
 1

 The Generalized Covering Salesman Problem

Bruce Golden
Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA.

bgolden@rhsmith.umd.edu

Zahra Naji-Azimi
DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.

zahra.najiazimi2@unibo.it

S. Raghavan
Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA.

raghavan@umd.edu

Majid Salari, Paolo Toth
DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.

majid.salari2@unibo.it, paolo.toth@unibo.it

Abstract:

 Given a graph (,)G N E , the Covering Salesman Problem (CSP) is to identify the minimum

length tour “covering” all the nodes. More specifically, it seeks the minimum length tour visiting a

subset of the nodes in N such that each node i not on the tour is within a predetermined distance di

of a node on the tour. In this paper, we define and develop a generalized version of the CSP, and

refer to it as the Generalized Covering Salesman Problem (GCSP). Here, each node i needs to be

covered at least ik times and there is a cost associated with visiting each node. We seek a minimum

cost tour such that each node i is covered at least ik times by the tour. We define three variants of

the GCSP. In the first case, each node can be visited by the tour at most once. In the second version,

visiting a node i more than once is possible, but an overnight stay is not allowed (i.e., to revisit a

node i, the tour has to visit another node before it can return to i). Finally, in the third variant, the

tour can visit each node more than once consecutively. In this paper, we develop two local search

heuristics to find high-quality solutions to the three GCSP variants. In order to test the proposed

algorithms, we generated datasets based on TSP Library instances. Since the CSP and the

Generalized Traveling Salesman Problem are special cases of the GCSP, we tested our heuristics on

both of these two problems as well. Overall, the results show that our proposed heuristics find high-

quality solutions very rapidly.

Key Words: Covering Salesman Problem, Generalized Covering Salesman Problem, Generalized

Traveling Salesman Problem, Heuristic Algorithms, Local Search.

 2

1. Introduction

The Traveling Salesman Problem (TSP) is one of the most celebrated combinatorial

optimization problems. Given a graph (,)G N E , the goal is to find the minimum length tour of the

nodes in N, such that the salesman, starting from a node, visits each node exactly once and returns

to the starting node (see Dantzig et al., 1954). In recent years, many new variants such as the TSP

with profits (Feillet et al., 2005), the Clustered TSP (Chisman, 1975), the Generalized TSP

(Fischetti et al., 1997), the Prize Collecting TSP (Fischetti and Toth, 1988), and the Selective TSP

(Laporte and Martello, 1990) have been introduced and studied. The recent monograph by Gutin

and Punnen (2002) has a nice discussion of different variations of the TSP and solution procedures.

Current (1981) defined and introduced a variant of the TSP called the Covering Salesman

Problem (CSP). In the CSP, the goal is to find a minimum length tour of a subset of n given nodes,

such that every node i not on the tour is within a predefined covering distance id of a node on the

tour. If 0id  or mini ijj
d c , where ijc denotes the shortest distance between nodes i and j, the CSP

reduces to a TSP (thus, it is NP-hard). Current and Schilling (1989) referred to several real-world

examples, such as routing of rural healthcare delivery teams where the assumption of visiting each

city is not required since it is sufficient that each city is near to a stop on the tour (the inhabitants of

those cities which are not on the tour are expected to go to their nearest stop). Current and Schilling

(1989) also suggested a heuristic for the CSP where in the first step a Set Covering Problem (SCP)

over the given nodes is solved. Specifically, to solve the Set Covering Problem, a zero-one nn

matrix A in which the rows and columns correspond to the nodes is considered. If node i can be

covered by node j (i.e., i ijd c), then ija is equal to 1, otherwise it is 0. Since the value of covering

distance id varies for each node i, it should be clear that A is not a symmetric matrix, but for each

node i we have 1iia . We should also mention that, in the CSP, there is no cost associated with

the nodes, so the column costs of matrix A are all equal to one. Therefore, a unit cost Set Covering

Problem is solved in the first step of this algorithm to obtain the cities visited on the tour. Then the

algorithm finds the optimal TSP tour over these cities. Since there might be multiple optimal

solutions to the SCP, Current and Schilling suggest that all optimal solutions to the SCP be tried out

and the best solution be selected. The algorithm is demonstrated on a sample problem, but no

additional computational results are reported.

Arkin and Hassin (1994) introduced a geometric version of the Covering Salesman Problem.

In this problem, each node specifies a compact set in the plane, its neighborhood, within which the

salesman should meet the stop. The goal is computing the shortest length tour that intersects all of

the neighborhoods and returns to the initial node. In fact, this problem generalizes the Euclidean

 3

Traveling Salesman Problem in which the neighborhoods are single points. Unlike the CSP, in

which each node i should be within a covering distance id of the nodes which are visited by the

tour, in the geometric version it is sufficient for the tour to intersect the specific neighborhoods

without visiting any specific node of the problem. Arkin and Hassin (1994) presented simple

heuristics for constructing tours for a variety of neighborhood types. They show that the heuristics

provide solutions where the length of the tour is guaranteed to be within a constant factor of the

length of the optimal tour. Mennell (2009) studied a special case of the above problem known as the

close-enough traveling salesman problem. More specifically, if a salesman gets to within a specified

distance (say, r units) of a node, then the node is considered to have been visited. Mennell

implemented and compared a number of geometry-based heuristics. Several of these are very fast

and produce high quality solutions.

Other than Current (1981), Current and Schilling (1989), and Arkin and Hassin (1994), the

CSP does not seem to have received much attention in the literature. However, some

generalizations of the CSP have appeared in the literature. One generalization and closely related

problem discussed in Gendreau et al. (1997) is the Covering Tour Problem (CTP). Here, some

subset of the nodes must be on the tour while the remaining nodes need not be on the tour. Like the

CSP, a node i not on the tour must be within a predefined covering distance id of a node on the

tour. When the subset of nodes that must be on the tour is empty the CTP reduces to the CSP, and

when the subset of nodes that must be on the tour consists of the entire node set, the CTP reduces to

the TSP. Gendreau et al. (1997) proposed a heuristic that combines GENIUS, a high quality

heuristic for the TSP (Gendreau et al., 1992), with PRIMAL1, a high quality heuristic for the SCP

(Balas and Ho, 1980).

Vogt et al. (2007) considered the Single Vehicle Routing Allocation Problem (SVRAP) that

further generalizes the CTP. Here, in addition to tour (routing) costs, nodes covered by the tour (that

are not on it) incur an allocation cost, and nodes not covered by the tour incur a penalty cost. If the

penalty costs are set high and the allocation costs are set to 0, the SVRAP reduces to the CTP. Vogt

et al. (2007) discussed a tabu search algorithm for the SVRAP that includes aspiration, path

relinking, and frequency based-diversification.

All of the earlier generalizations of the CSP assume that when a node is covered, its entire

demand can be covered. However, in many real-world applications this is not necessarily the case.

As an example, suppose we have a concert tour which must visit or cover several cities. Since each

show has a limited number of tickets, and large metropolitan areas are likely to have ticket demand

which exceeds ticket supply for a single concert, there must be concerts on several nights in each

large city in order to fulfill the ticket demand. Also, in the rural healthcare delivery problem,

 4

discussed in Current and Schilling (1989), when we create a route for the rural medical team, on

each day a limited number of people can benefit from the services, so the team should visit some

places more than once. Consequently, rather than assuming that a node’s demand is completely

covered when either it or a node that can cover it is visited, we generalize the CSP by specifying

the coverage demand ik which denotes the number of times a node i should be covered. In other

words, node i must be covered ik times by a combination of visits to node i and visits to nodes that

can cover node i. If ik =1 for all nodes, we obtain the CSP. This generalization significantly

complicates the problem, and is quite different from the earlier generalizations that effectively deal

with unit coverage (i.e., ik =1). In addition, since in many applications there is a cost for visiting a

node (e.g., cost of hotel for staying in a city for one night) we include node visiting costs (for nodes

on the tour) in the GCSP. In the next section, we introduce and explain in more detail three different

variants that can arise in the GCSP (that deal with whether a node can be revisited or not). All of

these variants are strongly NP-Hard, since they contain the classical TSP as a special case.

The rest of this paper is organized as follows. In Section 2, we formally define the

Generalized Covering Salesman Problem, and describe three variants. We also present a

mathematical model for the problem. Section 3 describes two local search heuristics for the GCSP.

Section 4 discusses our computational experience on the three different variants of the GCSP, as

well as the CSP and the Generalized TSP (GTSP), which are special cases of the GCSP. Section 5

provides concluding remarks and discusses some possible extensions of the GCSP.

2. Problem Definition

In the Generalized Covering Salesman Problem (GCSP), we are given a graph  ,G N E

with  nN ,...,2,1 and ({ , }: , ,)E i j i j N i j   as the node and edge sets, respectively. Without

loss of generality, we assume the graph is complete with edge lengths satisfying the triangle

inequality, and let cij denote the cost of edge { , }i j (cij may be simply set to the cost of the shortest

path from node i to node j). Each node i can cover a subset of nodes iD (note that ii D , and when

coverage is based on a covering distance the set iD can be computed easily from the edge costs cij)

and has a predetermined coverage demand ik . iF is the fixed cost associated with visiting node i,

and a solution is feasible if each node i is covered at least ik times by the nodes in the tour. The

objective is to minimize the total cost, which is the sum of the tour length and the fixed costs

associated with the visited nodes.

 5

We discuss three variants of the GCSP: Binary GCSP, Integer GCSP without overnights,

and Integer GCSP with overnights. Next, we explain each of these variants.

Binary Generalized Covering Salesman Problem: In this version, the tour is not allowed to visit

a node more than once and after visiting a node we must satisfy the remaining coverage demand of

that node by visiting other nodes that can cover it. We use the qualifier binary as this version only

permits a node to be visited once.

Integer Generalized Covering Salesman Problem without Overnights: Here, a node can be

visited more than once, but an overnight stay is not allowed. Therefore, after visiting a node, the

tour can return to this node after having visited at least one other node. In other words, the tour is

not allowed to visit a node more than one time consecutively. We use the qualifier integer as this

version allows a node to be visited multiple (or an integer number of) times.

Integer Generalized Covering Salesman Problem with Overnights: This version is similar to the

previous one, but one or more overnight stays at a node are allowed.

In the CSP, ki=1 for all nodes i N . Clearly, the CSP is a special case of the binary GCSP.

When there are unit demands there is no benefit to revisiting a node, consequently the CSP can also

be viewed as a special case of the integer variants of the GCSP. Thus, the CSP is a special case of

all three variants of the GCSP. As the TSP is a special case of the CSP, all three GCSP variants are

strongly NP-Hard.

We now discuss the issue of feasibility of a given instance of the problem. For the binary

GCSP, the problem is feasible if demand is covered when all nodes in the graph are visited by the

tour. In other words if hj denotes the number of nodes that can cover node j (i.e., hj counts each

node i N for which ij D), then the problem is feasible if j jk h . For the integer GCSP with and

without overnights, the problem is always feasible, since a tour on all nodes in the graph may be

repeated until all demand is covered.

We now formulate the three different variants of the GCSP. We first provide an integer

programming formulation for the binary GCSP, and then an integer programming formulation for

the integer GCSP. Our models are on directed graphs (for convenience, as they can easily be

extended to asymmetric versions of the problem). Hence, we replace the edge set E by an arc set A,

where each edge { , }i j is replaced by two arcs (,)i j and (,)j i with identical costs. Also, from the

problem data we have available

 6

1 if node j can cover node i,

0 otherwise. ija


 


We introduce the decision variables:
1 if node is on the tour

0 otherwise i

i
w


 


and
1 if arc (,) is chosen to be in the solution,

0 otherwise.ij

i j
x


 


The integer programming model can now be stated as:
(BinaryGCSP) Min

(,)
ij ij i i

i j A i N

c x F w
 

  (1)

 subject to:

:(,) :(,)
ji ij i

j j i A j i j A

x x w i N
 

     (2)

ij j i
j N

a w k i N


   (3)

SNjSinSNSwwxx ji
SNk Sl

kl
Sl SNk

lk \,,22,)1(2
\\

 
  

 (4)

 0,1 (,)ijx i j A   (5)

 0,1 .iw i N   (6)

The objective is to minimize the sum of the tour costs and the node visiting costs. Constraint set (2)

ensures that for each on-tour customer, we have one incoming and one outgoing arc. Constraint

set (3) specifies that the demand of each node must be covered. Constraint set (4) is a connectivity

constraint that ensures that there are no subtours. Note that there are an exponential number of

connectivity constraints. Constraints (5) and (6) define the variables as binary.

For the integer GCSP without overnights we introduce two additional variables to represent

the number of times a node is visited, and the number of times an arc is traversed in the tour. Let

iy  number of times that node i is visited by the tour, and

ijz  number of times arc (i,j) is traversed by the tour.

