67% 5 1.98% 656.19 −

TABLE 2. Single-source unit reload cost instances.

Improvement
Number

Average
Average objective value Number optimal IS to LS LS to TS Run time (s)

of
Instance Name instances IS LS TS OPT IS LS TS ZCO CPLEX # % # % TS CPLEX

N10E25C3 5 1.0 0.6 0.4 0.4 3 4 5 3 2 2 30.00% 1 20.00% 0.04 0.03
N10E25C5 5 1.2 0.6 0.6 0.6 4 5 5 4 1 1 20.00% 0 0.00% 0.03 0.18
N10E25C7 5 2.4 2.2 2.0 2.0 3 4 5 1 4 1 20.00% 1 6.67% 0.15 0.02
N15E50C5 5 2.0 1.6 1.4 1.4 3 4 5 0 5 1 13.33% 1 10.00% 0.44 0.19
N15E50C7 5 3.4 2.6 2.6 2.6 3 5 5 1 4 2 26.67% 0 0.00% 0.42 0.06
N15E50C9 5 4.6 4.0 4.0 4.0 2 5 5 0 5 3 15.83% 0 0.00% 0.61 0.09
N20E100C5 5 1.2 0.0 0.0 0.0 1 5 5 5 0 4 80.00% 0 0.00% 0.00 −
N20E100C7 5 2.4 0.6 0.2 0.2 0 3 5 4 1 5 82.67% 2 30.00% 0.32 0.17
N20E100C9 5 3.0 1.6 0.8 0.8 1 2 5 2 3 3 38.67% 3 50.00% 1.18 0.20
N50E300C5 5 2.0 1.8 0.0 0.0 0 0 5 5 0 1 6.67% 5 100.00% 0.17 −
N50E300C7 5 5.4 3.4 1.0 1.0 0 1 5 2 3 5 45.62% 4 58.67% 11.85 50.55
N50E300C9 5 13.4 11.0 6.8 6.8 0 0 5 0 5 4 19.00% 5 43.77% 22.43 12.74
N50E300C11 5 10.4 9.4 7.2 7.2 1 1 5 0 5 3 9.34% 4 25.32% 22.51 5.63
N75E695C7 5 3.0 0.6 0.0 0.0 1 2 5 5 0 4 62.00% 3 60.00% 0.83 −
N75E695C9 5 6.0 4.2 0.0 0.0 0 0 5 5 0 4 33.24% 5 100.00% 18.83 −
N75E695C11 5 7.6 6.6 0.0 0.0 0 0 5 5 0 2 11.11% 5 100.00% 3.73 −
N75E695C13 5 14.4 11.2 2.8 - 0 0 3 2 1 5 21.55% 5 78.48% 96.80 207.37
N100E1225C9 5 3.8 2.2 0.0 0.0 0 1 5 5 0 5 48.33% 4 80.00% 1.57 −
N100E1225C11 5 5.8 4.0 0.0 0.0 0 0 5 5 0 5 32.86% 5 100.00% 4.39 −
N100E1225C13 5 10.2 7.6 0.0 0.0 0 0 5 5 0 3 20.00% 5 100.00% 9.67 −
N100E1225C15 5 15.4 12.6 0.8 - 0 0 2 2 1 5 16.05% 5 93.81% 486.72 5280.61

Table 2 presents results for the single-source unit reload
cost instances. This problem turns out to be somewhat easier
than the all-pairs problem. Out of 105 instances, we know the
optimal solutions for 101 instances (61 are ZCO and 40 opti-
mal solutions are obtained via CPLEX). In only four instances
(twice for N75E695C13 and twice for N100E1225C15) was

CPLEX unable to find the optimal solution in the 6-h time
limit. For the 101 instances for which we know the opti-
mal solution, IS is optimal in 22 instances, LS is optimal in
42 instances, and TS is optimal in 100 instances. Turning
our attention to improvements, the benefits of local search
and tabu search become even more apparent (especially
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TABLE 3. Nonunit reload cost instances.

