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Abstract

Frege proved an important result, concerning the relation of arithmetic to second-order
logic, that bears on several issues in linguistics. Frege’s Theorem illustrates the logic of
relations like PRECEDES(X, y) and TALLER(X, y), while raising doubts about the idea that
we understand sentences like ‘Carl is taller than Al’ in terms of abstracta like heights and
numbers. Abstract paraphrase can be useful—as when we say that Carl’s height exceeds
Al’s—without reflecting semantic structure. Related points apply to causal relations, and
even grammatical relations like DOMINATES(X, y). Perhaps surprisingly, Frege provides the
resources needed to recursively characterize labelled expressions without characterizing
them as sets. His theorem may also bear on questions about the meaning and acquisition
of number words.

Introduction

Suppose that Carl is just barely taller than Bob, who is just barely taller than Al. It
follows that Carl is taller than Al, but not that Carl is just barely taller than Al. Yet if
Carl is much heavier than Bob, who is heavier than Al, then Carl is much heavier than
Al And if Alis Bob’s father, while Bob is Carl’s father, then Al is Carl’s grandfather.
Though if Al is Bob’s brother, while Bob is Carl’s, then Al and Carl are brothers.
Speakers of English recognize such inferential relations. This raises questions about
(1) how the relevant sentences are understood, and (ii) the kinds of inference that are
germane. Perhaps ‘Carl is taller than Al means roughly that Carl’s height exceeds
Al’s height, and speakers make relevant inferences about heights and exceeding.' But
I’ll urge a different perspective, based on Frege’s (1879, 1884, 1892, 1893) reasons
for inventing the modern logic—presupposed by most semanticists—that lets us deal
with relations like SUCCESSOROF(X, y) and GREATERTHAN(X, y). This requires a

Cresswell (1976) offers a semantics of this sort, though in a framework that makes the relation to
psychology not entirely clear. Klein (1980) articulates and then argues against such hypotheses about
natural language meaning. But while I agree with many of Klein’s critical remarks, my use Frege is
rather different than his. For more recent “degree semantics” approaches, see Kennedy (1999a, 1999b),
Beck et.al. (2004), and references there. Schwartzschild (2002), who speaks in terms of “intervals,”
arguably has a different view. And it may be that the view I have in mind is more presupposed, in
discussions of related topics, than explicitly defended in published work.
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review of “Frege’s Theorem” about the foundations ofarithmetic. But linguists should
know about this theorem in any case.

It is well known that Frege tried and failed to reduce arithmetic to logic. It is
less well known, outside a community of specialists, that Frege did establish a
foundational result. Given his second-order logic, and suitable definitions, Frege
reduced the axioms of arithmetic to a single principle: VFVG[(#F = #G) =
OneToOne(F, G)]; whatever the Fs and Gs may be, the number of the Fs is also the
number of the Gs iff the Fs correspond one-to-one with the Gs. Or as Frege would
have put it: for any Concepts F(x) and G(x), the number of things falling under the
former is the number of things falling under the latter iff a one-to-one function
associates the things falling under F(x) with those falling under G(x). Frege showed
how to derive all of arithmetic from this generalization, now called “Hume’s
Principle.” Frege’s error was to supplement his otherwise consistent logical system
with an allegedly logical axiom that let him derive Hume’s Principle: as Russell
famously noted, the resulting logic proved too much—e.g., that there was and was
not a set of all the sets that do not contain themselves. But despite this failure, Frege
did reduce arithmetic to a principle that links our notions of number and one-to-one
correspondence, given a consistent fragment of the second-order logic he invented in
order to formulate an interesting but false Logicist thesis.?

For present purposes, it is especially important that Frege derived the axiom
of mathematical induction from a purely logical principle. In arithmetic proofs, one
often relies on the following conditional premise whose antecedent is complex: if the
first number (zero) has some property P, and every number is such that if it has P then
so does its successor, then every number has P. (Here and throughout, ‘number’
should be understood as ‘natural number’, a predicate satisfied by all and only the
nonnegative whole numbers.) Frege showed that this axiom of arithmetic was a
theorem of his logic, given requisite definitions of ‘number’ and ‘successor’. The
relevant principle governs inferences involving any first-order relation like
FATHEROF(X, y), and a corresponding “ancestral” relation like FOREFATHEROF(X, y);
where the ancestral relation can be defined, given second-order quantification, in
terms of the first-order relation. Frege was most interested in the relation

See Parsons (1965), Wright (1983), Boolos (1998), and the essays in Demopolous (1994). Given
Aristotelian logic, even as developed by the medievals, Kant was surely right to conclude that
(knowledge of) arithmetic was not reducible to (knowledge of) logic plus definitions. But Frege
effectively reopened the question by changing the conception of logic, much as questions about the
relation of chemistry to physics changed as conceptions of physics changed. See Heck (1999) for a
helpful introduction to these issues.

155



PREDECESSOROF(X, y) and its “transitive closure” PRECEDES(X, y). But his reasoning
applies equally well to relations like IMMEDIATELYDOMINATES(&, [3) and
DOMINATES(®, ), PROXIMALLYCAUSED(c, ¢) and CAUSED(c, e),
MINIMALLY TALLER(X, y) and TALLER(X, y). Frege’s Theorem may also bear on
questions about how children understand numeric words like ‘three’ and ‘seven’. But
in any case, I think we should look for a semantics according to which ‘taller’ is
understood in terms of second-order quantification over concrete individuals, and a
dovetailing conception of natural /ogic according to which speakers appreciate
inferential relations involving ancestrals.

It can be tempting instead to specify the meaning of ‘Carl is taller than Al’ as
follows, abstracting away from various details: H(Carl) > H(Al); where ‘H’ indicates
a function from individuals to numbers that correspond to ranks on an appropriate
“height scale.” But prima facie, humans can judge that one thing is
taller/heavier/closer/funnier than another without being able to associate the things
compared with abstracta ordered by a relation indicated with >’. Likewise, it seems
that a speaker can infer that Carl is taller than anyone who is shorter than Bob, yet be
unable to judge that Carl’s height exceeds the heights of those whose heights are
exceeded by Bob’s. Of course, these appearances may be deceiving. Perhaps we do
understand sentences of the form ©_is taller than ’ in a way that relies on a capacity
to compare numbers, or other abstracta like degrees of height. But this is hardly
obvious. Our ability to judge one number greater than another may be parasitic on the
very capacities that let us understand comparative constructions; where in
paradigmatic cases, involving nonarithmetic words like ‘taller’, the relevant first-order
relations hold between perceptible entities like Carl and Al.

This matters, in part because we must eventually face the question of what it
is for Carl’s height to exceed Al’s. And this is presumably not a matter of Carl’s
height-number having a greater number-number than Al’s height-number. So if we say
that speakers represent the world in terms of some heights exceeding others, we need
to say what this amounts to, without falling back on the claim that some individuals
are taller than others. Notation like ‘“H(Carl) > H(Al)’ may let us describe truth
conditions in ways that are fine for certain purposes. But if >’ means what it means
in arithmetic, we cannot just assume that such notation provides a good account of
how ordinary speakers understand expressions like ‘taller’. Extant theories can, no
doubt, be rewritten along lines suggested here. My aim is to motivate such rewriting,
not to criticize particular theories, and certainly not to offer a complete theory of
comparative constructions. But I will conclude by using a Fregean proposal to help
explain the otherwise puzzling absence of monomorphemic predicates with relevant
comparative meanings.
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We can imagine a language in which ‘Carl owtites Al’ means that Carl is taller
than Al. So why don’t we often see noncomposite lexical items with meanings like
Ay.AX.TALLER(X, y)? Drawing on Pietroski (2005, 2006), my suggestion will be that
relational concepts are lexicalized as monadic predicates; where some predicates are
satisfied by things like events, in which individuals “participate,” and some predicates
are essentially plural—in the sense of being satisfied by some things without being
satisfied by any one of them. (For example, ‘formed a circle’ might be satisfied by
some people, no one of whom formed a circle.) The idea will be that Carl is taller than
Al iff: there are some things ordered by the relation TALLER(X, y), with Carl as the
external/“outermost” thing, and Al as the internal/“innermost” thing; in which case,
Al and Carl exhibit an ancestral relation definable in terms of MINIMALLY TALLER(X,

y)-

1 Validity and Arithmetic

Let me ease into the details with some reminders about the role and importance of
second-order quantification in Frege’s (1879) logic, from which much of
contemporary semantics descends.

1.1 Quantifiers and Predicates

The first-order predicate calculus, which is a fragment of Frege’s logic, certainly has
virtues. Inventing it, without also inventing a formal system that allowed for
quantification into positions occupiable by predicates, would have been impressive
enough—especially in combination with Frege’s idea that that propositions
(Gedanken, “things” that exhibit logical relations) have function-argument structures.
Still, endlessly many expressions of natural language are not firstorderizable. Boolos
(1984) reviews examples involving ‘most” and ‘only’, but also stresses sentences like
‘For every pleasure, there is a pain’, with the implication that there are as many pains
as pleasures. We may have thoughts of the form ‘Vx[Fx > dy(Gy)]’, or using
restricted quantifiers ‘Vx:Fx(Jdy:Gy)’. But we also have thoughts, expressed with
words like ‘every’, that cannot be captured in first-order terms.’ Recognizing this, at
least implicitly, Frege invented a logic that validated conditionals like ‘Fa > Ix(Fx)’
and the second-order variant ‘Fa > 3X(Xa)’. For his purposes, biconditionals like ‘Fa

See Rescher (1962), Wiggins (1983). Imagine a company that advertises ‘For every dollar we receive, a
penny will go to charity’, and then sends exactly one penny to charity after receiving a million
dollars—saying that this satisfies the only plausible first-order regimentation of the English sentence.
This seems indefensible, pace Quine (1950). Here and throughout, I use modern notation, instead of
Frege’s. But the logic is his.
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= dXIx[Xx & (x = a) & Vy(Xy = Fy)]” were crucial.