The integer programming model can now be stated as:

 (IntegerGCSP) Min

(,)
ij ij i i

i j A i N

c z F y
 

  (7)

 subject to:

:(,) :(,)
ji ij i

j j i A j i j A

z z y i N
 

     (8)

ij j i
j N

a y k i N


   (9)

NiLwy ii  (10)

(,)ij ijz Lx i j A   (11)

 7

 SNjSinSNSwwxx ji
SNk Sl

kl
Sl SNk

lk \,,22,)1(2
\\

 
  

 (12)

  0,1 , (,)ij ijx z Z i j A    (13)

 0,1 , ,i iw y Z i N    (14)

where L is a sufficiently large positive value. The objective is to minimize the sum of the tour costs

and the node visiting costs. Constraint set (8) ensures that if node i is visited yi times, then we have

yi incoming and yi outgoing arcs. Constraint set (9) specifies that the demand of each node must be

covered. Constraint sets (10) and (11) are linking constraints, ensuring that wi and xij are 1 if yi or zij

are greater than 0 (i.e., if a node is visited or an arc is traversed). Note that it suffices to set

max{ }i
i N

L k


 . Constraint set (12) is a connectivity constraint that ensures that there are no subtours.

Note again, that there are an exponential number of connectivity constraints. Finally, constraint sets

(13) and (14) define the variables as binary and integer as appropriate. For the integer GCSP with

overnights, the above integer programming model (IntegerGCSP) is valid if we augment the arc set

A with self loops. Specifically, we add to A the arc set {(,) : }i i i N (or {(,) : }A A i i i N  ) with

cii the cost of self loop arcs (,)i i set to 0.

Note that both the binary GCSP and the integer GCSP formulations rely heavily on the

integrality of the node variables. Consequently, the LP-relaxations of these models can be quite

poor. Further, these models have an exponential number of constraints, implying that this type of

model can only be solved in a cutting plane or a branch-and-cut framework. Thus, considerable

strengthening of the above formulations is necessary, before they are viable for obtaining exact

solutions to the GCSP. We do not pursue this direction in this paper. Rather, we focus on local

search algorithms to develop high-quality solutions for the GCSP.

3. Local Search Algorithms

In this section we propose two local search solution procedures, and refer to them as LS1

and LS2, respectively. They are designed to be applicable to all variants of GCSP. In both

algorithms, we start from a random initial solution. As we discussed in Section 2, assuming that a

problem is feasible (which can be checked easily for the binary GCSP), any random order of the n

nodes produces a feasible solution for the binary GCSP, and repeating this ordering a number of

times until all demand is covered produces a feasible solution for the integer GCSP. We provide an

initial solution to our local search heuristics by considering a random initial ordering of the nodes in

the graph and repeat this ordering for the integer variants (if necessary) to cover all of the demand.

A natural question at this point may be whether an initial solution different from a random initial

ordering provides better final solutions. We actually tested two alternate possibilities for an initial

 8

solution: (i) the TSP tour obtained using the Lin-Kernighan procedure over the n nodes in the

instance, and (ii) the TSP tour obtained using the Lin-Kernighan procedure (Lin and Kernighan,

1973) over the nodes obtained by solving the associated SCP problem to optimality (this solution

may not be feasible for the binary GCSP). We found that these two alternatives did not dominate

the random initial ordering which is significantly faster in generating an initial solution. As a result,

we generate an initial solution using a random initial ordering.

A solution is represented by the sequence of nodes in the tour. Thus, for the binary GCSP,

no node may be repeated on the tour, while in the integer GCSP, nodes may be repeated on the tour.

For the integer GCSP with no overnights, a repeated node may not be next to itself in the sequence,

while in the integer GCSP with overnights a repeated node is allowed to be next to itself in the

sequence. Thus, <1,2,3,4,5,8,9>, <1,2,3,4,3,2,8>, and <1,1,2,3,3,8> represent tour sequences that

do not repeat nodes, repeat nodes but not consecutively, and repeat nodes consecutively. Observe

that if the costs are non-negative, then in the integer GCSP with overnights, there is no benefit to

leaving a node and returning to revisit it later.

3.1. LS1

LS1 tries to find improvements in a solution S by replacing some nodes of the current tour. It

achieves this in a two-step manner. First, LS1 deletes a fixed number of nodes. (The number of

nodes removed from the tour is equal to a predefined parameter, Search-magnitude, multiplied by

the number of nodes in the current tour. If this number is greater than 1 it is rounded down;

otherwise, it is rounded up.) It removes a node k from the current solution S with a probability that

is related to the current tour and computed as

kP = /k s
s S

C C

 , (15)

where kC is the amount of decrease in the tour cost by deleting node k from S; while keeping the rest

of the tour sequence as before. (This weighted randomization allows the search procedure to

explore a larger set of the feasible solution space and in our preliminary testing worked much better

than choosing the node with the largest value of kC for deletion.) Since the deletion of some nodes

from the tour S may result in a tour S  that is no longer feasible, LS1 attempts to make the solution

feasible by inserting new nodes into S  . We refer to this as the Feasibility Procedure. Suppose that

P is the set of nodes that can be added to the current tour. For the binary GCSP, P consists of the

nodes not in the tour S  , while in the integer GCSP, P consists of all nodes that do not appear more

than L times in S  . We select the node k P for which

 2 2/ min(/)k k j jj P
I N I N


 . (16)

 9

Here, kI is the amount of increase in the tour cost obtained by inserting node k into its best position

in the tour, and kN is the number of uncovered nodes (or uncovered demand) which can be covered

by node k. (A node that can cover a larger number of uncovered nodes is desirable because it

reduces the length of the tour as well as reduces the fixed costs associated with visiting the nodes.

We found that squaring kN strengthens this impact in the selection.) We update the calculation

of kN for all nodes in P and repeat the selection and insertion of nodes until we obtain a feasible

solution. After this step, LS1 checks for the possible removal of “redundant” nodes from the current

tour in the Delete_Redundant_Nodes Procedure. A node is redundant if, by removing it, the

solution remains feasible.

Next, in case LS1 finds an improvement, i.e., the cost of S  is less than the cost of S, we

would like to try and improve the tour length (and, thus, the overall cost) by applying the Lin-

Kernighan Procedure to the solution S  . Since this procedure is computationally expensive, we only

apply it after max_k (a parameter) improvements over the solution S. We use the Lin-Kernighan

code LKH version 1.3 of Helsgaun (2000) that is available for download on the web.

In order to escape from locally optimum solutions, and to search through a larger set in the

feasible solution space, we apply a Mutation Procedure whenever the algorithm is not able to

increase the quality of the solution after a given number of consecutive iterations. In the mutation

procedure, a node is selected randomly and, if the node does not belong to the solution, it is added

to the solution in its best place (i.e., the place which causes the minimum increase in the tour

length); otherwise, it is removed from the solution. In the latter case, the algorithm calls the

feasibility procedure to ensure the solution is feasible, and updates the best solution if necessary.

To add to the diversity within the search procedure, we allow uphill moves with respect to

the best solution that LS1 has found. In other words, if the cost of the solution S’ that LS1 obtains is

less than (1+α) times the best solution found, we keep it as the current solution (over which we try

to find an improvement). Otherwise, we use the best solution obtained so far as the current solution.

The stopping criterion for LS1 is a given number of iterations that we denote by max_iter. The

pseudo-code of LS1 is given in Algorithm 1. The parameters to be tuned for LS1 and their best

values obtained in our computational testing are described in Table 1 (see Section 4).

3.2. LS2

This local search procedure tries to improve the cost of a solution by either deleting a node

on the tour if the resulting solution is feasible or by extracting a node and substituting it with a

 10

Algorithm 1: Local Search Algorithm 1 (LS1) for GCSP
Begin
 S := An initial random tour of n nodes, S* := S and BestCost := Cost(S*);
 Cs = Decrease in the tour cost by short cutting node s;
 Is = Increase in the tour cost by adding node s to its best position in the tour;
 Ns = max{1, Number of uncovered nodes covered by node s};
 No_Null_Iter = Number of iterations without improvement;
 Set k := 0; No_Null_Iter := 0;
 For i =1, …, max_iter do
 For j =1, …, Search-magnitude |S| do

 Delete node k from S according to the probability 
Ss

sk CC / ;

 End For;
 S  := Restricted solution obtained by shortcutting the nodes deleted in the previous step;
 Apply Feasibility Procedure (S );
 Apply Delete_Redundant_Nodes Procedure (S );
 If Cost(S ) < Cost(S) then
 If k = max_k then Obtain TSP_tour(S ) by calling Lin-Kernighan Procedure and set k := 0;
 Else k := k+1;
 End If;
 If Cost(S ) > BestCost (1+α) then
 S:=S*;
 No_Null_Iter:= No_Null_Iter +1;
 Else
 SS : ;
 If Cost(S) < BestCost then
 Update S* := S, BestCost := Cost(S),and No_Null_Iter := 0;
 End If;
 End If;
 If No_Null_Iter > Mutation_Parameter then apply Mutation Procedure (S);
 End For;
 Obtain TSP_tour(S*) by calling Lin-Kernighan Procedure. Output the solution S*.
End.

Feasibility Procedure (S ):
 P = The set of nodes that can be entered into the solution;
 While there exist uncovered nodes do

 Select node k P such that 2 2/ min(/)k k j jj P
I N I N


 ;

 Insert node k in its best position in S  ;
 For each node j update the remaining coverage demand, jI and jN ;

 End While.

Delete_Redundant_Nodes Procedure (S ):
 For i S  do
 If by removing node i from S  the solution remains feasible, then remove node i;
 End For.

Mutation Procedure (S):
 Select a random node k from the set of nodes P;
 If node Sk then add node k to S in its best position;
 Else remove node k from S and call Feasibility Procedure (S);
 If Cost(S) < BestCost then update S* := S, BestCost := Cost(S).

 11

promising sequence of nodes. In contrast to LS1, this local search algorithm maintains feasibility

(i.e., it only considers feasible neighbors in the local search neighborhood).

LS2 mainly consists of two iterative procedures: the Improvement Procedure and the

Perturbation Procedure. In the Improvement Procedure, the algorithm considers extraction of

nodes from the current tour in a round-robin fashion. (In other words, given some ordering of nodes

on the tour, it first tries to delete the first node on the tour, and then it tries to delete the second node

on the tour, and so on, until it tries to delete the last node on the tour.) If by removing a node on the

tour the solution remains feasible, the tour cost has improved and the node is deleted from the tour.

On the other hand, extracting a node from the tour may cause some other nodes to no longer be

fully covered and the solution becomes infeasible. Consequently, in such cases, we try to obtain a

feasible solution by substituting the deleted node with a new subsequence of nodes. To this aim, the

algorithm considers the T nodes nearest to the extracted node and generates all the promising

subsequences with cardinality one or two. Then, it selects the subsequence s that has the minimum

insertion cost (i.e., the cost of the tour generated by substituting the deleted node by subsequence s

minus the cost of tour with the deleted node). In the case of improvement in the tour cost, we make

this substitution; otherwise, we disregard it (i.e., reinsert the deleted node back into its initial

position) and continue. The improvement procedure is repeated until it cannot find any

improvements (i.e., no change is found while extracting nodes from the current tour in a round-

robin fashion). At the end of the improvement procedure, we apply the 2-Opt procedure to the

current tour. (We prefer 2-Opt to the Lin-Kernighan procedure here because it is significantly less

expensive computationally.)

In the Perturbation Procedure, LS2 tries to escape from a locally optimum solution by

perturbing the solution. In the perturbation procedure, we iteratively add up to K nodes to the tour.

It randomly selects one node from among the nodes eligible for addition to the tour (in the binary

GCSP, the nodes must be selected from those not in the current tour, while, for the two other GCSP

variants, the nodes can be selected from those visited in the current tour also) and inserts it in the

tour in its best possible position. Since the tour is feasible prior to the addition of these nodes, the

tour remains feasible upon addition of these K nodes.

In one iteration of the procedure, the improvement phase and perturbation phase are

iteratively applied J times. After one iteration, when the best solution has improved (i.e., an

iteration found a solution with lower cost), we use the Lin-Kernighan Procedure to improve the

current tour length (and, thus, the cost of the solution). The stopping criterion for LS2 is a given

number of iterations that we denote by max_iter. The pseudo-code for LS2 is given in Algorithm 2,

and the parameters to be tuned for LS2 and their best values obtained in our computational testing

 12

Algorithm 2: Local Search Algorithm 2 (LS2) for the GCSP

Begin
 S := An initial random tour of n nodes, S* := S and BestCost := Cost(S*);
 N(S) = Number of nodes in S;
 For i = 1, …, max_iter do
 bestimprove := false;
 For j = 1, …, J do
 improve := true;
 Repeat
 Improvement Procedure (S,improve);
 Until (improve = false)
 2-OPT(S);
 If Cost(S) < BestCost then
 S* := S;
 BestCost := Cost(S);
 bestimprove := true;
 Else
 S := S*;
 End If;
 Perturbation Procedure (S);
 End For;
 If (bestimprove = true) then
 Obtain TSP_tour(S*) by calling Lin-Kernighan Procedure. Output the solution S*;
 S := S* and BestCost := Cost(S*);
 End If;
 End For;
End.