Improvement
Number

Average
Average objective value Number optimal IS to LS LS to TS Run time (s)

of
Instance Name instances IS LS TS OPT IS LS TS ZCO CPLEX # % # % TS CPLEX

N10E25C3 5 62.4 36.8 36.8 36.8 3 5 5 2 3 2 22.50% 0 0.00% 0.06 0.75
N10E25C5 5 134.0 95.2 95.2 90.0 1 4 4 1 4 3 26.22% 0 0.00% 0.10 0.53
N10E25C7 5 108.0 90.4 90.4 90.4 1 5 5 0 5 4 13.88% 0 0.00% 0.17 0.48
N15E50C5 5 213.2 170.8 170.8 166.0 3 4 4 0 5 2 13.68% 0 0.00% 0.36 5.05
N15E50C7 5 447.6 337.6 334.4 334.4 0 4 5 0 5 5 23.06% 1 1.42% 0.50 6.09
N15E50C9 5 586.8 411.6 411.6 402.4 0 2 2 0 5 5 29.18% 0 0.00% 0.67 16.21
N20E100C5 5 35.2 20.8 20.8 20.8 4 5 5 3 2 1 20.00% 0 0.00% 0.53 1474.85
N20E100C7 5 178.4 176.8 176.0 176.0 3 4 5 0 5 2 0.66% 1 0.28% 1.39 1067.37
N20E100C9 5 372.8 361.6 355.2 350.4 1 3 4 0 5 4 2.71% 1 1.72% 1.87 653.54
N50E300C5 5 459.2 459.2 459.2 − 0 0 0 0 0 0 0.00% 0 0.00% 9.38 −
N50E300C7 5 1266.8 1184.0 1175.2 − 0 0 0 0 0 4 4.33% 1 0.51% 13.92 −
N50E300C9 5 3270.8 2465.6 2441.2 − 0 0 0 0 0 5 20.40% 2 1.15% 18.71 −
N50E300C11 5 3740.8 2847.2 2816.0 − 0 0 0 0 0 5 22.65% 3 0.93% 23.68 −
N75E695C7 5 378.0 378.0 376.4 − 2 2 2 2 0 0 0.00% 2 0.18% 39.11 −
N75E695C9 5 1310.8 1276.8 1270.8 − 0 0 0 0 0 4 1.88% 2 0.47% 78.66 −
N75E695C11 5 2332.4 2261.6 2252.8 − 0 0 0 0 0 4 3.40% 3 0.28% 95.73 −
N75E695C13 5 3838.8 3337.2 3294.0 − 0 0 0 0 0 5 12.34% 4 1.22% 116.61 −
N100E1225C9 5 1056.8 1052.8 1049.6 − 1 1 1 1 0 3 0.30% 3 0.28% 187.03 −
N100E1225C11 5 2107.2 2104.4 2100.4 − 0 0 0 0 0 1 0.11% 4 0.25% 276.01 −
N100E1225C13 5 2698.4 2691.6 2684.4 − 0 0 0 0 0 3 0.22% 4 0.26% 344.55 −
N100E1225C15 5 3658.4 3625.2 3612.4 − 0 0 0 0 0 5 0.87% 4 0.33% 437.02 −

TABLE 4. Single-source nonunit reload cost instances.

Improvement
Number

Average
Average objective value Number optimal IS to LS LS to TS Run time (s)