Frege also offered a distinctive interpretation of predicative variables. This
interpretation is not required, nor is it without difficulties; see §2 below. But for now,
let’s follow Frege and say that capitalized variables range over Concepts: functions,
from entities to truth or falsity, that reflect a kind of abstraction—starting with a
thought “about” a particular thing, and abstracting away from the thing thought
about, leaving an “unsaturated” thought-component. Consider, for example, the
thought we express with ‘Euclid was clever’. Using ‘u’ as a name for the geometer
in question, we can represent this thought as follows: Clever(u). Ignoring the specific
contribution of the name leaves a first-order Concept, Clever( ),, that maps each
entity x to truth iff x is clever. Ignoring the specific contribution of the Concept-
expression leaves a second-order Concept, X(u), that maps each Concept to truth iff
that Concept maps Euclid to truth.

Letting ‘Cy’ abbreviate ‘Clever( ),”, ‘IXIx[Xx & (x =u) & Vy(Xy = Cy)]’
means that there is some Concept X and some entity x such that: X maps x to truth;
and x is identical with u; and for each entity y, X maps y to truth iff C maps y to
truth.* From this perspective, quantification into positions occupiable by predicates
is not essentially different than quantification into positions occupiable by names.
Starting with a thought analyzable as a Concept C saturated by an entity u, we can
abstract a “thought-frame” corresponding to the open sentence ‘Cy’, or a thought-
frame corresponding to the open sentence ‘Xu’. And as Frege noted, variables can be
encoded in ways that make such abstraction more explicit, at the cost of typographic
convenience. We can, if we like, depict the thought that Euclid is clever as follows.

. y__
| | | | | |
3 { (D&()=u]&V_[ (_)=C( )

I |
X

The novelty and advantage of such analysis was intertwined with Frege’s

Using ‘=" as the biconditional highlights, as Frege did, parallels between material equivalence and
identity: if Vx(Hx = Px), then in Frege’s logic, ‘P’ can be substituted for ‘H’ salva veritate; likewise, if h
=p, ‘p’ can be substituted for ‘h’. As we’ll see, Frege construed talk of numbers in terms of a third kind
of equivalence: if the things that “fall under” one Concept correspond 1-1 with the things that fall under
another Concept, the Concepts are numerically equivalent. Or put another way, two Concepts “have the
same number” if their extensions are equinumerous.
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associated conception of logical structure, and its potential divergence from
grammatical structure. While medieval logicians had greatly improved Aristotelian
logic, extending its scope and reducing the number of primitive inferential patterns,
well-known problems beset the underlying idea that propositions have subject-copula-
predicate structure. Sentences with transitive verbs, quantificational direct objects,
and relative clauses—as in (1) and (2)—

(1) Every politician deceived some voter who trusted him
(2) Every politician who trusted himself deceived some voter

indicate thoughts whose logical relations cannot be captured in these traditional terms.
One can say that the corresponding propositions are both of the form [(Every @) is
Y], with the monadic predicates being: ‘Politician’ and
‘DeceivedSomeVoterWhoTrustedHim’ in (1); ‘PoliticianWhoTrustedHimself” and
‘DeceivedSomeVoter’ in (2). But without a systematic way of reflecting logical
structure within the complex monadic predicates, endlessly many implications go
unexplained.” By contrast, Frege could represent the corresponding propositions as
having (agrammatical) constituency structures like those shown in (1a) and (2a).

(la) Vx[Px > dy(Vy & Tyx & Dxy)]
(2a) Vx[(Px & Txx) > dy(Vy & Dxy)]

Though given his interests in the foundations of arithmetic, Frege cared more about
(3) and (3a).

3) Every number has a successor
(3a) Vx[Nx > Jy(Syx)]

The idea was that a natural language sentence like (3) could be used to
express a potential premise/conclusion more perspicuously represented with (3a),
whichreflects the logically significant structure. But by themselves, first-order “logical
forms” would have been inadequate for Frege’s purposes. He wanted to represent
all the axioms of arithmetic in a way that made it possible to offer rigorous proofs of
interesting theorems, while also revealing the axioms themselves as consequences of

5

See Pietroski (2003) for an overview and references; see Ludlow (2002) for illuminating discussion and
potential connections with a minimalist syntax.
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more basic principles. As noted above, while Frege didn’t reduce arithmetic to logic
alone, he did represent the axioms of arithmetic in a way that let him derive these
axioms from logic and a single basic principle. But what is most important, for our
purposes, is Frege’s subproof that the “axiom” of mathematical induction is really a
special case ofa (second-order) logical theorem that is not essentially concerned with
numbers. This is what bears most directly on semantic hypotheses about words like
‘taller’ and ‘father’. But it will also be useful to have, in the background, a sketch of
Frege’s larger result.

Whatever the relative merits of (3a), compared with earlier analyses, it does
not yet capture the idea that each number has its own “unique” successor—or that
there is at least one number, or that there is a “first” number, or that there is no last
number. We can add first-order representations of three more Dedekind-Peano
axioms, as shown below.

(DP:1) Zero is a number

(DP:I) NO

(DP:1i)  Zero is not the successor of any number
(DP:1I)  Vx[Nx > —S0x]

(DP:1ii)  No two numbers have the same successor
(DP:IIT) VxVy[(Nx & Ny & x #y) > ~dz(Szx & Szy)]

But for Frege, such representations frame the real questions. Are these independent
axioms, which seem obvious only because we somehow intuit these fundamental
arithmetic truths? Or do they follow from “deeper” truths? Can we define ‘zero’,
‘number’, and ‘successor’—‘0’, ‘Nx’, and ‘Szy’—in a way that reveals arithmetic
axioms as theorems of a more general theory? How should we formalize the axiom
of induction, stated roughly as the conditional claim (DP:iv)?

(DP:iv)  if zero has a “property” such that
whenever a number has that property, its successor has that property
then every number has that property

And how are these four axioms related to (3) and (3a), renumbered below?

(DP:v)  Every number has a successor
(DP:V)  Vx[Nx > Jy(Syx)]

In particular, can (DP:iv) be formulated in a way that does not presuppose (DP:V)?
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Frege realized that he could state the axiom of mathematical induction as
(DP:1V)

(DP:1V)  VX[X0 & VxVy(Xx & Syx o Xy) o Vx(Nx > Xx)]

and still capture its special role in proofs of arithmetic theorems. Given Frege’s
interpretation of second-order variables, (DP:IV) says for every Concept,: if zero falls
under ity, and each thing, that falls under ity is such that each successor, (if any) of
that, thing falls under ity, then every number falls under it,; where subscripts track
intended referential dependence of pronouns as used. Frege was also able to define
‘zero’, ‘number’, and ‘successor’ in terms of ‘predecessor’. And this let him reveal
(DP:IV) as a theorem of /ogic, usable in a proof of (DP:V). So at least in this sense,
the Dedekind-Peano axioms are not five independent and fundamental truths. It is
worth being clear about all this, and the role of second-order quantification in Frege’s
ingenius definitions, since the defined arithmetic terms exhibit logical relations like
those exhibited by ‘taller’ and ‘father’. Indeed, Frege took the ordinary language
terms as models, and tried to generalize in a way that would cover the arithmetic
cases.

1.2 A Sketch of Frege’s Theorem

Frege assumed that we can use words like ‘zero’, ‘one’, and ‘two’ as entity-
designators as well as second-order predicates. There is a sense in which he takes the
latter use—as in ‘There are two apples’ and ‘The apples are two’, with the logical
form ‘IX[Two(X) & Vx[X(x) = Apple(x)]’— as the basic use. But this doesn’t tell
us what the first-order variables in generalizations like (4) and (5) range over.

4) For every prime, there is a greater one

(4a) Vx{Prime(x) > dy[Prime(y) & >(y, x)]}

(5) There are infinitely many primes

(5a) dX{InfinitelyMany(X) & Vx[X(x) = Prime(x)]}

And of course, Frege wanted to make sense of formulae like ‘Successor(1) =2’, with
‘1’ and 2’ interpreted as entity-designators.