Improvement Procedure(S,improve):
Begin
 improve := false;
 r := 1;
 While   r N S do

 Extract the thr node of the tour from the current solution S;

 If the new solution (obtained from extracting the thr node of S) is feasible then
 S := new solution;
 improve := true;
 Else
 Generate all subsequences with cardinality 1 or 2, by considering the T closest nodes
 to the extracted node;
 Extra_Cost := Extra cost for the subsequence with the minimum insertion cost;
 If Extra_Cost < 0 then
 Update S by substituting the new subsequence for the extracted node;
 improve := true;
 End If;
 End If;
 r := r+1;
 End While;
End.

Perturbation Procedure(S):
Begin
 For i = 1,…, K do
 Randomly select an eligible node;
 Insert the node in its best feasible position in the tour;
 End For;
End.

 13

are described in Table 2 (see Section 4).

4. Computational Experiments

In this section, we report on our computational experience with the two local search

heuristics LS1 and LS2 on the different GCSP variants. We first consider the CSP, and compare the

performance of the two proposed heuristics LS1 and LS2, with that of the method proposed by

Current and Schilling (1989) for the CSP. Next, we compare LS1 and LS2 on a large number of

GCSP instances for the three variants. We also consider a Steiner version of the GCSP, and report

our experience with the two local search heuristics. Finally, in order to assess the quality of the

solutions found by the two heuristics, we compare them with existing heuristics for the GTSP

where there exist well-studied instances in the literature. All of the experiments suggest that the

heuristics are of a high quality and run very rapidly.

4.1. Test Problems

 Since there are no test problems in the literature for the CSP (nor for the variants of the

GCSP we introduce), we created datasets based on the TSP library instances (Reinelt, 1991). Our

analysis involves two datasets: one consisting of small to medium instances with up to 200 nodes,

and the other consisting of large instances with up to 1000 nodes.

The first dataset is constructed based on 16 Euclidean TSPLIB instances whose size ranges

from 51 to 200 nodes. In the instances created, each node can cover its 7, 9, or 11 nearest neighbor

nodes in addition to itself (resulting in 3 instances for each TSPLIB instance), and each node i must

be covered ik times, where ik is a randomly chosen integer number between 1 and 3. We

generated the instances to ensure that a tour over all of the nodes covers the demand (i.e., we

ensured that the binary GCSP instances were feasible). Although the cost of visiting a node can be

different from node to node, for the first dataset, we consider the node-visiting costs to be the same

for all nodes in an instance. In fact, if we assign a large node-visiting cost, the problem becomes a

Set Covering Problem (as the node-visiting costs dominate the routing costs) under the assumption

that a tour over all the nodes covers the demand. On the other hand, if the node-visiting cost is

insignificant (i.e., the routing costs dominate), there is no difference between the integer GCSP with

overnights and the CSP. This is because if there is no node-visiting cost, a salesman will stay

overnight at a node (at no additional cost) until he/she covers all the demand that can be covered

from that node. After testing different values for the node-visiting cost, to ensure that its effect was

not at either extreme (Set Covering Problem or CSP), we fixed the node-visiting cost value to 50 for

 14

Table 1: Parameters for LS1
Parameters Different values tested Best value

Search-magnitude {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} 0.3
Mutation_parameter {5, 10, 15, 20} 15

max_k {5, 10, 15, 20} 20
α {0, 0.1, 0.01, 0.001} 0.1

max_iter {1500, 3500, 5500, 7500, 8500}
3500 (CSP & Binary GCSP)

7500 (Integer GCSP)

Table 2: Parameters for LS2
Parameters Different values tested Best value

J {50, 100, 150, 200, 250, 300} 300
K {5, 10, 15, 20} 10
T {5, 10, 15} 10

max_iter {15, 20, 25, 30, 35, 40, 45, 50, 55, 60}
25 (CSP & Binary GCSP)

50 (IntegerGCSP)

the instances in this first dataset. In this fashion, we constructed 48 instances in this first dataset for

our computational work.

The second dataset is constructed based on 15 large Euclidean TSPLIB instances whose size

ranged from 225 to 1000 nodes. They are constructed in the same fashion as the first dataset, except

that (i) each node can cover its 10 nearest neighbor nodes, and (ii) the node-visiting costs are

different for the nodes. The node-visiting costs are set randomly in three different ranges. If TL

denotes the total length of the solution (using LS2) to the instance as a CSP problem, the node-

visiting costs are set in the following three ranges (resulting in 3 instances for each TSPLIB

instance), where (int) indicates we round down to the nearest integer.

A: (int) (Random value in [0.01, 0.05]) * TL.
B: (int) (Random value in [0.001, 0.005]) * TL.
C: (int) (Random value in [0.0001, 0.0005]) * TL.

Tables 1 and 2 show the different values that were tested for various parameters and the best

value obtained for the parameters in LS1 and LS2. To obtain these best parameter values we tested

all possible combinations for the parameter values on a set of small test instances consisting of five

selected TSPLIB instances (Pr107, Pr124, Pr136, Pr144, and Pr152) for each of the four problems

(CSP, binary GCSP, integer GCSP without overnights, and integer GCSP with overnights) where

each node can cover its 10 nearest neighbor nodes. These five instances (with a total of 20 instances

over the four problems) comprise our training set while our testing set will consist of the instances

in the two datasets. This approach is consistent with the one widely used in the data mining and

machine learning literature.

Both LS1 and LS2 were implemented in C and tested on a Windows Vista PC with an Intel

Core Duo processor running at 1.66 GHz with 1 GB RAM. As is customary in testing the

 15

performance of randomized heuristic algorithms, we performed several independent executions of

the algorithms. In particular, for each benchmark instance, 5 independent runs of the algorithms

LS1 and LS2 were performed, with 5 different seeds for initializing the random number generator

and the best and the average performances of the two heuristics are provided.

In all tables reporting the computational performance of the heuristics, the first column is

related to the instance name which includes the number of nodes. The second column (NC) gives

the number of nearest neighbor nodes that can be covered by each node. Moreover, for each

method, the best and the average cost, the number of nodes in the best solution (NB), the average

time to best solution (Avg.TB), i.e., the average time until the best solution is found (note the local

search heuristic typically continues after this point until it reaches its termination criterion), and the

average total time (Avg.TT) are reported (TT is the total time for one run of the local search

heuristic). In all tables, in each row the best solution is written in bold and the last two rows give

the average of each column (Avg) and the number of best solutions found by each method

(No.Best), respectively. All the computing times are expressed in seconds.

4.2. Comparison of LS1, LS2, and Current and Schilling’s Heuristic for the CSP

Since Current and Schilling (1989) introduced the CSP and proposed a heuristic for it, we

compare the performance of LS1 and LS2 against their heuristic. Recall, their algorithm was

described in Section 1. Since there are no test instances or computational experiments reported in

Current and Schilling’s paper, we coded their algorithm to compare the performance of the

heuristics. For Current and Schilling’s method, we used CPLEX 11 (2007) to generate all optimal

solutions of the SCP, and since solving the TSP to optimality is computationally quite expensive on

these instances, we use the Lin-Kernighan Procedure to find a TSP tour for each solution.

Sometimes, finding all the optimal solutions of an SCP instance is quite time consuming, so we

only consider those optimal solutions for the SCP that CPLEX can find in less than 10 minutes of

running time.

Table 3 reports the results obtained by LS1, LS2, and our implementation of Current and

Schilling’s method. In this table, the number of optimal solutions (NO) of the set covering problem

is given. In Table 3, instances for which all the optimal solutions to the set covering problem cannot

be obtained within the given time threshold are shown with an asterisk. As can be seen in Table 3

for the CSP, both LS1 and LS2 can obtain, in a few seconds, better solutions than Current and

Schilling’s method. In every case but one (where there is a tie), LS1 and LS2 outperform Current

and Schilling’s method, while they are several orders of magnitude faster than Current and

Schilling’s method. Between LS1 and LS2, LS2 outperforms LS1 as it obtains the best solution in

 16

all 48 instances, while LS1 only obtains the best solution in 39 out of the 48 instances. We applied

the Wilcoxon signed rank test (Wilcoxon, 1945), a well-known nonparametric statistical test to

perform a pairwise comparison of the heuristics. In each comparison, the null hypothesis is that the

two heuristics being compared are equivalent in performance (with the alternate hypothesis that one

of them is superior). Based on this analysis we found that LS1 outperforms Current and Schilling’s

heuristic at a significance level of α<0.0001 (in other words, we can reject the null hypothesis that

the performance of LS1 and Current and Schilling’s heuristic are equivalent at a significance level

of α<0.0001 and accept the alternate hypothesis that LS1 outperforms Current and Schilling’s

heuristic). We also found that LS2 outperforms Current and Schilling’s heuristic at a significance

level of α<0.0001. When we compared LS2 and LS1, we found that LS2 outperforms LS1 at a

significance level of α=0.002.

From Table 3 we can make the following observation. Sometimes by selecting a larger

number of nodes to visit, we are able to find a shorter tour length, so the optimal solution of the Set

Figure 1. An example of decreasing the tour length by increasing the number of nodes in Rat99 (NC=7).

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

250

 a) Number of nodes in the tour: 14, Tour length: 572 b) Number of nodes in the tour: 18, Tour length: 486

Figure 2. An example of decreasing the tour length by increasing the number of nodes in KroA200 (NC=7).

0 500 1000 1500 2000 2500 3000 3500 4000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500 4000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 a) Number of nodes in the tour: 28, Tour length: 14667 b) Number of nodes in the tour: 34, Tour length: 13285

 17

Covering Problem is not necessary a good solution for the Covering Salesman Problem. This is

contrary to the intuition at the heart of Current and Schilling’s method. Figures 1 and 2 illustrate

two examples of CSP (Rat99 and KroA200) in which, by increasing the number of nodes in the

tour, the tour length is decreased.

4.3. Comparison of LS1 and LS2 on GCSP Variants

In Table 4 the results of the two local search heuristics on the binary GCSP are given. As

can be seen in this table, for the binary GCSP, the two local search heuristics are very competitive

with each other. On average, LS1 is a bit faster than LS2. In terms of the average cost, the number

of best solutions found, and average time, LS1 is slightly better than LS2. However, LS2 is faster in

terms of the average time to best solution. Over the 48 instances, the two heuristics were tied in 21

instances. In 14 instances, LS1 is strictly better than LS2, and, in 13 instances, LS2 is strictly better

than LS1. When we compared LS1 and LS2 using the Wilcoxon signed-rank test, we found that the

difference between the two was not statistically significant. (Here α=0.1469, and we used a 5%

significance level for the hypothesis tests. In other words we reject the null hypothesis that the

performance of the heuristics is equal only if α<0.05).

Table 5 provides a comparison of LS1 and LS2 on the integer GCSP without overnights.

Here, the table contains one additional column reporting the number of times a solution revisits

cities (NR). Here, over 48 test instances, LS1 is strictly better than LS2 in 15 instances, LS2 is

strictly better than LS1 in 8 instances, while they are tied in 25 instances. Again, the running times

of both LS1 and LS2 are generally small, taking no more than 32 seconds, even for the largest

instances. When we compared LS1 and LS2 using the Wilcoxon signed rank test, we found that the

difference between the two was not statistically significant (here α=0.1264).

Table 6 compares LS1 and LS2 on integer GCSP with overnights. Here, the table contains

one additional column reporting the number of times a solution stays overnight at a node (ON).

Over 48 test instances, LS1 is strictly better than LS2 in 9 instances, LS2 is strictly better than LS1

in 26 instances, and they are tied in 13 instances. However, the running time of LS1 increases

significantly with instance size compared to LS2. This increase in running time appears to be due to

a significant increase in the number of times LS1 calls the Lin-Kernighan Procedure. Overall, LS2

appears to be a better choice than LS1 for the integer GCSP with overnights. When we compared

LS1 and LS2 using the Wilcoxon signed rank test, we found that LS2 outperforms LS1 at a

significance level of α=0.0027.

Notice that a solution to the binary GCSP is a feasible solution to the integer GCSP without

overnights, and a feasible solution to the integer GCSP without overnights is a feasible solution for

 18

the integer GCSP with overnights. Hence, we should expect that the average cost of the solutions

found should go down as we move from Table 4 to Table 6. This is confirmed in our experiments.