of
Instance Name instances IS LS TS OPT IS LS TS ZCO CPLEX # % # % TS CPLEX

N10E25C3 5 4.6 2.0 1.0 1.0 2 4 5 3 2 3 40.00% 1 20.00% 0.04 0.30
N10E25C5 5 3.2 2.0 2.0 2.0 4 5 5 4 1 1 20.00% 0 0.00% 0.03 0.33
N10E25C7 5 7.4 3.8 3.8 3.6 1 4 4 1 4 4 48.41% 0 0.00% 0.15 0.16
N15E50C5 5 5.2 4.2 3.6 3.6 3 3 5 0 5 2 18.00% 2 20.00% 0.43 0.37
N15E50C7 5 13.2 5.4 5.4 5.4 0 5 5 1 4 5 51.72% 0 0.00% 0.45 0.30
N15E50C9 5 12.2 7.8 7.0 7.0 1 3 5 0 5 3 32.83% 2 7.45% 0.64 0.35
N20E100C5 5 1.0 0.2 0.0 0.0 2 4 5 5 0 3 50.00% 1 20.00% 0.00 −
N20E100C7 5 2.8 1.6 1.2 1.2 1 4 5 3 2 4 56.67% 1 20.00% 0.66 0.32
N20E100C9 5 7.8 7.0 6.0 6.0 1 1 5 0 5 3 16.67% 4 22.64% 1.97 0.20
N50E300C5 5 5.6 3.2 0.0 0.0 0 0 5 5 0 2 22.22% 5 100.00% 0.43 −
N50E300C7 5 11.6 7.0 1.4 1.4 0 1 5 2 3 4 43.97% 4 64.68% 13.29 35.50
N50E300C9 5 30.4 18.6 10.0 9.8 0 0 4 0 5 5 35.84% 5 50.62% 21.52 22.85
N50E300C11 5 21.0 15.8 9.2 9.2 0 0 5 0 5 5 20.96% 5 42.07% 24.23 6.17
N75E695C7 5 4.0 1.6 0.0 0.0 1 2 5 5 0 4 51.67% 3 60.00% 0.43 −
N75E695C9 5 11.4 7.6 0.0 0.0 0 0 5 5 0 4 30.50% 5 100.00% 10.00 −
N75E695C11 5 10.6 9.0 0.0 0.0 0 0 5 5 0 3 17.71% 5 100.00% 3.70 −
N75E695C13 5 20.2 11.8 2.6 2.6 0 0 5 2 3 5 42.02% 5 81.72% 94.90 883.05
N100E1225C9 5 7.2 3.6 0.0 0.0 0 1 5 5 0 5 51.71% 4 80.00% 1.78 −
N100E1225C11 5 8.4 6.4 0.0 0.0 0 0 5 5 0 4 21.56% 5 100.00% 2.90 −
N100E1225C13 5 12.4 8.0 0.0 0.0 0 0 5 5 0 5 34.97% 5 100.00% 18.53 −
N100E1225C15 5 19.8 13.4 0.8 - 0 0 3 3 0 5 28.63% 5 94.33% 403.69 −

taking into account the percentage improvements). There is
an IS to LS improvement in 68 out of 105 instances with
an average improvement of 31.09%, while there is an LS to
TS improvement in 63 out of 105 instances with an average
improvement of 50.32%. As in the all-pairs instances, the
harder the instances get the greater the number of instances
tabu search improves upon local search.

Table 3 presents results for the nonunit reload cost
instances. Out of 105 instances, we know the optimal solu-
tions for 48 instances (9 are ZCO and 39 optimal solutions
are obtained via CPLEX). As in the unit reload cost instances,
once the number of nodes reaches 50, CPLEX fails to find
the optimal solution in 6h. For the 48 instances for which we
know the optimal solution, IS is optimal in 19 instances, LS

NETWORKS—2015—DOI 10.1002/net 389



TABLE 5. Single-source-fixed cost unit reload cost instances.

Improvement
Number

Average
Average objective value Number optimal IS to LS LS to TS Run time (s)

of
Instance Name instances IS LS TS OPT IS LS TS ZCO CPLEX # % # % TS CPLEX

N10E25C3 5 0.8 0.6 0.4 0.4 3 4 5 3 2 1 20.00% 1 20.00% 0.07 0.04
N10E25C5 5 0.6 0.4 0.4 0.4 4 5 5 4 1 1 20.00% 0 0.00% 0.06 0.05
N10E25C7 5 1.6 1.4 1.2 1.2 3 4 5 1 4 1 20.00% 1 10.00% 0.25 0.04
N15E50C5 5 1.4 1.2 1.2 1.2 4 5 5 0 5 1 10.00% 0 0.00% 0.69 0.22
N15E50C7 5 2.6 1.4 1.0 1.0 1 3 5 1 4 3 36.67% 2 20.00% 0.80 0.22
N15E50C9 5 2.6 2.2 2.0 2.0 3 4 5 0 5 2 15.00% 1 6.67% 1.07 0.37
N20E100C5 5 0.8 0.0 0.0 0.0 1 5 5 5 0 4 80.00% 0 0.00% 0.01 −
N20E100C7 5 1.4 0.6 0.2 0.2 1 3 5 4 1 3 53.33% 2 40.00% 0.52 3.82
N20E100C9 5 2.2 1.4 0.6 0.6 1 2 5 2 3 3 30.00% 3 50.00% 2.23 2.50
N50E300C5 5 1.8 1.6 0.0 0.0 0 0 5 5 0 1 6.67% 5 100.00% 1.42 −
N50E300C7 5 4.4 2.2 0.6 0.6 0 1 5 2 3 5 55.00% 4 56.67% 79.12 6990.34
N50E300C9 5 5.6 4.8 2.2 1.8 0 0 3 0 5 4 13.05% 5 54.33% 124.86 7528.24
N50E300C11 5 6.8 6.2 2.6 2.4 0 0 4 0 5 2 7.50% 5 57.52% 35.16 585.40
N75E695C7 5 2.2 0.8 0.0 0.0 1 2 5 5 0 4 53.33% 3 60.00% 1.45 −
N75E695C9 5 4.4 3.0 0.0 0.0 0 0 5 5 0 4 31.00% 5 100.00% 33.63 −
N75E695C11 5 4.4 4.0 0.0 0.0 0 0 5 5 0 2 9.00% 5 100.00% 36.98 −
N75E695C13 5 7.6 6.8 1.2 - 0 0 2 2 0 3 9.44% 5 83.33% 140.34 −
N100E1225C9 5 2.8 1.4 0.0 0.0 0 1 5 5 0 4 50.00% 4 80.00% 7.10 −
N100E1225C11 5 4.4 3.8 0.0 0.0 0 0 5 5 0 2 10.71% 5 100.00% 21.39 −
N100E1225C13 5 6.0 5.4 0.0 0.0 0 0 5 5 0 3 8.89% 5 100.00% 155.45 −
N100E1225C15 5 8.4 8.0 1.2 - 0 0 0 0 0 2 5.08% 5 85.17% 674.26 −