With this in mind, he defined the arithmetic entity zero as the number of
nonselfidentical things. In terms of Concepts, zero is the number of things “falling
under” (mapped to truth by) the Concept expressed with ‘x # x’. Given this starting
point, other numbers can be defined recursively: one is the number of things identical
with zero; two is the number of things identical with zero or one; etc. If only for
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convenience, let ‘#’ indicate a higher-order Concept that maps each first-order
monadic Concept, like Prime(x) or Frog(x), to the number that is the number of things
falling under the Concept. Then we can represent Frege’s idea as follows: 0 = #(x #
X; 1 =#x=0)];2=#(x=0)vE=1D];3=#x=0)v(x=1)v(x=2)];etc.’
This isn’t yet a general definition of ‘number’. But for Frege, the key arithmetic
notion is that of precedence; and given this notion, along with zero, a general
definition is available. The numbers are said to be zero and the things that zero
precedes. So given a defintion of ‘precedes’, each number can be identified as the
number of numbers preceding it. More formally:
Vx{Number(x) = [(x=0) vV PRECEDES(0, x)]} & Vy{Number(y) > y=#[PRECEDES(X,
I}

It is important to distinguish ‘PRECEDES(X, y)’ from ‘PREDECESSOROF(X, y)’.
The former implies that x is less than y, but not that y=x + 1. Zero precedes endlessly
many numbers, but is the predecessor of exactly one. Of course, the notions are
related: x is a/the predecessor of y iff x immediately precedes y. But the trick was to
define ‘PRECEDES(X, y)’ interms of ‘PREDECESSOROF(X, y)’, and offer an independent
definition of the latter.

Here too, Frege employed second-order quantification, revealing the power
of his logic.

PREDECESSOROF(X, y) iff AXJz{Xz & (y=#X) & [x =H#(W ¥ z & XW)]}
That is, x is a predecessor of y iff there is a Concept X and an entity z such that: z
falls under X; y is the number of X—i.e., the number of things that fall under X; and
x is the number of things apart from z that fall under X. For example, 2 is a
predecessor of 3 iff there is some Concepty under which three things fall, and some
entity, falling under ity, such that (exactly) two other things fall under ity. There is
sure to be such a Concept and entity, given the following Concept: (x =0) v (x=1)
v (x = 2). Once defined, predicates like ‘PREDECESSOROF(X, y)’ and ‘PARENTOF(X,
y)’ can be used to express relations such that: one entity bears the relation to another
entity, which bears the relation to a third entity; the first does not bear the relation to
the third; yet the first entity does, as a matter of logic, bear a corresponding
“ancestral” relation to both the second entity and the third. Each of my ancestors
bears the relation ANCESTOROF(X, y) to me. And intuitively, my ancestors are those
individuals such that: each of my parents is one of them; for every one of them, each
ofhis or her parents is also one of them; and nobody else is one of them. (This leaves

6

There are complications here, due to Frege’s (1892) insistence that Concepts are not objects. But given
the lambda-calculus, we can say: 0 = #(Ax.x # x), 1 = #[Ax.(x # x) v (x = 0)], etc. See Zalta (2003) for an
elegant and accessible presentation of the details.
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room for the possibility that one of my ancestors was parentless.”) Likewise, the
numbers that precede seven are those numbers such that: the predecessor of seven is
one of them; for each of them that has a predecessor, its predecessor is one of them;
and nothing else is one of them. (This leaves room for zero, which has no
predecessor.) And given Frege’s logic, one can define an “ancestralizing” function
that maps relations like PREDECESSOROF(X, y) to “transitive closure” relations like
PRECEDES(X), y).

In the biological case, x is an ancestor of y iff x had at least one child, and
every Concept X satisfies the following inductive conditional: if each child of x falls
under X, and a child ¢ falls under X whenever a parent of ¢ falls under X, then y falls
under X. Informally, the idea is that x is an ancestor of y iff y has every “hereditary
property” that x “passed on;” where a given individual, Eve, may have passed on
properties like being human—or more to the point here, being descended from or
identical with Eve. Generalizing with numbers in mind, let’s say that for each relation
R: each Concept X is “R-hereditary” ift VwVz{Xw & R(w, z) > Xz}; and x is an “R-
ancestor” of y iff x bears R to something, and y falls under every R-hereditary
Concept under which x falls.® The relation [ANC(R)](x, y) can thus be defined as
follows: VxVy{[ANC(R)](X, y) =4 JZ[R(X, 2)] & VX[Xx & VWVz{XW & R(W, z) >
Xz} = Xylj.

That is, x is an R-ancestor of y iff x bears R to something, and for every
Concept X: if x falls under X, and an entity, falls under X whenever something,, that
falls under X is R-related to that, entity, then y falls under X. Put another way (see
§2.1), x is an R-ancestor of y iff x bears R to something, and whatever the Xs may be:

7

Readers who cannot describe parents (or grandparents) as ancestors can substitute suitably restricted
definitions for their idiolects.

8

See Zalta (2003). We could also replace the condition that x bears R to something, and that x falls under
X, with the condition that anything to which x bears R is something that falls under X. This leaves
room for the possibility that x doesn’t fall under X, even if falling under X is always “passed on,” say
from father to son. (Imagine a past Adam, and the Concept being nonhuman or having had a human
father. Adam would not fall under this Concept, even though each of his male descendants would.) We
could also say that x is a forefather of y iff y had a father, and every Concept is such that: if each father of
y falls under the Concept, and anybody who falls under the Concept had a father who falls under the
Concept, then x falls under the Concept. This leaves room for the possibility that y doesn’t fall under the
Concept, even if falling under the Concept is always “inherited” from fathers. (Imagine a future Joseph
with exactly one son, who is nonhuman, and the Concept being nonhuman or having had a human son.
While each of Joseph’s forefathers would fall under this Concept, Joseph might not.)
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y is one of them if x is one of them, and an entity, is one of them whenever one of
them is R-related to it,. Initially, this sounds complicated. But upon reflection, it
comes to seem as truistic as it is.

Frege treats ‘PRECEDES(X, y)’ as an abbreviation of
‘{ANC(PREDECESSOROF)](X, y)’. So by definition, PRECEDES(X, y) iff: x is a number;’
and y falls under each Concept X such that (i) whatever x is a predecessor of falls
under X, and (ii) whenever something falls under X, whatever it is a predecessor of
falls under X. We can thus define ‘<’ as desired: <(x, y) iff PRECEDES(X, y). Given a
relation R, we can define ‘R’ so that: R(X, y) = R(x, y) v (x = y). In particular,
PRECEDES(X, y) iff PRECEDES(X, y) or (X =Yy); hence, PRECEDES(X, y) iff x < y. And
for each number z, PRECEDES(0, z). So the numbers just are zero and the things zero
precedes.

Frege’s definitions thus make it explicit that the numbers are things that
support mathematical induction. So the axiom of induction

(DP:1V)  VX[X0 & VxVy(Xx & Syx o Xy) o Vx(Nx > Xx)]

need not be viewed as a special arithmetic law concerning numbers. On the contrary,
it can be viewed as a special case of a more general logical truism—concerning any
things that form a series ordered by a relation, and Concepts that are hereditary with
regard to that relation. The “Logical Induction” principle (6), once understood,
sounds obvious and is.

(6) If an entity falls under a Concept that is hereditary with regard to a relation,
and the entity is the initial thing in a series of things so related,
then each thing in the series of things so related falls under that Concept.

Frege formalizes this principle by first defining a technical notion. Given a relation R,
a Concept X is hereditary on the R-series starting with entity e iff the following
condition obtains: VxVy{[ANC(R)](e, x) & [ANC(R)](e, y) & R(x, y) > (Xx > Xy)}.
Given the relation PREDECESSOROF(X, y), ‘[ANC(R)](e, x)’ says that e is less than or
equal to x, and the whole conditional says: if e is less than or equal to both x and y,
and PREDECESSOROF(x, y)—that is, if x is the predecessor of y, and e precedes

9

By definition, Vy[Number(y) = Precedes(0, y) v (y = 0)]. And by definition, Precedes(0, y) iff:
Jz[PredecessorOf(0, z)] & VX {Vz[PredecessorOf(0, z) > Xz] &

VwVz[Xw & PredecessorOf(w, z) > Xz] > Xy}. So given that 0 is the predecessor of 1,

y is a number greater than zero iff: VX{X1 & VwVz[Xw & PredecessorOf(w, z) > Xz] > Xy}.
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y—then y falls under X if x does. If e is the number zero, e must precede y, given that
y has a predecessor. So in the special case of the relation that matters for proofs by
mathematical induction, with zero as the base case, a Concept is hereditary on the
relevant R-series iff that Concept is hereditary on the numbers. Correspondingly, (6)
can be formalized in a way that leaves it general enough to be provable as a theorem
of logic.

(6a)  Given a relation R(x, y), a Concept X, and an entity e:
if X is hereditary on the R-series starting with e, and e falls under X,
then Vx[R(e, x) o Xx].

And given Frege’s defintions, (DP:IV) is a special case of this theorem: if X is
hereditary on the numbers—i.e., the PREDECESSOROF-series, starting with zero—and
zero falls under X, then any number (i.e., anything greater than or equal to zero) falls
under X. This makes it clear that (6) is no more about numbers than it is about
parents.

1.3 Digression

It may help, in this regard, to think about other cases of relations with “transitive
closures” that we care about. For example, one event may be a “distal” cause of
another: ¢ may cause e via some intermediate event d, which causes e and is caused
by c; and while ¢ may also be a distal cause of d, there presumably are “proximal”
causes with “immediate” effects. Given the relation PROXIMALCAUSE(d, d'), we can
define the corresponding ancestral relation CAUSE(c, €).