4.4. GCSP with Steiner Nodes

In our earlier test instances, every node had a demand. We now construct some Steiner

instances, i.e., ones where some nodes have ik set to zero (the rest of the demands remain

unchanged). In these cases, a tour could contain some “Steiner nodes” (i.e., nodes without any

demand) that can help satisfy the coverage demand of the surrounding (or nearby) nodes. On the

other hand, if fewer nodes have demands then it is likely that fewer nodes need to be visited (in

particular, the earlier solutions obtained are feasible for the Steiner versions), and, thus, we would

expect the cost of the solutions to the GCSP with Steiner nodes to be lower compared to the

instances of the GCSP without Steiner nodes. Table 7 confirms this observation. Here, we compare

LS1 and LS2 on the CSP with Steiner nodes. For each CSP instance (in Table 3) we select 10

percent of the nodes randomly and set their corresponding demands to zero. The behavior of LS1

and LS2 is similar to that of the earlier CSP instances. Specifically, over the 48 test instances, LS2

obtains the best solution in all 48 instances while LS1 only obtains the best solution in 40 out of 48

instances. Although LS2 outperforms LS1 in terms of finding better solutions, overall, LS1 runs

faster than LS2. When we compared LS1 and LS2 using the Wilcoxon signed rank test, we found

that LS2 outperforms LS1 at a significance level of α=0.0039. For brevity, we have limited the

Steiner nodes comparison to the CSP.

4.5. Large-Scale Instances

Tables 8, 9, and 10 report on our experience with the second dataset consisting of the large

scale instances with varying node-visiting costs. As the results show, LS2 significantly outperforms

LS1. In particular for the binary GCSP, LS2 is strictly better than LS1 in 43 out of 45 instances,

while LS1 is strictly better than LS2 in 2 out of 45 instances. The Wilcoxon signed rank test

indicates that LS2 outperforms LS1 at a significance level of α<0.0001. In terms of average running

time, LS2 is an order of magnitude (about 10 times) faster than LS1. For the GCSP without

overnights, LS2 is strictly better than LS1 in 44 out of 45 instances, while LS1 is strictly better than

LS2 in 1 out of 45 instances. The Wilcoxon signed rank test indicates that LS2 outperforms LS1 at

a significance level of α<0.0001. Again, in terms of running time, LS2 is an order of magnitude

faster than LS1. Even in the largest instances, LS2 takes no more than 4 minutes, while LS1 can

take over 20 minutes to run. For the GCSP with overnights, LS2 is strictly better than LS1 in 44

out of 45 instances, while LS1 is strictly better than LS2 in 1 out of 45 instances. The Wilcoxon

 19

signed rank test indicates that LS2 outperforms LS1 at a significance level of α<0.0001. Again, in

terms of running time, LS2 is much faster than LS1, taking only about 3 minutes even for the

largest 1000 node instance.

Taken together with the results on the first dataset, overall, LS2 seems to be a better choice

than LS1. On the first dataset it outperforms LS1 (in a statistically significant sense) on the CSP, the

Steiner CSP, and the integer GCSP with overnights. While the difference between LS1 and LS2 for

the binary GCSP and the integer GCSP without overnights on the first dataset is not statistically

significant. However, the results on the larger instances in the second dataset clearly show the

superiority of LS2 over LS1 in terms of performance on all three problems, as well as its robustness

in terms of running time.

4.6. Analyzing the Quality of LS2 on the Generalized TSP

Since we do not have lower bounds or optimal solutions for the CSP and GCSP instances, it

is hard to assess the quality of the solutions. Noting that the generalized TSP (GTSP) is a special

case of the CSP (we explain how momentarily), we use some well-studied GTSP instances in the

literature (see Fischetti et al., 1997) and compare LS2 with eight different heuristics designed

specifically for the GTSP; as well as to the optimal solutions on these instances obtained by

Fischetti et al. (1997) using a branch-and-cut method. In the GTSP, the set of nodes in the graph are

clustered into disjoint sets and the goal is to find the minimum length tour over a subset of nodes so

that at least one node from each cluster is visited by the tour. This can be formulated as a CSP,

where each node has unit demand (i.e., ik =1 for each node i) and each node in a cluster covers

every other node in a cluster (and no other nodes).

We executed LS2 on the benchmark GTSP dataset (see Fischetti et al., 1997) by first tuning

its parameters. The tuned parameters of LS2 are configured as follows: J=300, K=10, T=10, and

max_iter = 50 and 10 independent runs of LS2 were performed. We compared LS2 to eight other

heuristics in the literature that are listed below.

1. MSA: A Multi-Start Heuristic by Cacchiani et al. 2011,

2. mrOX: a Genetic Algorithm by Silberholz and Golden 2007,

3. RACS: a Reinforcing Ant Colony System by Pintea et al. 2007,

4. GA: a Genetic Algorithm by Snyder and Daskin 2006,

5. 3GI : a composite algorithm by Renaud and Boctor 1998,

6. NN: a Nearest Neighbor approach by Noon 1988,

7. FST-Lagr and FST-root: Two heuristics by Fischetti et al. 1997.

 20

In order to perform a fair comparison on the running times of the different heuristics, we

scaled the running times for the different computers as indicated in Dongarra (2004). The computer

factors are shown in Table 11. The columns indicate the computer used, solution method used,

Mflops of the computer, and r the scaling factor. Thus the reported running times in the different

papers are appropriately multiplied by the scaling factor r. We note that an identical approach was

taken in Cacchiani et al. (2011) to compare across these heuristics for the GTSP. Since no computer

information is available for the RACS heuristic, we use a scaling factor of 1.

Table 12 reports on the comparison. For each instance, we report the percentage gap with

respect to the optimal solution value and the computing time (expressed in seconds and scaled

according to the computer factors given in Table 11) for all the methods except for B&C (for which

we report only the computing time). Some of the methods (RACS, 3GI , and NN) only reported

solutions for 36 of the 41 instances. Consequently, in the last four rows of Table 12, we report for

each algorithm, the average percentage gap and the average running time on the 36 instances tested

by all the methods, as well as over all 41 instances (for all methods except RACS, 3GI , and NN).

We also summarize the number of times the optimum solution was found by a method. As Table 12

indicates, although LS2 was not explicitly developed for the GTSP (but rather for a generalization

of it), it performs quite well. On average, it takes 2.2 seconds, and finds solutions that are 0.08%

from optimality, and it found optimal solutions in 30 out of 41 benchmark GTSP instances.

5. Summary and Conclusions

In this paper, we considered the CSP, and introduced a generalization quite different from

earlier generalizations of the CSP in the literature. Specifically, in our generalization, nodes must be

covered multiple times (i.e., we introduce a notion of coverage demand of a node). This may

require a tour to visit a node multiple times (which is not the case in earlier generalizations), and

there are also node-visiting costs. We discussed three variants of the GCSP. The binary GCSP

where revisiting a node is not permitted, the integer GCSP without overnights where revisiting a

node is permitted only after another node is visited, and the integer GCSP with overnights where

revisiting a node is permitted without any restrictions. We designed two local search heuristics, LS1

and LS2, for these variants. In a certain sense, LS1 is a very large-scale neighborhood search

(VLNS) algorithm (because it relies heavily on the Lin-Kernighan procedure and a neighborhood

whose size is variable and large), and LS2 is like an iterated local search (ILS) algorithm (because it

applies an improvement and perturbation procedure iteratively and the sophisticated Lin-Kernighan

procedure is applied infrequently). Nevertheless, the Lin-Kernighan procedure plays a significant

role in the performance of both algorithms. Indeed, if the Lin-Kernighan procedure were replaced

 21

by the 2-OPT procedure in the algorithms, the performance of the heuristics is significantly worse.

Overall, LS2 appears to be superior in terms of its running time as well as its performance with

respect to the number of times it found the best solutions for the different variants. When LS2 is

compared to 8 benchmark heuristics for the GTSP (that were specifically designed for the GTSP),

LS2 performs quite well, finding high-quality solutions rapidly.

We introduced two integer programming models for the binary and integer GCSP,

respectively. However, both these models require considerable strengthening and embedding in a

branch-and-cut framework in order to obtain exact solutions to the GCSP. This is a natural direction

for future research on the GCSP (as it will provide an even better assessment of the quality of

heuristics for the GCSP), and we hope researchers will take up this challenge.

Some natural generalizations of the GCSP (along the lines of the earlier generalizations of

the CSP) may also be considered in future research. The earlier generalizations of the CSP (see

Vogt et al., 2007) included constraints in terms of (i) requiring some nodes to be on the tour,

(ii) requiring some nodes not to be on the tour, (iii) allowing a node not to be covered at a cost (for

our GCSP that would mean the covering demand of a node could be partially covered at a cost), and

(iv) including a cost for allocating nodes not on the tour to the tour. These would be natural

generalizations of this multi-unit coverage demand variant of the CSP that we have introduced.

References

Arkin E.M. and Hassin R. 1994. Approximation Algorithms for the Geometric Covering Salesman Problem,
Discrete Applied Mathematics 55(3), 197-218.

Balas E. and Ho A. 1980. Set Covering Algorithms Using Cutting Planes, Heuristics, and Subgradient
Optimization: A Computational Study. Math. Programming, 12, 37-60.

Cacchiani V., Fernandes Muritiba A.E., Negreiros M., and Toth P. 2011. A Multi-Start Heuristic For the
Equality Generalized Traveling Salesman Problem, Networks, to appear.

Chisman, J. A. 1975. The Clustered Traveling Salesman Problem, Computers and Operations Research,
2(2), 115-119.

Current J.R. 1981. Multi-objective design of Transportation Networks, Ph.D thesis, Department of
Geography and Environmental Engineering. The Johns Hopkins University, Baltimore.

Current J.R., and Schilling D.A. 1989. The Covering Salesman Problem. Transportation Science, 23(3), 208-
213.

Dantzig G.B., Fulkerson R., and Johnson S.M. 1954. Solution of a Large Scale Traveling Salesman
Problem. Operations Research, 2(4), 393-410.

Dongarra J.J. 2004, Performance of various computers using standard linear equations software, Technical
Report CS-89-85, Computer Science department, University of Tennessee.

 22

Feillet D., Dejax P., and Gendreau M. 2005. Traveling Salesman Problems with Profits. Transportation
Science, 39(2), 188-205.

Fischetti M., and Toth P. 1988. An Additive Approach for the Optimal Solution of the Prize-Collecting
Traveling Salesman Problem. In Vehicle Routing: Methods and Studies. Golden B. L. and Assad A. A.
(eds.). North-Holland, Amsterdam, 319-343.

Fischetti M., Salazar-Gonzalez J.J., and Toth P. 1997. A Branch and Cut Algorithm for the Symmetric
Generalized Traveling Salesman Problem. Operations Research, 45(3), 378-394.

Gendreau M., Hertz A., and Laporte G. 1992. New Insertion and Postoptimization Procedures for the
Traveling Salesman Problem. Operations Research, 40(6), 1086-1094.

Gendreau M., Laporte G., and Semet F. 1997. The Covering Tour Problem. Operations Research, 45(4),
568-576.

Gutin G. Punnen A.P. (Eds.). 2002. The Traveling Salesman Problem and Its Variations. Kluwer Academic
publishers, Netherlands.

Helsgaun K. 2000. An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic.
European Journal of Operational Research, 126 (1), 106-130.

ILOG Cplex 11.0, 2007. User’s Manual and Reference Manual, ILOG, S.A., http://www.ilog.com.

Laporte G., and Martello S. 1990. The Selective Traveling Salesman Problem. Discrete Applied.
Mathematics, 26, 193-207.

Lin S., and Kernighan B.W. 1973. An Effective Heuristic Algorithm for the Traveling Salesman Problem.
Operations Research, 21(2), 498-516.

Mennell W. 2009. Heuristics for solving three routing problems: Close enough traveling salesman problem,
close-enough vehicle routing problem, sequence-dependent team orienteering problem. Ph.D thesis,
University of Maryland, College Park.

Noon C. E. 1988. The generalized traveling salesman problem, Ph.D. thesis, University of Michigan.

Pintea C.M., Pop P.C., and Chira C. 2007. The Generalized Traveling Salesman Problem Solved with Ant
Algorithms, Journal of Universal Computer Science, 13(7), 1065-1075.

Reinelt G. 1991. A Traveling Salesman Problem Library. ORSA Journal on Computing, 3(4), 376-384.

Renaud J., and Boctor F.F. 1998. An efficient composite heuristic for the symmetric generalized traveling
salesman problem, European Journal of Operational Research, 108(3), 571-584.

Silberholz J. and Golden B. 2007. The Generalized Traveling Salesman Problem: a new Genetic Algorithm
approach, in Baker E.K., Joseph A., Mehrotra A., and Trick M.A.(eds.) Extending the Horizons:
Advances in Computing, Optimization Decision Technologies, Springer, 165-181.