is optimal in 39 instances, and TS is optimal in 42 instances.
Considering improvements, there is an IS to LS improvement
in 67 out of 105 instances with an average improvement of
10.4%, while there is an LS to TS improvement in 35 out
of 105 instances with an average improvement of 0.44%.
While the magnitude of improvement is smaller for nonunit
reload cost instances, the number of instances that tabu search
improves upon local search increases as the instances get
harder.

Table 4 presents results for the single-source nonunit
reload cost problem instances. Out of 105 instances, we know
the optimal solutions for 103 instances (59 are ZCO and
44 optimal solutions are obtained via CPLEX). In only two
instances (both for N100E1225C15), CPLEX could not find
the optimal solution in 6h. For the 103 instances for which we
know the optimal solution, IS is optimal in 16 instances, LS
is optimal in 37 instances, and TS is optimal in 101 instances.
Focusing on improvements, there is an IS to LS improvement
in 79 out of 105 instances with an average improvement of
35.05%, while there is an LS to TS improvement in 67 out of
105 instances with an average improvement of 51.6%. Once
again we observe that as the instances get harder, the num-
ber of instances that tabu search improves upon local search
increases.

5.2. Single-Source-Fixed RCSTP Instances

Gamvros et al. [6] do not conduct any computational
experiments on the single-source-fixed RCSTP. Conse-
quently, we use the same 105 single-source unit reload cost
instances and 105 single-source nonunit reload cost instances

from the RCSTP, and consider the reload costs given as being
fixed instead of variable. We also implemented the formula-
tion described in section 6.2 of Gamvros et al. [6] using C++
and CPLEX (version 12.5). Tables 5 and 6 summarize the
results for the single-source-fixed RCSTP instances for the
unit and nonunit reload cost cases, respectively. They are
organized similarly to Table 1.

For the unit reload case discussed in Table 5, out of 105
instances we know the optimal solutions for 97 instances (59
are ZCO and 38 optimal solutions are obtained via CPLEX).
In eight instances (three times for N75E695C13 and five
times for N100E1225C15), CPLEX could not find the opti-
mal solution in 6h. For the 97 instances for which we know the
optimal solution, IS is optimal in 22 instances, LS is optimal
in 39 instances, and TS is optimal in 94 instances. Consider-
ing improvements, there is an IS to LS improvement in 55 out
of 105 instances with an average improvement of 25.94%,
while there is an LS to TS improvement in 66 out of 105
instances with an average improvement of 53.51%.

For the nonunit reload cost case discussed in Table 6,
out of 105 instances we know the optimal solutions for 98
instances (57 are ZCO and 41 optimal solutions are obtained
via CPLEX). In seven instances (three times for N75E695C13
and four times for N100E1225C15), CPLEX could not find
the optimal solution in 6h. For the 98 instances for which we
know the optimal solution, IS is optimal in 15 instances, LS
is optimal in 33 instances, and TS is optimal in 96 instances.
Regarding improvements, there is an IS to LS improvement
in 77 out of 105 instances with an average improvement of
33.56%, while there is an LS to TS improvement in 72 out of
105 instances with an average improvement of 57.14%.
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TABLE 6. Single-source-fixed cost nonunit reload cost instances.