We can also define a more constrained ancestral relation to capture a now
familiar idea discussed by Hart and Honoré (1959): a PROXIMALCAUSE-series,
starting with an action of some person, in which the chain of responsibility is not
“broken” by the intentional action of another person—not even if this second action
was somehow caused by the first. As an approximation, consider the following
stipulations: PROXIMALCAUSE*(d, d") iff PROXIMALCAUSE(d, d') & —Action(d");
ACTCAUSE(a, e) iff Action(a) & [ANC(PROXIMALCAUSE*)](a, ). It follows that if
ACTCAUSE(a, e), there is a causal chain from the action to the effect that does not go
through a second action that causes the effect and is caused by the initial action. Some
such proposal might be part of a reply to Fodor (1970), Fodor and Lepore (1998,
2002), in defense of certain theories of causative constructions; see Pietroski (1998,
2000, 2005) and references there.

In §2.3, I note that at least in principle, ancestral relations might be used to
define labelled expressions recursively without identifying such expressions with sets.
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And if we let ‘MT’ abbreviate ‘MINIMALLY TALLER’, the corresponding ancestral
might be defined as follows: VxVy{TALLER(X, y) = Jz[MT(x, z)] & VX[Xx &
VwVz{Xw & MT(w, z) > Xz} > Xy]}. Perhaps x is taller than y iff: x is minimally
taller than something—maybe x itself, minus a smidgeon; and for each Concept X, if’
x falls under X, and an entity, falls under X whenever something,, that falls under X
is minimally taller that, entity, then y falls under X. If we can spell out
‘MINIMALLY TALLER’ in terms of smallest differences that are not contextually
irrelevant, for purposes of ordering things in a certain way, ‘TALLER’ can be viewed
as an ancestral predicate that indicates a transitive relation: VxVyVz[ TALLER(X, ¥) &
TALLER(Y, z) © TALLER(X, z)]. And a Concept like BEINGASTALLAS(x, Carl) would
be hereditary on the MT-series starting with the given entity. This does not
presuppose that “TALLER(Carl, Al)’ is a claim to the effect that Carl’s height-number
is greater than Al’s height-number. On the contrary, “>(3, 1)’ is equivalent to
‘PRECEDES(1, 3)’, which does not say that 3’s number-number exceeds 1’s number-
number. Second-order quantification might thus render appeal to heights superfluous.
But this is getting ahead, since there is still a little more of semantic interest to extract
from Frege’s result.

1.4 Back to the Theorem
Two of the Dedekind-Peano axioms follow almost immediately from Frege’s
defintions of zero and number.

(DP:I) NO
(DP:1I)  Vx[Nx > —S0x]

Like (DP:IV), these are logical consequences of the definitions. The third axiom,
(DP:IIT) VxVy[(Nx & Ny & x #y) > ~dz(Szx & Szy)]

according to which no two numbers have the same successor can be rewritten as
follows: VxVyVz[PREDECESSOROF(X, z) & PREDECESSOROE(y, z) > X =y]. And this
is a logical consequence of Hume’s Principle, repeated below.

(HP) VFVG[(#F = #G) = OneToOne(F, G)]

A pair of Concepts correspond one-to-one, and are equinumerous in this Cantorian

sense, iff some function & meets the condition below.
Vx{Fx > dy[Gy & > J(x) = y]} & Vx{Gx > Jy[Fy & > J(x) =y]}
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Given (HP), together with the fact that each number w numbers the Concept of being
a number that precedes w, it follows that PREDECESSOROF(X, y) is a one-to-one
relation; in which case, the rewrite of (DP:III) follows immediately. Frege proves that
PREDECESSOROF(X, y) is one-to-one, given (HP), by establishing an intuitive
principle: if F and G are equinumerous Concepts, and x falls under F while y falls
under G, then the Concepts [Fz & —(x = z)] and [Gz & —(y = z)] are also
equinumerous. In short, subtracting one thing from each side of a one-to-one
correspondence leaves a one-to-one correspondence; hence, PREDECESSOROF(X, y)
is one-to-one. So while logic alone is not enough to prove (DP:III), Frege’s second-
order logic does provide a framework for deriving the axiom from (HP) without any
further assumptions about numbers.
Likewise, the “generative” axiom that every number has a successor

(DP:V)  Vx[Nx > Jy(Syx)]

follows from (HP) without further nonlogical/nondefinitional assumptions. Rewriting
in terms of Frege’s central notion, the axiom says: Vx{Nx > Jy[Ny &
PREDECESSOROF(X, y)]}. This follows from a claim that will by now be familiar:
VW[PREDECESSOROF(W, #{PRECEDES(z, W) })]; each number w is the predecessor of
the number of numbers that precede or are identical with w. The proof of this claim,
which draws together much of what Frege had already established at this stage, is not
hard. But the details are sufficiently many that I refer interested readers to Zalta
(2003) initially, and then the essays in Demopolous (1994), especially Heck (1994).

For our purposes, it should be sufficiently clear that given Frege’s definitions,
it follows from (HP) that the number three is the predecessor of the number of things
that precede or are identical with the number three. These things are none other than
the numbers zero, one, two, and three; and these things number four, which is by
definition, the number of things identical with zero, one, two, or three. Likewise, four
is the predecessor of five, and so on.

This is at least suggestive of how one might bootstrap from a language in
which ‘two’ and ‘three’ figure as second-order predicates, as in ‘There are three
apples’, into a language in which such words can also be mentioned as elements of a
list—‘one’, ‘two’, ‘three’, ...—with each word w being a predicate (that when used
is) satisfied by the words in the list up to and including w; cf. Benacerraf (1965),
Hurford (1987), Gallistel and Gelman (1991, 2000), Gallistel, Wiese (2003), Gelman
and Cordes (2005).

The idea would be that the “primary” meanings of number-words are given
roughly as follows: a first-order Concept X falls under the second-order Concept
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indicated with ‘three’ iff three things fall under X. There are various ways of saying
what it is for three things to fall under X—or for the Xs to be three, or for ‘Three(X)’
to be true—including the familiar first-order characterization: Ix3dydzvw{Xx & Xy
& Xz & [Xw > (w=12z) v (w=y) Vv (W=Xx)]}. Though at some point, Fregean
recursion will presumably be necessary: Four(X) = 3Ydz{Three(Y) & ~Yz & Vx[Xx
= Yx v (x=1z)]}. But however one specifies the meanings of words like ‘three’, such
words can be listed. And if ‘three’ is a second-order predicate, then even when
mentioned in a list, it remains a predicate satisfied by any three things—including the
words ‘one’, ‘two’, and ‘three’. This invites the hypothesis that at least for children
at a certain stage of acquiring English, number-words are things that can number
Concepts. And perhaps in particular: ‘three’ = #[(x = ‘one’) v (x = ‘two’) v (x =
‘three’)]. A child might use the word ‘three’ to number this special metalinguistic
Concept precisely because ‘three’ retains its predicative meaning when listed third. '’
And given that ‘three’ numbers this doubly disjunctive Concept, knowledge of
Hume’s Principle might let the child conclude that ‘three’ also numbers any
equinumerous Concept. In which case, the child could know that ‘three’ numbers any
Concepty such that the things falling under ity correspond one-to-one with the
following number-words: ‘one’, ‘two’, ‘three’. But I will not pursue this Fregean
speculation any further here.

2. Comprehension Without Sets

It is more important, in the context of stressing that induction is independent of
quantification over abstracta, to introduce an alternative to Frege’s interpretation of
second-order quantification as effectively first-order quantification over Concepts.
And here, it is useful to think about the following comprehension schema: IXVx(Xx
= ®x); where the schematic predicate ‘®@x’ can be replaced by any well-formed open
sentence, like ‘Prime(x)’ or ‘Prime(x) & >(x, 2) > Odd(x)’, with ‘x’ as the unbound
variable.

2.1 Avoiding Russell’s Paradox

If it helps, we can distinguish adjectival from nominative uses of ‘three’ as follows, using the subscripts
‘A’ and ‘N’ to disambiguate: the adjective ‘three,’ indicates a higher-order Concept such that a
Concept X falls under this higher-order Concept iff three things fall under X; and this adjective, which
can be mentioned, is the thing denoted by uses of the name ‘threey’. Indeed, if nominative reflecting a
kind of quotational use, perhaps the adjective ‘three,’ just is the semantic value of the mentioned
expression ‘three,’. Perhaps an entity/word x is a value of ‘three,’ iff x = ‘three,’, while a Concept X is
a value of ‘three,’ iff three things fall under X.
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Frege’s intent was that all instances of the schema would be theorems of logic. His
idea was that given any predicate ‘®@x’, there would be a Concept X—a function from
entities to truth or falsity—such that X maps each entity to truth iff that entity falls
under the Concept indicated with ‘®@x’. This is trivial, as Frege intended it to be, if
each predicate indicates a Concept. But Frege also held that each Concept has an
extension: for each Concept, there is the (perhaps empty) set of entities of entities that
the Concept maps to truth. And as Russell noted, this leads to contradiction, given
open sentences like ‘x¢x’.