Snyder L.V., and Daskin M.S. 2006. A random-key genetic algorithm for the generalized traveling salesman
problem, European Journal of Operational Research, 174(1), 38-53.

Vogt L., Poojari CA. and Beasley JE. 2007. A Tabu Search algorithm for the Single Vehicle Routing
Allocation Problem, Journal of Operational Research Society, 58(4), 467-480.

Wilcoxon, F. 1945. Individual comparisons by ranking methods, Biometrics, 1(6), 80–83.

 23

Table 3. Comparison of Current and Schilling’s method with LS1 and LS2 for CSP

Instance NC

Current and Schilling LS1 LS2

NO Cost NB TB TT
Best Avg.

NB
Avg. Avg. Best Avg.

NB
Avg. Avg.

Cost Cost TB TT Cost Cost TB TT

Eil 51

7 13 194 7 0.07 0.21 164 164.0 10 0.05 0.73 164 164.0 10 0.04 1.05

9 309 169 6 1.92 1.97 159 159.0 8 0.16 1.51 159 159.0 9 0.04 0.78

11 282 167 5 0.59 1.70 147 147.0 7 0.04 0.69 147 147.0 7 0.04 0.87

Berlin 52

7 2769 4019 8 19.39 21.04 3887 3887.0 12 0.42 0.73 3887 3887.0 11 0.42 1.05

9 11478 3430 7 26.08 94.14 3430 3430.0 7 0.03 1.32 3430 3430.0 7 0.04 0.95

11 11 3742 5 0.22 0.26 3262 3262.0 6 0.02 0.74 3262 3262.0 6 0.04 0.55

St 70

7 32832 297 10 232.24 454.07 288 288.0 11 0.08 0.87 288 288.0 11 0.06 1.48

9 18587 271 9 173.87 176.00 259 259.0 10 0.03 1.45 259 259.0 10 0.06 1.65

11 1736 269 7 13.21 13.74 247 247.0 10 0.12 0.83 247 247.0 10 0.05 1.37

Eil 76

7 241 241 11 1.15 2.46 207 207.0 17 0.12 0.70 207 207.0 15 0.27 1.35

9 1439 193 9 7.43 13.95 186 186.0 11 0.37 1.59 185 185.0 12 0.06 1.43

11 7050 180 8 30.48 78.88 170 170.0 12 0.24 0.78 170 170.0 11 0.06 1.50

Pr 76

7 26710 53255 11 54.20 170.41 50275 50275.0 15 0.15 0.85 50275 50275.0 14 0.10 1.89

9 326703* 45792 10 6743.66 9837.36 45348 45389.6 13 0.57 2.45 45348 45462.2 12 0.06 1.50

11 20 45955 7 0.11 0.20 43028 43028.0 11 0.29 0.69 43028 43028.0 10 0.13 1.39

Rat 99

7 3968 572 14 22.74 32.75 486 486.0 19 0.20 0.98 486 486.0 18 0.11 2.45

9 170366 462 12 1749.66 2729.67 455 455.0 15 0.65 2.47 455 455.0 15 0.15 2.45

11 16301 456 10 88.87 140.18 444 444.0 14 0.49 0.95 444 444.0 13 0.09 2.26

KroA
100

7 208101* 10306 15 6303.03 6475.95 9674 9674.0 19 0.52 1.06 9674 9674.0 19 0.36 2.78

9 95770 9573 12 524.49 1365.42 9159 9159.2 16 0.83 1.98 9159 9159.0 15 0.17 2.30

11 33444 9460 10 409.47 433.97 8901 8901.0 13 0.37 0.95 8901 8901.0 13 0.09 2.05

KroB 100

7 4068 11123 14 45.62 48.35 9537 9537.6 22 0.65 0.85 9537 9537.0 20 0.71 2.53

9 133396 9505 12 2112.57 2623.79 9240 9240.0 16 0.98 1.55 9240 9240.0 15 0.11 2.62

11 90000* 9049 10 1056.27 2895.35 8842 8842.0 15 0.26 0.88 8842 8842.0 13 0.10 2.48

KroC 100

7 129545* 10367 15 3391.82 4212.98 9723 9723.0 17 0.38 0.99 9723 9723.0 17 0.26 2.55

9 5028 9952 12 35.91 52.25 9171 9171.0 13 0.21 1.56 9171 9171.0 13 0.10 2.42

11 75987* 9150 10 1389.84 2482.00 8632 8632.0 13 0.26 0.92 8632 8632.0 13 0.10 2.44

KroD
100

7 1392 11085 14 10.29 15.58 9626 9629.0 20 0.56 0.96 9626 9626.0 20 0.19 2.36

9 700 10564 11 6.18 7.74 8885 8885.0 13 0.65 1.69 8885 8885.0 13 0.11 2.73

11 85147* 9175 10 968.39 2761.51 8725 8725.0 13 0.24 0.88 8725 8725.0 13 0.11 2.54

KroE 100

7 92414* 11323 15 1971.32 3075.58 10150 10154.8 19 0.17 1.00 10150 10150.0 19 0.13 2.16

9 85305* 9095 12 1918.72 2764.70 8992 8995.2 14 0.26 1.57 8991 8991.0 14 0.11 2.39

11 70807* 8936 10 609.81 2335.43 8450 8450.0 14 0.37 0.88 8450 8450.0 13 0.12 2.64

Rd 100

7 2520 4105 14 24.43 4196.23 3461 3463.0 18 0.16 1.00 3461 3485.6 18 0.66 2.30

9 95242* 3414 12 1798.14 3118.93 3194 3195.4 21 0.93 1.66 3194 3194.0 16 0.13 2.31

11 1291 3453 10 8.60 22.11 2922 2922.0 13 0.03 0.88 2922 2922.0 13 0.09 1.97

KroA150

7 97785* 12367 22 2252.50 3499.43 11426 11517.4 27 0.98 1.62 11423 11800.2 28 1.24 4.10

9 69377* 11955 17 2454.99 2477.69 10072 10072.0 23 0.56 1.92 10056 10062.4 26 1.35 3.53

11 169846* 10564 15 5483.07 5518.26 9439 9440.6 21 0.32 1.20 9439 9439.0 21 0.61 3.46

KroB 150

7 14400 12876 21 196.85 270.94 11493 11577.6 30 1.31 1.60 11457 11491.2 30 1.55 4.30

9 137763* 11774 18 2760.03 4572.81 10121 10130.0 24 0.95 2.12 10121 10121.0 24 0.40 3.50

11 1431 10968 14 26.64 46.96 9611 9648.6 22 0.81 1.23 9611 9611.0 21 0.15 3.69

KroA
200

7 53686* 14667 28 537.60 1170.37 13293 13327.5 34 1.42 2.67 13285 13666.4 35 0.43 5.64

9 64763* 12683 23 1504.07 1628.36 11726 11726.2 28 2.49 3.88 11708 11716.8 28 2.11 5.12

11 29668* 12736 19 398.25 671.55 10837 10837.0 28 1.15 1.78 10748 10848.6 29 1.43 4.61

KroB 200

7 107208* 14952 29 365.08 3351.89 13101 13197.6 36 1.52 2.67 13100 13511.6 36 0.10 5.42

9 38218* 13679 23 637.66 805.04 11900 11864.2 29 0.04 0.15 11900 11964.8 31 0.80 5.11

11 67896* 12265 20 493.64 1410.60 10676 10678.4 29 0.96 1.83 10676 10809.6 30 1.02 5.01

Avg 55896 9808.02 13 1017.94 1626.68 9029.6 9037.5 17 0.51 1.34 9026.0 9060.5 17 0.35 2.56

No.Best 1 39 48

 24

Table 4. Comparison of LS1 and LS2 on Binary GCSP

Instance NC
LS1 LS2

Best Avg.
NB

Avg. Avg. Best Avg.
NB

Avg. Avg.
Cost Cost TB TT Cost Cost TB TT

Eil 51
7 1190 1210.4 19 0.32 1.28 1190 1190.0 19 0.29 1.59
9 991 991.8 15 0.97 1.58 991 999.6 15 0.35 1.57

11 844 845.2 13 0.23 1.04 844 853.6 13 0.20 1.55

Berlin 52
7 5429 5429.0 17 0.37 1.24 5429 5619.8 17 0.26 1.57
9 4807 4807.0 14 0.19 1.04 4807 4807.0 14 0.06 1.53

11 4590 4590.0 13 0.24 1.05 4590 4590.0 13 0.09 1.31

St 70
7 1831 1831.0 29 0.78 2.13 1837 1837.6 29 0.58 1.97
9 1461 1461.0 22 0.17 1.59 1460 1466.4 22 0.19 2.05

11 1268 1268.0 19 0.71 1.35 1268 1273.2 19 0.14 2.00

Eil 76
7 1610 1612.6 26 0.95 1.91 1651 1652.6 27 0.63 2.25
9 1278 1294.6 20 0.90 1.58 1297 1302.8 21 1.05 2.46

11 1117 1117.0 18 0.12 2.21 1117 1122.6 18 0.56 2.13

Pr 76
7 66455 66616.6 29 1.19 1.79 66455 66455.0 29 0.29 2.39
9 62494 62524.0 25 0.87 1.59 62907 63155.8 25 0.27 2.36

11 52175 52175.0 19 0.59 1.33 52175 52303.6 19 0.19 1.97

Rat 99
7 2341 2345.8 34 1.93 2.51 2341 2345.2 34 0.99 4.36
9 1938 1942.6 27 1.36 2.21 1934 1950.4 27 1.08 3.50

11 1712 1713.2 24 0.82 2.64 1683 1709.2 23 0.69 3.52

KroA
100

7 14660 14660.0 41 1.68 2.89 14660 14790.4 41 0.87 5.25
9 12974 12974.0 33 0.49 2.00 12974 12974.0 33 0.32 0.16

11 11942 11950.8 29 1.91 2.32 11942 12118.6 29 0.39 3.46

KroB
100

7 14390 14469.8 42 1.65 2.83 14323 14511.0 44 1.84 5.32
9 12223 12223.0 34 0.62 2.11 12222 12225.0 33 0.73 3.43

11 11276 11277.2 28 0.92 2.10 11276 11276.0 28 1.04 3.50

KroC
100

7 13830 13831.4 41 0.78 2.85 13830 13830.0 41 0.57 5.30
9 12149 12154.0 33 0.76 1.85 12149 12197.2 33 0.45 3.26

11 11032 11032.0 26 0.10 2.02 11032 11032.0 26 0.39 3.09

KroD
100

7 13567 13584.8 38 1.92 2.75 13567 13917.0 38 1.52 5.31
9 12413 12414.0 32 0.84 2.24 12409 12437.4 31 0.65 3.62

11 11486 11491.0 28 1.50 1.90 11443 11483.8 29 0.33 3.63

KroE
100

7 15321 15333.0 41 1.96 3.04 15357 15426.6 40 0.50 3.20
9 12482 12482.0 32 0.84 4.64 12482 12482.0 32 0.36 3.33

11 11429 11461.4 29 0.63 1.81 11487 11487.0 29 0.85 3.69

Rd 100
7 6174 6188.6 37 2.08 2.77 6209 6243.0 38 0.78 3.47
9 5469 5498.2 29 1.55 5.03 5454 5596.8 29 0.58 3.42

11 4910 4940.6 28 0.77 1.84 4910 4914.8 28 0.58 3.29

KroA150
7 17214 17221.0 56 2.68 6.15 17258 17338.6 55 1.98 5.62
9 15030 15067.4 46 3.32 9.95 15007 15280.6 46 1.49 6.09

11 13666 13666.0 40 2.85 3.67 13743 13987.8 40 1.68 5.48

KroB
150

7 17712 17778.8 59 6.05 6.44 17700 18017.8 60 2.59 5.47
9 15472 15532.0 50 3.63 9.55 15505 15940.2 50 1.29 5.85

11 13719 13727.2 44 2.41 4.81 13738 13825.0 41 1.72 6.02

KroA
200

7 21410 21476.0 78 8.95 13.88 21433 21493.6 79 2.87 7.60
9 17912 18004.2 57 7.44 0.26 18131 18292.4 60 1.92 7.69

11 16478 16565.6 58 6.68 8.73 16556 16729.6 55 2.77 7.18

KroB
200

7 20864 20973.6 79 7.01 15.89 20769 20973.0 79 1.64 7.80
9 18284 18361.0 66 7.10 0.27 18249 18580.6 67 1.65 7.75

11 16078 16108.0 55 6.83 7.29 16024 16152.0 55 4.42 6.84
Avg 13022.9 13046.3 35 2.06 3.42 13037.8 13128.9 35 0.97 3.86