Improvement
Number

Average
Average objective value Number optimal IS to LS LS to TS Run time (s)

of
Instance Name instances IS LS TS OPT IS LS TS ZCO CPLEX # % # % TS CPLEX

N10E25C3 5 3.0 2.0 1.0 1.0 3 4 5 3 2 1 20.00% 1 20.00% 0.07 0.20
N10E25C5 5 1.6 0.8 0.8 0.8 4 5 5 4 1 1 20.00% 0 0.00% 0.07 0.94
N10E25C7 5 3.6 2.0 2.0 2.0 1 5 5 1 4 4 43.00% 0 0.00% 0.26 0.31
N15E50C5 5 4.2 3.0 2.6 2.6 3 4 5 0 5 2 25.00% 1 13.33% 0.68 1.13
N15E50C7 5 8.2 3.2 2.4 2.4 0 3 5 1 4 5 55.57% 2 28.57% 0.81 1.15
N15E50C9 5 6.6 4.4 3.8 3.8 1 3 5 0 5 3 31.43% 2 12.38% 1.05 1.17
N20E100C5 5 1.0 0.2 0.0 0.0 2 4 5 5 0 3 50.00% 1 20.00% 0.01 −
N20E100C7 5 2.6 1.6 0.6 0.6 0 1 5 3 2 4 34.67% 4 66.67% 1.39 4.38
N20E100C9 5 5.2 3.8 2.4 2.4 0 0 5 0 5 3 22.22% 5 39.00% 3.98 3.60
N50E300C5 5 5.6 3.2 0.0 0.0 0 0 5 5 0 2 22.22% 5 100.00% 0.78 −
N50E300C7 5 9.6 3.6 0.8 0.8 0 1 5 2 3 5 60.67% 4 60.33% 79.53 3883.56
N50E300C9 5 14.0 10.4 3.6 3.2 0 0 3 0 5 4 20.08% 5 67.28% 126.41 6572.87
N50E300C11 5 13.2 10.2 4.0 4.0 0 0 5 0 5 4 21.31% 5 61.21% 33.26 2937.42
N75E695C7 5 3.6 1.2 0.0 0.0 1 2 5 5 0 4 53.33% 3 60.00% 2.52 −
N75E695C9 5 9.4 5.4 0.0 0.0 0 0 5 5 0 5 38.11% 5 100.00% 18.03 −
N75E695C11 5 7.2 5.8 0.0 0.0 0 0 5 5 0 4 16.78% 5 100.00% 11.10 −
N75E695C13 5 11.6 8.4 1.6 - 0 0 2 2 0 5 25.20% 5 83.73% 127.82 −
N100E1225C9 5 5.2 2.8 0.0 0.0 0 1 5 5 0 5 51.00% 4 80.00% 5.96 −
N100E1225C11 5 7.4 4.0 0.0 0.0 0 0 5 5 0 5 46.21% 5 100.00% 11.78 −
N100E1225C13 5 8.0 6.2 0.0 0.0 0 0 5 5 0 4 21.44% 5 100.00% 82.63 −
N100E1225C15 5 11.6 8.2 1.0 - 0 0 1 1 0 4 26.61% 5 87.47% 580.69 −

5.3. Khalil and Singh Instances

Khalil and Singh [9] describe two types of benchmark
instances: (i) unit demand (where demands between all pairs
of nodes are set to 1) and (ii) nonunit demand. The instances
are labeled as nxclycoz where x, y, and z denote the num-
ber of nodes, number of clusters in the graph (edges within a
cluster have the same color), and the number of colors, respec-
tively. Khalil and Singh [9] conduct their computations on a
computer running OpenSUSE 11.1 with an Intel Core 2 Duo
processor @ 3GHz and 2GB RAM. None of their instances
have ZCO (this is by design of the instances) and none of their
instances could be solved with our CPLEX implementation of
the colored graph formulation. Hence, for these instances, we
do not know the optimal solutions. Since it is the only other
paper to date with a heuristic for the RCSTP, we instead focus
on comparing our tabu search solution (TS) with their best
solution, denoted by KS.