According to Frege, if 3XVx(Xx = x¢x), then some Concept, is such that
each entity, falls under it iff that_entity is not an element of itself,. But any such
Concept has an extension,

{x: x ¢ x}, which we can call ‘Bert’. And this alleged set, Bert, either is or is not an
element of itself. Now if Bert is an element of itself, then Bert is an element of {x: x
¢ x}, and so Bert is not an element of Bert; yet if Bert is not an element of itself, then
Bert is an element of {x: x ¢ x}, and so Bert is an element of Bert. The supposition
that Bert exists thus implies a contradiction. So it’s false that Bert exists. So X ¢ x’
does not yield a true instance of Frege’s comprehension schema. Likewise, the formal
sentence ‘IXVx(Xx = x¢x)’ is false if ‘X’ is interpreted as ranging over sets of
entities that ‘x’ ranges over, and the sets are among the things that ‘x’ ranges over.
This spelled doom for Frege’s attempt to derive Hume’s Principle from logic alone.

One can respond by restricting the domains for variables of various types. But
as Boolos (1984, 1998) shows, there is another coherent gloss of second-order
variables according to which ‘IXVx(Xx = x¢Xx)’ is true—or at least compatible with
the absence of any set that is the set of nonselfelemental things. We can interpret
second-order variables as plural variables, each of which has more than one value
relative to each assignment of values to variables. On this construal, ‘3X(Xe)’ means
that one or more things, the Xs, are such that entity e is one of them. And ‘VX(Xe)’,
which is logically equivalent to ‘~3X—(Xe)’, means that there are no(t one or more)
things such that e is one of them. We can also gloss ‘VX(Xe)’ as follows: whatever
the Xs are, e is one of them; see Lewis (1991), Linnebo (2004) and references there.
In terms of open sentences, the idea is that ‘Xx’ is true relative to an assignment A
of values to variables iff the entity that A assigns to ‘x’ is one of the (one or more)
entities that A assigns to ‘X’.

At least prima facie, this does not just restate a Fregean interpretation,
according to which ‘Xx’ is true relative to A iff the entity that A assigns to ‘X’ is an
element of the extension (of the Concept) that A assigns to ‘X’. For on the Boolos
construal, ‘IXVx[Xx = (x¢x)]” means that there are one or more things, such that
for each thing,, it, is one of them, iff'it, is not an element of itself,. And at least prima
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facie, this claim is true. There are indeed some things, like you and me, that are not
selfelemental; and the nonselfelemental things all exist, even if no set is such that its
members are them—i.e., even if no set s is such that x € s iff x¢x. But if a formal
sentence is true on one interpretation and false on another, the interpretations differ.
Skeptics may suspect that ‘IXVx[Xx = (x¢x)]’ remains false with ‘X’ interpreted as
a plural variable."' But suspicion is not an argument. And the plural interpretation
certainly seems to be a coherent, apparently distinctive construal of second-order
variables.

Consider a domain with exactly five entities: a, b, ¢, d, and e. Given such a
domain, there seem to be thirty-one possibilities for assigning values to variables, as
depicted below.

— a b ba c ca cb cba
d da db dba dc dca dcb  dcba
e ea eb eba ec eca ecb ecba

ed eda edb edba edc edca edcb edcba

If we think about assignments as ways of modelling potential acts of demonstration,
then the blank corresponds to cases of demonstrating nothing, while other “cells of
the lattice” correspond to cases of demonstrating one or more entities in the stipulated
domain. Initially, one might be inclined to say that each of nonempty cells indicates
exactly one set-like entity with one or more elements of the five-membered domain,
{a, b, ¢, d, e}; see Link (1983). On this essentially singularist conception of
assignments, according to which each assignment assigns at most one value to each
variable, we don’t really have a domain with exactly five entities. If the first-order
variables range over a domain of five things, the second-order variables range over
a domain of at least thirty-one.'” But this familiar construal of the lattice is not

Perhaps whenever we judge that some entity is one of some things we can think about, we must thereby
think of the entity as satisfying some condition like the following: it falls under a Concept which applies
to all and only those things; or it is an element of a set such that each of those things is an element of
the set.

The empty set would make thirty-two. And what about entities like {{a}, a, b, ¢, d, e}? Schwartzschild
(1996) argues against expanding the domain in this way for the plural variables of natural language.
But formally, many options are available at this point. Note, however, there is nothing puzzling about
assigning more than one value to a variable. Assigning exactly one entity to a singular variable, like
‘it’, is akin to an act of demonstrating that entity alone. Likewise, an act of demonstrating several
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mandatory.

Consider the eleventh cell, indicated with ‘dba’. Instead of thinking about
assigning the set {d, b, a} as the value of a variable, we can think about three
entities—d, b, and a—as the values of that variable. To highlight this contrast,
imagine binary numerals, with our five entities numbered as follows: a, 1; b, 10; c,
100; d, 1000; and e, 10000.

— 00001 00010 00011 00100 00101 00110 00111
01000 01001 01010 01011 01100 01101 01110 O1111
10000 10001 10010 10011 10100 10101 10110 10111
11000 11001 11010 11011 11100 11101 11110 11111

Now the eleventh cell is indicated with ‘01011°, which designates the sum of three
entity correlates: 01011 = 1000 + 10 + 1. One can still hypothesize that this
arithmetic relation reflects a set-forming, or perhaps merelogical operation. From this
perspective, ‘01011 stands for a plural entity x; such that y is an element of x,; iff y
is identical with d or b or a. But we can also read ‘01011’ as five answers to yes/no
(T/1) questions about whether a certain entity, perhaps with others, is assigned to a
given variable: (e, 1), (d, T), (c, 1), (b, T), (a, T). This construal may also require a
slightly enlarged domain, in so far as it requires the “sentential” values T and L. But
appeal to this Fregean trick need not be combined with the further trick of associating
each plural variable with a plural entity (perhaps via some Concept); cf. Link (1983).

In this regard, it is worth recalling that Frege appealed to plural entities—like
nonempty, nonsingleton extensions—as entity-correlates of unsaturated Concepts.
And if we set aside his attempt to derive Hume’s Principle, Frege appealed to
Concepts as a way of implementing his idea that a “gappy” sentence like ‘Prime(x)’
associates each element of the domain in question with a sentential value. But this idea
is better than Frege’s implementation of it. Treating each meaningful predicate as an
indicator of some Concept, which maps each entity to T or 1, has a problematic
implication: the mere existence of the predicate guarantees the existence of the
corresponding mapping/extension. We can say instead that ‘Clever(u)’ does indeed

things is akin to assigning more than one entity to a plural variable. Given a tendentious semantic
theory, one might insist that what we call an act of demonstrating several things is really an act of
demonstrating a plural thing (with elements). But prima facie, this is the fancy idea in need of
theoretical support. And there is much to be said in favor of the hypothesis that human languages
employ plural variables, each of which can have many values relative to an assignment; see Boolos
(1998), Schein (1993, 2006, forthcoming), Higginbotham (1998).
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imply ‘IXVx{[Xx = Clever(x)] & Xu}’, but that this does not logically imply the
existence of a correlated set,{x: Clever(x) = T}."” On the Boolos construal,
‘Clever(u)’ and ‘IXVx{[Xx = Clever(x)] & Xu}’ both mean that u is one of the
(one or more things that are) clever.

As Sainsbury (1990) stresses, there may not be a set whose elements are all
and only the clever. Unlike ‘prime’, ‘clever’ is vague; and there is no set x and entity
e such that it is vague whether or not e is an element of x. But even if there is a set of
the clever, there is no Zermelo-Frankl set of all and only the nonselfelemental. Yet
there surely are one or more nonselfelemental things. And at least prima facie, we can
express this thought with ‘IXVx[Xx = (x¢x)]’, letting the singular variable ‘x’ and
the plural variable ‘X’ range over the things—with ‘X’ having more than one value
relative to each assignment of values to variables. Readers who worry about
unrestricted quantification over everything can replace ‘things’ in the previous
sentence with ‘Zermelo-Frankl sets’. At this point, I think the burden of argument lies
with skeptics who think that the Boolos-construal is really just Frege’s construal in
disguise. Elsewhere, I have argued that the former construal is preferable with respect
to the second-order variables in theories of meaning for natural languages; see
Pietroski (2005, 2006), drawing on Schein (1993, 2001, forthcoming). But for now,
my point is only that Frege’s interpretation in terms of Concepts is not mandatory.
Boolos provides a coherent alternative with some prima facie attractions.

2.2 Formalism and Induction (Reprise)

In an important sense, a variable that can be assigned values adds nothing new, while
a variable that is always assigned a set of one or more values may add paradoxically
much. As Boolos (1998, p.72) says, “We need not construe second-order quantifiers
as ranging over anything other than the objects over which our first-order quantifiers
range...a second-order quantifier needn’t be taken to be a kind of first-order quantifier
in disguise, having items of a special kind, collections in its range.” This matters in
part because genuinely plural variables make room for essentially plural predicates.
Some things can plurally satisfy an essentially plural predicate even if no one thing
can satisfy the predicate. Boolos (1984) offers, among others, the example ‘rained
down’; some rocks can rain down even if no thing can. Schein (1993) offers

Boolos (1985) asks, reporting conversation with a skeptic, is anyone who believes that Napoleon was
not one of his ancestors thereby committed to the existence of sets? As Boolos notes, while “Frege’s
definition, whose logical utility, fruitfulness, and interest have been established beyond doubt, cannot be
dismissed for such an utterly crazy reason, it is not at all easy to see what a good answer to [the
skeptic’s] question might be.”
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‘clustered’; some elms can be clustered in the middle of the forest even if no single
thing can be clustered anywhere. And importantly, given some things, they are sure
to be plural in way that no thing can be. Unsurprisingly, ‘plural’ is a plural predicate
par excellence.