No.Best 35 34

 25

Table 5. Comparison of LS1 and LS2 on Integer GCSP without overnights

Instance NC
LS1 LS2

Best Avg.
NB NR

Avg. Avg. Best Avg.
NB NR

Avg. Avg.
Cost Cost TB TT Cost Cost TB TT

Eil 51
7 1185 1185.0 19 1 0.87 3.07 1185 1187.0 19 1 1.46 5.43
9 991 991.2 15 0 0.86 2.56 991 994.8 15 0 1.54 4.64
11 843 843.8 13 1 0.14 2.27 843 843.2 13 1 0.96 4.49

Berlin 52
7 5429 5429.0 17 0 0.17 2.65 5429 5603.6 17 0 0.76 4.64
9 4785 4785.0 15 1 0.45 2.70 4785 4807.6 15 1 0.09 3.99
11 4590 4599.6 13 0 0.90 2.26 4590 4599.6 13 0 0.10 3.51

St 70
7 1778 1778.0 28 3 3.36 5.05 1778 1779.6 28 3 0.34 7.13
9 1461 1461.0 22 0 1.25 4.17 1460 1464.2 22 0 0.95 6.14
11 1241 1251.8 18 1 0.55 3.27 1241 1253.8 18 1 1.16 5.58

Eil 76
7 1600 1600.6 26 1 3.46 4.73 1600 1627.4 26 1 1.72 6.49
9 1268 1274.0 20 0 2.18 3.38 1268 1285.8 20 0 2.80 6.80
11 1117 1117.0 18 0 0.06 3.65 1117 1128.2 18 0 0.66 6.39

Pr 76
7 65721 65902.4 28 1 1.61 7.07 64111 64286.0 29 4 0.39 7.70
9 55129 57078.0 26 4 1.36 3.91 54859 55137.6 27 5 0.45 6.33
11 49559 50478.2 21 1 1.25 3.09 49445 49589.0 21 3 1.82 5.62

Rat 99
7 2311 2314.4 33 1 4.80 6.24 2311 2335.8 33 1 2.41 10.10
9 1937 1939.4 27 0 4.43 7.53 1936 1951.8 27 0 0.48 9.25
11 1683 1700.4 23 0 2.02 3.73 1686 1704.0 23 0 0.40 9.28

KroA
100

7 14660 14660.0 41 0 1.68 10.20 14660 14721.8 41 0 0.60 11.73
9 12974 12974.0 33 0 0.30 5.75 12974 12974.0 33 0 2.14 10.22
11 11737 11737.0 31 1 2.44 5.87 11737 11737.0 29 1 0.69 9.51

KroB
100

7 14203 14284.8 43 3 4.92 7.41 14209 14288.8 43 2 2.79 12.77
9 12172 12200.4 35 2 1.43 4.57 12200 12200.0 34 3 3.68 10.36
11 11268 11268.0 27 2 1.99 4.63 11268 11468.4 27 2 4.07 9.90

KroC
100

7 13525 13671.4 42 5 3.74 6.53 13830 13938.0 41 0 0.76 12.53
9 12119 12119.0 33 1 1.92 4.85 12165 12165.0 33 1 0.59 10.71
11 11032 11032.0 26 0 1.01 5.46 11032 11042.6 26 0 1.12 8.53

KroD
100

7 13501 13501.0 39 2 1.70 6.51 13501 13621.8 39 2 2.36 13.06
9 12257 12260.2 31 1 2.19 5.26 12261 12279.2 31 1 0.76 10.97
11 11450 11467.0 30 1 2.59 4.69 11409 11434.4 30 1 2.42 9.98

KroE
100

7 15308 15327.4 43 1 3.38 6.68 15357 15633.0 40 0 3.12 11.44
9 12482 12482.2 32 0 0.37 5.21 12482 12484.0 32 0 0.63 9.97
11 11367 11401.2 28 1 2.27 4.14 11344 11462.0 30 1 1.89 9.41

Rd 100
7 6078 6104.2 37 2 3.55 6.91 6147 6256.4 36 1 1.09 10.87
9 5384 5391.0 31 2 3.62 7.70 5384 5443.0 30 2 4.54 10.15
11 4853 4864.8 29 2 2.74 4.07 4853 4901.6 29 1 0.33 8.74

KroA150
7 16947 16959.0 57 4 5.71 14.94 16947 17226.8 57 4 8.54 18.99
9 15007 15025.8 46 0 5.61 11.25 15007 15080.8 46 0 2.96 18.09
11 13580 13608.8 40 2 3.77 8.75 13580 13811.0 40 2 3.88 14.99

KroB
150

7 17620 17714.8 58 1 9.08 14.94 17621 17832.0 59 1 4.36 16.85
9 15332 15332.0 49 3 7.47 11.51 15332 15493.4 48 3 6.90 16.71
11 13554 13596.8 41 2 4.30 9.04 13554 13623.6 41 2 3.48 15.38

KroA
200

7 20979 21168.8 77 3 16.19 30.16 21115 21429.6 78 4 4.17 24.25
9 17657 17901.4 62 2 12.22 21.73 17867 18291.4 63 4 9.68 22.23
11 16280 16298.0 57 3 14.08 17.98 16453 16663.4 52 2 3.49 20.15

KroB
200

7 20636 20719.2 78 3 18.88 31.28 20817 21198.2 81 3 8.01 24.12
9 18230 18324.6 66 1 17.42 23.12 18124 18251.4 66 6 7.86 22.22
11 15725 15860.6 55 3 11.14 17.32 15801 16115.0 57 5 4.67 19.74

Avg 12719.7 12812.2 35 1 4.11 8.12 12701.4 12805.1 35 2 2.50 11.21
No.Best 40 33

 26

Table 6. Comparison of LS1 and LS2 on Integer GCSP with overnights

Instance NC
LS1 LS2

Best Avg.
NB ON

Avg. Avg. Best Avg.
NB ON

Avg. Avg.
Cost Cost TB TT Cost Cost TB TT

Eil 51
7 1146 1846.0 19 10 0.39 6.84 1146 1146.0 19 10 0.53 4.05
9 958 964.4 15 5 1.25 6.16 958 973.4 15 5 1.39 4.10

11 827 827.0 13 4 2.08 5.44 827 835.0 13 4 1.41 3.86

Berlin 52
7 4966 4966.0 18 9 0.15 4.65 4966 4972.2 18 9 0.31 3.92
9 4272 4274.2 17 8 2.09 4.79 4272 4295.4 16 7 0.28 3.41

11 3962 3962.0 14 8 2.03 5.71 3962 3962.0 14 8 0.31 3.11

St 70
7 1654 1654.2 27 15 5.14 10.46 1654 1656.2 27 14 1.08 5.89
9 1417 1437.0 22 10 0.70 9.48 1416 1439.2 22 9 1.74 5.37

11 1196 1200.2 18 6 3.93 7.94 1196 1197.4 18 6 0.86 5.14

Eil 76
7 1554 1558.8 26 10 4.72 14.77 1561 1599.2 26 5 1.07 6.47
9 1284 1296.4 21 7 6.27 11.83 1284 1314.0 21 4 1.02 5.71

11 1108 1111.6 18 5 7.37 11.39 1107 1109.0 18 3 1.10 5.77

Pr 76
7 52427 53163.6 32 17 4.80 10.92 52265 53153.8 31 17 1.19 6.16
9 47092 47764.0 29 17 3.02 7.11 47234 47609.4 28 16 1.56 5.60

11 44028 44028.0 20 10 1.63 6.00 44028 44028.0 20 10 1.34 4.57

Rat 99
7 2233 2242.0 32 11 7.53 11.14 2218 2242.8 32 8 6.14 9.58
9 1895 1901.6 27 8 7.98 11.64 1922 1942.8 28 8 2.62 8.59

11 1673 1676.8 24 9 7.80 10.19 1650 1678.6 23 5 2.21 8.22

KroA
100

7 12006 12182.8 43 26 10.38 18.91 12006 12096.6 43 26 1.20 8.32
9 11653 11733.4 33 18 10.33 17.68 11185 11259.4 36 23 0.83 7.84

11 10665 10688.0 31 18 9.81 16.83 10701 10739.2 30 18 0.41 7.27

KroB
100

7 12373 12605.4 41 23 8.48 12.72 12363 12665.6 45 28 0.89 9.43
9 11157 11200.2 35 20 5.01 11.65 11128 11320.0 35 21 2.17 9.12

11 10302 10302.0 29 16 4.06 10.32 10302 10380.6 28 14 3.76 8.28

KroC
100

7 12223 12224.4 41 22 9.09 15.87 11996 12060.8 45 28 1.50 8.55
9 11116 11160.8 33 17 7.54 15.09 11084 11142.2 35 20 2.06 7.69

11 10299 10330.2 28 15 3.29 11.61 10421 10463.0 29 17 0.36 6.72

KroD
100

7 11725 11857.6 39 21 4.92 12.99 11725 11849.2 39 21 2.37 9.06
9 11039 11108.8 30 17 7.09 13.19 10787 10787.0 34 21 2.45 7.80

11 10352 10405.2 30 18 8.57 12.18 10426 10447.6 30 17 0.60 7.57

KroE
100

7 13273 13273.0 43 26 7.49 15.36 12438 12696.4 45 26 4.80 8.33
9 10821 10926.2 34 20 8.08 14.79 10821 10906.2 34 20 1.53 7.13

11 10010 10065.8 30 17 6.32 9.27 10007 10094.2 29 17 1.55 6.85

Rd 100
7 5634 5654.4 37 17 12.53 14.43 5567 5681.4 39 20 3.32 8.63
9 4950 5034.4 32 18 9.68 9.78 4974 5059.4 32 16 0.71 7.79

11 4514 4519.8 27 12 7.31 9.48 4462 4563.8 29 16 2.91 7.15

KroA150
7 15335 15381.4 57 28 19.20 25.73 14936 15293.2 60 34 4.47 14.61
9 13484 13533.4 50 27 17.08 22.29 13115 13386.0 52 30 5.21 14.17

11 12112 12300.4 41 18 10.51 17.64 12211 12384.2 44 22 2.91 11.89

KroB
150

7 15242 15747.4 59 29 21.14 27.39 15162 15353.8 62 33 6.49 14.79
9 13242 13313.8 50 38 14.18 24.48 13198 13519.4 52 30 3.07 12.71

11 12418 12418.0 43 24 15.26 20.85 12183 12379.4 46 25 5.21 11.95

KroA
200

7 17839 17994.0 77 37 40.08 54.89 17683 18222.0 80 44 8.23 19.80
9 15563 15726.6 64 34 26.26 40.67 15523 15760.6 65 36 6.99 17.32

11 14430 14667.8 57 34 20.14 33.16 14302 14518.4 59 37 6.09 15.02

KroB
200

7 18421 18488.8 80 47 55.55 68.05 17873 18117.6 84 49 4.98 19.71
9 15935 16176.8 64 36 32.55 42.62 16069 16164.2 69 37 5.11 17.49

11 14235 14323.6 54 28 22.79 31.49 14064 14455.2 58 32 6.79 15.72
Avg 11167.92 11275.38 36 19 10.49 16.83 11091.21 11227.52 37 19 2.61 8.92

No.Best 22 39

 27

Table 7. Comparison of LS1 and LS2 on Steiner CSP

Instance
LS1 LS2

Best Cost Avg. Cost NB Avg. TB Avg. TT Best Cost Avg. Cost NB Avg. TB Avg. TT

Eil 51
163 163.0 8 0.03 0.79 163 163.0 8 0.05 1.04
159 159.0 8 0.08 0.79 159 159.0 9 0.04 0.75
147 147.0 7 0.06 0.79 147 147.0 7 0.04 0.87

Berlin 52
3470 3883.2 10 0.46 0.76 3470 3470.0 10 0.13 0.97
3097 3097.4 7 0.27 0.89 3097 3097.0 7 0.04 0.80
2956 2956.0 6 0.11 1.01 2956 2956.0 6 0.04 0.79

St 70
287 287.4 12 0.14 0.96 287 287.0 12 0.07 1.31
259 259.0 10 0.01 0.89 259 259.0 9 0.06 1.60
245 245.0 12 0.70 1.56 245 245.0 10 0.05 1.23

Eil 76
207 207.0 15 0.06 0.95 207 207.0 15 0.07 1.32
185 185.4 10 0.35 1.06 185 185.0 12 0.06 1.51
169 169.0 11 0.13 0.78 169 169.0 9 0.06 1.43

Pr 76
49773 49773.0 13 0.10 0.97 49773 49773.0 13 0.15 1.86
44889 44889.0 12 0.11 1.04 44889 44889.0 12 0.09 1.65
42950 42998.8 9 0.30 0.85 42950 42950.0 9 0.06 1.34

Rat 99
482 482.0 18 0.33 1.23 482 482.0 18 0.43 2.63
454 454.0 14 0.34 1.18 454 454.0 14 0.15 2.63
444 444.6 12 0.37 1.11 444 444.0 12 0.09 2.18