Tables 7 and 8 present these results for the unit and nonunit
demand instances, respectively. The first column of these
tables identifies the instance name. The next set of columns
provides the objective value for KS and TS. The “Improve-
ment” column provides the percentage improvement from
KS to TS. A positive value indicates the that TS found a
solution with smaller cost than KS, a zero value indicates
that the solutions are identical, and a negative value indicates
that KS found a better solution than TS. Finally, the “Run
Time” columns provide the running times for KS and TS.
The running time for KS is only provided for informational
purposes and should not directly be compared with that of TS
as they are run on different computers. For the unit demand

TABLE 7. Unit demand instances from Khalil and Singh [9].

Objective value Run time (s)
Instance Improvement
Name KS TS KS to TS (%) KS TS

n50cl5co3 2514 2514 0.00% 281.04 2.16
n50cl10co3 3184 3184 0.00% 286.46 1.29
n50cl10co6 6490 6490 0.00% 266.04 2.86
n50cl10co9 7518 7326 2.55% 276.71 3.76
n100cl10co3 13564 13564 0.00% 2402.99 12.06
n100cl20co3 19746 18928 4.14% 1608.98 7.49
n100cl10co6 28898 28834 0.22% 1628.46 16.71
n100cl20co6 41220 40500 1.75% 1681.6 11.11
n100cl10co9 43694 43694 0.00% 1634.43 27.50
n100cl20co9 63596 63146 0.71% 1710.89 16.19
n200cl10co3 87654 87654 0.00% 11341.19 63.68
n200cl20co3 50574 45676 9.68% 11569.24 69.62
n200cl10co6 152024 151488 0.35% 10724.31 118.62
n200cl20co6 188228 161666 14.11% 11827.1 112.98
n200cl10co9 194318 193300 0.52% 12014.1 249.66
n200cl20co9 275976 243012 11.94% 11619.65 162.97
n300cl15co3 142188 141858 0.23% 38620.14 331.22
n300cl20co3 150444 130788 13.07% 43877.45 251.75
n300cl15co6 293696 293320 0.13% 43006.62 380.34
n300cl20co6 370178 342664 7.43% 49061.47 294.17
n300cl15co9 484178 484178 0.00% 35516.55 453.48
n300cl20co9 484696 437950 9.64% 54150.14 1082.42

instances reported in Table 7, TS improves upon KS in 15
out of 22 instances with an average improvement of 3.48%.
These findings are also consistent with the nonunit demand
case. As evident from Table 8, TS improves upon KS in 17
out of 22 instances with an average improvement of 3.22%.
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TABLE 8. Nonunit demand instances from Khalil and Singh [9].

Objective value Run time (s)
Instance Improvement
Name KS TS KS to TS (%) KS TS

n50cl5co3 24121 24121 0.00% 270.56 2.22
n50cl10co3 30226 30226 0.00% 277.88 1.29
n50cl10co6 60274 59835 0.73% 269.57 2.78
n50cl10co9 69952 69636 0.45% 279.7 3.70
n100cl10co3 128844 128844 0.00% 1780.05 11.98
n100cl20co3 183873 178278 3.04% 1707.37 6.24
n100cl10co6 273597 273597 0.00% 1734.1 17.00
n100cl20co6 381746 381421 0.09% 1783.47 11.02
n100cl10co9 414135 415135 −0.24% 1723.02 28.06
n100cl20co9 602329 596920 0.90% 1816.68 17.78
n200cl10co3 838978 838971 0.00% 11149.72 63.68
n200cl20co3 483618 434905 10.07% 11321.18 60.86
n200cl10co6 1449077 1443120 0.41% 10902.13 133.73
n200cl20co6 1759256 1537680 12.59% 12015.74 126.00
n200cl10co9 1853208 1843480 0.52% 11444.06 246.15
n200cl20co9 2544339 2315700 8.99% 11771.07 167.20
n300cl15co3 1343967 1340220 0.28% 44270.75 341.30
n300cl20co3 1436707 1237820 13.84% 37168.43 262.05
n300cl15co6 2780507 2780310 0.01% 35019.19 503.98
n300cl20co6 3532850 3247430 8.08% 54649.31 309.74
n300cl15co9 4660579 4601520 1.27% 54290.92 485.91
n300cl20co9 4602790 4150960 9.82% 44664.44 645.59

TS did not outperform or get the same result as KS in only
one instance, in which case it was only 0.24% worse than the
KS solution.