So we can introduce a pair of restricted quantifiers, ‘IX:Plural(X)’ and
‘IX:~Plural(X)’; where the latter is equivalent to ‘Ix’, and 3X:Plural(X)[ Vx: Xx(Fx)]
iff Ixdy[Fx & Fy & x#y]. By contrast, 3X:~Plural(X)[Vx:Xx(Fx)] iff one or more
things such they are not more than one are such that each of them is an F. So if
JX:Plural(X)[Vx: Xx(Fx)], 3X:~Plural(X)[Vx:Xx(Fx)]. As noted above, we can also
treat numerical predicates as second-order, with the first few understood in terms of
more basic notions, but eventually by means of recursion. Whatever the one or more
Xs may be: One(X) = —Plural(X); Two(X) = Ixdy[Xx & Xy & (x # y)I;
AtLeastTwo(X) = Plural(X); MoreThanTwo(X) = Plural(X) & “Two(X); etc.

Given this understanding of the formalism, the mathematical axiom of
induction

(DP:1V)  VX[X0 & VxVy(Xx & Syx o Xy) o Vx(Nx > Xx)]

says that whatever the Xs may be: if zero is one of them, and whenever something is
one of them, its successor is also one of them, then every number is one of them. And
this is still a special case of the corresponding principle of logic.

(6a)  Given a relation R(x, y), a Concept X, and an entity e:
if X is hereditary on the R-series starting with e, and e falls under X,
then Vx[R(e, x) o Xx].

Reading this formalism with the second-order variables interpreted plurally, it says
that given one or more ordered pairs, the Rs, and one or more things, the Xs, and an
entity e: if the Xs are hereditary on the Rs starting with (e, y) for some entity y, and
e is one of the Xs, then every entity x is one of the Xs if (e, x) is one of the ordered
pairs defined ancestrally in terms of the Rs. Frege’s quantification over Concepts is
thus dispensible, at least for cases of induction involving relations that can be captured
in terms of predicates of ordered pairs.'*

In the Appendix to Lewis (1991), cowritten with Burgess and Hazen, the authors explore an alternative
to actually quantifying over pairs: namely, quantifying over individuals in monadic third-order logic.
See Hazen (1997a, 1997b, 2000); see also Linnebo (2005). But for purposes of natural language
semantics, as opposed to pure logic, quantification over ordered pairs is relatively innocent. See
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Induction is not essentially about numbers, any more than it is about parents.
And given the Boolos interpretation of second-order variables as plural variables,
neither is induction covertly about Concepts or their extensions. When we reason by
induction about people, while thinking about who begat who (or who is taller than
who), we are reasoning in a second-order way that can be captured with variables
ranging plurally over “the objects over which our first-order quantifiers range.” Our
second-order thoughts and inferences need not be construed as first-order thoughts
and inferences that range, in a disguised way, over items of a special kind. Induction
is not a special kind of first-order inference over abstracta that are somehow related
to elements in a more basic domain. Induction is a kind of second-order inference that
may, in special cases like arithmetic, be applied to abstract domains."

2.3 Case Study: Labelled Phrase Markers

Imagine a language with primitive expressions of three kinds: alphas, betas, and
gammas. Combining a gamma with an alpha or a beta creates a complex gamma.
Combining a beta with an alpha creates a complex beta. (Think of alphas as adjuncts,
and gammas as predicates that take betas as arguments.) This allows for expression
types like the one indicated below.

\

vy B

/A
B «
Such a language might have endlessly many expressions, even if there are finitely
many alphas, betas, and gammas. Whatever expressions are, they can and often must

be specified recursively. This makes it tempting to identify “labelled” expressions with
sets. If [blobg alla, ]g is an expression, one might take it to be the set {blobg {bloby,

Pietroski (2005) for further discussion in the context of neo-Davidsonian approaches to semantic
composition.

15

See Boolos (1987) for an argument that we can (quickly and easily) recognize as valid many inferences
that are firstorderizable “in principle,” but only in proofs whose steps would far outnumber the
subatomic particles in the known universe.
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alla, } }, conventionally identified with the ordered pair <bloby, alla,>; cf. Chomsky
(1995). This encodes the fact that ‘blob alla’ is, for purposes of further combination,
like ‘blob’. Still, the idea of identifying expressions with sets rankles. Identifying
numbers with sets is bad enough, since as Benaceraff (1965) notes, any particular
identification seems arbitrary: is the number two identical with {{2}}, or {2, {2}},
or some other set? And while we can represent certain properties of expressions by
correlating expressions with sets, it seems even more gratuitous to identify particular
expressions with particular sets. Of course, one can ignore this if one isn’t really
worried about what expressions are. But one might have thought that we should be
able to characterize expressions recursively without tendentious claims about what
expressions are. And there is indeed another option, given Frege’s treatment of
induction and Boolos’ construal of variables.'

Let’s say that x ImmediatelyDominates y—for short, ID(x, y)—iff y is a
constituent of X, and no constituent of x has y as a constituent. Eventually,
‘constituent of” will be defined. But for now, an intuitive grasp of the relation ID(x,
y) will suffice. If the only way to form complex expressions in our imagined language
is by concatenating simpler ones, then every complex expression is of the form x"y,
for some pair of expressions x and y. In which case, ID(x, y) = Jdz(x = z"y). For
illustration, suppose that ‘Glug blob alla’ is of the form Glug,"(blobg"alla,), and
hence of the form [Glug, [bloby allaa]ﬁ]y.” The primitive constituents, which are
marked as expressions of certain types, immediately dominate nothing. But the
complex expression blobg”alla, ImmediatelyDominates both blobg and alla,.
Likewise, Glug,”(blobg"alla,) ImmediatelyDominates both the primitive gamma
Glug, and the complex beta blobg"alla,. But Glug, ~(blobsalla,) does not
ImmediatelyDominate blobg or alla,. If ‘Glug blob alla affa’ is of the form
(Glug,~(blobg"alla,)) affa,, then it is of the form [[Glug, [blobg alla,]s], affa,], .
This complex gamma ImmediatelyDominates affa, and [Glug, [blobg alla,]g],, but
nothing else.

There are obvious analogies between the intransitive relation ID(x, y) and the
relation SUCCESSOROE(x, y). Intuitively, there is also a transitive relation

16

Brody (2000) develops a similar line of thought internal to a certain theory of syntax. But my point here
is simply to illustrate the power of Frege’s logic with an explicitly linguistic example.

17

In terms of Chomsky’s (1957) is-a relation, suppose that the string of words (or word-sounds) ‘Glug
blob alla’ is-a [..., [... ..., ]]. Then given the rules for determining the type of a complex expression
‘Glug blob alla’ is-a [..., [...5 ..¢]g],- This would be an idealized claim about how certain linguistic
signals are classified by certain speakers.
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DOMINATES(X, y) that Glug, "(blobg"alla, ) bears to each ofits constituents—Glug, ,
blobg"alla,, blobg, and alla,—analogous to the transitive relation GREATERTHAN(X,
y). So unsurprisingly, DOMINATES(X, y) iff [ANC(ID)](x, y). And so in particular,
DoMINATES([Glug, [blobg alla,]g],, blobg) iff: VX{X([Glug, [blobg alla,]g],) &
Vwvz[X(w) & ID(w, z) > X(z)] > X(blobg)}; whatever the Xs may be, if the
complex expression is one of them, and whenever one of them immediately dominates
something, that (simpler) expression is one of them, then blobg is one of them. Since
this second-order universal generalization is true, [Glug, [blobg alla,]g], sominates
blobg, albeit mediately. Or putting the point in the other direction:
IMMEDIATECONSTITUENTOE(X, y) iff dz(y = x*z); and CONSTITUENTOEF(X, y) iff
[ANC(IMMEDIATECONSTITUENTOF)](X, y).

We can now characterize the gammas simply as follows.
Vx{Gamma(x) = Jdy{PrimitiveGamma(y) & [CONSTITUENTOE(y, X) V (X =y)]}}
This formulation, which mimics Frege’s definition of number, implies that x is a
nonprimitive Gamma iff x has some primitive gamma as a constituent. Spelling out
‘CONSTITUENTOEF(y, x)’, which abbreviates a second-order generalization, would
reveal the underlying inductive truism. An expression y is a constituent of a distinct
expression x iff: whatever expressions you choose, x is sure to be one of them if those
expressions are such that (i) they include every expression that has y as an immediate
constituent, and (ii) for each of them, anything that has it as an immediate constituent
is also one of them. Put yet another way, the biconditional above says that x is gamma
iff: x is a primitive gamma, or for some primitive gamma y, X iS among any
expressions that include y and the ImmediateDominater of each of those expressions.

Given a characterization of the gammas, the betas can be described in similar
fashion.