KroA 100
9545 9545.0 19 0.37 1.30 9545 9545.0 18 0.52 2.71
9112 9112.0 16 0.44 1.03 9112 9112.0 15 0.12 2.30
8833 8833.0 13 0.10 1.11 8833 8833.0 13 0.09 2.01

KroB 100
9536 9536.0 21 0.79 1.21 9536 9536.0 19 0.48 2.66
9199 9230.6 17 0.51 0.95 9199 9199.0 15 0.10 2.49
8763 8763.0 11 0.11 1.14 8763 8763.0 11 0.10 2.29

KroC 100
9591 9591.0 15 0.12 1.07 9590 9590.0 16 0.18 2.68
9171 9171.0 13 0.34 1.05 9171 9171.0 13 0.19 2.35
8632 8632.0 13 0.27 1.16 8632 8632.0 13 0.12 2.48

KroD 100
9526 9526.0 19 0.31 1.35 9526 9526.0 19 0.28 2.33
8885 8885.0 16 0.30 0.98 8885 8885.0 13 0.12 2.76
8725 8725.0 13 0.26 1.12 8725 8725.0 13 0.11 2.44

KroE 100
9800 9800.0 16 0.11 1.15 9800 9800.0 16 0.12 2.32
8987 8987.0 13 0.09 0.98 8986 8986.0 14 0.10 2.35
8450 8450.0 13 0.10 1.23 8450 8450.0 13 0.11 2.54

Rd 100
3412 3412.4 18 0.28 1.25 3412 3445.6 18 0.15 2.31
3194 3194.0 17 0.32 0.93 3194 3194.0 16 0.32 2.24
2761 2761.0 12 0.04 1.20 2761 2761.0 12 0.08 1.91

KroA150
10939 10939.6 28 0.68 1.84 10939 10999.0 27 1.00 3.86
9808 9809.4 23 0.49 1.29 9808 9808.0 23 0.24 3.55
9360 9367.2 20 1.33 1.92 9360 9360.0 21 0.38 3.52

KroB 150
11260 11299.8 29 1.41 1.73 11225 11231.6 30 0.94 4.06
10121 10121.8 24 0.81 1.34 10121 10121.0 24 0.41 3.54
9542 9562.8 20 0.79 1.81 9542 9542.0 20 0.20 3.84

KroA 200
13042 13085.4 34 1.30 2.71 13041 13120.4 32 1.69 5.38
11392 11405.4 28 1.31 1.98 11392 11403.0 27 0.86 4.91
10535 10535.6 26 1.03 1.68 10528 10838.2 26 0.75 4.65

KroB 200
13022 13078.4 36 2.09 2.86 13020 13304.2 34 0.46 5.45
11713 11793.4 30 1.35 2.22 11712 11850.6 28 1.21 5.34
10619 10563.8 30 1.22 1.82 10614 10679.8 28 1.00 4.74

Avg 8912.7 8927.4 17 0.47 1.27 8911.6 8932.2 16 0.29 2.54
No.Best 40 48

 28

Table 8. Comparison of LS1 and LS2 on large binary GCSP instances with varying node costs

Instance Range
LS 1 LS2

Best
Cost

Avg.
Cost

NB
Avg.
TB

Avg.
TT

Best
Cost

Avg.
Cost

NB
Avg.
TB

Avg.
TT

A 169425 170633.6 65 11.7 17.8 169607 170402.8 64 1.7 6.0

ts225 B 81470 81674.4 66 9.3 13.5 80844 82654.0 66 2.1 6.8

C 72493 73388.8 67 9.8 13.5 72343 73266.4 70 1.4 6.6

A 3497 3508.6 76 19.4 27.2 3456 3467.8 78 3.8 8.6

a280 B 1519 1538.0 79 12.2 22.9 1505 1533.6 81 5.8 9.1

C 1237 1251.6 83 17.4 22.9 1225 1247.8 84 3.2 8.5

A 69521 69870.6 85 25.4 28.7 68958 69190.4 84 5.6 9.2

pr299 B 29871 30193.6 85 19.1 26.4 29855 30216.6 82 4.0 9.7

C 25100 25313.2 85 19.7 26.5 25010 25340.6 87 5.3 9.4

A 68151 68465.8 90 20.0 36.7 67288 67962.2 89 2.6 9.5

lin318 B 27839 27885.4 90 19.1 32.2 27965 28214.8 93 4.3 9.6

C 22600 22790.4 95 24.6 31.5 22527 22786.6 96 3.6 9.8

A 232359 233265.0 124 58.7 87.0 228721 229267.4 127 7.3 15.3

pr439 B 82288 82658.6 128 41.9 83.5 81039 81303.4 128 6.9 15.0

C 62084 62604.8 134 59.7 83.0 61908 62719.0 133 10.1 15.2

A 170276 172554.8 142 86.1 150.9 169357 169963.0 143 8.0 19.0

att532 B 57937 58263.4 147 110.8 142.5 56956 57560.4 145 16.3 19.8

C 43237 43709.6 150 106.0 149.0 43124 43582.4 149 9.5 20.5

A 4703 4754.8 145 92.6 164.0 4684 4694.0 145 10.5 20.3

ali535 B 1546 1551.0 145 113.7 148.7 1522 1528.6 145 9.3 18.6

C 1084 1136.4 152 112.8 149.0 1082 1094.8 158 10.4 17.8

A 84623 85052.2 168 124.8 210.5 83652 83767.2 168 12.1 23.0

u574 B 27148 27224.0 171 108.6 190.2 26792 26852.6 176 14.0 23.0

C 19448 19718.2 171 159.8 189.4 19227 19379.2 177 16.7 23.0

A 13016 13115.4 161 136.0 210.4 12887 12946.0 164 12.5 22.9

rat575 B 4139 4198.2 159 142.7 189.1 4119 4152.6 158 16.7 21.8

C 2953 3015.4 162 175.7 185.0 2935 3015.6 175 17.4 22.1

A 114755 115350.0 180 174.2 306.9 113355 113694.0 182 21.3 30.8

p654 B 34146 34212.0 184 171.3 286.9 33723 33795.8 182 17.0 27.8

C 25141 25184.8 193 129.7 282.3 24858 25170.8 195 14.4 25.5

A 125916 127438.6 184 154.8 297.9 125211 125343.8 184 13.4 27.5

d657 B 37816 38356.8 181 90.9 277.7 37434 37926.6 184 19.7 26.9

C 26378 26771.8 195 217.8 273.1 26209 26644.2 188 19.7 27.6

A 8338 8482.8 187 199.5 317.9 8324 8339.0 186 13.1 28.1

gr666 B 2527 2537.8 187 273.3 314.9 2492 2495.6 189 20.3 25.0

C 1679 1691.8 194 264.2 289.7 1653 1675.4 199 14.9 25.5

A 101048 102655.0 197 92.3 397.2 100284 100547.0 202 12.5 30.8

u724 B 29358 29534.0 196 119.0 384.2 29099 29310.8 198 20.3 30.2

C 20203 20788.2 197 299.9 362.0 20163 20558.4 210 14.7 31.0

A 21450 21699.6 211 398.5 518.5 21272 21307.6 213 15.6 35.2

rat783 B 6085 6127.0 213 401.5 504.1 6034 6051.0 216 26.6 33.5

C 4109 4160.6 218 320.0 479.9 4054 4089.4 229 20.2 33.4

A 68089542 68442158.0 280 580.1 693.3 67653673 67769758.6 283 49.6 72.8

dsj1000 B 16728234 16954235.0 281 500.1 680.2 16525509 16629826.4 285 45.8 56.1

C 10384875 10518746.0 292 413.5 605.5 10265949 10376224.8 295 47.5 57.5

Avg. 2158692.5 2174877.0 155 147.5 220.1 2141508.5 2149130.4 157 13.95 22.78

No. Best 2 43

 29

Table 9: Comparison of LS1 and LS2 on large GCSP without overnight instances with varying node costs

Instance Range

LS1 LS2

Best
Cost

Avg.
Cost

NB NR
Avg.
TB

Avg.
TT

Best
Cost

Avg.
Cost

NB NR
Avg.
TB

Avg.
TT

A 170859 171026.8 64 4 15.0 27.8 169887 170929.8 64 4 7.8 17.7

ts225 B 83290 83457.4 66 0 11.4 25.4 83016 84221.8 64 2 8.6 18.2

C 72322 73054.4 67 0 15.0 25.6 72242 74070.0 68 1 19.8 19.4

A 3532 3561.6 77 4 33.5 45.6 3497 3525.0 79 5 7.8 24.1

a280 B 1541 1567 78 0 27.2 41.1 1533 1552.2 78 1 16.2 25.4

C 1242 1266.2 84 0 34.2 42.2 1225 1274.8 89 1 20.4 24.0

A 69803 70228.4 83 4 38.2 51.5 69084 69451.2 36 7 5.6 24.0

pr299 B 30541 30714 83 1 27.1 46.9 29975 30442.0 85 1 6.7 26.3

C 25320 25545.4 83 0 33.1 46.1 25211 25471.4 87 1 11.0 27.4

A 64081 64541 92 12 54.6 72.5 63820 64043.4 93 12 10.4 27.4

lin318 B 27315 27499.6 92 5 33.1 56.5 27109 27449.2 98 14 12.6 26.9

C 22481 22637.6 98 5 48.1 56.0 22303 22441.8 99 9 19.5 28.2

A 216792 217664.41 128 18 125.3 171.1 215284 215969.2 130 23 24.6 41.6

pr439 B 79204 80295.4 129 5 112.3 159.1 78779 79161.8 129 11 23.0 40.4

C 61520 62296.6 128 2 122.0 156.3 60607 61076.4 134 5 22.6 43.1

A 169494 170010.41 142 18 221.3 303.1 166189 166651.2 144 12 25.3 53.8

att532 B 57427 57859.2 144 3 223.5 278.4 57411 57996.2 148 4 41.2 50.6

C 42995 43717.8 146 3 218.2 282.5 42551 43167.2 156 6 26.5 53.0

A 4432 4456.6 144 24 248.4 319.1 4396 4431.0 147 30 76.0 76.0

ali535 B 1527 1534.4 142 4 252.2 279.5 1503 1516.6 148 10 12.2 46.2

C 1094 1107.6 153 10 202.6 261.2 1070 1084.6 204 35 39.8 50.1

A 81485 82068.6 170 22 434.0 455.4 80016 80217.4 174 33 16.3 59.8

u574 B 26466 26618 169 8 329.5 398.8 26305 26461.4 177 9 40.0 60.7

C 18885 19537.8 175 5 254.9 393.7 18794 19002.8 183 13 61.1 63.0

A 12683 12735 160 16 360.4 437.0 12330 12365.8 164 24 40.1 56.2

rat575 B 4109 4145.2 162 3 352.9 391.4 4086 4119.0 162 2 35.3 55.5

C 2993 3026.8 164 0 265.9 395.0 2927 2966.4 169 1 44.0 55.5

A 110156 110240.8 187 31 715.4 888.4 107189 107689.4 187 43 98.6 104.9

p654 B 33702 33942.2 179 9 466.6 631.7 33663 33861.0 187 12 54.8 72.8

C 24260 24629.2 194 6 517.2 646.7 24680 24780.8 199 2 58.7 69.8

A 122409 123344.4 181 27 542.5 631.4 118956 119302.0 185 39 47.1 68.1

d657 B 37647 37867.8 182 2 529.8 602.1 37078 37505.2 184 1 41.4 68.9

C 26544 27463 184 1 546.4 570.2 26177 26506.2 194 5 41.6 70.4

A 7999 8037.2 185 25 594.5 689.0 7805 7872.4 193 27 22.6 69.1

gr666 B 2418 2447.8 188 11 566.8 670.9 2417 2434.8 190 10 46.5 64.5

C 1660 1701.8 194 8 288.9 600.1 1636 1650.8 220 11 42.5 63.6

A 102454 102945.8 204 27 822.1 929.2 100132 100690.0 205 30 33.9 79.0

u724 B 29643 29909.4 200 2 699.8 856.2 29257 29582.2 202 6 41.3 74.9

C 20542 20633.2 203 5 558.5 809.9 20390 20656.0 208 8 61.6 77.4

A 20623 20805.8 192 29 924.9 1057.1 20150 20208.4 214 30 41.8 84.4

rat783 B 6013 6084 212 8 814.2 1015.8 5905 5965.0 215 8 61.3 81.7

C 4128 4153.4 225 5 719.0 950.5 4030 4053.8 229 4 57.9 82.8

A 64021453 64572154.2 276 58 1004.1 1378.4 63550808 63803980.8 288 61 206.2 235.1

dsj1000 B 16801430 17051243.6 281 11 924.7 1242.3 16500781 16546597.2 278 12 96.3 145.5