While the percentage improvements seem small, one
should note that the objective values for these instances are
quite large. Consequently, although there is a significant
decrease in reload costs in absolute terms, it is smaller in
percentage terms. Although the running times of KS and TS
cannot be directly compared as they were run on different
computers, one can safely argue that TS runs faster than KS.
The running times in the table indicate that TS is obtained
on average about 100 times faster than KS; while compar-
ing the speed of the two machines at www.spec.org suggests
that there is at most a factor of 4 speedup between the two
machines.

6. CONCLUSIONS

We considered the RCSTP and proposed several heuris-
tics for it. These include a construction heuristic to obtain an
initial solution, and local search and tabu search heuristics
that are based on a tree–nontree edge swap neighborhood.
We described how to find the best edge swap efficiently
by using preprocessed information. These include demand
information, path reload costs, and predecessors for a given
spanning tree. We also explain how to efficiently update the
data stored after an edge swap is performed. In addition to the
RCSTP, we considered two additional variants—the single-
source RCSTP where all of the demand originates at the root
node, and the SSFRCTSP which has fixed reload costs and the
costs are calculated with reference to paths that originate at a

given source node. For each of these problems, we considered
both unit and nonunit reload cost versions of the problem.

While there are some similarities between the local search
algorithm proposed in this paper and the one in Ahuja and
Murty [1], there are several significant differences. First,
Ahuja and Murty [1] do not explore the neighborhood exhaus-
tively. In one iteration, they take a tree edge and consider all
possible nontree edge swaps. If the swap between the selected
tree edge and the best nontree edge (i.e., the nontree edge that
results in the lowest cost) improves the current solution, they
implement the swap and do not consider other tree edges. On
the other hand, we exhaustively explore the entire neighbor-
hood to find the lowest cost tree–nontree edge swap. Second,
because the reload costs are dependent on adjacent edges
the update of path costs on the tree for the RCSTP is done
slightly differently. Third, our heuristic assumes that demand
is asymmetric while they assume the demand is symmetric.
Finally, we store and update the Q−, Q+ matrices which is
the key to our fast running times. For a given edge (s, t) to be
deleted from the tree (which will then create two subtrees T1

containing s and T2 containing t), Ahuja and Murty [1] com-
pute the equivalent of q−

it for i ∈ T1 and q−
is for i ∈ T2. They

compute this quantity from scratch in each iteration. On the
other hand, if Q−, Q+ matrices were stored (i.e., all q values
instead of a subset) and updated as described in this paper,
it would be possible to (i) explore a larger neighborhood in
a single iteration of a local search algorithm for the OCSTP,
and (ii) improve the running time from O(n3) to O(nm) for
one edge swap iteration in Ahuja and Murty’s [1] local search
algorithm. We discuss this further in the Appendix.

The quality of our heuristics is validated by our computa-
tional experiences on a large data set. On this test set of 630
instances (that includes benchmark instances from [6]), LS
improves upon IS in 416 instances by an average of 23.62%,
and TS improves upon LS in 364 instances by an average of
35.79%. Out of 495 test instances from this set that we know
the optimal solution for IS is optimal 113 times, LS is optimal
224 times, and TS is optimal 481 times. The benefit of tabu
search over local search is much clearer on the single-source
problems. Of the 420 single-source instances LS is optimal in
151 instances. Of the remaining 269 instances TS improves
upon LS 268 times. Comparisons on a second set of bench-
mark instances from Khalil and Singh [9] tell a similar story.
TS improves upon the best known solution in 32 out of 44
instances, and is inferior once. The magnitude of (percent-
age) improvement of TS on this second data set is larger as
the instances get larger.

While we have been able to obtain solutions to large
instances rapidly with our heuristics the mathematical pro-
gramming formulations for the problem (proposed in [6])
are unable to solve instances with 50 nodes in the case of
all pairs and more than 100 nodes in the single-source case.
This is due to the fact that they are multicommodity flow
formulations that rapidly become intractable as the size of
the problem increases. One avenue for future research is the
development of new formulations and/or exact mathematical
programming approaches (e.g., column generation, Benders
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decomposition, etc.) for reload cost problems that remain
tractable for large-scale reload cost problems.