Vx{Beta(x) = “Gamma(x) &

Jy{PrimitiveBeta(y) & [CONSTITUENTOE(y, X) Vv (X =y)]}}

That is, x is a beta iff: x is not a gamma; and for some primitive beta y, X is a
constituent of or identical to y. And in the imagined language, x is an alpha iff x is
neither a beta nor a gamma. For purposes of characterizing expressions in this
language, we needn’t think of alphas as having labels of their own; alphas are simply
expressions that extend a beta or a gamma. But it is important that the relevant
expression types exhibit a compositional hierarchy. Suppose that combining a gamma
with a beta yielded a gamma, and combining a beta with alpha yielded a beta, while
combining a gamma with an alpha yielded an alpha. (Think of rock, scissors, paper.)
Then we couldn’t characterize the expressions by characterizing the gammas, as
above, and then the nongammas. But if the expression types do exhibit an appropriate
hierarchy, recursive descriptions of the expressions are easily provided, given a logic
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that allows quantification into positions occupiable by predicates.

Let me summarize by reformulating the main point. Without introducing labels
for complex expressions, we can say that [Glug, [blobg alla,]] is the result of
combining blobg with alla,, and then combining the result with Glug, . And given the
following principle,

Vx{Gamma(x) = Jdy{PrimitiveGamma(y) & {x #y >

dz[ID(z, y)] & VX{Vz:ID(z, y)[Xz] & VzVw[Xz & ID(w, z) > Xw] >
Xx}1}}
it follows that [Glug, [blobg alla,]] is a gamma. And suppose we are also given that
[blob alla, ] is not a gamma, because it is either a beta or an alpha. Then the following
principle

Vx{Beta(x) = “Gamma(x) & Jy{PrimitiveBeta(y) & {x #y >

dz[ID(z, y)] & VX{Vz:ID(z, y)[Xz] & VzvVw[Xz & ID(w, z) > Xw] >
Xx}1}}
ensures that [blobg alla,] is beta. We can encode these consequences with further
subscripts, as in [Glug, [blobg alla,]s],. But none of this implies that labelled
expressions are sets with elements corresponding to the labels. For we can intepret
the capitalized variables as ranging plurally over the expressions that the first-order
variables range over—without quantifying over sets of expressions, or taking
expressions to be sets. We can think about expressions without mischaracterizing
them, or our thoughts about them, in terms of abstracta distinct from the expressions
themselves. This invites the thought that for purposes of stating theories of natural
language syntax, we should employ a second-order logic with the predicative
variables interpreted a la Boolos.

3 Comparing the Perceptible

Suppose there are, as there seem to be, distinctively human capacities that let us
recursively generate labelled phrase markers as we do. And suppose, more
tendentiously, that these capacities also underlie our ability to reason inductively in
the ways illustrated above. In particular, let’s speculate that a competent speaker of
a natural language can represent the world in second-order terms—though perhaps
only in a restricted way, via the logical resources of a monadic predicate calculus
whose predicative variables are understood as plural variables. This is, in effect, to
posit a capacity to generate “logical skeletons” that are more Fregean than the
subject-predicate structures envisioned by medieval logicians, but perhaps more
constrained and reflective of grammatical structure than Frege envisioned. If humans
have such a capacity, we might understand words like ‘tall’ and ‘taller’ as monadic
predicates used to express relational thoughts indirectly, in second-order terms.
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Elsewhere, I have argued that for purposes of compositional semantics, the
resources of a Boolos-style second-order monadic predicate calculus are sufficient,
required, and yet limited enough to help explain various constraints on natural
language; see Pietroski (2005, 2006). To make a long story very short, all the usual
textbook cases and more can be handled by supposing that speakers can do the
following: lexicalize mental representations as (potentially plural) monadic
predicates—like ‘Red(X)’, ‘Ball(X)’, and predicates like ‘Stab(E)’ that can be
satisfied by things like events, which can have “participants;” conjoin monadic
predicates, as in ‘Red(X) & Ball(X)’; introduce certain thematic predicates, like
‘Agent(E, )’ and ‘Theme(E, )’, when combining grammatical predicates with
arguments as in ‘They, stabbed them,’—thereby creatating complex monadic
predicates like ‘Agent(E, they,) & PastStab(E) & Theme(E, them,)’; and occasionally
introduce existential closure of a variable.'® On this view, lexicalization is a matter of
imposing a common “monadic format” on mental representations—which have
whatever (psychological) adicities they have—in order to combine linguistic correlates
ofthese mental representations via the essentially conjunctive combinatorics provided
by the human language faculty. While this conception of lexicalization is certainly
controversial, let me repeat that it is compatible with the usual textbook cases and
more. Indeed, I have argued that it helps explain some otherwise puzzling facts about
causative constructions, propositional attitude reports, and natural language
quantification. Here, though, I want to sketch the implications for comparative
constructions, in the context of Frege-Boolos accounts of inductive inference.

3.1 Big Ants are Bigger than Small Ones

If we know that Adam is a big ant, we know something about Adam and the ants. To
a first approximation, we know that the ants are such that Adam is bigger than most
of them—and hence, that most of the ants are smaller than Adam. If we take our size
concepts to be comparative/relational, not monadic, this invites a logical paraphrase
of (7) along the lines of (8).

(7) Adam is a big ant
(8) JIX:Vx[Xx = Ant(x)]{X(adam) & MOST(X):BIGGER(adam, X)]}

18

More precisely, ‘Agent(E, they,,)’ should be spelled out as follows: Agent(E, they,, A) iff IX:Vx[Xx =
Assigns(A, x, 1)]{Agent(E, X)}. That is, the Agents of the Es are they, relative to assignment A iff the
things that A assigns to the first index are the Agents of the Es. And likewise for ‘Theme(E, them,, A)’.
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Adam is a big ant iff the ants are such that Adam is one and bigger than most. We can
abbreviate ‘MOST(X):BiGGER(adam, X)]’, which says that most Xs are such that
Adam is bigger, as follows: BIG-ONE(adam, X); or [BIG-ONE(X)](adam). It may
well be that ‘most’ is not quite what is wanted for these purposes. But given a better
way of specifying how the ants must be related to the things/ants that are bigger than
Adam, in order for (7) to be true, we can presumably make an appropriate
substitution for ‘MOST’ in (8).

In terms of the syntax and compositional semantics underlying (7), we might
imagine a variant on Higginbotham’s (1983) appeal to autonymous theta-marking.
Suppose that ‘big’ combines with a covert pronoun conindexed with ‘ant’, as in (7a).

(7a)  Adam is a big-ene, ant,

Then we can specify the semantic values of ‘ant,’, relative to assignments of values
to variables, as follows: Val(X, ‘ant,’, A) iff AY:Vy[Yy = Ant(y)]{Vx:Xx(Yx) &
Vx[Assigns(A, x, 1) = Yx]}; where ‘Assigns(A, x, 1)’ means that A assigns x as one
of the one or more values of the first indexed variable. On this view, the Xs are values
of ‘ant,’ relative to A iff: A assigns the ants to the first index, and each of the Xs is
one of the things assigned to that index. The semantic values of ‘big-ene,’can be
specified correlatively.

Val(X, big-ene,, A) iff each of the Xs is

bigger than most of things that A assigns to the first indexed variable
The idea is that ‘big” combines with ‘one,’, or at least that ‘big’ is understood as ‘big-
one,’, because each terminal node in the syntax must be interpreted as a monadic
predicate. Likewise, I suggest, ‘bigger’ is understood as a monadic predicate. But
‘bigger’ is more like ‘stabbed’, which can take an internal and external argument, and
thereby spread the relationality of the underlying concept across a sentence in which
arguments of the predicate are interpreted thematically.

We know, from developments of Davidsonian event analyses (see, e.g., Taylor
[1985]), that ‘stabbed’ can be treated as a monadic predicate of events as in (9);

9) Je[External(e, Brutus) & Event(e) & PastStab(e) & Internal(e, Caesar)]

where by stipulation, the external participant of an event is its Agent, and the internal
participant of an event is its Theme. Event variables can also be plural, as in (10),

(10) JE[External(E, They,) & Event(E) & PastStab(E) & Internal(E, them,)]
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which can be spelled out as in (11), relativizing to an assignment A;

(11)  FJE{Xevx[Xx = Assigns(A, x, 1)]{External(E, X)} & Ve:Ee[Event(e)] &
Ve:Ee[PastStab(e)] & 1X:Vx[Xx = Assigns(A, x, 2)]{Internal(E, X)}}

where ‘External(E, X)’ can be firstorderized as ‘Ve:Ee{dx:Xx[External(e, x)]} &
Vx:Xx{de:Ee[External(e, x)]}’, and likewise for ‘Internal(E, X)’. So construed, (10)
says that one or more things satisfy four conditions: their external participants were
the things assigned to the first indexed variable; each of them was an event—a thing
whose external participant is an Agent, and whose internal participant is a Theme;
each of them was a stab; and their internal participants were the things assigned to
the second indexed variable. So more briefly, (10) says that one or more events of
stabbing were such that their Agents were the things assigned to the first indexed
variable, and their Themes were the things assigned to the second indexed variable.

This provides an attractive analysis of (12); see Schein (1993), Pietroski
(2005).