C 10524851 10689214 301 6 820.2 1151.3 10395420 10493207.0 299 7 111.8 137.2

Average 2072252.6 2093977.6 155 10 358.9 456.4 2051725.0 2060835.6 160 13 40.9 61.0

No. Best 1 44

 30

Table 10. Comparison of LS1 and LS2 on large GCSP with overnight instances with varying node
costs

Instance Range
LS1 LS2

Best
Cost

Avg.
Cost

NB NR
Avg.
TB

Avg.
TT

Best
Cost

Avg.
Cost

NB NR
Avg.
TB

Avg.
TT

A 144953 145012.4 67 28 16.1 24.2 143495 145716.8 71 37 2.3 15.0

ts225 B 73412 75075.4 74 38 17.3 21.9 73285 74478.0 71 37 7.6 16.2

C 63552 66184.2 76 44 15.1 23.5 63075 64390.8 73 43 7.9 16.3

A 2839 2869.2 84 31 34.8 42.6 2817 2825.2 88 46 2.5 20.1

a280 B 1335 1369.8 81 28 22.9 32.4 1329 1336.4 89 43 6.6 21.8

C 1091 1109.6 87 31 20.8 28.8 1072 1093.0 89 32 10.0 22.8

A 56842 57183.0 87 32 28.4 47.9 56760 57019.2 93 47 12.8 21.8

pr299 B 25937 26078.2 93 42 33.6 41.3 25774 26478.6 97 52 11.6 23.6

C 22301 22069.0 90 43 28.4 39.1 22018 22249.4 93 50 18.1 25.1

A 55557 55687.2 94 37 46.6 58.1 55327 55521.8 99 49 3.8 22.6

lin318 B 23772 24193.0 97 49 31.9 53.3 23431 23785.4 100 56 8.9 24.1

C 19844 20040.2 96 50 41.9 55.8 19471 19933.6 101 58 13.8 25.4

A 184831 185494.4 128 43 131.3 170.5 183619 184851.6 138 70 17.0 36.5

pr439 B 69547 71507.0 130 57 114.9 145.7 68774 69588.2 140 75 25.0 39.6

C 54641 56134.0 133 63 97.7 143.4 54102 55320.0 144 81 33.8 45.4

A 136371 137644.0 147 45 185.1 226.2 135280 136056.2 150 54 30.8 47.1

att532 B 48943 49748.6 152 60 160.0 197.1 48098 48542.6 158 81 21.8 46.7

C 37104 37892.2 161 68 133.8 186.0 37245 37551.4 170 100 43.8 53.4

A 3714 3848.6 144 39 150.3 226.4 3672 3680.6 154 64 19.6 45.3

ali535 B 1338 1373.8 144 38 109.3 189.3 1321 1337.0 157 60 22.9 44.1

C 987 1005.8 152 25 119.6 166.5 979 996.0 162 32 42.9 50.7

A 64242 64451.8 171 64 195.8 322.7 63405 63747.6 183 89 15.3 49.8

u574 B 21935 23033.4 169 67 245.8 275.7 21744 21913.8 191 102 48.0 59.2

C 16745 17193.8 179 86 184.9 265.8 16441 16638.2 190 108 58.6 62.5

A 10295 10392.4 161 46 218.9 297.5 10196 10239.2 180 82 30.0 53.3

rat575 B 3508 3666.0 161 52 177.9 261.2 3465 3521.8 175 83 43.9 55.2

C 2663 2707.6 175 64 169.3 244.4 2600 2619.4 194 96 44.5 58.9

A 95019 100537.4 186 50 361.7 494.2 94169 94400.8 194 76 61.5 73.2

p654 B 30053 30539.6 190 59 170.3 438.0 29718 29850.0 198 92 45.1 69.2

C 22965 23036.8 193 65 248.2 399.4 22566 22681.0 215 109 66.3 77.5

A 97053 98678.0 181 58 301.5 424.1 96632 96926.6 189 84 46.9 66.4

d657 B 31322 33283.4 182 74 207.4 387.6 31153 31503.0 200 109 53.0 69.0

C 23308 24737.2 184 75 258.8 375.4 23120 23479.4 218 120 65.8 75.1

A 6601 6771.0 189 49 292.6 436.9 6505 6524.8 206 89 36.6 68.3

gr666 B 2128 2148.2 194 64 278.7 417.0 2088 2093.6 208 95 43.1 64.8

C 1492 1533.4 198 41 262.8 353.2 1465 1492.4 227 65 45.2 72.7

A 81276 81851.8 204 57 339.3 568.1 81017 81290.0 216 93 41.1 76.5

u724 B 25274 26464.0 198 62 186.3 496.5 24932 25082.4 228 117 50.3 72.3

C 18289 19011.8 209 91 378.1 494.0 18057 18113.2 234 138 79.2 85.5

A 17337 17432.2 215 48 382.5 699.8 17222 17303.6 222 81 64.6 88.7

rat783 B 5130 5168.8 213 56 362.6 642.4 5106 5159.0 241 112 48.1 83.7

C 3650 3833.4 228 77 486.3 619.9 3604 3623.0 247 116 67.4 84.8

A 53016230 52924952.8 293 101 412.6 823.6 52767955 52811295.2 302 122 138.6 175.2

dsj1000 B 13904578 14157851.0 305 101 500.5 803.5 13714835 13832973.2 309 151 115.8 154.1

C 8992587 9038746.0 301 83 401.5 785.9 8946964 9010501.0 309 169 179.1 181.0

Average 1722724.2 1727989.8 160 55 190.3 298.8 1711686.7 1717016.09 171 81 41.1 58.7

No. Best 1 44

 31

Table 11. Comparison of computing times of GTSP methods
Computer Mflops r Method

Gateway Profile 4MX 230 1.568 GA

Sun Sparc Station LX 4.6 0.032 GI
3

, NN

HP 9000/720 2.3 0.016 FST-Lagr, FST-Root, B&C

Unknown - 1 RACS

Dell Dimension 8400 290 2 mrOX

Pentium(R) IV, 3.4 Ghz 295 2.03 MSA

Ours 145 1 LS2

 32

Table 12. Comparison of LS2 against 8 other heuristics on benchmark GTSP instances in the literature

Instances
LS2 MSA mrOX RACS GA GI

3
 NN FST-lagr FST-Root B&C

gap time gap time gap time gap gap time gap time gap time gap time gap time time

Att48 0 0.4 0 0 0 0.8 - 0 0 - - - - 0 0 0 0 0.0

Gr48 0 0.4 0 0 0 0.6 - 0 0.8 - - - - 0 0 0 0 0.0

Hk48 0 0.5 0 0 0 0.6 - 0 0.4 - - - - 0 0 0 0 0.0

Eil51 0 0.5 0 0 0 0.6 0 0 0.2 0 0 0 0 0 0 0 0 0.0

Brazil58 0 0.6 0 0 0 1.6 - 0 0.4 - - - - 0 0 0 0 0.0

St70 0 0.7 0 0 0 0.8 0 0 0.4 0 0 0 0 0 0 0 0.2 0.2

Eil76 0 0.8 0 0 0 0.8 0 0 0.4 0 0 0 0 0 0 0 0.2 0.2

Pr76 0 0.9 0 0 0 1.0 0 0 0.4 0 0 0 0 0 0 0 0.2 0.2

Rat99 0 1.2 0 0 0 1.0 0 0 1.0 0 0.2 0 0.2 0 0 0 0.8 0.8

KroA100 0 1.2 0 0 0 1.2 0 0 0.6 0 0.2 0 0.2 0 0 0 0.2 0.2

KroB100 0 1.3 0 0 0 1.2 0 0 0.6 0 0.2 0 0 0 0 0 0.4 0.4

KroC100 0 1.2 0 0 0 1.2 0 0 0.4 0 0.2 0 0.2 0 0 0 0.2 0.2

KroD100 0 1.2 0 0 0 1.4 0 0 0.6 0 0.2 0 0. 0 0 0 0.2 0.2

KroE100 0 1.3 0 0 0 1.2 0 0 1.2 0 0.2 0 0 0 0 0 0.2 0.2

Rd100 0 1.2 0 0 0 1.0 0 0 0.4 0.08 0.2 0.08 0.2 0.08 0 0 0.2 0.2

Eil101 0 1.1 0 0 0 1.0 0 0 0.4 0.4 0.2 0.4 0 0 0 0 0.4 0.4

Lin105 0 1.3 0 0 0 1.2 0 0 0.4 0 0.4 0 0.2 0 0 0 0.2 0.2

Pr107 0 1.2 0 0 0 1.0 0 0 0.6 0 0.2 0 0.2 0 0 0 0.2 0.2

Gr120 0 1.1 0 0 0 1.4 - 0 0.8 - - - - 1.99 0 0 0.6 0.6

Pr124 0 1.5 0 0 0 1.4 0 0 1.0 0.43 0.4 0 0.4 0 0 0 0.4 0.4

Bier127 0.04 1.6 0 0 0 1.6 0 0 0.8 5.55 1.0 9.68 0.2 0 0.2 0 0.4 0.4

Pr136 0 1.8 0 0 0 1.6 0 0 0.8 1.28 0.4 5.54 0.2 0.82 0.2 0 0.6 0.6

Pr144 0 1.6 0 0 0 2.0 0 0 0.4 0 0.4 0 0.4 0 0 0 0.2 0.2

KroA150 0 2.1 0 0 0 2.0 0 0 2.0 0 0.6 0 0.6 0 0.2 0 1.4 1.5

KroB150 0 1.9 0 0 0 2.0 0 0 1.6 0 0.4 0 0.6 0 0.2 0 0.8 0.8

Pr152 0 2.0 0 0 0 2.0 0 0 2.4 0.47 0.6 1.8 0.4 0 0.2 0 0.8 1.5

 33

Instances
LS2 MSA mrOX RACS GA GI

3
 NN FST-lagr FST-Root B&C

gap time gap time gap time gap gap time gap time gap time gap time gap time time

U159 0 2.2 0 0 0 2.0 0.01 0 1.0 2.6 0.6 2.79 0.8 0 0.2 0 2.0 2.0

Rat195 0 2.5 0 0.2 0 2.8 0 0 1.0 0 1.2 1.29 2.6 1.87 0.2 0 3.5 3.5

D198 0.32 3.4 0 0 0 3.2 0.01 0 1.8 0.6 1.8 0.6 3.6 0.48 0.2 0 10.8 10.8

KroA200 0 2.8 0 0 0 3.4 0.01 0 4.2 0 0.8 5.25 1.6 0 0.2 0 2.6 2.6

KroB200 0 2.7 0 0 0.05 3.2 0 0 2.2 0 1.0 0 4.0 0.05 0.2 0 3.9 3.9

Ts225 0 2.9 0 4.3 0.14 3.4 0.02 0 3.9 0.61 2.6 0 3.6 0.09 0.2 0.09 18.5 538.2

Pr226 0.09 2.5 0 0 0 3.0 0.03 0 1.6 0 0.8 2.17 2.0 0 0.2 0 1.4 1.4

Gil262 0.79 3.6 0 7.1 0.45 7.2 0.22 0.79 3.0 5.03 3.5 1.88 3.6 3.75 0.2 0.89 20.5 94.2

Pr264 0.59 3.6 0 0 0 4.8 0 0 2.0 0.36 2.0 5.73 4.5 0.33 0.4 0 4.9 4.9

Pr299 0.04 4.5 0 1.4 0.05 9.2 0.24 0.02 9.7 2.23 0.2 2.01 8.5 0 0.4 0 11.6 11.6

Lin318 0.01 4.4 0 0 0 16.2 0.12 0 5.5 4.59 6.2 4.92 9.7 0.36 0.8 0.36 12.0 23.8

Rd400 0.98 6.2 0 0.6 0.58 29.2 0.87 1.37 5.5 1.23 12.2 3.98 34.7 3.16 0.8 2.97 71.5 99.9

Fl417 0.01 5.8 0 0 0.04 16.4 0.57 0.07 3.8 0.48 12.8 1.07 40.8 0.13 1.0 0 237.5 237.5

Pr439 0.09 7.1 0 3.9 0 38.2 0.79 0.23 14.4 3.52 18.4 4.02 37.8 1.42 2.0 0 76.9 77.1

Pcb442 0.16 6.9 0 1.6 0.01 46.8 0.69 1.31 16.0 5.91 17.0 0.22 25.6 4.22 1.2 0.29 76.1 835.1

Average (36) 0.09 2.5 0 0.53 0.04 6.12 0.10 0.10 2.58 0.98 2.42 1.48 5.21 0.46 0.26 0.13 15.61 54.32

Opt (36) 25 36 29 24 30 19 18 23 31 36

Average (41) 0.08 2.2 0 0.47 0.03 5.38 0.09 2.31 0.46 0.22 0.11 13.72 47.71

Opt (41) 30 41 34 35 27 36 41