APPENDIX

We first review the tree–nontree edge swap calculation in
Ahuja and Murty [1]. In order to find the best nontree edge to
replace a tree edge eij ∈ T (suppose the removal of eij creates
two subtrees T1 containing i and T2 containing j as described
before), the authors first compute the equivalent of q−

si for all
s ∈ T1 and q−

sj for all s ∈ T2, which takes O(n2) time. Note

that we do not consider q+
si here since the demand is assumed

to be symmetric and the computations are identical to q−
si . To

simplify notation, we drop “–” and “i” from q−
si and simply

state it as qs, which is equal to q−
si if s ∈ T1 and q−

sj if s ∈ T2.
For a given node s ∈ T1, Ahuja and Murty calculate

hs =
∑
t∈T1

qtuts (1)

where uts denotes the path distance from t to s in T. Intuitively,
hs aggregates, for every node t ∈ T1, the cost of carrying
the total demand from node t to the nodes in T2 (i.e., qt)
to node s. The same calculation is carried out for each node
s ∈ T2 in a similar fashion. After hs is calculated for all s ∈ T ,
which takes O(n2) time, the cost of carrying the total demand
between T1 and T2 through a nontree edge ekl is calculated
as

αkl = hk + Wbkl + hl

where W = ∑
s∈T qs and bkl is the weight (distance) of ekl.

The best nontree edge swap for eij can be identified by cal-
culating αkl for all ekl ∈ E\T such that T\{eij} ∪ {ekl} is a
spanning tree. Letα∗ = mine∈E\T αe; thenαij−α∗ denotes the
cost savings achieved by the best nontree edge swap with eij.
In Ahuja and Murty, given a tree edge, qs and hs are calculated
for all s ∈ T , which takes O(n2) time. Then all nontree edges
are evaluated, which takes O(m) time, so finding the nontree
edge with the lowest cost takes O(n2)+O(m) = O(n2) time.

We now explain how a slight improvement in running time
can be obtained using preprocessed information and updating
procedures as for the RCSTP. Specifically we show how hs

can be calculated for all s ∈ T in O(n) time. For node s ∈ T1,
the removal of edge es,pred(i,s) partitions T1 into two subtrees
�1 and �2 where s ∈ �1 and i, pred(i, s) ∈ �2. Then define
q̄s = ∑

t∈�1
qt as the total demand from the nodes in �1 to

nodes in T2. Let ψs be the neighbors of s that are in �1; then
q̄s can be restated as

q̄s = qs +
∑
t∈ψs

q̄t .

If s is a leaf node, then q̄s = qs. Therefore, starting from
the leaf nodes, q̄s can be calculated recursively for all s ∈ T1

using BFS. Since the total number of additions is bounded
by the number of edges in T1, calculating q̄s for all s ∈ T1

takes O(n) time. (In a similar fashion q̄s can be calculated

FIG. 7. Removal of edge est from T1 creates two subtrees �1 and �2.
Given ht , hs can be calculated by accounting for the demand that no longer
passes from s to t (i.e., q̄s) across edge est , and the demand that is now carried
from t to s (i.e., q̄i − q̄s) across edge est .

for all s ∈ T2 in O(n) time). Given a tree edge eij ∈ T , we
first compute hi in O(n) time as in (1). However, after that
we now show how we can recursively calculate hs for any
other node s in T1 in O(1) time (by using q̄s and q̄i). (hs can
be calculated for s ∈ T2 in a similar fashion provided that hj

is calculated as in (1).)
Consider Figure 7. For node s ∈ T1, let t = pred(i, s).

Given ht , hs can be calculated by accounting for the demand
that no longer passes from s to t (i.e., q̄s) and the demand that
is now carried from t to s (i.e., q̄i − q̄s). Thus hs can be stated
as

hs = ht − bst q̄s + bst(q̄i − q̄s) = ht + bst(q̄i − 2q̄s),

or equivalently,

hs = hpred(i,s) + bs,pred(i,s)(q̄i − 2q̄s),

which can be calculated in O(1) time recursively applying
BFS from i.

In summary, q̄s and hs for all s ∈ T can be calculated
in O(n) time via qs, which is stored and updated after each
swap. Then for a given tree edge, finding the nontree edge
with the lowest cost becomes O(n) + O(m) = O(m). This
results in an overall running time of O(nm) instead of O(n3)

for a single local search iteration.
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