(12)  They stabbed them

And given the Boolos construal of ‘JE...E...", (9) can be written as (13),

(13) JE[External(E, Brutus) & Event(E) & PastStab(E) & Internal(E, Caesar)]
thus providing a unified analysis for both (12) and ‘Brutus stabbed Caesar’.
Moreover, each stabbing is something like a causal process, starting with the action
of an Agent and ending with the motion of an implement presumably used to stab
something. As discussed above, this invites appeal to the relation ACTCAUSE(c, e),
defined ancestrally in terms of PROXIMALCAUSE(d, d'). But my main point here is that

parallel analyses for (14) and (15) are available,

(14)  Carl is bigger than Adam
(15) They are taller than them
as shown in (16) and (17).

(16) dO[External(O, Carl) & OrderedPair(O) & Bigger(O) & Internal(O, Adam)]
(17)  3O[External(O, They) & OrderedPair(O) & Taller(O) & Internal(O, them)]

Note that (15) can be used to correctly report that some basketball players
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(they, the ones wearing red) are taller than some others (them, the ones wearing blue),
even if the relevant comparisons must be position by position. Suppose the shorter
center is taller than every player apart from the taller center; the shorter left guard is
taller than every player apart from the two centers and the taller left guard; etc.'” One
can still capture the truth of (15), in such a context, by treating ‘taller’ as a monadic
predicate. The predicate is satisfied by some ordered pairs, the Os, iff for each, of
them: IxJy{External(o, x) & Internal(o, y) & TALLER(X, y)}; or put another way,
dxdy{External(o, x) & Internal(o, y) & [ANC-MINIMALLY TALLER](X, y)}. This is,
by no means, a theory of comparative constructions. But it is worth noting that on this
kind of view, (14) and (15) do not involve covert quantification over numbers or
heights. And even the quantification over ordered pairs may, in the end, be
dispensible.

3.2 Series of Things

Suppose that at least within a given context, we can make sense of the idea that some
things can (together) exhibit a MINIMALLY TALLER-series. This does not require that
in every context, one thing is minimally taller than another iff the difference between
the two is just barely noticeable. In some contexts, differences of an inch might be
well above the threshold of discriminability, yet small enough to ignore for the
conversational purposes at hand. But at least prima facie, in any given context, one
thing counts as minimally taller than another only if the difference between the two
is not below the threshold of discriminability for that context. (Though in special
contexts, the threshold of discriminability might depend on apparatus external to our
own perceptual systems.) And for these purposes, let’s not worry about whether there
are enough “things” to have a MINIMALLY TALLER-series for any two things we might
want to compare.

If only for simplicity, let’s suppose that given any thing that can be taller than
something, we can inductively specify some things: the initial object; that object minus
a contextually determined smidgeon (“off the top”); the previous object minus a
contextually determined smidgeon; and so on, until we have an object such that no
object is it minus a contextually determined smidgeon. This supposition, ugly though
it is, makes presentation of the ideas below easier. If these ideas have merit, they can

Perhaps (15) is compatible with situations in which one or two players on the shorter team are taller
than their positional opponents. But from a theoretical perspective, this may be “noise” due to genuine
group comparisons. I hear (15) as clearly true given a one-to-one correspondence that pairs each of
“they” with a shorter one of “them.” But in the absence of such a correspondence, I am not sure that
(15) itself is true, even they are “mostly” taller than them.
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be recast in other terms. For example, whatever things are being compared, given any
two of them x and y: if neither is taller than the other relative to the context at hand,
then "MINIMALLY TALLER(X, Y) & "MINIMALLY TALLER(Yy, X); and if X is taller than
y, relative to the context at hand, then [ANC-MINIMALLY TALLER](X, y). This at least
imposes substantive constraints on the relation MINIMALLYTALLER(X, Y).
Schwartzschild (2002) provides helpful and compatible discussion of scales, intervals,
and their properties. But here, I’ll operate with the idea of subtracting smidgeons,
while recognizing the need for something better.

If some things, the Xs, exhibit a MINIMALLY TALLER-series, then presumably:
one, of those, things is such that it_is not taller than any of them,; and one, of thosey
things is such that none of them, are taller than it,. So it seems that we can talk,
sensibly enough, about the “innermost” one of the Xs and the “outermost” one of the
Xs. Thus, we might gloss (18) as (19).

(18)  Carl is taller than Al
(19)  IX[Outermost(X, Carl) & Taller(X) & Innermost(X, Al)]

The idea here would be that ‘taller’ is a plural predicate, satisfied by some things iff
they exhibit a series of a certain sort. There is nothing especially new or exciting about
this idea. My point is simply that the unexciting idea can be implemented, in second-
order terms, without quantifying over things beyond things that have heights.
Quantification over such things and their heights goes farther, at least if such
quantification is supposed to reflect how speakers understand sentences like (18); cp.
Klein (1980).

Given a (contextually determined) decision about what counts as minimally
taller, and thus what counts as a smidgeon, we can effectively determine (up to
vagueness) how many elements there have to be in a MINIMALLY TALLER-series that
links Carl to Al. And one might hope to exploit this fact with regard to sentences like
(20).

(20)  Carl is much taller than Al

To be sure, ‘much’ is itself context sensitive, like ‘many’. But (20) requires that Carl
not be minimally taller than Al, nor even just a smidgeon or two more than minimally
taller. So perhaps (20) is like (18), with the added condition that the Xs are many.
Even if few “ordinary” things are taller than Al but shorter than Carl, the interveners
may include many “Carl-minus-smidgeons.”

Some such proposal might also help explain why (20) implies (18), and why
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‘much taller’ is transitive, while ‘just barely taller’ is not. Perhaps even complicated
examples like (21) can be dealt with in this way.

(21)  Carl is so much taller than Bob than Bob is taller than Al

Note that (21) is true iff: some Xs exhibit a MINIMALLY TALLER-series with Carl and
Bob as the outermost and innermost Xs; some Y's that exhibit a MINIMALLY TALLER-
series with Bob and Al as the outermost and innermost Ys; and the Xs correspond
many-to-one with the Ys.

Many analyses of (22) are compatible with the discussion here.

(22) Carlis tall
But one obvious starting point, suggested by the earlier discussion of (7),
(7) Adam is a big ant

would be to treat (22) like ‘Carl is a tall-ene,’, with the covert prominal understood
contextually. More interestingly, in (23),

(23)  Carl is six feet tall

‘tall’ apparently serves as a device that lets us express a relation between Carl and six
feet. So maybe the logical form of (23) is, at one level of abstraction,
‘SixFeetTall(Carl)’; where SixFeetTall(x) iff x is as fall as—or perhaps iff x is
EquiTallWith six (stacked) feet. Then (24)

(24) Carl s a foot taller than Al

might be analyzed along the following lines: there are some things, such that theyy
exhibit a (MINIMALLY)TALLER-series with Carl and Bob as the outermost and
innermost of themy, respectively, and they, measure a foot; where some things that
exhibit a series can be like (the markings on) a ruler, which measures a foot by
indicating—in accordance with a certain method of projection—points separated by
twelve inches.

A series of individuals can also indicate points separated by twelve inches,
given the right method of projection, if the last individual in the series is a foot taller
than the first. If the top of Al’s head indicates a “zero” point, the top of Carl’s head
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can indicate a point that is one foot higher. Again, this is trivial. But as Frege’s
treatment of induction shows, representing certain truisms as such often requires
second-order resources. And it is all too easy to mischaracterize certain truisms by
thinking exclusively in singularist/first-order terms, since this often leads to analyses
that distort the thoughts in question by “paraphrasing” ordinary claims in terms of
covert quantification over abstracta not implicated by the ordinary claims.

These are, to be sure, imprecise speculations as opposed a serious theory. But
if second-order quantification and plural variables and ancestral relations are relevant
in other constructions, it may be appropriate to think about comparative constructions
in connection with these other constructions. Just as we have learned that theories of
quantification and plurality can and should hang together, perhaps theories of
comparatives and plural variables can and should hang together—and likewise for
theories of quantification and number. In which case, we should assess theories in any
particular subdomain with a clear view about what the logic underlying all of these
subdomains does and does not require, in terms of quantification over abstracta. The
demands of theory construction in semantics make it temping to appeal to sets, plural
objects, numbers, heights, etc. But the history of the subject suggests that caution is
always in order when making such appeals. Frege himself erred in this arena, by
assuming more abstracta than logic requires or permits. That should make us mortals
pause, especially since Frege’s successes have opened up various ways of thinking
about how his logic relates to natural language semantics and variables in natural
languages.

4 Conclusion

Logical induction may be important for theoretical linguistics, even if children do not
induce languages from experience. Either our human capacities for inductive
reasoning lie near the heart of our capacity to generate and understand expressions
of'a human language, or not. If they do, then theoretically minded linguists should try
to understand human inductive capacities and the kinds of understanding they make
possible, independent of other cognitive capacities. If not, then we should be clear
about this, and not pretend otherwise—say, by adopting semantic theories that exploit
the full resources of the logic that Frege used to reduce arithmetic to Hume’s
Principle.

But suppose our best theories of language do presuppose that speakers have
inductive capacities. Then considerations of theoretical parsimony suggest that we
theorists should squeeze as much as we can from our representations of human
inductive capacities, before adding controversial assumptions about how speakers
understand expressions. This leaves room for hypotheses according to which speakers
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understand certain sentences in terms of covert quantification over abstracta. But
when advancing such hypotheses, we should be cautious. And we should consider
more than one way of interpreting our theoretical formalism. Here, as elsewhere,
Frege provides a model from which we can still learn.
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